Check for
updates

Multipurpose
Web Publishing

UsiNG HTML, XML, AND CSS

The World Wide Web Consortium devised these document-
markup and style-sheet languages in the interests of Web device
independence, content reuse, and network-friendly encoding.

HAKON WIUM LIE AND JANNE SAARELA

O ARt hte HOME mE INCE ITS CONCEPTION IN THE
. 5 €& & @ A @ £ early 1990s, the Web has become a
Bak Foroird G BEfesh Hame Faeieher Highey Gawoh Aefdl critical component in the strategic
—— | e thinking of content providers
- —_— — around the world. But targeting

s the Web as the delivery vehicle for
content poses several questions, including:
How should the publishing process change
to take advantage of the Web? and How
should content be represented to support
device independence, searchability, and effi-
cient network throughput?

The protocols and data formats in use on
the Web constitute a framework within
which applications and services can be built.
Emerging Web standards can be used to
implement multipurpose publishing, where
the same content is presented on a range of
Web devices." We discuss three specifications
in some detail—the HyperText Markup Lan-
guage (HTML), the eXtensible Markup
Language (XML), and Cascading Style
Sheets (CSS). All three can help content
providers face some of the most important
challenges of delivering content on the Web:

e 6 @ O @

¥ Hama Fyearien #wieny Tasvk mddil

IWe use the term “Web device” to denote any hardware or software
through which a user accesses Web content.

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. |10 95

http://crossmark.crossref.org/dialog/?doi=10.1145%2F317665.317681&domain=pdf&date_stamp=1999-10-01

Figure |. Structure of SGML markup.

pioneered the concept of struc-
tured documents [5]. The phi-
losophy behind SGML is to

el enent
attri bute —
<H CLASS=chapter> Ml ti - purpose publishing </H >
‘_st art tag ‘ ‘ cont ent ‘ |end tag

define a general meta-language
that can be used to build appli-
cation-specific languages to
encode structured documents.
| A language specification—in

SGML called a Document Type
Definition (DTD)—defines

Device independence. As the Web grows, the num-
ber and range of Web devices increases. Screens of
varying sizes, printers, and speech synthesizers are
among the devices on which content will be pre-
sented. Will it be necessary to encode content for
each new device, or are device-independent for-
mats possible?

Content reuse. To preserve investment, it’s impor-
tant that content be reusable in many different
ways. Search engines must be able to find and
index pages, archives must be maintainable, and
the content must be in a format accessible by
future Web devices.

Network-friendly encodings. For Web users, having
to wait for pages to download is among the chief
frustrations. One of the main reasons for slow
downloads is the use of images to encode textual
content in order to preserve style. Network-
friendly encodings have to found while remaining
true to the publisher’s style.

The World Wide Web Consortium (W3C) is a coor-
dinating body working with its more than 300 mem-
ber organizations in developing the Web’s underlying
technical specifications. Several of the W3C’s recent
Recommendations extend the function of the Web in

ways that will be significant for content providers,
including those concerning HTML, XML, and CSS.

Structured Document
Markup Languages
Computer encodings of documents have long con-
centrated on preserving the “final form presenta-
tion,” such as a nicely laid-out paper document.
Structured document formats take a different
approach; rather than preserving the final form pre-
sentation, they encode the document’s logical struc-
ture. Among the reasons for doing so is the
preservation of device independence, document
searchability, and information re-use in general.
The Standard Generalized Markup Language
(SGML), which became an ISO standard in 1986,

96 October 1999/Vol. 42, No. |0 COMMUNICATIONS OF THE ACM

the elements, element contain-
ment, and element attributes used to mark-up a doc-
ument instance (see Figure 1). Several document
instances may be valid SGML documents and con-
form to the same DTD.

Traditionally, elements in SGML encode structure,
rather than presentation. For example, the headline of
a document is marked as being a headline, rather than
specifying a particular font size. This adds one level of
indirection; so, in order to find, say, the font size of
the headline, a style sheet has to be consulted. The
style sheet describes the presentation of documents.

Although a number of vendors offer SGML-com-
pliant products, SGML is a complex technology
requiring significant investment by the content
provider. In the past few years, work on structured
documents has centered on simplifying SGML; two
of these efforts are HTML and XML.

HTML. HTML has its roots at the European Lab-
oratory for High-Energy Physics (CERN) in Geneva,
Switzerland, where the Web project began in 1990. At
that time, HTML served physicists who needed to
collaborate by sharing scientific articles over the Inter-
net. Although for most of us, the content of these arti-
cles is difficult to comprehend, their document
structure is quite simple. This structure is reflected in
the small set of general elements in HTML, including
headings, paragraphs, lists, and anchors for hyper-
links. The semantics in HTML is sparse but known
by millions of Web devices around the world.

HTML was formally specified as an SGML DTD in
1992, giving the HTML specification a context in
which further expansion was possible, though it also
conflicted with sentiments in the early Web commu-
nity. Because SGML is a complex technology, imple-
menting a full SGML parser was beyond the interests
of early Web application developers. This resulted in
browsers that accepted non-valid documents; as a
result, even today few documents on the Web are valid
according to the HTML specification. Moreover,
although HTML came from the structured docu-
ments community, it was influenced by “presenta-

tional” document formats, including Postscript.
HTML still contains such elements as “B” (for bold)

and “I” (for italics) that encode document presentation
rather than structure. This breaks with the SGML
principle of separating structure from presentation.

Today, the set of HTML elements has stabilized at
around 80. New elements are being added slowly
through the W3C working group on HTML that
publishes revisions of the HTML specification.
HTML 4.0 is the latest version and contains several
noteworthy features for content providers [12]. First,
HTML 4.0 deprecates the use of a large set of ele-
ments that mainly encode presentation; their func-
tion is better served by style sheets.

HTML 4.0 also adds a CLASS attribute on all ele-
ments. By using this attribute, elements can be sub-
classed into categories of choice—in effect creating
new elements. The CLASS attribute can hold infor-
mation that would otherwise be lost when convert-
ing a document to HTML, and a style sheet can act

but HTML lacks special elements for mathematics.
For such applications, XML comes to the rescue.

XML. In light of the limited repertoire of HTML
elements, content providers cannot easily encode
semantics into their documents. An initiative to
regain the advantages of SGML on the Web began in
1996 when a W3C working group was formed to
identify a subset of SGML suitable for the Web. Later
known as XML, the initiative has gathered support
from both the SGML and the Web communities.

XML includes SGMULs ability to define new ele-
ments. For content providers, this means XML can
encode semantics more gracefully than HTML. In
addition, XML removes the burden of having to val-
idate documents against a DTD; XML documents
may refer to a DTD but are not required to do so.
Instead, a document can claim to be well-formed by
following some simple syntactical rules.

Figure 2. Example A shows element containment within an SGML document instance.

Example B shows how similar containment heirarchy can be achieed by complementing

HTML semantics with the CLASS attribute.

Exampl e A
<aut hor >
<name>Janne Saar el a</ nane>
<emai | > saar el a@3. or g</ emai | >
</ aut hor >
Exanpl e B:

<Dl V CLASS=aut hor >

</ Dl V>

<Dl V CLASS=nane>Janne Saar el a</ DI V>
<Dl V CLASS=enui | >j saar el a@3. or g</ DI V>

name email

class=author

class=name class=email

on the value of the CLASS attribute (see Figure 2).
Having a designated W3C working group in
charge of HTML development has been a stabilizing
factor for the language. No vendor can single-hand-
edly add new elements to HTML, and the docu-
ment format remains nonproprietary. Moreover, the
semantics of the various elements is well known. For
example, all browsers and search engines know that
the “H1” element indicates a first-level headline.
Thus, HTML has achieved a unique position as a
device-independent, ubiquitous document format.
The downside of the committee approach is that
communities in need of additional markup (beyond
subclassing existing HTML elements) cannot easily
build on HTML. For example, mathematicians may
want to encode formulae inside HTML documents,

The XML specification became a W3C Recom-
mendation in February 1998, and its first uses have
appeared [1]. For example, two new Web data for-
mats—the Synchronized Multimedia Integration
Language (SMIL) [6] and the Resource Description
Framework (RDF)—are written in XML.

RDF is a metadata infrastructure format allowing
content providers to encode metadata, or informa-
tion about information, in machine-understandable
form. RDF unifies the field of metadata by allowing
authors to use assertions from different schemas,
such as the Dublin Core (DC) [3] and the Platform
for Internet Content Selection (PICS) [11], in a sin-
gle classification entry.

The example in Figure 3 shows how DC elements
are qualified with the DC prefix within an

97

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. |10

Figure 3. An RDF document mixing assertions from multiple schemas.

<?xm version="1.0""?>

>

CSS</DC: titl e>

<DC: cr eat or >

<RDF: | i >Janne Saar el
</ RDF: Bag>
</ DC: cr eat or >
</ RDF: Descri pti on>
</ RDF: RDF>

VVVVVYVYVVVYVYVYV

<RDF: Bag | D="aut hors" >
<RDF: | i >Hakon Li e</RDF: |i >

> <RDF: RDF xmnl ns: RDF="htt p: / / ww. W3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: DC="http://purl.org/dc/el ements/1.0/">
<RDF: Descri pti on about="http://ww. w3. or g/ TR/ NOTE- nul ti pur pose" >
<DC: title>Miltipurpose publishing using HTM.,, XM., and

<DC: | anguage>en</ DC: | anguage>

a</ RDF: | i >

RDF/XML document. The metadata entry
in the Figure gives information on the elec-
tronic counterpart of the article.

The knowledge representation in meta-
data is a double-edged sword; keeping the
encoding simple makes metadata easy to read
but with less “expressivity,” whereas a more
complex encoding allows for more expressive
semantics. RDF builds on a common syn-
tax—XML—and a simple data model based
on nodes and arcs. Specialized applications
can help in the authoring of these seemingly

Figure 4. A simple XML fragment with associated CSS.

Mar kup:
<aut hor >
<nane>Janne Saar el a</ nane>
<enmi | >Jsaar el a@a3. or g</ enai | >
</ aut hor >

Styl e sheet:
author { font: 12pt Ti nes }
name { font-weight: bold }
emai | { font-style: italic }

complex descriptions.

SMIL and RDF both use XML to
describe structure (using tags) but have little or no
content (such as text). Strictly speaking, these for-
mats are not “markup” languages but represent a

trend, in that most XML on the Web is used for

data, not for documents.

Style Sheets

The notion of style sheets is complementary to
structured documents; documents contain content
and structure, and style sheets describe how docu-
ments are to be presented. This separation is a
requirement for device-independent documents (all
device-specific information is left to the style sheet)
and simplifies document management, since a style
sheet can describe many documents.

For example, if an XML document uses element
names, such as “author,” “name,” and “email” (see
Figure 4), there is no hint as to how to present the
content on, say, A4 paper.

CSS. Work on CSS began at CERN in 1994 with
the goal of developing a style-sheet language for the
Web that would fulfill author requests for stylistic

98

October 1999/Vol. 42, No. I0 COMMUNICATIONS OF THE ACM

control beyond HTML. In 1996, CSS1 (the first
level of CSS) became a W3C Recommendation [8];
in 1997, support for CSS1 was added to major
browsers, including Netscape Navigator 4 and
Microsoft Internet Explorer 4, as well as to various
authoring tools.

CSS uses declarative rules to attach style to ele-
ments. A simple rule might say that all P elements of
class “warning” are to be displayed in red text on a
white background:

P.war ni ng {
color: red;
background: white;

}

CSS1 supports screen-based formatting, including
fonts, colors, and layout (see Figure 5). Before style
sheets, Web authors had to make pictures of text to
convey colors and fonts. This has resulted in a Web
in which most of the network bandwidth is used not
for text but for pictures of text. Therefore, style

sheets have the potential for significantly improving
network performance, as concluded by a recent
study of how new Web technologies affect network
performance [10], stating, “To our surprise, style
sheets promise to be the biggest possibility of major
network bandwidth improvements, whether
deployed with HTTP/1.0 or HTTP/1.1, by signifi-
cantly reducing the need for in-lined images to pro-
vide graphic elements, and the resulting network
traffic.”

Figure 5. The same document with two different CSSs. The document’s underlying
HTML source is identical; the only difference is the link to the style sheet.

o

e
A g A o @ =]
= 3

Shame and War Bevianed

Rkl b T W g 1 STTRAL

el

e e

A —— e
-

turns off the display of images and normal para-
graphs, so only paragraphs of class “ingress” are
shown:

@redi a handhel d {

I MG { display: none }
P { display: none }
P.ingress { display: block }

}

A CSS style sheet is
typically processed in the
Web device itself. How-
ever, to save bandwidth
for mobile handheld
1 devices, it may be worth-
while to process the style
sheet in a stationary
proxy server. In the
“ingress” example above,
the style sheet turns off
the display of images, so
the proxy server can
therefore withhold

images from the mobile

Using style sheets instead of images also improves
Web accessibility. A speech synthesizer can read
HTML-encoded text to a blind user; the text can also
be presented through a braille tactile feedback device.
Images, on the other hand, deny nonvisual access.

The next level of CSS—CSS2, which became a
W3C Recommendation in May 1998 [9]—
strengthens Web accessibility by adding the concept
of media-specific style sheets. For example, a style
sheet can describe an aural rendering of a document,
as in:

@redi a speech {
BODY { voice-famly:
H1 { volune: |oud }

femal e }

}

This style sheet applies to all Web devices support-
ing speech output. Such media-specific style sheets
enable designers to carefully describe presentations
for groups of devices while the underlying docu-
ments remain device-independent.

Handheld Web devices also require special atten-
tion from style sheets because of their small display
surface. For example, there may be no room for
images, and only a shortened version of the docu-

ment should be presented. The following style sheet

device. This way, valuable
bandwidth is saved, and the Web’s perceived perfor-

mance is increased.

Taking Style Further

The Extensible Stylesheet Language (XSL), currently
being defined by a W3C working group, takes the
concept of style sheets a step further by being able to
transform document structure. For example, an XSL
sheet can automatically generate a table of contents
by extracting all chapter titles from a document.

Using XSL to transform XML data into structured
documents, such as HTML, will play an important
part in multipurpose publishing for years to come.

But can style be taken too far? Among the first
additions to HTML after it escaped from CERN were
forms that let users interact with pages by filling in
text fields and pressing buttons. Later, the introduc-
tion of scripts (such as JavaScript, now being stan-
dardized as ECMAScript) and Java applets enables
applications to be distributed over the Web.

Many Web pages mix declarative data (such as
HTML, XML, and CSS) with executable programs
(such as scripts and applets). Content providers are
often motivated to use programs to achieve special
presentational effects (such as an animated headline
or a pop-up menu). When aiming for multipurpose
publishing, its important to carefully consider the
costs and benefits before relying on scripts and

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 99

100

October 1999/Vol. 42, No. |0 COMMUNICATIONS OF THE ACM

applets to present information. Costs include:

Accessibility. Content embedded in a program is
hidden from Web search engines, and it’s difficult
or even impossible to convert that content to
other formats.

Maintainability. In 20 years, will machines be able
to decode HTML files? Probably. Will machines
be able to run current scripts and applets? Maybe.
Declarative data is generally easier to maintain
and lives longer than programs.

Device independence. Many scripts assume a graph-
ical Web device and will not work on, say, a text-
only browser.

As development of style sheets progresses, we
expect that the most popular presentational effects
achieved through programming will find their way
into declarative style rules. For example, CSS2
includes functionality for highlighting an element
when a mouse moves over it; up to now, such high-
lighting has been possible only through scripts.

In 1997, the W3C initiated an activity—called
Document Object Model (DOM)—to describe the
interface between programs and documents. Its goal
is to define a language-independent application pro-
gramming interface (API) that applications can use
to access and modify the structure, content, and

style of HTML and XML documents.

Presented on a Variety of Web Devices
Structured documents with style sheets allow the
same document to be presented on a variety of
Web devices. Indeed, the goal of multipurpose
publishing is to need only one source document
flexible enough for use in different environments.
However, it may sometimes be necessary to trans-
late the document from one representation format
to another before publishing on the Web. But there
are problems in managing the content in a differ-
ent representation from the one actually served.
Our central claim is that HTML, together with
style sheets, should be rich enough to serve as a mas-
ter document format for many publishers. However,
outside of traditional documents, other data formats
written in XML can also capture semantics.
Capturing semantics for future applications. The
terms “down-translation” and “up-translation” are
often used in discussions of how to translate docu-
ments from one format to another. Down-translation
refers to a process whereby the resulting document
has less semantically significant markup available than
the original source document. Up-translation refers to
a reversed process whereby the source document can

be in any format, and specialized rules are used to
remove presentation-oriented, often-proprietary
markup. The goal is a higher-level representation with
abstract markup elements suitable for a document
description that is platform- and device-independent.

Up-translation can be viewed as a preparatory
process for multipurpose publishing, leveraging the
value of the information content so far that new
applications can be implemented. The actual down-
translation is often a straightforward process fine-
tuned with in-house rules to perform the actual
translation to other document formats.

The down-translation process also has to cope with
the real-life requirements of the publishing schedule.
For example, this process may take place once a year
in the context of an encyclopedia or 50 times a sec-
ond for an interactive online service.

Leveraging existing information with up-translation
and learning to use new authoring tools or existing
tools in new ways will represent an investment justified
by the long-term value of the information. Several sce-
narios illustrate the sort of applications that might be
possible with more semantic markup and metadata:

Structured queries. Locating documents through
URLs or search engines is standard practice on
the Web today. Structured queries would extend
the range of search options by allowing queries
for, say, a given author or location.

Alternate user interface metaphors. Web devices
typically arrange visited documents in a linear list
as they are traversed. An alternative user interface
could create a virtual landscape of traversed links
whereby, say, the location and political bias of
authors are visualized.

Intelligent agents. Users place an offer for some mer-
chandise, then have their agent find the best ven-
dor on the Web. Users indicate interest in buying
an item, and their agents search for and identify a
maximum price and negotiation strategy. Then,
without user intervention, these agents use the
item description to find, say, all potential resellers
and commits a financial transaction to inform the
user of a shipment arriving tomorrow at 7:00 A.M.

These scenarios demonstrate there is room for
improvement in the way information is represented
and reused on the Web. An important catalyst for new
Web applications will be the incorporation of addi-
tional semantics in machine-understandable form.

Recommendations
Simple HTML documents, augmented with style

sheets, preserve device independence and accessibil-

ity while improving network performance. For any-
one publishing documents on the Web, the ubiqui-
tous HTML is likely to be the document format of
choice for years to come.

Today, users should want more from the informa-
tion they access. Those authoring HTML can
enhance their content by using the full semantics of
HTML and adding style sheets. Those authoring
content in other formats before putting it on the
Web should ensure that translating it to HTML pre-
serves the original semantics. This requires addi-
tional effort during authoring but pays off as new
Web applications become possible. XML allows con-
tent providers to encode highly structured data and
should be given careful consideration when design-
ing new Web applications.

In general, such declarative data formats as HTML,
XML, and CSS are recommended over scripts and
applets for stylistic effects in multipurpose publish-
ing. Declarative data, which is easily converted to
other formats, is more likely to be device-indepen-
dent and tends to live longer than programs.

The Web is generous enough to accommodate any
content we place there. We should therefore ensure
that our content meets the Web’s high standards. @

REFERENCES

. Bray, T., Paoli, J., and Sperberg-McQueen, C. Extensible Markup Lan-

guage (XML) 1.0 Specification. W3C; see www.w3.org/TR/.

2. Coombs, J. Renear, A., and DeRose, S. Markup systems and the future

of scholarly text processing. Commun. ACM 30, 11 (Nov. 1987).

. Dublin Core Metadata Element Set; see

purl.oclc.org/metadata/dublin_core/.

4. ECMA-262. ECMAScript (a general-purpose, cross-platform program-

ming language). June 1997; see www.ecma.ch/stand/ecma-262.htm.

. Goldfarb, C. The SGML Handbook. Oxford University Press, New

York, 1990.

6. Hoschka, P. Synchronized Multimedia Integration Language. W3C; see
www.w3.org/TR/.

7. Lie, H. and Bos, B. The Cascading Style Sheets—Designing for the Web.
Addison-Wesley Longman, Harlow, England, 1997.

8.Lie. H. and Bos, B. Cascading Style Sheets, Level 1. W3C; see
www.w3.org/TR/.

9. Lie. H., Bos, B, Lilley, C., and Jacobs, 1. Cascading Style Sheets, Level 2.
W3C; see www.w3.org/TR/.

10. Nielsen, H., Gettys, J., Baird-Smith, A., Prud’hommeaux, E., Lie, H.,
and Lilley, C. Network performance effects of HTTP/1.1, CSS1, and
PNG. In Proceedings of ACM SIGCOMM*97 (Cannes, France, 1997).

11. PICS. Platform for Internet Content Selection 1.1 Specifications. W3C;
see www.w3.org/TR/.

12. Raggett, D., Le Hors, A., and Jacobs, I. HTML 4.0 Specification. W3C;
see www.w3.org/TR/.

—

W

N

HAKON W1UM LIE (howcome@opera.com) is chief technology
officer of Opera Software in Oslo, Norway; before joining Opera, he
was the style sheet activity lead at the W3C, where he proposed the
CSS concept in 1994.

JANNE SAARELA (js@pro-solutions.com) is the managing director of
Pro Solutions, Ltd. in Helsinki, Finland; from 1997 to 1999, he was a
visiting scientist at the W3C French office at INRIA, Sophia-Antipolis,
France.

© 1999 ACM 0002-0782/99/1000 $5.00

101

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10

