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Abstract 

Software deficiencies are minimized by utilizing recommended software development and quality 

assurance practices. However, these recommended practices (i.e., quality practices) become 

ineffective if software professionals purposefully ignore them. Conducting a systematic literature 

review (n=4838), we discovered that only a small number of previous studies, within software 

engineering and information systems literature, have investigated the omission of quality 

practices. These studies explain the omission of quality practices mainly as a result of 

organizational decisions and trade-offs made under resource constraints or market pressure. 

However, our study indicates that different aspects of this phenomenon deserve further research. 

In particular, future research must investigate the conditions triggering the omission of quality 

practices and the processes through which this phenomenon occurs. Especially, since software 

development is a human-centric phenomenon, the psychological and behavioral aspects of this 

process deserve in-depth empirical investigation. In addition, futures research must clarify the 

social, organizational, and economical consequences of ignoring quality practices. Gaining in-

depth theoretically sound and empirically grounded understandings about different aspects of 

this phenomenon, enables research and practice to suggest interventions to overcome this issue. 
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Despite all the financial and human resources that have been spent on information systems 

and software development projects, defects and bugs in software products are widely reported in 

the research and practice literature [Fraser and Mancl. 2008, Brooks. 1995, Mancl, et al. 2007]. 

Previous research has shown that such software deficiencies are amongst the most important 

causes of software failures and vulnerabilities [Fonseca and Vieira. 2008, Wijayasekara, et al. 

2012]. These software deficiencies not only make information systems vulnerable but also cause 

extensive financial costs for software stakeholders and societies [Fonseca and Vieira. 2008, 

Linberg. 1999, Wijayasekara, et al. 2012, Linberg. 1999, Wijayasekara, et al. 2012, Judy. 2009]. 

For example, previous studies estimate the cost of software deficiencies in just the United States 

to be almost 60 billion dollars [Judy. 2009, Tassey. 2002].    

Minor and trivial software defects might not cause serious issues for stakeholders [Black. 

2012], and ordinary users might even perceive and largely accept them as technical issues, such 

as application or operating system crashes and delays in services [Leveson and Turner. 1993]. 

However, because software systems deployed with critical bugs are more vulnerable to safety and 

security threats, they might result in devastating damages for stakeholders and societies in 

general [Fonseca and Vieira. 2008, Leveson and Turner. 1993]. 

In response to such quality challenges during the last four decades, researchers and 

practitioners, mainly from the software engineering discipline, have been engaged in improving 

software development and quality assurance processes by proposing a variety of methods, good 

practices, and tools [Sommervile. 2011, Poth and Sunyaev. 2014]. Although utilizing these 

recommended practices, methods, and tools might enable developers to identify and resolve 

defects in software products, software defects might stay hidden even after delivery in some cases 

[Wijayasekara, et al. 2012]. In addition, fixing identified software deficiencies becomes more 

expensive and time-consuming in the later stages of projects, especially after software delivery 

[Banker, et al. 1998, Van Emden and Moonen. 2002]. Therefore, such deficiencies should be 

avoided in the first place, especially in more critical and complex systems [Leveson and Turner. 

1993, Wijayasekara, et al. 2012].  

While significant amount of effort have been made for improving process-related and 

technological aspects of software development, psychological and social aspects of software 

development have received considerably less attention from software research and practice 

[Lenberg, et al. 2015]. This knowledge gap becomes more problematic considering that recent 

literature hints that software deficiencies might be the result of omitting proper software 

development practices or following "quick-and-dirty" shortcuts by development teams [Ahonen 

and Junttila. 2003, Austin. 2001, Baskerville and Pries-Heje. 2004, Baskerville, et al. 2001, 

Baskerville, et al. 2003, Vartiainen, et al. 2011]. In such situations, developers may often, for 

example, trade software quality for short-term gains by deciding to implement a task as soon as 

possible rather than following best practices. In this study, we refer to such quality-compromising 

decisions as “omission of quality practices.”  

By omitting quality practices, software professionals (e.g., requirement analysts, 

programmers, testers, or project managers) purposefully opt to not follow proper software 

development practices that are recommended by either development procedures and standards or 

the software community. Instead, they choose to follow a questionable practice that might 

compromise the quality of software. For example, imagine that a programmer has a coding task 
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that can be performed in two alternative ways: A or B. Following A, the developer spends enough 

time and effort to perform his task according to a certain coding standard that is recommended to 

improve the quality of code. Alternately, by following B, the developer knowingly ignores the 

coding standard and follows a “quick-and-dirty” approach to finish the task quickly. When the 

developer chooses to follow B while being aware of A, we call this an “omission of quality 

practices.” Examining why software professionals engage in such questionable practices is 

extremely important because any proper software development practice becomes ineffective if 

ignored purposefully. 

In this article, our goal is to understand why software development teams knowingly decide to 

omit quality practices as previously defined. To gain such understanding, we decided to conduct a 

Systematic Literature Review [Kitchenham and Charters. 2007, Okoli and Schabram. 2010] to 

discover to what extent this phenomenon has been investigated by previous research. Through an 

extensive search performed on previous studies, only 19 studies were considered to be relevant 

for answering our research questions. The results of our study show that, despite its importance, 

several aspects of this phenomenon deserve further scholarly investigation. In particular, further 

research is needed to deeply investigate the contextual factors and conditions under which the 

omission of quality practices is initiated. Another area that requires further research is the 

psychological processes through which software professionals decide to perform such questionable 

practices. Furthermore, while previous studies consider several short-term consequences of 

omission of quality practices, future research needs to study the long-term consequences of such 

questionable practices for developers, organizations, and societies. Finally, future research must 

identify and suggest different interventions and solutions that could enable the software 

community to overcome the omission of quality practices. 

The rest of this paper is structured as follows. In Section 2, the research methodology is 

presented, and different stages of the planning and conduction of the literature review are 

explained. In Section 3, the results of the literature review are reported and discussed in detail. 

The paper continues by discussing a synthesis of the literature review and our proposal for future 

research in Section 4. Finally, Section 5 summarizes the key findings.  

Research Methodology 

Conducting a literature review enables scholars to identify neglected research themes and 

spot critical gaps in the body of knowledge that deserve further scholarly investigation [Rowe. 

2014]. It is suggested by previous studies that a Systematic Literature Review (SLR) is a suitable 

methodology for aggregating and evaluating completed and recorded research regarding a certain 

topic of interest to both identify gaps in the body of knowledge and propose directions for 

conducting future research to address these  identified gaps [Kitchenham and Charters. 2007, 

Okoli and Schabram. 2010, Rowe. 2014, Kitchenham, et al. 2010]. Although conducting an SLR 

requires a significant amount of time and effort due to the large number of previous studies that 

must be identified and evaluated [Okoli and Schabram. 2010, Kitchenham and Charters. 2007, 

Petersen, et al. 2008], following a well-defined and reliable process can improve the 

comprehensiveness and scientific rigor of the SLR while reducing researchers’ biases [Okoli and 

Schabram. 2010, Rowe. 2014, Petersen, et al. 2008]. 
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At the very beginning of this research project, we conducted an initial literature review to 

identify previous studies related to our research questions. During this initial examination, we 

identified a limited number of studies relevant to our research topic. Therefore, we decided to 

conduct an SLR according to the guidelines suggested by Kitchenham [2004; 2007] and Okoli and 

Schabram [2010]. Both have been widely used for conducting SLRs in the Software Engineering 

(SE) and Information Systems (IS) disciplines. According to the results of our initial literature 

review, we decided to choose a wide range of search terms to identify a larger number of studies 

and to cover all the potentially relevant studies. By this, we aimed to indicate the gap in the 

literature regarding the omission of quality software development practices and to provide 

directions for future research. Figure 1 shows an overview of the literature review process. 

 

 

Fig. 1. The SLR was planned and conducted in four stages, as shown in this figure. 

In the following sections, we discuss different stages of the process through which we planned 

and conducted our SLR. 

Initial Literature Review Study (Stage 0) 

To evaluate the state of research on the omission of quality software development practices, we 

conducted an initial literature review study in which we identified several studies reporting on 

the omission of software development methods and practices. Following this, and using the 

snowball technique, we searched the lists of references of these identified papers to discover 

additional relevant studies. Although this preliminary literature review did not return a 

considerable number of relevant studies, it helped us to identify a set of keywords that have been 

used by previous studies and software professionals, while also noting the issues regarding the 
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omission of software development methods and practices. These keywords were later used during 

Stage 1 of our SLR to search for and identify relevant literature. 

Planning the Review (Stage 1) 

During the planning stage, and according to the guidelines suggested by Kitchenham and 

Charters [2007], we prepared a search protocol to guide our SLR and increase the rigor of the 

review process. This search protocol was then tested by two of the authors and improved 

accordingly. This protocol consisted of our research questions, our search strategy (i.e., the search 

terms and resources which must be searched), study selection criteria and evaluation 

mechanism, data extraction strategy, and review timetable. In the following sub-sections we 

provide more detail about the contents of the review protocol. 

Research Questions. According to the objectives of our research, we try to answer our main 

research question: What is the state of research related to the omission of quality software 

development practices? Based on this research question, we have formed the following sub-

questions to be answered: 

RQ1: How is the omission of quality practices explained by previous studies? 

RQ2: What are the common instances of the omission of quality practices reported by previous studies? 

RQ3: Under what conditions does the omission of quality practices take place? 

 

Search strategy. After formulating these research questions, the search terms were chosen by 

identifying the keywords in the research questions and the results of our initial literature review 

study. By combining these search terms we have formed our search string (see Table 1). 

Table 1. Search terms identified based on research objectives 

Primary search terms Software development, Software design, System* development, System* 

design  

Secondary search terms Omission, Omit, Questionable, Shortcut, Quick and dirty, Trade off, 

Technical debt, Dark side, Gray area, Dubious, Software quality 

Search string ("Software development" OR "software design" OR "system* development" 

OR "system* design") AND ("omission" OR "omit*" OR questionable OR 

shortcut OR "quick and dirty" OR "quick-and-dirty" OR "trade off" OR 

"trade-off" OR "technical debt" OR "dark side" OR "gray area" OR "grey 

area" OR "dubious" OR "Software quality") 

 

To identify the relevant studies, we performed the search on the IEEE Xplore 

(ieeexplore.ieee.org) and ProQuest (search.proquest.com) libraries during January 2015. After 

retrieving the results, we combined them into a single spreadsheet file containing records of 5072 

studies. We then went through the list to identify and modify or remove any incorrect records or 

duplications. At this point, we added 17 articles that were manually identified by researchers but 

were not retrieved by the automatic search. After this step, our list consisted of a total number of 

4838 unique studies. 
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Table 2. The results of the search conducted in January 2015 

Database Total number Date range 

IEEE Xplore Digital Library 3787 1968-2014 

ProQuest 1285 1978-2015 

Manual search 17 1998-2014 

Total 5089 1968-2015 

Total after screening 4838 1968-2015 

Note: Google Scholar (scholar.google.com) was used for manual search. 

Selection criteria and mechanism. In our review protocol, we agreed that each study must be evaluated by at least two 

reviewers and based on the predefined inclusion and exclusion criteria. A study was considered to be relevant if it recognizes 

the problem of ignoring quality software development practices or that of software professionals engaging in questionable 

practices during software or information system development processes. Studies were excluded if they were not peer-

reviewed journal or conference articles published in English. Due to the large number of identified studies, we agreed to 

conduct the evaluation process in three consecutive rounds as explained in the following section. 

Conducting the Review (Stage 2) 

In the first round of Stage 2, two of the authors, Reviewers 1 and 2, independently evaluated the 

relevance of each study by reading its title and abstract. Following Kitchenham [2004; 2007], the 

reviewers tried to be quite liberal in performing this evaluation to decrease the chance of 

excluding any relevant studies. The results of the evaluation from each reviewer were then 

combined, and the disagreements between them were identified. Although the majority of these 

disagreements were resolved by reevaluating the studies and negotiation between the two 

reviewers, the reviewers’ evaluations were contradictory in 26 cases. Therefore, according to our 

protocol, Reviewer 3 evaluated each of these 26 studies, and based on his evaluation, the 

disagreements between Reviewers 1 and 2 were resolved. At the end of this stage, a total of 91 

studies were selected for further evaluation. 

During the second round of Stage 2, Reviewers 1 and 2 evaluated the 91 studies based on their 

title, abstract, introduction, and conclusion sections. As in the previous round, when the 

reviewers’ independent evaluations were completed, the results were combined, and 

disagreements were identified and resolved. At the end of this stage, a total of 47 studies were 

selected for further evaluation. Finally, during the third round of evaluation, the full texts of 

these studies were evaluated based on the selection criteria, and a total of 19 papers were 

considered to be, to some extent, relevant to our research questions and were selected as primary 

studies (see Table 3). 

Table 3. Primary studies were selected through three rounds of evaluations 

Round Number of 

articles  

Excluded 

articles 

Evaluated based on  

1st 4838 4747 title and abstract 

2nd  91 44 introduction and conclusions 

3rd  47 28 full paper 
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Data Extraction and Synthesis (Stage 3) 

In stage 3 of the review process, data extraction, a set of relevant data items was extracted from 

each primary study (see Table 4). 

Table 4 Data items extracted from primary studies 

ID Data item  Data item description Related RQ 

DI1 Article title   The title of the primary study   Overview 

DI2 Author list The full list of authors of the primary study  Overview 

DI3 Publication Year The year in which the primary study was published Overview 

DI4 Publication Forum The name of the forum in which the primary study was published Overview 

DI5 Publication Type Journal, conference, workshop, or book chapter Overview 

DI6 Research Type Empirical or conceptual  Overview 

DI7 Research Settings Summary of the empirical research settings  Overview 

DI8 Research Focus The phenomenon under study in the primary study RQ 1 

DI9 Omission 

Instantiations  

The type of quality practices and in which stage of software 

development they are omitted 

RQ 2 

DI10 Summary A summary of the explanation provided about the omission of 

practices 

RQ 1 

DI11 Factors The factors causing the omission of quality practices  RQ 3 

DI12 Development 

context 

Is the omission of quality practices bound to any specific 

software development method, process or approach? 

RQ 2, RQ 3 

 

 

As observed from Table 4, we have extracted data items beneficial for providing an overview of 

the primary studies (i.e., D1- D6), as well as those necessary for answering our research 

questions (i.e., D7 – D12). After extracting the data from primary studies, we further evaluated 

the relevance of each primary study to our research objectives based on short descriptive 

summaries of primary studies prepared by each individual reviewer.  

Finally, during the data synthesis process, each of the primary studies was carefully analyzed 

to identify the suggested factors leading to the omission of quality practices. In addition, we tried 

to identify any potential mechanism or process through which software professionals decide to 

ignore quality software development practices. 

Results of the literature review 

In this section, we present and discuss the results of our SLR. As mentioned earlier, our initial 

sample included 4838 studies, from which we have selected 19 primary studies through 3 rounds 

of evaluations (see Appendix A). These primary studies include both empirical and theoretical 

research published in peer-reviewed journals, conference proceedings, and workshops between 

1994 and 2014. An overview of these primary studies is shown in Table 5. 
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Table 5. An overview of the primary studies (PS). 

ID Year Type  Research Settings and data collection method 

PS1 2012  Empirical 35 semi-structured interviews with software professionals employed by companies of 

different sizes from the US and Canada   

PS2 2003 Empirical Semi-structured interviews, modeling sessions, archival materials, and discussions 

with the representatives of a software firm in a multinational organization  

PS3 2014 Empirical Data were extracted from source code comments written by software developers in 

four large open-source projects 

PS4 2014 Empirical 7 focus group interviews with software professionals from 5 large Scandinavian firms 

producing embedded and general-purpose software 

PS5 1994 Conceptual No empirical data 

PS6 1996 Conceptual No empirical data 

PS7 2013 Empirical  29 interviews, informal discussions, observations, and team meetings of 3 testing 

teams in India, the UK, and US 

PS8 2013 Empirical Data were extracted from defect log-files and responses to questionnaires from 

individuals active in 5 projects of a software vendor and a telecom operator in Turkey 

PS9 2013 Empirical Interviews, questionnaire, and ethnography in software development department of an 

industrial firm  

PS10 2014 Empirical 18 interviews with software professionals and CEOs from 11 companies of different 

sizes active in a variety of business domains  

PS11 2010 Empirical Interviews and recorded log-files from one the key game development providers in 

Chinese online entertainment market 

PS12 2004 Empirical 47 open-ended interviews with technical and business staff of 12 firms of various sizes 

from Denmark and the US 

PS13 2014 Empirical Data were collected by questionnaire from 54 software developers employed by 

organizations engaged in software development in Finland 

PS14 2001 Conceptual No empirical data 

PS15 2011 Empirical Data were extracted from software configuration management databases of 10 

embedded-software development projects in a Dutch industrial company 

PS16 1999 Empirical Observations during a software project in a small but rapidly growing 

telecommunications company in US 

PS17 2008 Empirical Semi-structured interviews and archival documents from 7 international firms 

producing embedded software for automation, telecommunication, and transportation 

domains    

PS18 2002 Empirical Over 3 years of observation in a large project with a team of 50 software professionals 

developing an enterprise system for the leasing industry 

PS19 2006 Empirical Observations made during several experiments and case studies conducted in 

industrial firms. Additionally, data were collected from subjects participating in 

experiments 

 

In regard to the publication venues, while the majority of the primary studies (i.e., 17 studies) 

are published in SE journals and conference proceedings, only two of the primary studies are 
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published in IS journals. From the 17 studies published in SE venues, 6 are journal articles, 8 are 

conference papers, and 3 are workshop papers (see Table 6). 

Table 6. Overview of publication forums 

Publication Venue Type # PS 

IEEE Software Journal  3 PS1, PS6, 

PS16  

Software Quality Journal Journal 2 PS8, PS15 

Information Systems Research Journal 1 PS14 

Information Systems Journal Journal 1 PS12 

Information and Software Technology Journal  1 PS7 

ACM/IEEE International Conference on Software Engineering (ICSE) Conference 2 PS11, PS18 

Euromicro Conference on Software Engineering and Advanced Applications 

(SEAA) 

Conference 2 PS4, PS17 

IEEE International Workshop on Managing Technical Debt Workshop 2 PS9, PS13 

IEEE International Conference on Research Challenges in Information Science 

(RCIS) 

Conference 1 PS10 

IEEE International Conference on Software Science, Technology and 

Engineering (SWSTE) 

Conference 1 PS2 

IEEE International Conference on Software Maintenance and Evolution 

(ICSME) 

Conference 1 PS3 

IEEE International Conference on Software Testing, Reliability and Quality 

Assurance 

Conference 1 PS5 

IEEE International Symposium and Workshop on Engineering of Computer 

Based Systems (ECBS) 

Workshop 1 PS19 

 

As observed from Table 6, of the only two primary studies published in IS venues, one is 

published in Information Systems Research (i.e., PS14), and the other is published in Information 

Systems Journal (i.e., PS12), which are both amongst the top IS journals. Because both of these 

studies were published in the early 2000s and only one of these studies is based on empirical 

observations (i.e., PS12), it seems that the omission of quality practices has not received enough 

attention from IS scholars in recent years. 

Alternately, from the SE studies, 8 journal articles and conference papers are published in 

reputable SE venues, including 3 articles in IEEE Software (i.e., PS1, PS6, PS16), 2 papers in 

Software Quality Journal (i.e., PS8, PS15), 1 paper in Information and Software Technology 

Journal (i.e., PS7), and 2 papers in the proceedings of the ACM/IEEE International Conference 

on Software Engineering (i.e., PS11, PS18). However, none of the primary studies are published 

in top SE journals, such as IEEE Transactions on Software Engineering and ACM Transactions 

on Software Engineering and Methodology. This, in addition to the number of SE studies that 

were published in recent years (i.e., 10 studies since 2010), indicates that, while there has been 

increasing interest amongst SE scholars in studying different aspects of the omission of quality 

software development practices in recent years, these studies lack solid theoretical foundations.       
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After providing a short descriptive summary of the selected primary studies, we use data 

extracted from these primary studies and analyses prepared by each of the individual reviewers 

to answer our research questions in the following sections. 

RQ1: How is the Omission of Quality Practices Reported By Previous studies? 

As it can be seen in Table 7 below, the primary studies explain the intentional omission of 

quality practices from both organizational and individual perspectives. While the former 

perspective suggests that the decision to omit quality software development practices is made at 

the organizational level and due to certain business motivations or obligations, the later 

perspective explains the omission of quality practices as a result of developers’ thought processes 

in favor of certain personal goals. 

Table 7. A summary of the main findings of the primary studies 

ID Research focus Summary of findings  

PS1 Technical debt Under time pressure and based on short-term thinking, developers ignore quality 

practices or perform temporary workarounds while making tradeoffs between 

quality, time and cost.  

PS2 Software quality Most of the common issues in software projects are caused by neglect or low-

quality work. Poor feasibility studies, estimation, and planning decisions lead to 

resource constraints in projects and, in the absence of proper control 

mechanisms, lead to neglecting testing.    

PS3 Technical debt More experienced developers tend to produce more technical debt due to 

personal goals (which are not mentioned) regardless of release pressure or the 

complexity of the code.   

PS4 Technical debt Poor requirement specifications, approaching deadlines, the evolution of 

technology, and the splitting of development and maintenance budgets lead to 

violations of the architecture and ignoring refactoring, especially when firms are 

obliged to meet deadlines. 

PS5 Challenges of 

software testing 

Since the delivery of software, rather than quality, has higher priority for 

managers when coding and design are delayed, they prefer to shortcut testing to 

catch up with deadlines. 

PS6 Challenges of 

software 

development 

Due to bad estimates, development plans and schedules are often not accurate. 

Thus, time pressure leads to the elimination of ’non-essential’ activities, such as 

requirements analysis, or software design and QA activities, such as reviews, 

test planning, and testing. 

PS7 Challenges of 

software testing 

Although testers work under more time pressure than developers and designers, 

their role is often underrated by managers. This might lower their motivation in 

performing testing, especially when they face the dilemma of missing deadlines 

or compromising the quality. 

PS8 Software quality Due to their confirmation bias, developers have a tendency to verify the quality 

of their code, and therefore, may avoid performing certain unit tests that would 

detect defects.    

PS9 Technical debt Developers want to ensure speedy releases and responsiveness to requirement 
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changes. However, due to resource constraints and the evolution of technology, 

and in the absence of a disciplined development environment, they make trade-

offs that lead to technical debt. 

PS10 Software testing Managers sometimes over-trust developers in producing high-quality software 

and do not involve testers in planning which leads to overlooking testing scope 

and underestimating necessary testing efforts. Thus, when managers decide to 

skip tests, due to resource constraints, this puts developers under stress and leads 

to low motivation for testing.  

PS11 Software quality  Implementing penalty policies in software firms produces the fear of 

punishment among developers. As a result, software developers, especially 

novice ones, try to pay extra attention to maximize software quality and avoid 

intentional omission of quality practices.  

PS12 Short-cycle time 

systems 

development 

In an e-commerce context, due to evolving market demands, development 

cycles are compressed to be able to respond to constant market change. In such a 

context, trading software quality for the rapid delivery of high-priority features 

has become acceptable.  

PS13 Technical Debt Due to frequent requirement changes and scarce resources, the delivery of 

complete software becomes difficult, which may lead to violating best practices 

or design guidelines.  

PS14 Shortcutting Due to poor resource estimation and allocation, developers may face difficulties 

to meet deadlines. Especially in the absence of proper control mechanisms, 

developers who are concerned about quality of software may decide to take 

shortcuts to meet deadlines and avoid negative consequences of missing 

deadlines on their career.  

PS15 Omission of 

software tasks  

When there is slow start-up in projects or the budget is wasted, firms face 

problems delivering on time and within the budget. Especially when managers 

do not have a commitment to the firm’s official software processes, developers 

ease up on these processes and omit important tasks. 

PS16 Challenges of 

software 

development 

Due to a lack of proper understanding of software quality amongst software 

professionals and in the absence of clear software development guidelines, 

software professionals may consider QA activities to be a waste of time and take 

shortcuts to improve productivity.  

PS17 Software quality    Focusing on achieving short-term goals, such as shorter delivery times and 

higher productivity, motivates firms to minimize software processes. Resource 

constraints and managers’ low architectural awareness are other factors leading 

to the taking of shortcuts.   

PS18 Extreme 

Programming 

Due to incorrect estimates, developers take shortcuts and ignore refactoring to 

ensure speedy development and perform minimal work, especially if they 

believe too much in their methods.  

PS19 Omission of 

software tasks 

Often documentation is ignored or postponed in practice due to the lack of 

proper documentation guidelines or due to a lack of attention to the importance 

of documentation.  

 

To explain such organizational and individual decisions, the primary studies use a variety of 

terminologies, including ‘shortcutting’ [Austin. 2001], ‘systematic omission of software tasks’ 
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[Samalikova, et al. 2011], ‘technical debt’ [Cunningham. 1992], and ‘short-cycle time 

development’ [Baskerville and Pries-Heje. 2004]. In addition, there are a few primary studies 

that report the research problem by discussing the common issues and challenges of software 

development projects in general and those of performing software quality assurance and testing 

activities in particular. 

In the following sections, we discuss each of these different viewpoints on the omission of 

quality practices in more detail. 

Omission of quality practices under organizational constraints. The majority of the primary studies 

explain the omission of quality practices in terms of eliminating certain steps or activities 

recommended by firms’ official software development processes [McConnell. 1996, Fleming. 1999, 

Ahonen and Junttila. 2003, Samalikova, et al. 2011, Shah, et al. 2014, Murugesan. 1994, Seth, et al. 

2014]. Such shortcuts are mainly taken under resource constraints (e.g., time and money) or due 

to the lack of attention to certain software development tasks and activities (e.g., documentation 

or testing) by managers and developers.  

As argued by McConnel [1996], often due to incorrect estimations at the beginning of software 

projects, development teams prepare inaccurate plans and overly aggressive schedules, and 

therefore, often during the later stages of projects, developers face scheduling problems. As a 

result, when a development team is under time pressure, they often eliminate certain activities 

that they consider to be ‘non-essential,’ such as requirements analysis or architectural design, or 

quality assurance activities, such as reviews and testing [McConnell. 1996]. These findings are in 

line with observations reported by Fleming [1999] regarding an industrial software development 

and maintenance project. In this study, the author explains how software development processes, 

and especially quality assurance activities, such as design reviews, are ignored by managers and 

developers simply because they consider such activities as wastes of time, and therefore, they 

prefer to just concentrate on producing the “real” software [Fleming. 1999]. 

The omission of software development activities under the influence of resource constraints is 

also reported by Ahonen and Junttila [2003]. Conducting case studies and interviewing software 

developers Ahonen and Junttila [2003] suggest that development teams usually face with lack of 

sufficient time and resources because the early phases of software projects usually becomes 

longer than what has been planned. As a result of such resource constraints the quality 

assurance activities, such as inspection and testing, are often postponed and eventually skipped 

entirely [Ahonen and Junttila. 2003]. Another primary study that supports these findings is 

[Samalikova, et al. 2011]. This study reports that due to delays in the initial phases of software 

development, development teams are often faced with resource constraints. In such situations, 

especially when the management is not committed to the firm’s official process, developers do not 

pay attention to the quality practices, and they might take shortcuts to address scarce resources 

[Samalikova, et al. 2011].   

An empirical study by Shah, et al. [2014] reports that test engineers often experience more 

pressure while performing their tasks compared to other software professionals, such as 

developers and designers. Such extra pressure is because when software design and development 

phases are delayed, testers are the ones who must accommodate such delays [Shah, et al. 2014]. 

However, the importance of testing activities and consequently the contribution of testers to the 

software development is not highly appreciated by managers and other stakeholders [Shah, et al. 
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2014]. Thus, testers usually face a dilemma: to either meet deadlines by compromising the 

quality of software or miss the deadline but perform their tasks in a high-quality manner [Shah, 

et al. 2014]. In such situations, developers’ motivations and the appreciation of testing activities 

by managers and other stakeholders are considered to be a key factor influencing how well 

testing activities are performed by testers. Such negative attitudes towards testing are also 

reported by two other primary studies [Murugesan. 1994, Seth, et al. 2014]. In his study, 

Murugesan [1994] argues that, even though testing is “a key contributor to software quality” 

assurance, it often receives less attention from management. Additionally, the author suggests 

that, for many developers, testing is like a ‘cushion’ that can be squeezed whenever needed 

during the development process. Therefore, whenever the design and coding stages take longer 

than planned, project managers prefer to reduce the testing time to deliver the software before 

the deadline [Murugesan. 1994]. Finally, the results from another empirical study on software 

testing [Seth, et al. 2014] suggest that project managers deliberately do not involve testers in 

various project activities, mainly project planning, because they believe too much in the abilities 

of development teams to produce high-quality software. Therefore, testing scope and necessary 

testing efforts are often overlooked in the contracts. Consequently, later on during the projects 

and due to the lack of sufficient resources, project managers decide to skip important software 

tests [Seth, et al. 2014].  

As reported by the first group of primary studies, due to improper estimation and planning 

activities, software projects are often faced with scarce resources. In such situations, if quality 

practices do not receive sufficient attention and appreciation from organizations, software 

developers might not be motivated to perform such quality practices and, as a result, compromise 

software quality. 

Omission of quality practices for gaining strategic competitiveness. Another group of primary 

studies explains the omission of quality practices in terms of strategic business decisions made by 

organizations to gain competitive advantages in the market environment and to achieve short-

term goals. This group of primary studies uses either technical debt [Cunningham. 1992] or agile 

software development [Fowler and Highsmith. 2001] terminologies to note such strategic 

business decisions. In the following sub-sections, these viewpoints are discussed.  

Occurrence of Technical Debt. A group of primary studies explain the omission of quality 

practices [Lim, et al. 2012, Potdar and Shihab. 2014, Martini, et al. 2014, Codabux and Williams. 

2013, Holvitie, et al. 2014, Lindgren, et al. 2008] in terms of decisions leading to occurrence of 
technical debt [Cunningham. 1992]. The metaphor of technical debt [Cunningham. 1992] denotes the 

consequences of producing low-quality software in situations where organizations make conscious business 

decisions to achieve short-term goals by compromising or fully eliminating certain software development 

activities [Lim, et al. 2012, Martini, et al. 2014] to speed up delivery times [Brown, et al. 2010, Lim, et 

al. 2012].  

According to this group of primary studies, such quality-compromising trade-offs are mainly 

tactically and reactively made by firms under the influence of market demands. From a business 

perspective, software companies are motivated to increase their productivity mainly in terms of 

reducing time-to-market and development costs [Lindgren, et al. 2008]. Alternately, software 

companies need to be responsive to market demands and customers changes [Codabux and 

Williams. 2013]. Therefore, in such a business environment, taking on technical debt in the short-

term might be beneficial or even unavoidable for software companies [Brown, et al. 2010] to catch 
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market share [Lim, et al. 2012, Lindgren, et al. 2008] or fulfill their contractual obligations 

[Martini, et al. 2014]. However, because such short-term decisions affect the quality of software, 

development teams are supposed to go back and fix such workarounds as soon as possible to 

maintain the quality of the software products in the long run [McConnell. 2007, Brown, et al. 

2010]. However, if the skipped tasks are not implemented during the later stages of software 

development (i.e., the short-term technical debt is not paid back), this leads to higher levels of 

software deficiency and complexity and, as a result, incurs increased maintenance costs over time 

[Codabux and Williams. 2013].  

Use of Agile software development. Another group of primary studies reports the omission of 

quality practices in terms of utilizing novel software development approaches, such as Internet-

speed or short-cycle time system development [Baskerville and Pries-Heje. 2004] and Extreme 
Programming [Beck. 1999]. At the turn of the millennium, the rise of electronic commerce provided firms 

with an opportunity to access a wider range of customers by distributing their products or services through the 

Internet. However, fierce competition in this fast-changing environment put firms under constant pressure to 

deliver new software products to market faster [Baskerville, et al. 2001, Baskerville, et al. 2003]. As a 

result of such ‘Internet Time’ [Baskerville and Pries-Heje. 2004] rush to the marketplace, companies had to 

shorten the length of their software development cycles [Baskerville, et al. 2001, Baskerville and Pries-Heje. 

2004]. It must be noted that Internet-speed and short-cycle time software methodologies are similar to the agile 

school of thought [Baskerville, et al. 2003].  

As suggested by Baskerville and Pries-Heje [2004], Scrum [Schwaber and Beedle. 2001] and 

Extreme Programming [Beck. 1999], which are two of the most popular agile software 

development methods, were developed based on the short-cycle development practices used by 

Microsoft and Netscape during their competition in developing web browsers. Generally speaking 

agile software development aim at minimizing development costs and delivery times by avoiding 

nonessential activities during software development processes [Martin. 2003, Codabux and 

Williams. 2013]. Due to such demands for shorter development cycles, development teams might 

become more eager to focus on software functionality and therefore do not pay enough attention 

to other software activities, such as design, testing, and maintenance [Baskerville and Pries-

Heje. 2004, Codabux and Williams. 2013, McConnell. 1996]. As a result, the overall complexity of 

the software and the likelihood of producing defective software are increased [Agrawal and Chari. 

2007, Gibson and Senn. 1989]. 

Based on qualitative interviews conducted with members of 12 companies from the US and 

Denmark producing software for fast changing markets , Baskerville and his colleagues 

determined that such a fast-paced development requires development teams to follow quick and 

parallel release-oriented prototyping approach in where “quality is negotiable” [Baskerville and 

Pries-Heje. 2004]. Another study by [Elssamadisy and Schalliol. 2002] reports similar 

observations from a large 3-year-long software project. In this study, the authors suggest that, 

following principals suggested by extreme programming in large projects, developers try to speed-

up development and perform minimal work. However, due to incorrect effort estimates and their 

excessive belief in the processes, they have to take shortcuts and ignore refactoring to reach their 

goals within short development cycles [Elssamadisy and Schalliol. 2002].    

According to the second group of primary studies, it seems that the overemphasis of short-

term goals, such as the delivery of new software features and shorter delivery times, by the 

software industry increases firms’ eagerness to speed-up development processes and therefore 
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might reduce developers’ attention to the importance of software quality. As a result, the 

omission of quality practices with the hope of increasing productivity becomes acceptable within 

the software community.   

Omission of quality practices to achieve personal goals. Finally, a group of primary studies 

explain the omission of quality practices in terms of developers’ thought processes towards 

achieving certain personal goals [Austin. 2001, Çalıklı and Bener. 2013, Wang and Zhang. 2010]. 

 The first study by Austin [2001] suggests that under time pressure and in response to 

unexpected difficulties during the software development processes, developers might become 

motivated to take quality-compromising shortcuts to stay on schedule, especially if they consider 

the deadline to be unachievable. In this conceptual study, the author [Austin. 2001] argues that 

taking shortcuts is not necessarily a deliberate subversive act but rather the result of developers’ 

strategic decisions to address the situation in the most convenient way. In making such quality-

compromising decisions, developers often have two main concerns: concern for their career and 

concern for the quality of the software [Austin. 2001]. From the career perspective, developers 

might take shortcuts to avoid the consequences of being behind schedule and losing their 

professional reputation by being the only developer who cannot be on time. Alternately, from a 

quality perspective, developers might avoid taking shortcuts because they are concerned with 

being penalized for compromising the quality of the software and, as a result, endangering the 

success of the project [Austin. 2001]. 

Another study by [Çalıklı and Bener. 2013] explains how developers’ confirmation biases may 

cause the emergence of software defects. Confirmation bias, as explained by Çalıklı and Bener 

[2013], is a “tendency of people to seek evidence that verifies hypotheses” rather than seeking 

evidence that could falsify those hypotheses [Çalıklı and Bener. 2013]. In this empirical study, 

the authors found some indications that, under the influence of their confirmation biases, 

developers might try to provide evidence that their code is working properly. Therefore, they 

might only run certain unit tests that prove the code is working and avoid performing those unit 

tests that break the code [Çalıklı and Bener. 2013]. As a result of such quality-compromising 

decisions, the defects in the code might not be discovered.  

Finally, in their field of study, Wang and Zhang [2010] discuss the influence of organizational 

punishment on the quality of software development. In this study, the authors investigated the 

influence of penalty policies employed by a large Chinese software company on the quantity of 

software defects identified in the code. Based on this penalty policy implemented in the company, 

those individual developers who delivered defective software were punished by taking away a 

specific amount of money, per defect, from their salary. The results of the study suggest that 

penalty policies partly affect novice developers’ performances, leading to less defective software 

[Wang and Zhang. 2010]. As an example, an interviewee explained that the penalty policy made 

them avoid defects that were based on carelessness.  

The results of the third group of primary studies suggest that the omission of quality practices 

might be an individual decision privately made by developers to gain certain career-related 

advantages. It seems that, in such situations, if developers perceive the omission of quality 

practices to be beneficial for them, while there is a small chance that such quality-compromising 

decisions will be revealed, they might decide to ignore the quality practices. This might be the 
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reason that implementing penalty policies could affect the avoidance of the omission of quality 

practices. 

RQ2: What Are the Common Instances of the Omission of Quality Practices Reported By Previous 
studies? 

To answer our second research question, we have identified all instances of ignoring software 

development tasks and activities that are reported by primary studies. We have categorized all of 

these instances into 6 groups according to the nature of the software development activities that 

are ignored (see Figure 2). 

 

Fig. 2 Common instances of the omission of quality practices reported by primary studies 

As it can be seen from Figure 2, the majority of primary studies (i.e., 57%) reported at least 

one instance of testing and quality control activities being ignored by development teams. Such 

activities include, for example, planning and scoping testing activities [Lim, et al. 2012, 

McConnell. 1996], writing automated unit tests [Codabux and Williams. 2013], conducting formal 

reviews [Ahonen and Junttila. 2003], and performing testing [Murugesan. 1994, Baskerville and 

Pries-Heje. 2004]. In addition to this, 42% of the primary studies mention the occurrence of 

quality-compromising activities during the design and implementation stages, while 31% of the 

primary studies report instances of ignoring documentation. Finally, 26% of the primary studies 

report that the omission of quality practices takes place during the requirements analysis and 

specification phase. It must be noted that 15% of the primary studies report the omission of 

quality practices in general and do not provide any specific instance nor mention the particular 

stages of software development that were compromised. 

These results show that the omission of quality assurance and testing activities is 

considerably high among development teams. Keeping in mind that such activities play a vital 

role in ensuring the quality and reliability of software products, it becomes obvious that this 

specific aspect of software development has received less attention from the software community. 

It seems that the constant demands from the software industry and fierce competition between 

software companies motivate development teams to concentrate more on the delivery of new 

functional features rather than evaluation of the quality of the software. Such oversight can be a 

good explanation for high rates of software defects and project failures.    



 Omission of Quality Software Development Practices: A Systematic Literature Review • XX:17 

 

 

 ACM Comput. Surv., Vol. XXXX, No. XXXX, Article XXXX. Publication date: XXXX XXXX. 

RQ3: Under What Conditions Does the Omission of Quality Practices Take place? 

In response to our third research question, we identified a variety of factors during the data 

analysis that are reported by previous studies as affecting developers’ behaviors during the 

software development processes and, as a result, leading to the omission of quality practices (see 

Table 8).    

Table 8. Factors causing the omission of quality practices. 

Identified 

factors 

Description Instances 

Business 

goals 

From a business perspective, it is desirable or 

even vital for companies to increase their 

market share and consequently increase their 

revenue. As a result, organizations might 

ignore quality practices to achieve such 

short-term goals.     

Eagerness to increase sales (PS2, PS9), Reduce 

development costs (PS2, PS3, PS8, PS17), Rapid 

delivery of high-priority features (PS4, PS17), 

Collect external funding (PS1), Capture market 

share (PS1, PS17), Reduce time-to-market (PS1, 

PS3, PS6, PS9, PS12, PS14, PS16, PS17, PS18) 

Customers’ 

requirements 

 

Customers’ requirements are often not clear 

at the beginning of projects, which makes 

requirement changes unavoidable. Thus, 

sometimes developers might ignore quality 

practices to address these issues.  

Collect early feedback from customers (PS1), 

Customers’ wish lists are too long (PS1), Fuzzy 

requirements (PS1, PS12), Requirement changes 

(PS1, PS4, PS12, PS13, PS17)  

Project 

constraints 

The extent to which software activities are 

followed highly depends on the availability 

of necessary resources, such as time, budget, 

workforce, and the quality of official 

development guidelines and control 

mechanisms in the company.  

Lack of time (PS1, PS2, PS4, PS5, PS6, PS7, 

PS9, PS10, PS13, PS15, PS18), Lack of human 

resources (PS9, PS13, PS17), Lack of financial 

resources (PS2 PS9, PS13), Lack of technical 

skills (PS2, PS9, PS13, PS17), Lack of clear 

process guidelines (PS4, PS9, PS10, PS19), Lack 

of clear architectural documentation (PS4), Lack 

of effective quality control mechanisms (PS14, 

PS15) 

Technical 

issues 

In some situations, the performance of 

quality practices is ignored due to technical 

difficulties associated with software 

development. 

Technology evolution (PS4, PS9, PS12), Use of 

legacy code (PS4), Use of third-party software 

(PS4) 

Psychological 

factors 

In some cases, ignoring quality practices is 

an individual decision made by managers, 

developers, or both and due to their attitudes, 

feelings, beliefs, or cognitive characteristics.  

Lack of commitment to development processes 

(PS1, PS5, PS15, PS16, PS19), Lack of 

motivation to perform tasks (PS7, PS19), 

Developers’ confirmation bias (PS8), Interpret 

requirements conveniently (PS14), No fear of 

punishment (PS11, PS14), Risk-taking behavior 

(PS10), Poor buy-in for testing (PS5, PS7, PS10) 

 

As observed from Table 8, a variety of reasons are reported by primary studies as possibly 

leading to the omission of quality practices. While the majority of the primary studies emphasize 
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the role of resource constraints as a key driver of ignoring quality software development 

practices, other reasons, such as constant market demands, lack of understanding of customers’ 

requirements, individuals’ attitudes and motivations, and technical difficulties associated with 

software development, are also suggested to cause such questionable practices.  

Based on the nature and similarity of identified factors, we have divided them into five main 

categories: Business goals, Customers’ requirements, Project constraints, Technical issues, and 

Psychological factors. These categories are succinctly described and different instances of them 

are reported in Table 8. In the next section we discuss about these identified factors and propose 

a theoretical model accordingly.   

A Synthesis of the Literature Review 

Using the five categories of factors illustrated in Table 8, we produced a synthesis of the five 

categories of factors that entail the omission of quality practices (see Figure 3). By indicating 

their scope of effects and interrelationships between these identified factors, our model 

represents the context in which the psycho-social process of the omission of quality practices is 

initiated and emerged overtime. We call this process psycho-social because the omission of 

quality practices occurs in a social context but is implemented by single individuals involved in 

software development and under the influence of their psychological factors. Based on their scope 

of effects, these categories are organized into three contextual levels, the market level, 

organizational level, and individual level. 

 

Fig. 3. The context of the psycho-social process of omitting quality practices 

As shown in Figure 3, in the market level, business goals and customers’ requirements are two 

main factors influencing the extent to which quality software practices are followed. In the 
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organizational level, in contrast, the decision to ignore quality practices is influenced by project 

constraints and technical issues. Finally, in the individual level, psychological factors affect 

individuals’ decisions regarding the omission of quality practices. These different levels of 

context, together with the psycho-social process that entails omission instantiations and their 

consequences, are presented in the following sections. 

Market Level 

Based on our analysis, software development approaches and the extent to which they are 

followed by organizations are influenced by the market environments that firms are active in. 

Therefore, two main factors that influence these approaches are firms’ business goals and 

customers’ requirements in such market environments.   

From a business perspective, increasing sales [Ahonen and Junttila. 2003, Codabux and 

Williams. 2013] and extending market share [Lim, et al. 2012, Lindgren, et al. 2008] play 

important roles in increasing firms’ revenues. Alternately, reducing time to market [Potdar and 

Shihab. 2014, McConnell. 1996, Codabux and Williams. 2013, Baskerville and Pries-Heje. 2004] 

and development costs [Ahonen and Junttila. 2003, Potdar and Shihab. 2014, Shah, et al. 2014] 

enables software companies to increase their profits or might even be critical for a firm’s survival 

in highly competitive markets. Achieving such business goals in the short term might increase 

companies’ eagerness to speed up their development processes and rapidly deliver new products 

or novel functional features to the market. By this, not only are firms able to reach the market 

before their competitors, but they also might be able to increase their revenue and, in some cases, 

collect external funding [Lim, et al. 2012] to further develop and improve their products. Such 

strategies are especially vital for small companies active in highly competitive and turbulent 

market environments with fierce competition. Therefore, and as a result of companies’ strategic 

decisions as explained in section 3.1.2, development teams might decide to ignore certain quality 

software development practices. As an example, Ahonen and Junttila [2003] report that while 

preparing project offers for clients, it is tempting for sales people to reduce unnecessary costs and 

delays by implementing feasibility studies without proper technical and managerial knowledge. 

This is because sales people might consider involvement of technical people in this process as an 

additional cost and delay.  

Another factor that influences firms’ strategic decisions to ignore certain quality practices is 

customers’ requirements in markets. Customers’ needs and requirements are often vague and 

fuzzy, especially in the initial stages of software projects [Lim, et al. 2012, Baskerville and Pries-

Heje. 2004]. Lack of adequate understanding of requirements among software stakeholders in 

general, and customers in particular, often leads to rework as developers make design 

assumptions that later need to be changed [Lim, et al. 2012]. Therefore, especially during the 

early stages of projects, development teams might decide to follow “quick and dirty” practices to 

quickly deliver mockups or even prototypes with minimal functionality to collect feedback from 

customers [Lim, et al. 2012] and improve the requirements.  

Alternately, stakeholders gain a better understanding of customers’ needs over time, and 

therefore initial requirements need to be changed. To satisfy customers, firms often try to 

increase their response to be able to accommodate such requirement changes [Martini, et al. 

2014, Baskerville and Pries-Heje. 2004, Holvitie, et al. 2014, Lindgren, et al. 2008]. Thus, 
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development teams might decide to ignore certain quality practices to aid in being responsive to 

customers’ needs. For example, as reported by Baskerville and Pries-Heje [2004], Internet-time 

development is characterized by fuzzy requirements and market pressures. In such an 

environment, customers appreciate the fast delivery of changing requirements, and they do not 

even expect high-quality products. As a result of such “negotiable quality” [Baskerville and Pries-

Heje. 2004], the omission of quality practices becomes acceptable to satisfy customers’ needs and 

expectations.  

Our interpretation is that these external market-level factors have a determining role in the 

omission of quality practices. This is because, depending on the market environment, 

organizations follow different strategies to increase their sales (and consequently profit) and to 

satisfy their customers. Such underlying factors motivate firms to speed up negotiation and 

development processes and to extend their market share by delivering their products to market 

faster.  

Organizational Level 

Based on our analysis, in the organizational level, project constraints and technical issues are the 

main factors influencing firms’ decisions regarding the omission of quality practices. 

Project constraints point to the lack of resources necessary for performing quality software 

development practices. Such resources include time, budget, skilled workforce, official 

development guidelines and procedures, and control mechanisms in the company. In software 

projects, unreliable cost and effort estimation and schedule errors [McConnell. 1996, Elssamadisy 

and Schalliol. 2002] often lead to a lack of necessary resources to perform each development 

phase. A lack of sufficient time [Lim, et al. 2012, Ahonen and Junttila. 2003, Martini, et al. 2014, 

Murugesan. 1994], financial resources [Ahonen and Junttila. 2003, Seth, et al. 2014, Holvitie, et 

al. 2014], or skilled human resources [Codabux and Williams. 2013, Holvitie, et al. 2014, 

Lindgren, et al. 2008] are among the main reasons that often force development teams to ignore 

quality software development practices. To deal with scarce resources, developers are often 

encouraged to skip those development tasks and activities that, from their perspective, are 

considered unnecessary [McConnell. 2007, Potdar and Shihab. 2014, Fleming. 1999]. 

Additionally, when there is a split of budget and resources between different development 

phases, for example, between implementation and testing or development and maintenance, 

software professionals might become motivated to skip certain tasks and practices during the 

development phase and postpone them to the maintenance phase [Martini, et al. 2014].  

While lack of time, financial, and human resources restrict developments teams’ abilities to 

follow quality practices, the lack of clear software development guidelines [Martini, et al. 2014, 

Codabux and Williams. 2013, Seth, et al. 2014, Bayer and Muthig. 2006] and inadequate 

inspection and quality control mechanisms [Austin. 2001, Samalikova, et al. 2011] facilitate the 

omission of quality practices [Martini, et al. 2014, Murugesan. 1994, Codabux and Williams. 

2013, Seth, et al. 2014, Austin. 2001]. In the absence of proper requirements identification and 

analysis practices, not only is it very difficult for developers to identify and explicitly document 

software requirements, but cost and effort estimation also becomes unreliable. For example, 

according to Martini, et al. [2014] and Lim, et al. [2012], inadequate requirements specification 

and a lack of clear architectural documentation might be misinterpreted by developers in 



 Omission of Quality Software Development Practices: A Systematic Literature Review • XX:21 

 

 

 ACM Comput. Surv., Vol. XXXX, No. XXXX, Article XXXX. Publication date: XXXX XXXX. 

subsequent development stages and eventually lead to the implementation of incorrect 

functionalities that must be fixed in the future.  

Alternately, because software development processes are invisible to non-developer 

stakeholders [Austin. 2001], this might provide developers with an opportunity to consciously 

ignore certain quality practices without managers or customers being aware of it [Lim, et al. 

2012, Austin. 2001]. In such situations, the lack of adequate inspection and quality control 

mechanisms facilitates the omission of quality practices. For example, Ahonen and Junttila 

[2003] report that the lack of formal inspections causes obvious mistakes to be retained in 

documents, as experienced people seem to think that an obvious mistake must be there for a 

reason.  

In the organizational level, technical issues are, in some situations, the underlying reasons for 

the ignoring of quality practices. Such issues include technology evolution [Martini, et al. 2014, 

Codabux and Williams. 2013, Baskerville and Pries-Heje. 2004], the use of legacy code, and the 

use of third-party software [Martini, et al. 2014]. The software field is a fast changing 

environment due to rapid technological improvements. With such technological evolution, it is 

possible for software and hardware to become obsolete over time [Martini, et al. 2014], and 

therefore it might not be beneficial for firms to invest too many resources in improving the 

quality of their software products. This creates a constant need to replace old software and 

hardware components with new ones. If legacy code or third-party software [Martini, et al. 2014], 

for example, is used, any potential architectural debt underlying these components will be 

transferred to the new software [Martini, et al. 2014]. This means that, if refactoring is not 

performed and the debt is not paid back, software complexity grows, and future development of 

the software becomes problematic [Martini, et al. 2014]. In some situations, software developers 

might be forced to perform temporary workarounds to address such structural issues and 

complexities. For example, [Murugesan. 1994] suggests that, due to the complexity of systems, 

software testing and evaluation become more challenging, and as a result, it is more likely for 

developers to ignore quality practices.  

As discussed in this section, different organizational-level factors, under the influence of the 

market environment, might force or even motivate development teams to ignore quality practices. 

However, such institutional-level constraints or motivators cannot be seen as sufficient for the 

omission of quality practices because the decisions to ignore such practices are made and 

implemented by individuals. In the next section, we discuss the psychological factors underlying 

the omission of quality practices.            

Individual Level 

At the individual level, managers and developers engage with the decision-making processes 

regarding the omission of quality practices. This decision-making is a psycho-social process 

because it is influenced by individuals’ psychological characteristics and thought processes, as 

well as the characteristics of the development context (i.e., the market-level and organizational-

level factors). Here, the psychological factors relate to attitudes, beliefs, and cognitive tendencies 

that may incline managers and developers to omit quality practices. 

For example, as suggested by previous studies, the lack of commitment to firms’ software 

procedures [Samalikova, et al. 2011, Fleming. 1999, Bayer and Muthig. 2006] and lack of 
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appreciation for quality control and testing activities [Murugesan. 1994, Shah, et al. 2014, Seth, 

et al. 2014] might decrease developers’ motivations to perform quality practices [Shah, et al. 

2014, Bayer and Muthig. 2006]. In the previous section, we explained that the lack of clear 

procedures might facilitate the omission of quality practices. However, it must be noted that, 

even if there are proper software development procedures available in firms, the lack of 

commitment to these guidelines from managers might simply lead to the neglect of those 

procedures by development teams [Ahonen and Junttila. 2003, Murugesan. 1994]. In such 

situations, development teams might prefer to concentrate on producing ‘real software’ [Fleming. 

1999] rather than planning [Lim, et al. 2012, Murugesan. 1994, Fleming. 1999], and as a result, 

they decide to jump directly to coding and skip project planning activities and other important 

steps, such as requirements analysis and architectural design. It seems that such negative 

attitudes towards quality practices are more common in the case of performing quality control 

activities. Software testing has often received so-called ‘second-rate’ consideration from 

stakeholders, which leads to the undermining of testing activities, and therefore it is common for 

quality control and testing activities to be ignored [Murugesan 1994].  

Underestimation of the importance of quality practices by managers alongside cognitive 

characteristics of individuals, such as confirmation bias [Çalıklı and Bener. 2013] and risk-taking 

[Seth, et al. 2014], might lead to developers’ decisions to ignore quality practices. For example, 

Seth [2014] reports that testers are not always involved in project planning because managers 

overly trust development teams' abilities to produce high-quality software and may take the risk 

of deciding to skip certain important tests [Seth et al. 2014]. Çalıklı and Bener [2013] suggest 

that, under the influence of confirmation bias, developers might skip certain tests that could 

possibly break their code and reveal its underlying defects. Such decisions are more likely to be 

taken if developers do not have any fear of getting caught and being punished by organizations 

[Wang and Zhang. 2010, Austin. 2001]. Because such questionable practices are not easily 

observable, developers do not feel any fear of facing punishment, and as a result, they might 

decide to ignore quality practices. The result from an empirical study by Wang and Zhang [2010] 

supports this finding, as they show that implementing penalty policies could lead to the 

avoidance of intentional technical debt [Wang and Zhang. 2010]. This means that the existence of 

penalty policies may prevent intentional omission of quality practices. 

Based on these exemplary studies, we suggest that psychological factors affect the decision-

making processes regarding the omission of quality practices, whether pro or against. For 

example, cognitive tendencies, such as risk-taking or cognitive bias, may positively affect the 

emergence of omission behavior, and the fear of penalties may work against omission behavior.  

The Psycho-Social Process and Consequences of Omission Behavior 

During the review and synthesis, we have tried to identify mechanisms or processes through 

which software professionals decide to neglect quality practices. The majority of the studies 

deemed that developers simply decide to neglect quality practices, either under schedule and 

management pressure or based on some personal motives. However, none of the primary studies 

provide any in-depth explanation regarding the psycho-social mechanisms underlying the 

omission of quality practices. While this psycho-social process is still unknown, managers and 
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developers go through it by producing omission instantiations on a daily basis in every software 

development project. 

The psycho-social process is likely to be affected by the factors we identified and discussed in 

this review. However, while this psycho-social process and its underlying mechanisms are 

undiscovered, the current literature reports a variety of possible factors that may affect this 

process. Our current understanding is that the identified factors may play different positive or 

negative roles in the omission of quality practices depending on the context or situation. Despite 

the fact that a group of studies suggest that the omission of quality practices is associated with a 

lack of technical skill [Holvitie, et al. 2014, Lindgren, et al. 2008, Codabux and Williams. 2013], 

Potdar and Shihab [2014] found in their empirical study that a higher amount of technical debt is 

produced by developers who are more experienced. These findings show that, if the level of 

individuals’ skills is a factor influencing the psycho-social process, it may have a negative or 

positive role, meaning that, in the case of skills, both a lack of skill and skillfulness may 

positively affect the omission behavior.  

Based on our analysis, we believe that the values of both productivity and quality seem to play 

an important role in the psycho-social process of the omission of quality practices. In the software 

industry, higher productivity is often associated with faster delivery of more features [Fleming. 

1999, Lindgren, et al. 2008]. However, concentrating on producing more and doing so faster 

might increase the number of software defects, which require extra effort and rework to be fixed 

and consequently decrease both the quality of the software and the long-term productivity 

[Lindgren, et al. 2008]. Therefore, from a technical perspective, producing high-quality software 

might be seen as the key to higher productivity [Fleming. 1999]. It seems that a typical scenario 

of the omission of quality practices relates to the conflict between these contradictory individual 

and organizational concerns. Developers are mainly concerned with performing quality work 

because they have to work with the code and face its issues on a daily basis [Lim et al. 2012]. 

Managers, in contrast, experience the pressures of business demands and therefore are concerned 

with getting work done quickly and with the available resources. Such conflicts might trigger the 

psycho-social processes that lead to the omission of quality practices.  

Regarding its outcome, the omission of quality practices can have different short-term and 

long-term consequences for individuals, organizations, and societies. In the short term, ignoring 

quality practices might enable firms to speed up software delivery to capture market share and 

obtain early feedback with which to improve the software [Lim, et al. 2012]. Alternately, the 

consequences of the omission of quality practices might occur only after the completion of projects 

and have long-term effects on the organizational level as well as with respect to the firm’s 

position within the market environment. For example, because the omission of quality practices 

increases software defects [Lim, et al. 2012], organizations may spend extra time and resources 

to solve these defects, while facing too many issues makes customers unhappy [Lim, et al. 2012] 

and eventually might decrease the firm’s market share.  

As discussed earlier, the omission of quality practices might be unavoidable in certain 

business contexts, and therefore, firms need to find the best possible compromises. To identify 

such trade-offs, software development teams can use lessons learned from other projects to 

develop context-dependent solutions suitable for their needs. Such approach has been promoted 

by advocates of Software Engineering Method and Theory (SEMAT) initiative in recent years 
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[Jacobson and Seidewitz. 2014]. By suggesting a theoretical foundation which is called the kernel 

for software engineering, the SEMAT initiative aims at assisting software practitioners and 

teams to create and expand appropriate practices within their firms or even across their 

industrial domain. Therefore, it becomes apparent that considering the consequences of ignoring 

quality practices plays a key role in considering the omission of quality practices. 

Future Research 

In this study we have identified a number of gaps in the current literature about the omission 

of quality practices. Therefore, further research is needed to address these gaps and to suggest 

preventive or developmental means for considering the identified issues. In the following 

paragraphs we suggest a number of research areas which could be addressed by future research. 

What are the instantiations of the omission of quality practices and their nature? Our results 

indicate that the omission of quality practices may occur as a result of skipping certain stages of 

software development (e.g. testing) or certain tasks or activities (e.g. unit testing). However, 

there is a lack of studies providing a comprehensive description of omission instantiations, their 

exact timings with respect to the stages of software development, or analysis of professionals’ key 

roles in such omission instantiations (e.g. decision-makers vs. implementers). Additionally, the 

current literature lacks studies analyzing and explaining the nature of omission instantiations 

with respect to dimensions, such as voluntariness. Therefore, as a first step, a comprehensive 

description of this phenomenon is needed to motivate future research that attempts to explain 

different aspects of the omission of quality practices (e.g., reasons) and propose solutions and 

interventions that aim to prevent omission instantiations or to mitigate their consequences. 

What are the psycho-social mechanisms underlying the omission of quality practices? Previous 

studies mainly suggest that the omission of quality practices occurs as a result of strategic 

organizational decisions under the influence of different market-level, organizational-level, or 

human factors. However, there is a lack of studies examining the individual and psychological 

underpinnings of such questionable behaviors. For that reason, it is not clear why developers 

decide to omit software development practices while these practices are recommended to improve 

the overall quality of software. This shortcoming becomes even more meaningful when 

considering a group of previous studies which argues that software developers have a tendency to 

develop high-quality software [Austin. 2001, McConnell. 2007, Yang, et al. 2008]. Therefore, to gain 

a better understanding of this phenomenon, further empirical research is needed to investigate 

both the psychological and social processes through which developers decide to ignore quality 

practices. In recent years, such human aspects of software development have received increasing 

attention from Behavioral Software Engineering [Lenberg, et al. 2015], which is a growing subfield 

of software engineering research. Drawing from behavioral and social science theories, future 

research needs to identify psychological processes in developers’ cognition and social processes 

that occur as developers interact with other entities in the development context.  

What are the consequences of the omission of quality practices? In our literature review, we 

identified several short-term and long-term consequences of the omission of quality practices that 

mainly concern organizations. In the short term, the omission of quality practices might lead to a 

reduction of development costs and delivery times or even higher levels of customer satisfaction. 

Alternately, if quality practices are ignored, it might increase software complexity and decrease 
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software quality in the long term and, as a result, lead to user dissatisfaction, escalating 

maintenance costs, and financial loss. While such consequences have major importance in today’s 

competitive business environment, the identified primary studies do not provide any clear 

explanation of how the omission of quality practices might affect software development 

stakeholders and society beyond such financial factors. Therefore, further research on behavioral 

and economic aspects of software development is needed to address this gap in the literature.  

Future behavioral software engineering research is needed to investigate how the omission of 

quality practices might affect developers’ perceptions of “quality,” which eventually influences 

moral standards and ethics in the software development community and society as well. 

Furthermore, it is necessary to understand how the omission of quality practices might affect 

customers’ expectations and users’ experiences and how such influences might affect the role of 

information technology in society. Finally, future software economics research [Boehm and 

Sullivan. 2000], is needed to investigate and explain the consequences of omission of quality 

practices from an economic perspective. For instance, in their study Slaughter et al. [1998] stated 

that software quality improvement should be perceived as an investment. They showed that it is 

possible to assess the cost of conformance (i.e. amount spent on achieving quality products) and 

non-conformance costs (i.e. expenses incurred when thing go wrong) for the optimization of the 

total cost of software quality development. Based on their findings we speculate that initiatives 

targeting to the behavior of omitting quality practices might entail to reduction of costs for 

software stakeholders and societies. 

How to consider omissions of quality practices? Our current wisdom is that the omission of 

quality practices is ultimately an unwanted behavior that is caused by contextual constraints 

(e.g. lack of resources) and contradictory stakeholders’ concerns (e.g. reducing costs vs. increasing 

quality) within software projects. Therefore, future intervention research that aims to change the 

attitudes or the underlying values of software development is needed to develop novel means and 

solutions to prevent omission instantiations or at least mitigate their negative consequences. To 

prevent the omission behavior, future research needs to identify and propose methods or 

programs by promoting and improving a quality culture among software community. On the 

other hand, in situations where omission of quality practices might be unavoidable, software 

development teams must mitigate the negative consequences of omission behavior by identifying 

the best possible trade-offs according to their development context. To identify such context-

dependent solutions, software developers can draw on observations made in and lessons learned 

from previous software projects as well as adapting best practices and tools recommended by 

software community. However, considering the tremendous amount of software projects and 

available practices and tools, identifying and creating the most suitable solution becomes 

challenging itself. Therefore, to address this issue, future research must provide theoretically 

sound and empirically proven recommendation to enable developers in creating their own 

solutions.  

Conclusions 

Despite the significant amount of resources that have been spent in software development 

projects, problems in software are widely reported in the research and practice literature. Recent 

literature hints that software deficiencies might be the result of omission of quality software 
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development practices. In this paper, our goal was twofold: first, to discover the state of research 

on the omission of quality practices and to understand the extent to which this phenomenon has 

been investigated previously; and second, to determine the root causes underlying the omission of 

quality practices as suggested by previous studies. 

To reach these goals we conducted a systematic literature review and produced a synthesis of 

our findings. We identified five categories of factors underlying the omission of quality practices. 

Each of these categories, which are originated from different levels of context, affects the 

omission of quality practices. In the market level, specific characteristics of the business 

environment, such as highly competitive and turbulent markets, put development teams under 

pressure or encourage them to gain competitive advantages through the omission of quality 

practices. In the organizational level, different factors, including available resources and 

technical obstacles, might create conditions under which developers decide to omit quality 

software development practices. Finally, in the individual level, human factors, such as attitudes 

and cognitive tendencies, under the influence of market- and organizational-level factors might 

push managers and developers to neglect quality practices. 

The results of this study shows that the current literature does not consider the omission of 

quality practices adequately with respect to why and how software developers make the decision 

to omit a quality practice and how to address this phenomenon in practice. Even though, based 

on the analysis of primary studies, we hypothesize that contradictory contextual factors trigger a 

psycho-social process pertaining to omission instantiations, further empirical research is needed 

to provide an in-depth understanding of mechanisms underlying this process and its outcomes. 

To reach this goal, we have proposed several avenues for future research to develop knowledge on 

the omission of quality practices.  

The first research area concerns the determination of instantiations of the omission of quality 

practices, their timing with respect to stages of software development, tasks they relate to, and 

the nature of those instantiations. This information is needed to motivate further study to 

explain omission behavior and to target the interventions that aim to prevent omission 

instantiations to correct stages and tasks of software development. Alternately, the second 

research area concerns revealing the psychosocial process of decision-making regarding omission 

behavior. It is necessary to investigate the psychological processes in developers’ cognition and 

social processes that occur as developers interact with other entities in the development context. 

The third research area concerns the consequences of the omission of quality practices. Further 

research is needed to investigate how such omission practices might affect developers’ 

perceptions of “quality practices” and, consequently, moral standards and ethics within the 

software development community and society as well. Furthermore, it is necessary to understand 

how the omission of quality practices might affect customers’ expectations and users’ experiences 

and how such influences might affect the role of information technology in society. Finally, the 

fourth area concerns possible solutions for considering the omission of quality practices. Our 

current wisdom is that the omission of quality practices is undesirable behavior and that there is 

therefore a need to develop novel means (e.g., guidelines, methods, culture) to prevent omission 

instantiations.  
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Appendix A. List of the Primary Studies (PS) 

ID Title Year Author(s) 

PS1 A Balancing Act: What Software Practitioners Have to Say about 

Technical Debt 

2012  Lim, Taksande and Seamn 

PS2 A case study on quality-affecting problems in software engineering 

projects. 

2003 Ahonen and Junttila 

PS3 An Exploratory Study on Self-Admitted Technical Debt 2014 Potdar and Shihab 

PS4 Architecture Technical Debt: Understanding Causes and a Qualitative 

Model 

2014 Martini, Bosch, and Chaudron 

PS5 Attitude towards testing: a key contributor to software quality 1994 Murugesan 

PS6 Avoiding classic mistakes [software engineering] 1996 McConnel 

PS7 Global software testing under deadline pressure: Vendor-side 2013 Shah, Harrol, and Sinha 

PS8 Influence of confirmation biases of developers on software quality: an 

empirical study 

2013 Çalikli and Bener 

PS9 Managing technical debt: An industrial case study 2013 Codabux and Williams 

PS10 Organizational and customer related challenges of software testing: An 

empirical study in 11 software companies 

2014 Seth, Taipale and Smolander 

PS11 Penalty policies in professional software development practice: a multi-

method field study 

2010 Wang and Zhang 

PS12 Short cycle time systems development 2004 Baskerville and Pries-Heje 

PS13 Technical Debt and the Effect of Agile Software Development Practices 

on It - An Industry Practitioner Survey 

2014 Holvitie, Leppänen, and Hyrynsalmi 

PS14 The effects of time pressure on quality in software development: An 

agency model 

2001 Austin 

PS15 Toward objective software process information: experiences from a case 

study 

2011 Samalikova, Kusters, Trienekens, 

Weijters, and Siemons 

PS16 A Fresh Perspective on Old Problems 1999 Fleming 

PS17 A Method for Balancing Short- and Long-Term Investments: Quality vs. 

Features 

2008 Lindgren, Wall, Land, and Norström 

PS18 Recognizing and Responding to “Bad Smells” in Extreme Programming 2002 Elssamadisy and Schalliol 

PS19 A View-based Approach for Improving Software Documentation 

Practices 

2006 Bayer & Muthig 
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