
COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 55

Another technology new to the NMT software
engineering staff is the Unified Modeling Lan-
guage, which is being used to express the software
design. While the previous sentence may not seem
overly profound upon first glance, the UML’s ten-
tacles reach into virtually all of the technologies
previously mentioned as being used on NMT. It is
the intent of this article to share the NMT pro-
gram’s usage of the UML and to relate the UML’s
connection to several of the technologies used in
our program.

As an architecture-centric and use case driven
program adopting an iterative development
methodology, the UML is a very good choice for
NMT to use in modeling its design. The UML is
a standard language with what appears to be
steadily increasing popularity. A diverse selection
of UML-related tools and publications are avail-
able to improve the productivity of our software
engineering staff. Using a popular, standardized
modeling language to express our design increases
the probability that new engineers coming to

�

The UML is becoming the standard palette used by
software designers to paint their thoughts.

The primary objective of Boeing’s NATO

Midterm Modernisation Programme (NMT) is to produce a next-generation Airborne

Warning and Control System (AWACS) that is computationally distributed, functionally

scalable, and more technologically advanced than its predecessors. What makes this objec-

tive particularly challenging is that our group of 50-plus

software engineers on the NMT project are generally

very new to a number of the technologies being used to

develop this system: distributed architecture, the 4+1

architectural model [4], object-oriented design, iterative

development, Ada, and CORBA.

ALEX E. BELL AND RYAN W. SCHMIDT

UMLoquent
Expression of
AWACS Software Design

http://crossmark.crossref.org/dialog/?doi=10.1145%2F317665.317676&domain=pdf&date_stamp=1999-10-01

NMT from other programs already know the UML
and that less time will be required for them to
become productive. Because the UML met NMT’s
programmatic and technical needs, was endorsed by
a number of software engineering’s critical mass, and
appeared to be the standard by which future designs
would be expressed, we did not conduct an exhaus-
tive study investigating alternative techniques for
capturing our software design.

Using the UML to Capture Different
Levels of Abstraction
There are a number of different stakeholders in the
NMT program who have a vested interest in the soft-
ware under development but from different perspec-
tives. Architects, requirements experts, developers,
and management teams are interested in the same
system’s design but from different views and levels of
granularity. The UML is an excellent vehicle for
communicating the system design
among these various stakeholders.

High-level diagrams contained in a
domain model are used to describe the
system design to the customer and other
stakeholders interested in understanding
its basic concepts but who have little
interest in low-level details. It is the
application model that contains more
detailed information required by archi-
tects to assess a design and by developers
to implement it. Should a domain model
stakeholder desire further design detail, it
is possible to navigate into the corre-
sponding application model within the
context of our design tool.

A domain level use case model captures the basic
functionality of the NMT system from the perspec-
tive of its various actors. The application use case
model, however, extends domain level use cases for
the purposes of providing more granular detail. For
example, the Process_Sensor_Report use case in the
domain model addresses generalized sensor processing
while the Process_Radar_Report and
Process_IFF_Report use cases in the application model
are the corresponding extensions that address the details
of individual sensors. An example extension of a
domain model use case is illustrated in Figure 1.

The varying levels of abstraction captured on the
NMT program are also applicable to class diagrams.
Domain level class diagrams capture NMT’s primary
abstractions and their corresponding relationships.
These diagrams are composed of key classes plucked
from the appropriate application class model with
fine-grained abstractions typically ignored. Similar to

NMT’s use case model approach, a multilayered class
model allows a stakeholder to view the design from a
general perspective but supports the ability to option-
ally navigate into the detailed application model
where all classes are available for inspection.

Mapping the UML to 4+1 Views of
Architecture
It is through the methodical techniques of software
architecture that NMT engineers are able to consider
thousands of requirements representing the AWACS
domain space without being overwhelmed by their
number. The complexity of the domain is consider-
ably reduced by decomposing it into hierarchical,
abstract pieces whose details are hidden until a time
in the software life cycle when it is appropriate for
them to be addressed. These pieces must be viewed
from a number of perspectives and a variety of impli-
cations must be considered that include their mutual

relationships, scaleability, and reusability.
The NMT program uses a Software Architecture

Document (SAD) to capture the objectives and prin-
ciples influencing its architectural evolution. An exe-
cutable architecture [1] implementing NMT’s
primary scenarios is used to validate and exercise the
architecture’s ability to accommodate new and evolv-
ing functionality. The 4+1 View of Architecture
model is being used on NMT to express its software
architecture. The 4+1 model evolves a system’s soft-
ware architecture from four different views and ties
those views together with use cases. While this
approach of expressing software architecture is not
new, the NMT program uniquely uses the UML to
express a number of the artifacts associated with the
various views of the 4+1 model.

Implementation view. The implementation view
describes the organization of the components being
used to build our system. The most primitive artifact

56 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

Figure 1. Domain model use case example.

<<extends>> <<extends>>

Process Sensor Report

On Board Sensor

Domain Model

Application Model

Radar Sensor Process Radar Report IFF Sensor Process IFF Report

associated with NMT’s implementation view is a sub-
system. A subsystem contains a collection of func-
tionally cohesive classes that are methodically grouped
together to accommodate motivations of reuse and
configuration management. Based on criteria that

include domain independence and need to know,
each subsystem belongs to one of six well-defined lay-
ers as further detailed in the sidebar “NMT Imple-
mentation View.” The NMT implementation view is
modeled with class diagrams using stereotyped pack-
ages that represent its layers and underlying subsys-
tems. The NMT program models only the static
aspects of this view with the UML.

Process view. The process view is used to describe
the threads and processes necessary to support a par-
ticular system’s operational objective. The NMT pro-
gram uses a combination of diagrams to express its
process view.

The UML’s deployment diagram is used to map
NMT’s processes to processing nodes. Because the
deployment diagram does not provide the desired vis-
ibility into NMT’s threading implementation, the

class diagram in Figure 2a is instantiated to yield an
object diagram that captures the mapping of threads
to processes. The resulting object diagram contains all
NMT processes and identifies the threads contained
therein.

The UML’s collaboration diagram is
used to capture NMT’s concept of class
role. The concept of role is not applicable
to all classes, but where necessary, is used
to abstract where a class performs the ser-
vices requested by its clients. Specifically,
classes modeled in the logical view may
act in different roles depending upon the
particular process in which they are resi-
dent. A class with the role of server actu-
ally performs the work delegated to it by
instances of the same class in other
processes with a role of service_interface.

The collaboration diagram in Figure
2b is a simplistic example showing the
means by which class roles are mapped to
NMT processes. This example shows the
journal class as having a role of server (S)
in the Distributed_Services_Process
while the Some_Client_Process contains
an instance of the journal class in the role
of service_interface (SI). It is an imple-
mentation detail of the service_interface
to decide whether or not client requests
need to be delegated to the journal server
or accommodated locally. The actual dia-
gram from which the figure is excerpted
captures all NMT processes and identi-
fies the roles of applicable class instances
contained therein.

Deployment view. The processing
nodes contributing to the NMT deploy-

ment view are captured using the UML’s deployment
diagram. Each node is modeled with its correspond-
ing name under a «processor» stereotype and all
applicable processes residing on the node are identi-
fied. The deployment diagram in Figure 3 is repre-
sentative of the means by which NMT’s deployment
view is modeled.

Logical view. The logical view expresses a system’s
functional requirements and is primarily filled with
classes whose names are derived from artifacts of the
domain space. Most of the NMT program’s design
effort is spent elaborating its logical view with the
motivation of reaping the well-known rewards of
building crisply abstracted, object-oriented, and lay-
ered components. The NMT program uses class dia-
grams to capture the static aspects of its logical view,
sequence diagrams to express the dynamics occurring

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 57

Figure 2a. Class diagram.

Some_NMT_Process
<<process>>

Some_NMT_Thread
<<thread>>

*

Figure 2b. Collaboration diagram.

:Some_Client_Process :Distributed_Services_Process
1: record

Journal (SI):
Journal

Journal (S):
Journal

Figure 3. Deployment diagram.

<<processor>>
Some_AWACS_Console

An_AWACS_UI_Process

<<processor>>
Some_AWACS_Node

An_AWACS_Process1
An_AWACS_Process2
An_AWACS_Process3

<<processor>>
Some_AWACS_Console2

An_AWACS_UI_Process

Communication via CORBA

Communication via CORBA

between the corresponding class instances, and state-
chart diagrams to describe the dynamic aspects of a
particular class. Because sequence diagrams emphasize
the time order of messages, they are the generally pre-
ferred alternative to collaboration diagrams on the
NMT program. The fragment in Figure 4a is indica-
tive of NMT’s class diagram usage at the domain level
and captures a small portion of the surveillance design.

Use case view. The use case view contains the
storyboards expressing a system’s behavior from an

external perspective. A program’s initial use cases are
those capturing its primary functional objectives and
are used as a vehicle for touching upon all of the other
architectural views simultaneously with the motiva-
tion of establishing a system’s architectural founda-
tion. Subsequent use cases are added to support
requirements coverage and to stress an evolving archi-
tecture’s ability to withstand potential shockwaves
resulting from extreme requirements. The use case
view serves not only as a vehicle to populate the other

58 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

The Application Layer contains only the glue subsystem whose
artifacts define the main programs contributing to NMT’s

operational system.

The Actor Layer contains those subsystems whose classes translate the demands
of actors (operators and external systems, for example) into actions upon domain
classes. Similarly, classes in this layer are sensitive to notifications of domain
object state changes in response to anonymous subscriptions. Many of the classes
in this layer fit the Embassy1 pattern described in this article.

The Domain Layer contains the subsystems whose classes embody the heart and
soul of a system’s primary domain space. In the case of NMT, this layer embodies
the surveillance, identification, and battle management classes.

The Domain Services Layer contains classes that are germane to a particular
domain space (C3I or air traffic control, for example) and are intended to be
reused by similar domain layer instances. Examples of NMT classes residing in this
layer include airbase, geometry, and radar observation with no changes expected
to support future AWACS derivatives.

The Infrastructure Layer is the first of two layers comprising NMT’s Domain
Independent Distributed Infrastructure. A number of classes providing domain
independent distributed services, such as recording and system management,
are located here.

The Abstract Layer is the other half of NMT’s Domain Independent Distributed
Infrastructure. It contains abstract classes such as lists, tables, and queues. It
also contains basic classes that include support for event reporting and time
management.

NMT Implementation View

1The Embassy pattern was invented on the Canadian Automated Air Traffic System (CAATS) program in 1994 and extended on NMT to consider
ORB-related implications.

In the context of the NMT design environment, each of the implementation view «layers» is expandable with a
double mouse click to reveal a subimplementation view exposing the subsystems that meet residency require-

ments of the selected layer. The general criteria for assigning a subsystem to a particular layer are described in
the text to the right of each layer depicted in the diagram appearing here. An important characteristic of the NMT
implementation view layers is that visibility is defined only in the downward direction to mitigate the effects of
coupling and to increase the likelihood of software reuse.

<<layer>>
Application

<<layer>>
Actor

<<layer>>
Domain

<<layer>>
Domain Services

<<layer>>
Infrastructure

<<layer>>
Abstract

views with their associated artifacts, but also as a
means to validate the software architecture for fidelity
and completeness. The diagram in Figure 4b is repre-
sentative of NMT’s use case diagram usage and mod-
els a portion of its surveillance design.

Using the UML to Express a Contract
Across Systems
Three geographically dispersed companies are
responsible for developing the NMT software. One
develops the user interface, another develops the track-
ing software, while Boeing is the primary contractor
developing the remaining functionality in addition to
being responsible for software integration. A CORBA
solution has been chosen to glue the various systems
together in the most seamless and extensible manner
possible. The contract defining the interfaces between

these external systems is expressed using
the Interface Definition Language (IDL)
and is generated by forward engineering
UML artifacts from the logical view.

The stubs and skeletons produced by
preprocessing the forward-engineered
IDL are used in support of one of NMT’s
most important design patterns, the
Embassy pattern. The Embassy pattern is
a hybrid of the Observer, Bridge, and
Remote Proxy patterns [3] and has sev-
eral important architectural objectives
discussed here. The classes contributing
to the Embassy pattern are captured in
Figure 5.

The Embassy pattern is a metaphor for
the notion of an embassy being used to
represent another country’s interests in a
foreign land. Modeling the real world,
NMT’s embassy abstraction represents
the interests of an external system within
the confines of a foreign computer. The
Embassy pattern uses the Bridge pattern
to decouple external systems from the
implementation of NMT’s domain
classes as well a Remote Proxy pattern to
represent the interests of objects residing
in different address spaces. The embassy
abstraction is supported by two classes: the
attaché and the correspondence. An
embassy is composed of any number of
attachés, each of which has a unique inter-
est in the problem domain. An attaché is
an observer of specific domain objects in
which it has particular interest and
embodies the rules of when and what is
sent to the external system it represents in

response to changes in those domain objects. The
attaché also acts in the capacity of a bridge by trans-
forming the desires of the external system it represents
into actions upon NMT domain objects.

The correspondence class plays an important role
in NMT’s objectives of abstracting the fact that an
ORB is being used to support its middleware needs. A
correspondence object not only embodies the message
content that is sent to or received from external sys-
tems but it also encapsulates the means by which the
message is actually sent.

Difficulties Expressing the NMT Design
While the UML is strong in expressing the logical
view of the NMT architecture, we have found it to
be less powerful in its ability to describe our process
and deployment views. Accurately capturing the allo-

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 59

Figure 4a. Domain level usage of class diagram.

creates

creates

subscribes

subscribes

creates &
updates

Radar_Sensor IFF_Sensor Radar_Observation IFF_Observation

Sensor

Datalink Track

Observation Embassy

Datalink_Observation

* *

*

* *

Figure 4b. Use case diagram usage.

Process Datalink Message
observation

<<includes>>

<<includes>>

<<includes>>

Journal Data

Network
Participating Unit

On-Board
Sensor Create Track

On-Board
Operator

observation

Process Sensor Report

observation Multi-Sensor
Tracker

60 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

cation of classes to processes and threads is critical to
understanding our system design. Although the UML
is capable of expressing process to node mappings
through its deployment diagram, it does not provide
the inherent capability we desire for mapping classes
in the logical view to the processes or threads identi-
fied in the process view. As previously illustrated, we
creatively use the UML to accommodate our model-
ing needs.

Some of the difficulties we have encountered in
expressing our design cannot be blamed on the UML
but are the fault of commercial design tools. We have
used two leading design tools on NMT
and have experienced a significant time
lag between the declaration of standards
in the UML and the ability to model
those standards within the context of the
tools. For example, as suggested in The
Unified Modeling Language User Guide
[2], a means by which to model processes
and threads is to use active objects in the
context of object or collaboration dia-
grams. These objects have stereotypes of
«process» or «thread» and communicate
via synchronous or asynchronous mes-
sages. Our tools do not support the anno-
tation of the class and collaboration
diagrams with message communication
types or the identification of the physical
location of the process. The design tool’s
deployment diagram does not provide the capability to
allow physical nodes to contain component instances
and components to contain objects.

Other examples in which design tools lag in the
support of the UML include failure to support activ-
ity diagrams and inability to place notational compo-
nents such as Actor figures on all desired diagrams.

Using the UML to Support Round-Trip
Engineering
Independent of how a program represents its soft-
ware design, an objective not to be overlooked is
how to prevent divergence between its design and
implementation spaces. Unless a program has the
capability to generate its design space artifacts from
the implementation space, and vice versa, a program

is at risk of divergence as a result of schedule pressures,
budgetary concerns, and diligence issues. As the
thumbscrews tighten, developers will modify their
code in the interest of pain management but may
defer making the corresponding changes in the design
model. Volumes can be written on this subject, the
following paragraphs will focus on the issues as applic-
able to the NMT program.

The Boeing Company’s contribution to the NMT
program is being written in the Ada programming
language. Attempts to forward engineer classes con-
tained in NMT’s logical view into Ada specifications

have been of little value because of the fuzzy seman-
tics associated with mapping classes represented with
the UML into Ada. For example, many of the NMT
classes are implemented using Ada child packages for
reasons of improved encapsulation and configuration
management. There is currently no known means by
which to annotate our classes or persuade our forward
engineering toolset to create our Ada artifacts with the
structure we would like them to have.

A similar problem exists with regard to reverse
engineering our class artifacts from Ada specifications.
All of our child packages are undesirably reverse engi-
neered into classes when they are really just imple-
mentation details associated with the parent class. We
know of no means by which to annotate our Ada arti-
facts to influence our reverse engineering toolset to

Figure 5. Embassy pattern classes.

Application
Class

External
System

Embassy

Attaché Correspondence

CORBA

Accept_
EventSend

Receive_EventNotify

Register

Update

Create

Register_For_Event

The NMT program’s usage of the UML will

evolve precisely in the same manner as its software:

in a round-trip, iterative fashion.

behave as we would like it to do.
Because the problems experienced at the class level

present major obstacles to NMT’s effective usage of
round-trip engineering, we have not investigated its
usage to support consistency of our implementation
space with other UML artifacts. Until we are able to
find a means by which to automate consistency
between our design and implementation spaces en
masse, it is through diligent adherence to our software
development processes that divergence between these
spaces is minimized.

Conclusion
The UML has been very capable of supporting the
evolution and expression of the NMT program’s soft-
ware design. In the areas we have had some trouble
modeling our design, such as in the concept of class
roles, we invoked artistic license to create diagrams
that accommodated our needs. We also have a variety
of UML-centric tools at our disposal with which to
alternatively express, measure the progress of, and val-
idate the fidelity of our designs.

The NMT program’s usage of the UML will evolve
precisely in the same manner as its software: in a
round-trip, iterative fashion. Our diagram selection,
level of abstraction, and breadth of stakeholder views
will appropriately respond to perceived value added
and level of need.

We would like to share how we envision our UML
usage evolving on the NMT program, but have simply
not yet taken enough round trips to do so. As we com-
plete a software life cycle’s worth of UML lessons
learned, however, our currently imperfect hindsight
will most certainly approach the 20/20 level. We
intend to leverage our hindsight in the future so that
we use the UML most efficiently and intelligently on
potential derivatives of the NMT program.

References
1. Booch, G. Object Solutions: Managing the Object-Oriented Project. Addi-

son Wesley, Reading, MA, 1995.
2. Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modeling Lan-

guage User Guide. Addison Wesley, Reading, MA, 1999.
3. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns.

Addison Wesley, Reading, MA, 1995.
4. Kruchten, P. The 4+1 view of architecture. IEEE Software 12, 6 (Nov.

1995), 45–50.

Alex E. Bell (alex.e.bell@boeing.com) is a software architect at
The Boeing Company in Seattle, WA.
Ryan W. Schmidt (rschmidt@s1.com) is a senior consultant
with Insight Technology Group in St. Louis, MO.

© 1999 ACM 0002-0782/99/1000 $5.00

