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In this paper an approximate numerical solution 
for a multiclass preemptive priority single server queue 
is devetoped. The arrival process of each class follows a 
Poisson distribution. The service time distribution 
must have a rational Laplace transform, but is other- 
wise arbitrary and may be different for different 
classes. The work reported here was motivated by a 
desire to compute the equilibrium probability distribu- 
tion of networks containing preemptive priority 
servers. Such networks are frequently encountered 
when modeling computer systems, medical care 
delivery systems and communication networks. We 
wish to use an iterative technique which constructs a 
series of two station networks consisting of one station 
from the original network and one “complementary” 
station whose behavior with respect to the original sta- 
tion mimics that of the rest of the network. At each 
iteration, it is necessary to compute the equilibrium 
probability distribution of one or more preemptive 
priority queues. 

Although such queues have been studied for some 
time, the resulting solutions have most often been 
developed utilizing transforms or probability generat- 
ing functions, e.g. Jaiswal (19681; in many cases of 
interest, inversion has not been attempted. Miller 
[ 19811 presented explicit solutions for two class priority 
queues but Miller’s work, which is based on that of 
Neuts, is limited to exponential service times and two 
classes. The approach presented here is applicable to 
many classes and to more general service time 

distributions than have previously been considered. 

The algorithm utilizes a bootstrap approach, a 
concept borrowed from dynamic programming. The 
solution for class 1 is trivial. Once we have solved the 
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system with k different classes, we have available all 
the necessary information to solve the system with k+ 1 
classes. We shall assume that each class has a distinct 
service time distribution Gk, with mean gk and vari- 
ance ~2. Let class k have preemptive priority over class 
I if k < 1. 

Successive steps of the algorithm are based upon 
the machine breakdown and repair model, previously 
used by Keilson [1962]; White and Christie [19.56]; 
Gaver [1962]; and Avi-Itzhak and Noar {1963] to model 
preemptive priority queues. When we are solving for 
the equilibrium probability distribution of class k jobs, 
k> 1, we consider a model with one machine whose ser- 
vice time distribution is Gk. The breakdown rate of 
the machine is the sum of the arrival rates of all higher 
priority jobs. The downtime or repairtime of the 
machine has mean Yk-l and variance a:-,; these 
parameters are the mean and variance of the busy 
period in a preemptive priority system with k-l classes. 

The first step in the solution of all the machine 
breakdown and repair models considered herein is to 
construct the infinitesimal generator Q which specifies 
the transitions into and out of each state for the given 
model. Given Q , it is a simple matter to write the 
global balance equations, i.e., the Chapman- 
Kolmogorov equations which relate Bow into and out 
of each state of the model at equilibrium. These global 
balance equations are second order difference equa- 
tions, i.e. if x,(n) is the probability of finding n class k 
jobs in the system at equilibrium, &k(n) is a function 
of $(n-1) and &(n+l). The next step is to construct 
another set of balance equations, which we call the 
aggregate balance equations, and to use the results in 
Snyder and Stewart (19851 to reduce each of the second 
order difference equations (the global balance equa- 
tions) to first order difference equations. As long as the 
generator Q is irreducible and positive recurrent, it is 
now possible to define a coefficient matrix I& which 
relates the probability vectors &k(n) and &(n-1); 

specifically, we shall construct real matrices Rk whose 
elements are given explicitly as a function of the model 
parameters and for which x,(n) = &(n-I) I&. 
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1. Background 

When solving for the marginal equilibrium proba- 
bility distribution of class k jobs, k>l, we shall con- 
sider a machine breakdown and repair model in which 
the downtime is distributed as the busy period of a 
preemptive priority queue with classes t ,2,...,(k- 1). 
Jaiswal 11968) h s ows that the nth moment of the busy 

period in such a preemptive priority queue depends on 
the 1st through nth moments of the busy period in a 
preemptive priority queue with classes 1,2,...k-2, and 
on the 1st through nth moments of Gk-r(t), the service 
time distribution of class (k-l) jobs. Consequently, if 
we know Gk(t) for k=l,2,..., we can generate as many 
moments of the busy period distribution as we wish. 
This allows us to express the parameters of the busy 
period model as functions of the parameters of the ser- 
vice time distributions, Gk(t), k=1,2,... . If. on the 
other hand, we are conducting a series of trials in 
which we measure the service time for each class k and 
subsequently compute the experimental moments, 
Jaiswal’s formulae are still applicable. 

To utilize Jaiswal’s formulae, we introduce a 
quantity which reflects the time a class k job actually 
spends being processed. Let us define completion time 
as the duration of a period that begins the instant the 
service of a customer starts and ends the instant the 
server becomes free to take another customer of the 
same class. For a preemptive priority system with k 
classes we can illustrate these events with the following 
diagram: 

TT T 

Busy periods 
refer to the busy period distribution in a system 
with job classes 1,2 ,..., k-l. 

Completions 
refer to the completion times for jobs of class k. 

IB indicates that no class k job is present: 
during this period, the system may actually be 
idle or servicing a job of class i, i> k. 

The concept of completion time provides an 
understanding of the inaccuracy encountered in heuris- 
tic methods which use a reduced work rate approxima- 
tion. These heuristics employ the observation that in a 
preemptive priority queue. the service of lower priority 
customers appears to be provided by a server whose 
average capacity for work is reduced due to the servic- 

ing of higher priority customers. If pk is the class k 
utilization at the priority center, these approximations 
replace the original preemptive priority queue with 
dedicated servers for each class, each server working 

k-l 
with a reduced mean service rate of g<‘(l- x pj). 

j-l 
This reduced mean service rate is identical to the 
reciprocal of class k mean completion time and fails to 
take into account those periods of time an arriving 
class k job finds the server occupied with a higher 
priority job, thus overestimating the reduced mean ser- 
vice rate. Moreover, these heuristics neglect the fact 
that the variance of the modified service time is not the 
same as the variance of the original service time distri- 
bution. 

Following Jaiswal, let rk denote the random vari- 
able “repair time for class k-+-l jobs” which of course, 
is also equal to the busy period in a preemptive priority 
queue with classes 1,2,...,k. Denote by: 

ikb) the Laplace transform of the probability den- 
sity function for Gk. 

?kh’) the Laplace transform of the probability den- 
sity function for rk, 

%s) the Laplace transform of the busy period 

density function for a single class queue with 
service time distribution Gk. 

ck(s) the Laplace transform of the probability den- 
sity function for Ck, the Completion time for 
class k. 

fik(s) the Laplace transform of the busy period den- 
sity function for a single class queue with 
service time distribution Ck. 

The moments of the busy period of a preemptive 
priority queue with k classes may be obtained by 
means of the following computational scheme which is 
adapted from Jaiswal [1968]: 

The Laplace transform of the pdf for I?, may be 
written as 

Yl(S1 = iil(h,{l--%(s))+s)- 

Although it may not be possible to obtain an ana- 
lytic expression for qr(s), we can compute the moments 
of rr by using the relation E[Ti] = (-1)’ rji] (0) where 
#(O) denotes the ith derivative of y,(s) with respect to 
s, evaluated at s=O. The first three moments (to 
which reference is made in section 2) are thus given by 

r1 = w-l] = Q/(1--h,&) and 

W:l = W:1/P--~,id3 
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E[T:] = 
EGI 3UW?1~2 

u--hl!h)4 + o-hd5 

In order to compute the busy period in a preemp- 
tive priority queue with 2 classes, we must first deter- 
mine the completion time for class 2 jobs. Jaiswal 
shows that the Laplace transform of the pdf for class 2 
completion time is simply the Laplace transform of the 
pdf for G, with parameter (Ai{l-qi(s))+s) i.e. 

Here also, we may compute as many moments as 
desired by differentiation of &(s). The first three 
moments are 

~2 = E[C,I = gdl+Aly,) and 

E[C;] = E[G;].(l+h,y1)2 + X,E[I$g,. 

E[C;] = E[G;](1+Aly1)3 + 

3E[G22l(l+hly,)h,E[r:l + gNV’~l 
Once we know E2(s) we can write an expression for the 
Laplace transform of the pdf for Tz 

Some insight into this formulation may be gained by 
considering p,(s) as the busy period given that the first 
arrival to an idle server is a class 2 job and 
~l(A2{I-~2(s)}+s) as a busy period given that the idle 
period is terminated by a class 1 job so that the arriv- 
ing class 2 job is delayed. The first three moments of 
T2 may be expressed as 

E/l-,2] = 
A,~E[G~]+A,E[G;] 

(Al+A,)(l-A,gl-Azg2)3 

E[I$ = A,A,‘E[B,3] + A,h,‘yrh,E[B,3] 

+ 3AlA2A~1E[rf]E[B;](l + h2E[B2]) 

+ A,h,‘E[r;](l + h2E[B# 

where c = 6y2--12~; 

c2 
v321 = G 

and 

E[B;] = 
E~C~IP+~Z~~ 

l-Azc2 

w231= 
E[C23](1+X,~s)~ + 3A2E[C;]E[B;](l+A2c,) 

1-Azc2 

NOW suppose that we have obtained Laplace 
transforms for the pdf of Ike1 and CkPl. To write the 

Laplace transform of the pdf for rk, we first determine 
the Laplace transform for the pdf of class k job com- 
pletion times. This is 

;kb) = iik(~k-l{l-?k-l(s))+s) 

where A., = 2 Ai. 
i=l 

We may then write 

Ak--l - 
rk(s) = 2pkcs, + - f,k Yk--l(Ak{l-pkb))+S) 

and the desired moments may be obtained by 
differentiation. 

2. Modeling the Busy Period Distribution 

In general, we will not be able to invert the 
Laplace transform of the k-class busy period distribu- 
tion but we can compute as many of its moments as 
desired. We must decide on the number of moments to 
compute and on the form of the model to construct 
from these moments. 

To explore this area, four standard models, each 
with three parameters or less, were fitted to the first 
three moments ( ~)r,vir,~) of the k-class busy period 
distribution and the performance of these models 
under varying conditions was studied. Figure 1 illus- 
trates the models. The simplest model is that of an 
exponential distribution with parameter c=ql . A 
two-phase Coxian distribution was used for two of the 
models. In model 2, the parameters are determined by 
the computational formulae: 

a = %w7l,-d) 

Marie [1978] 

Model 3 matches three busy period moments using the 
formulae 

a = 2%13-3d 

b = 611rl2--2r13 

P-1 = 
-b+(b2-4ac)‘i’ 

2a 

CL2 = 
-b-(b2-4ac)‘i2 

2a 

for r12/-qlf 1. Model 4 is Sauer’s hypergeometric model 
which forces equal flow through each phase. The 
parameters for Sauer’s model are determined as fol- 
lows: 
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cv* = q&+1 

a= 
cv*+l-((cv*)*-l]r/* 

2(c?+ 1) 

Model 1: E~gawntlrl 

Wels 2 end 3: Coxlm-2 

Model4: suer 

Flgurc 1. Wodels used to represent the busy period'. 

Since the machine interference model produces 
the exact solution for the highest priority class, the 
class 1 equilibrium distribution was not investigated 
with these models. In all cases, the mean queue length, 
Lj, was computed using the formula 

L,=A+ 

Aj i hrE[Gf] 
i=l 

l-j&i 

i=l 

Jaiswal [1968] 

When the service time distribution functions of 
class 1 and class 2 jobs are exponential, the equilibrium 
probability of an idle server, X(0,0) and the equili- 
brium probability of finding no class 2 jobs at the 

server, X,*(O), were also computed for each of the 
models since the exact values may be obtained from 
the formulae: 

where 

X(W) = l-A,g,-A2g2 

X*(O) = mwm-ro) 

A,+A2+g;’ - [(A,+A2+g,')* - 4A,g,‘]‘/* 
rs = 

f&c,’ 

The results for a 2 class preemptive priority sys- 
tem in which the service time distribution functions of 
both classes follow an exponential distribution appear 
in Tables 1 and 2. All models produce exceedingly 
accurate values for X(0,0). When the busy period 
coefficient of variation exceeds 2, Marie’s Coxian 2 
model provides the best approximation to X2(O); when 
the busy period coefficient of variation is less than 2 
and greater than 1, Sauer’s model and the three 
moment model approximate Es(O) somewhat more 
accurately, but Marie’s model is good in this range also 
with a maximum error of less than 0.0015. The mean 
queue length calculations for the approximate models 
were set to terminate if either a class 2 equilibrium pro- 
bability of less than 10s5 was encountered or if the 
number of class 2 jobs reached 99. Marie’s model per- 
formed best with respect to mean queue length for all 
these examples. 

The results for a three class preemptive priority 
system in which the service time distributions of all 
three classes follow Coaxian distributions appear in 
Tables 4, 5 and 6. While these results are less decisive 
than those for the 2 class system with exponentially 
distributed service times, Marie’s Coxian 2 model pro- 
duces more accurate mean queue length approxima- 
tions than the other models most of the time. Marie’s 
model is always best when the busy period coefficient 
of variation exceeds 10; when the other models are 
superior, the mean queue length computed from 
Marie’s model differs from the best approximation by 
less than 5~10~~. Under all conditions, the accuracy of 
the exponential model was poor compared with the 
models fitting at least 2 busy period moments. 
Although implementation of the numerical method 
proposed in this paper requires close to twice as many 
floating point operations for two phase models than for 
the exponential model, the extra computational effort 

is warranted by the increase in accuracy. A surprising 
fact which emerged from this study was that matching 
three busy period moments does not increase the accu- 
racy of the approximation; consequently, Marie’s two 
phase model is recommended. 

A discussion of the tradeoff between accuracy and 
computational effort would be incomplete without 
mention of Miller’s algorithm for the solution of two 
class preemptive priority queues with exponential ser- 
vice time distributions. In order to compare the vari- 
ous models, the approximate methods were set to ter- 
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minate if either a class 2 equilibrium probability of less 
than iOT5 was encountered or if the number of class 2 
jobs reached 99. The implementation of Miller’s alqo- 
rithm allowed 100 class 1 jobs and 100 class 2 jobs. 
The slowest approximate method required at most .03 
seconds of cpu time while Miller’s algorithm required 
at least .48 seconds of cpu time. In most cases the 
return for the substantial additional cpu time was only 
a slight improvement (.OOl) in the class 2 mean queue 
length accuracy (see Table 2) although X,(O) as deter- 
mined by Miller’s algorithm was exact for all the appli- 
cable examples. 

3. Case of Coxian-2 Distributions 

In this section, we shall assume that all service 
time and busy period distributions follow a law of Cox 
of order 2. In such circumstances, the infinitesimal 
generators are particularly easy to construct. In sec- 
tion 4 we shall consider the case when the service time 
distributions and/or the busy period distributions are 
modeled using more general Coxian distributions. 

We introduce the following parameters: 

(i) hk is the arrival rate of class k jobs. 

(ii) mkl = 2gc1 is the mean service rate of class k 
jobs at phase I, 

mk2 = gk/sz is the mean service rate of class k 
jobs at phase 2, 

ak = gi/2$ is the probability that a class k job 

which has completed service at 
phase 1 will require service at phase 
2. Let b, = I--ak. 

(iii) pkr = 2yc>r is the mean repair rate for class k 
jobs at phase 1, 

+k2 = yk-l/ui-l is the mean repair rate for class 

k jobs at phase 2, 

“k = &,2& is the probability that a 
machine serving class k jobs requires 
a phase 2 repair upon completion of 
a phase 1 repair. Let l& = l-ok. 

If a service is interrupted when it is in phase I, 1=1,2, it 
resumes from that phase. 

As indicated above, the solution for class 1 jobs, 
those of the highest priority, is trivial. Under a 

preemptive priority service discipline, this queueing 
situation is simply a h,/C,/l system. Marie and Pel- 
laumail, [1983]; Neuts, [1981] and Carroll et al. [1982] 
all provide a numerical algorithm from which we can 
obtain the equilibrium probability distribution for 
queues of this type. 

Now suppose we desire the equilibrium probability 
distribution of class k jobs, k> 1. We shall consider a 
machine breakdown and repair model with one 
machine. The arrival rate of class k jobs to this system 
is hk while the service time follows a Coxian distribu- 
tion witkh,parameters mkl,mk2,ak,bk. The breakdown 

rate is C Xi. Upon occurrence of a breakdown, the 
i=l 

down time follows a Coxian-2 distribution with param- 

eters ~kl,~k2,0Lk,(Jk. 

Let us define a state of this system as (nk,j,z) where 

nk is the number of class k jobs in the system. 

j is the phase of the current service for class k jobs 
or the phase from which an interrupted class 
k service will resume. 

z is the state of the machine and takes on the 
values: 

0, if the machine 
is operating. 

4 I = 1,2, if the machine is 
down and repair work is in 
phase I. 

Let xk(nkj,z) be the probability of 
finding the system in state (nk,j,z) 
at equilibrium and let 

Xk(d = 

In the representation of the 
matrices which follow, zero-valued 
elements and subblocks are mostly 
omitted. 

For class k jobs the infinitesimal generator Qk is 
given by 

B,kO &kO 

Ak2 hkl hk0 

” = 0 l&2 i&l ‘*- 

0 
Ak2 ... 

where ?k! k0 = hkk (ha) 
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Bo = 

Xk 

hk 

&ko = 
Xk 

0 
0 

0 

-Ak !ik-, 0 000 

bkpkl -hk-+kl “ki’-kl 

pk2 0 -hk-&!2 

0 

0 

0 

with Am = $J Ai. 
i=l 

bkmkl 0 0 0 0 0 
1 

0 

0 
Ak2 = 

mk2 

0 

0 

Once & has been constructed it is a simple 
matter to write down the global balance equations: 

~k(“)T!tkO + %k(1)T&k2 = t 

xk(“)T?ikll + &k(l)T!Ak, + xk(2)T&!&k2 = & 

Xk(n-1)TAkO+Xk(n)T~k,+Xk(n+1)TAk2 = & n>l 

Notice that these are second order difference equations. 

To derive the aggregate balance equations we 
postmultiply the global balance equations by the vector 
L = [l,l,l,l,l,l]T to obtain 

-&@)T& + &(l)Tm, = 0 

xk(“)T ck + Xk(l)T[-&k-mkl -t xk(2)Tmk = 0, 

xk(n-l)Th_k+lSk(n)T[-h_k-mk]+?(k(n+l)TSpk = 0, n>l 

where Gk = [hk,Ak,hk,O.O,OjT 

h,k = bk, A,, hk, xk, hk, hk,lT 

Ek = [bkmid, 0, 0, mk2, 0, olT 

By recursive substitution we may now write the aggre- 
gate balance equations as 

xk(“>TFk = ?ik(l)Tgk and 

Xkb)T&k = Xk(n+l)T!?k n = 1, 2,... 

These equations simply equate the probability of 
having a class k arrival when there are n class k jobs in 
the system to the probability of having a class k depar- 
ture when there are n+l class k jobs in the system, an 
intuitive requirement for stability. 

It has been shown, Snyder and Stewart [1985], 
that if i&2 is a rank 1 matrix then there exists a vector 
g- such that 

%kb)Th,k!&T = %k b+l)Tmk%T 

= Xk(n+l)T &k2 n=l,!i?,... 

Here we take a T = [l, 0, 0, 0, 0, 01. This allows us to 
replace all the &(n+l)T terms in the global balance 
equations with expressions involving &(n)T, thus 
reducing these equations to the first, order system 

Xk(“)T&kO + Xk(l)T+!&kl + %k(l)Th_k%T = % 

Xk(n-l)T&?!kO + %k(n)TAkl + %k(n)Th_k%T = t 

whose solution is 

%k(l)T = ?ik(o)T &kO [-&kl-hk%T~-’ 

&(n)T = xk(n-l)TEk where 

R,k = !AkO [-!tkl-hk%Tl-’ . 

Of course, since these are probability vectors, they 
must also satisfy the normalizing equation. 

Finally & = [&(O), &( l),...xk(n)], the equili- 
brium probability distribution of class k jobs in a k 
class preemptive priority queueing system is computed 

from &(n) = + i jzl r=O Xkb7jjz). 

4. Case of Generally Distributed Service Thea 
and Busy Periods 

We know that the usual Coxian representation 
allows us to model any general distribution arbitrarily 
closely, Kleinrock [1975]. However, such a representa- 
tion may require many stages and possibly complex 
parameters. Marie and Pellaumail 119831 and Carroll 
et al. (19821 have introduced a model which allows us 
to represent very general distributions compactly and 
often very naturally. The parameters of the Marie and 
Pellaumail model which we shall use here are: 
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I. 

II. (a) 

(b) 

(cl 

(d) 

III. (4 

(b) 

(cl 

(4 

hk is the arrival rate of class k jobs to 
the queue. 

Ik is the number of phases in the 
representation of the class k service 
time distribution. 

dk(j) is the departure rate of class k 
jobs from the system when the current 
service is in phase j. 

tk(i,j) is the transition rate of class k 
jobs from service phase i to service 

phase j. Note that there is no restric- 
tion that j>i. 

wk(j) is the probability that following 
the departure of a class k job, the next 
class k job begins service in phase j. If 
the system is empty, wk(j) is the pro- 

bability that a class k arrival to an 
empty system begins in phase j. 

.& is the number of phases in the 
representation of the class k repair 
time (k-l class busy period) distribu- 
tion. 

Sk(j) is the departure rate from repair 
phase j for class k jobs (departure rate 
from busy period phase j for a preemp- 
tive priority queue with k-l classes). 

r&j) is the transition rate for 
machines serving class k jobs from 
repair phase i to repair phase k. 

wk(j) is the probability that when a 
machine servicing class k jobs breaks 
down the first repair phase is j. 

If service is interrupted when it is in phase j, j=1,2,..., 
I,, it resumes from phase j. 

We again observe that obtaining the equilibrium 
probability distribution for class 1 jobs is straightfor- 
ward; Marie and Pellaumail [ 19831 provide the numeri- 
cal solution for the general model proposed above. 

For an arbitrary class k, k> I, the state descrip- 
tion will again be (nk,j,z); j now takes on values 1,2,..., 
I, while z has values 0,1,2,... {k. the steady-state pro- 
bability distribution vector is given by: 

xk(n) = 

Each block in the infinitesimal generator Qk is of order 
(&+l)lk. We have the usual block tridiagonal form for 

Qk: 

EkO i!ikO 

B,kl bkl &kO 

Ak2 Akl ’ *’ 

Qk= 

The subblocks are as follows: 

@kOhl k . . . 

E. 

B,kO= . 

_ Q. o_ ... 

where 

-hk A,&&) . . . 

&k(l) *I 

@.kO)ll = * . : 

8k(k k) Tk(‘$k,l) *-* 

and 

!L 

0, 

*<k 

j=l 
j#m 
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where the elements of (B,kl)il~R(Sk+I)x(5k+l) are 
given by 

(@kl)jl)m = 
if m=n=O 

otherwise ; 

(Here we use (B_);j to denote the i-th element (or block) 
of the matrix B, , so that ((&)j& denotes the mn-th 
element of the jl-th block of B,kl .) 

wk(l)Ak~ Wk(2)Xkj, ’ 

&kO = !L CL 

_ o_ 
!L . 

xkl 

hkl 

AkO = 

. . !?. 

xk1 

(ok,),, (bk1)12 ’ ’ * (hdl’k 

&kl)21 . 

&kl= . 

1 

Wk(lk)XkI, 

Each subblock is again of order (&+I). The diagonal 
blocks have the form 

with *r = -(Ak + dk(r) + $$ tk(rd) 
j=l 
j#m 

CL 
and *1111 = - hk + Sk(m) + 2 Tk(m9j)) 

j=l 
j#m 

The off-diagonal blocks have elements 

(-&k2)11 @!k2)12 ’ . ’ @k,h I, 

@k2)21 (A,,)22 . 

hk2= . 

Each subblock (Ak2)ij)m is of order (&+l) and has ele- 
ments 

1 

wk(j)dk(i) if m=n=() 
((~kfhj)m. = 0 0 otherwise ; 

By construction &k2 is a rank I matrix. We again 
refer to the results in Snyder and Stewart [IS%] which 
asures us that ,we may perform a reduction procedure 
on the Chapman-Kolmogorov equations relating flow 
into and out of model states at equilibrium. Implemen- 
tation of the reduction procedure is straightforward. 
Following the steps detailed in section 1 we may write 
the equilibrium probability distribution of class k jobs 
explicitly as 

Xk(‘)T = ~(“)T~kCt I-hkl -h_kdl-’ 

&(n)T = g(n-l)T& , n>l 

where 

!ik = &kOb-hkl -h_kd-l 

and &kandxk are Column VeCtOrS each with (&+1)11, 
elements 

x,k = [Ak, Akt . . . &IT 

W,k = [wk(f), 0 ,..., O,wk(2), 0 ,..., 0 . ..I w&k). 0 ,..., o)] T 

--- 

Sk Sk Sk 

We again note that the X, must satisfy the nor- 
malizing equation, The final step in the computation 
of the equilibrium probability distribution of class k 

jobs in a k class preemptive priority queueing system is 
to sum over all states xk(n,j,z) for each n=O,l,.‘...vk. i.e. 

Xk(n) = 2 2 xk(d,2) 
j-l z=O 
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5. Conclusion and Extensions 

In this paper an explicit approximate numerical 
solution for a multiclass preemptive priority queue 
with generally distributed service times was developed. 
The solution is based on earlier results by the authors, 
[1985]: specifically, if the matrix specifying transitions 
due to customer departures is of rank I, then the 
Chapman-Kolmogorov equations, (which are normally 
second-order difference equations) may be reduced to a 
set of first order difference equations and solved recur- 
sively to obtain an explicit solution. This solution may 
be written immediately in terms of the model parame- 
ters. 

The validity of the approximation was tested on 
several models constructed from the first three 
moments of the busy period. Over a wide range of test 
values, the Coxian 2 model of Marie performed best in 
terms of accuracy and computational efficiency. The 

simplest case, with service and busy period distribu- 
tions modeled by such a law of Cox, was presented in 
detail to illustrate the solution technique. The model 
was then generalized to allow arbitrary service and 
busy period distributions. 

It is our expectation that this approximation will 
be used in an iterative method to determine equili- 
brium probability distributions of otherwise product 
form networks which contain preemptive priority sta- 
tions. We believe that this approximation may also be 
used with Marie’s iterative technique, Marie [I9791 to 
solve an otherwise nonproduct form network which 
contains a preemptive priority queue. 
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CY* of busy 
period 
1- 
4 
2.33 
2.33 
1.858 
1.858 
I .a50 
1.22 
1.22 
1.22 

4 
p,l’l pzlfl 

wlution 
.7s .lO .lKl .lO 
.40 .I0 
.40 .40 
.30 SO 

L 
.30 .30 
.30 .I 
.I0 .I0 
.I0 .30 
.I0 .50 I 

Tthhlc 

FXaCt 

0.2ooooo 
0.3BlS4R 
0.6!!~5000 
0.25oow 
0.242070 
0.484139 
0.725209 
0.671563 
0.853673 
0.435782 

I 

I 
model I model 2 

0.2142Rti 0.207558 
0.4 12sOO 0.3Rfi920 
0.642857 Cl.624324 
0.257 143 0.249X30 
0.245154 0.241575 
0.492308 0.483150 
0.738462 0.724724 
0.872727 0.871456 
0.654545 0.653592 
0.436363 0.435728 I 

Probability that there are zero clau 2 jobs in system 

model 3 model 4 

o.M8290 o.w290 
0.399951 0..19935 I 
0.627753 0.627753 
0.251101 0.251101 
0.242385 0.242385 
0.4g7700 0.484770 
0.72?155 0.727155 
0.871566 0.67 1568 
0.653676 0.653676 
0.435784 0.435786 

3 cl- examples for Wlated preemptive priority queue 

pl=.25,p2=.4, p3=.1875 

Table 2 Table 4 

121 The large queue length error in this example resulk from 
the de&ion to tcrminak computation of nP(n) at n=99 jobs 

Mean number of claw 2 jobs in system for 2 class exponential examples 

Equilibrium probability of no clear 2 jobs al server, P2(0) 
Equilibrium probability of no class 3 jobs at server, P3(0) 
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Table 5 

Class 2 mean queue length of 3 class models 

Table 6 

11 3.6635 1 2.1121 3.6606 1 3.6607 
12 1 ‘3.1997 I I.6490 1 3.1978 1 1 3.1976 

18 1 3.8695 1 2.1121 ] 3.8664 1 3.8664 1 3.8663 1 
19 3.4059 1.6490 3.4034 3.4033 3.4035 
20 6.3420 4.5772 6.3301 6.3307 6.3306 
21 3.7541 2.1121 3.7511 3.7513 3.75to 
22 1 3.2905 ] 1.6490 1 3.2885 1 3.2881 1 3.2883 
23 1 6.2267 1 4.5772 1 6.2151 1 6.2155 1 6.2156 

Class 3 mean queue length for 3 class examples 
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