
4

DiagSim: Systematically Diagnosing Simulators

for Healthy Simulations

JAE-EON JO, Department of Computer Science and Engineering, POSTECH

GYU-HYEON LEE, Department of Electrical and Computer Engineering, Seoul National University

HANHWI JANG, JAEWON LEE, and MOHAMMADAMIN AJDARI, Department of Computer

Science and Engineering, POSTECH

JANGWOO KIM, Department of Electrical and Computer Engineering, Seoul National University

Simulators are the most popular and useful tool to study computer architecture and examine new ideas. How-

ever, modern simulators have become prohibitively complex (e.g., 200K+ lines of code) to fully understand

and utilize. Users therefore end up analyzing and modifying only the modules of interest (e.g., branch predic-

tor, register file) when performing simulations. Unfortunately, hidden details and inter-module interactions

of simulators create discrepancies between the expected and actual module behaviors. Consequently, the ef-

fect of modifying the target module may be amplified or masked and the users get inaccurate insights from

expensive simulations.

In this article, we propose DiagSim, an efficient and systematic method to diagnose simulators. It ensures

the target modules behave as expected to perform simulation in a healthy (i.e., accurate and correct) way.

DiagSim is efficient in that it quickly pinpoints the modules showing discrepancies and guides the users to

inspect the behavior without investigating the whole simulator. DiagSim is systematic in that it hierarchi-

cally tests the modules to guarantee the integrity of individual diagnosis and always provide reliable results.

We construct DiagSim based on generic category-based diagnosis ideas to encourage easy expansion of the

diagnosis.

We diagnose three popular open source simulators and discover hidden details including implicitly reserved

resources, un-documented latency factors, and hard-coded module parameter values. We observe that these

factors have large performance impacts (up to 156%) and illustrate that our diagnosis can correctly detect and

eliminate them.

CCS Concepts: • Computing methodologies → Simulation support systems; • Computer systems

organization → Architectures;

Additional Key Words and Phrases: Simulator diagnosis, timing simulator verification, microbenchmarks

This work was partly supported by Basic Science Research Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015M3C4A7065647, NRF-2017R1A2B3011038), and

Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIT)

(No. R0190-15-2012).

Authors’ addresses: J.-E. Jo, H. Jang, J. Lee, and M. Ajdari, Dept. of Computer Science and Engineering, POSTECH, Po-

hang, Gyeongbuk, Korea; emails: {jojaeeon, hanhwi, spiegel0, majdari}@postech.ac.kr; G.-H. Lee and J. Kim (correspond-

ing author), Dept. of Electrical and Computer Engineering, Seoul National University, Seoul, Korea; emails: {guhylee,

jangwoo}@snu.ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1544-3566/2018/03-ART4 $15.00

https://doi.org/10.1145/3177959

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

mailto:permissions@acm.org
https://doi.org/10.1145/3177959
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3177959&domain=pdf&date_stamp=2018-03-22

4:2 J. Jo et al.

ACM Reference format:

Jae-eon Jo, Gyu-hyeon Lee, Hanhwi Jang, Jaewon Lee, Mohammadamin Ajdari, and Jangwoo Kim. 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations. ACM Trans. Archit. Code Optim. 15,

1, Article 4 (March 2018), 27 pages.

https://doi.org/10.1145/3177959

1 INTRODUCTION

Simulators are by far the most popular tools to study computer architecture, examine creative

ideas, and derive new designs. They model various microarchitecture modules along with the

cycle-level operation details and inter-module dependencies. Such cycle-level full-system simu-

lators provide accurate architectural insights to eventually derive the next-generation computer

system. A quick survey on recent publications (Figure 1) also confirms that they are widely used

by the academia.

However, modern simulators have become prohibitively complex to fully understand and utilize.

The growth of simulators is natural as the architecture is getting sophisticated over time and many

developers are contributing to model new aspects. While this allows us to study the state-of-the-art

architectures using simulators, it increases the overhead of understanding and using the simulators

at the same time.

Consequently, simulator users start to give up on understanding the full details of simula-

tors. They instead analyze and modify only the modules of interest. Unfortunately, the hid-

den/undocumented modeling details and inter-module interactions of modern simulators create

discrepancies between the user-expected and actual simulator behaviors [25]. The discrepancies

can exaggerate or underestimate the performance impact of modifying the target modules, to pro-

vide inaccurate insights which eventually lead to critical system development failures.

To address this problem, we propose DiagSim, an efficient and systematic open source software

to diagnose simulators. It enables the simulator users to easily verify whether the simulator mod-

ules behave as expected, to promote healthy (i.e., accurate and correct) simulations.

Specifically, DiagSim uses a set of short-running microbenchmarks (i.e., diagnoses) to measure

the effective value of modeling parameters and verify whether the modules behave as expected. As

it quickly detects the modules showing mismatching behaviors, the users may efficiently inspect

only the problematic modules without investigating the whole simulator. In addition, DiagSim pro-

vides a systematic way to safely and efficiently diagnose the modules. It uses diagnosis dependency

map to hierarchically perform diagnoses and ensures that a diagnosis does not fail due to external

factors (e.g., integrity of the other modules). This map prevents running redundant diagnoses (e.g.,

interacting modules hampering each other’s diagnosis) and lets the users safely trust the diagno-

sis results. DiagSim is also highly expandable and portable because we classify microarchitecture

modules and develop diagnoses based on generic ideas for each category.

We diagnose three popular open source simulators (gem5 [7], MARSSx86 [28], and

Multi2Sim [32])1 and discover different hidden modeling details and interactions, which create

the discrepancy between the user’s understanding of the simulator and actual simulator behav-

ior. The examples include implicitly reserved resources, undocumented latency factors, and hard-

coded module parameter values (Section 5.2 and Table 5 summarize the results). Our evaluation

using SPEC CPU 2006 shows that these issues create large performance changes (up to 156%), but

DiagSim allows one to efficiently detect and eliminate them.

1We use the earlier versions of the simulators (circa 2014) to emphasize the vulnerability. Most of the simulator-oriented

problems discsussed in this article might have been or would be fixed by later versions of the simulators.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

https://doi.org/10.1145/3177959

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:3

Fig. 1. Classification of evaluation methodology (MICRO & ISCA, 2015 & 2016): Simulators [2, 7, 8, 22, 28–30,

32] occupy a large portion.

Fig. 2. Lines of Code (LOC) of three popular open-source full-system simulators.

The contributions of this article are as follows:

—Critical problem. We show that simulators’ hidden modeling details and inter-module

interactions incur significant performance discrepancies, which must be handled for healthy

simulations.

—Highly practical method. DiagSim is generic and therefore can be applied to various

simulators. Also, the current implementation (x86 ISA assembly-based microbenchmarks)

allows one to quickly diagnose various x86 simulators with negligible overhead.

—Realistic validation. DiagSim successfully detects and handles large performance discrep-

ancies in three widely used open source simulators.

—Open source software. DiagSim is open source software (https://hpcs.snu.ac.kr/

DiagSim/), which encourages users to share their own diagnosis ideas.

The rest of the article is organized as follows. Section 2 introduces the existing methods as well

as their limitations to motivate DiagSim. We introduce the key ideas of DiagSim in Section 3 and

elaborate the details in Section 4. The evaluation and discussion are provided in Section 5 and

Section 6. We discuss the related work in Section 7 and conclude the article in Section 8.

2 BACKGROUND AND MOTIVATION

In this section, we show the need for a systematic method to diagnose simulators. We also intro-

duce the existing simulator diagnosis methods and discuss their limitations to motivate DiagSim.

2.1 Need For an Efficient Simulator Diagnosis Method

Simulators have been the first choice for computer architecture study and exploration, for they ac-

curately model detailed behaviors to derive accurate results. As computer architecture has evolved

over time, the simulators have been accordingly augmented to account for the changes. As a result,

modern simulators have become an extremely complex piece of software.

Figure 2 shows the lines of code (LOC) for popular open source simulators over time. The 200K+

LOC strongly discourage the users from understanding the details before utilizing the simulators.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

https://hpcs.snu.ac.kr/DiagSim/

4:4 J. Jo et al.

Fig. 3. Performance impact of L1 data cache prefetcher on gem5 simulator, for various architectural settings.

The apparently independent parameters (i.e., register count and operation latency) affect the performance

benefits. Note that we show only the sensitive workloads and parameters.

Furthermore, as the volume of the code grows, the users should put constant effort to track the

changes even if they manage to understand the simulators.

To avoid such excessive overheads, the majority of simulator users inspect and modify only the

modules of interest (i.e., target modules). Often, simulators have a modular design and carry doc-

umentations and example configuration files, to let the users easily modify and utilize simulators

without fully understanding the underlying details.

However, such a practice eventually leads the users to ignore the non-target modules which can

be critical in forming the comprehensive performance of a design. Figure 3 illustrates such an ex-

ample. On gem5 simulator, we introduce an L1 data cache prefetcher and measure its performance

impact. We change the architectural parameters of the non-target modules (i.e., modules other

than L1 data cache) to check if they have an effect on the performance benefits of the prefetcher.

For L2 cache latency, an experienced architect may expect performance effects because L1 cache’s

latency overlapping behaviors would change upon L2 cache latency changes. Surprisingly, the re-

sults show that even seemingly independent modules can also have performance impacts which

are significant enough to affect design decisions (e.g., whether to introduce the prefetcher). It also

indicates that a mismatch in the behavior of non-interesting modules can easily hamper the de-

cisions from simulations. As an instance, if the effective number of FP registers is smaller than

expected, we would overestimate the benefit of prefetchers for certain workloads (e.g., 482).

We therefore need an efficient diagnosis methodology to thoroughly check whether all simulator

modules (i.e., not just the target modules) match the expected behaviors. The diagnosis would

facilitate healthy simulations which provide accurate and meaningful insights.

2.2 Limitations of the Existing Simulator Diagnosis Methods

Many existing studies attempt to validate or test microarchitecture module behaviors and param-

eters; therefore, they can be considered as a simulator diagnosis. This section illustrates them and

discusses the limitations to motivate DiagSim.

[9, 11] are early studies to validate a given microarchitecture. Based on the given architecture

design, they define the fault model (i.e., what may go wrong) and check if the simulator passes the

tests. A test passes if the pipeline shows the exact expected behavior. While the approaches allow

us to validate simulator behaviors without investigating the details, it is less general in that the tests

are bound to a specific hardware platform and design. DiagSim instead categorizes the modules

into few types and provides generic methodologies to diagnose each type. In addition, the tests

proposed in [9, 11] only tell whether the simulator passes or fails. Our diagnosis instead detects the

effective module parameters to further help the users to adjust the behaviors if necessary. Lastly,

the studies assume the independence between the modules, which is unrealistic. DiagSim tracks

the inter-module interactions and alerts if they can be the root cause of discrepancies.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:5

Fig. 4. DiagSim’s diagnosis generation process. We categorize the modules & parameters, and provide

generic diagnosis ideas per category to minimize the development overheads.

Another group of studies [14, 19] provides assembly-based microarchitecture performance

benchmarks. The benchmarks test (1) the latency and throughput of known instructions and

(2) the performance against various instruction patterns. First, the instruction latency and

throughput benchmarks repeat a single instruction to measure the performance, but do not

elaborate why such a performance is obtained. For example, we would not know which resources

(e.g., register file, execution port) contribute to the performance and become the bottleneck. As

DiagSim identifies individual resource parameters (e.g., register file size, execution width), it can

better explain how each factor contributes to the performance. Second, the pattern benchmarks

they provide can be used to reverse-engineer module behaviors and parameters. However, they

do not consider inter-module interactions and cannot explain why certain results appear. Our

method tracks the interactions to solve this issue. To summarize, these benchmarks are better

suited for evaluating the effective design performance, to inform compiler designers, assembly

coders, and application optimizers of the performance characteristics.

We further discuss the other testing and validation methods in Section 7.

3 DESIGN GOALS AND KEY IDEAS

In this section, we describe the design goals of DiagSim and the key ideas to achieve the goals.

3.1 Design Goals

Based on the analysis from Section 2, we aim to propose an efficient, generic, and systematic diagno-

sis for simulators, to identify hidden modeling details and inter-module interactions. The following

paragraphs explain why such properties are necessary. We summarize the functional requirements

as well.

Efficient. First and foremost, diagnosis must be efficient. Since the main purpose of diagnosis

is to avoid the large overhead of manually investigating simulators, the diagnosis process must

maintain small overhead.

Generic. The diagnosis must be generic to cover various designs and modules with negligible

overhead. This also relates to the efficiency; if the diagnoses are difficult to maintain and apply,

we lose our key motivation. In this article, we aim to cover any out-of-order superscalar systems.

Systematic. The diagnosis must be systematic to correctly validate and analyze the module be-

haviors. We already illustrated such an importance in Section 2.1.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

4:6 J. Jo et al.

Fig. 5. Performance criticality of modules and parameters for three different simulators. We change the

parameter values and observe how much the workload performance changes. The parameters causing larger

changes have larger criticality. We report the average performance change over SPEC CPU 2006 workloads.

Functional requirements. The diagnosis must be able to check if a target module behaves as

expected. Upon finding any discrepancies, it should identify hidden modeling details or interac-

tions which may have caused the discrepancies. It should suggest how to fix the target module

or the interacting modules to eliminate the discrepancies if possible. If the fix incurs nontrivial

overhead (e.g., restructuring the simulator), it should explain which modules are the root causes

of the discrepancies to inform the users of the caveats.

3.2 Key Ideas

We now describe the key ideas of DiagSim to achieve the design goals.

Category-based diagnosis generation. As simulators consist of many modules and parameters,

designing individual diagnoses for each module and parameter requires significant efforts. To mini-

mize the overhead of developing and maintaining diagnosis, we propose a category-based diagnosis

generation (Figure 4). Specifically, we find that a group of modules and parameters can be validated

using similar diagnosis ideas. Leveraging these characteristics, we classify the simulator modules

and parameters into five categories—Buffer Type I & II, Latency, Width, and Behavior—and propose a

generic diagnosis idea for each category to facilitate expanding the diagnoses. The classification is

very straightforward. For instance, the Latency category includes various operation latencies (e.g.,

integer/FP arithmetic, cache access). The generic diagnosis idea of the Latency category is to form

a chain of instructions whose latency is be diagnosed. From such generic ideas, we can easily make

diagnoses for parameters in the category. Section 4 provides the details of per-category diagnosis

ideas and Section 6 discusses how we effectively reduce the diagnoses implementation effort.

In this work, we focus on the modules and parameters which have a large impact on construct-

ing the overall performance (i.e., high performance criticality). As a module/parameter with higher

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:7

Fig. 6. Overview of DiagSim process.

Fig. 7. Practical challenges of DiagSim.

criticality would introduce more performance deviations if it fails to match the expected behavior,

it is crucial to ensure the correctness of these parameters. To measure the criticality, we change the

parameters (i.e., sweep from half to 4× the default value) and observe how much the performance

changes. Figure 5 lists the top critical parameters for the three simulators. Note that the simula-

tors show different sensitivity to the parameters but the list of critical parameters is similar across

the simulators. This is mainly because the simulators are configured to have similar microarchitec-

tural baselines. The analysis result indicates that focusing on these (common) performance-critical

modules and parameters would allow us to successfully handle multiple simulators with (slightly)

different performance sensitivities.

High-speed diagnosis. To minimize the overhead of utilizing diagnoses, we construct assembly-

based microbenchmarks to diagnose the modules. The microbenchmarks are designed to run for

short so that the overhead is negligible. The users may frequently utilize DiagSim (e.g., for every

simulator modification) to ensure that they are performing healthy simulations. The microbench-

marks mainly use IPC patterns to report the diagnosis results (Section 4 discusses the examples).

We decide to use IPC because it is a commonly used performance statistics with a straightforward

definition, and thus is less error-prone. Utilizing other statistics (e.g., miss rates) is possible but it

would require an additional inspection of the related modules and the statistics themselves; we

therefore do not consider this option in the article.

Diagnosis dependency map. For systematic validation of the modules, we propose a diagnosis

dependency map. Often, the diagnosis for a specific module requires the integrity of the other

modules. Instead of trying to break such inter-module dependencies and make atomic diagnoses,

we propose a dependency map and suggest to check the related modules in a hierarchical way so

that a module can be examined without (the other modules’) integrity concerns. Note that such a

thorough diagnosis is feasible because each diagnosis has negligible overhead thanks to our design.

4 DIAGSIM DETAILS

In this section, we describe DiagSim in detail. We first introduce the overview of the diagnosis

process and discuss the details of each step. We also provide the implementation details to discuss

practical challenges.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

4:8 J. Jo et al.

Table 1. Details of DiagSim Design (1 of 2)

Diagnosis Category Operation detail

1 ROB Size Buffer type I Vary the # of nops (n) between two long-latency instructions. IPC
drops right after n exceeds the ROB size.

2 IQ Size Buffer type I Vary the # of movs (n) between two long-latency instructions. IPC
drops right after n exceeds the IQ size.

3 LSQ ize Buffer type I Execute n L1$-hit loads/stores between two cache-miss incurring
loads. IPC drops right after n exceeds the LSQ size.

4 Physical Register
Count

Buffer type I Vary the # of movs (n) between two long-latency instructions. IPC
drops when n exceeds the # of physical registers.

5 BTB Size Buffer type II Vary the # of branches (n). When n exceeds BTB size, IPC decreases
due to increased branch misprediction.

6 BTB Associativity Buffer type II Vary the # of branches (n), which are aligned to share a BTB set.
When n exceeds the associativity of BTB, IPC decreases due to
increased branch misprediction.

7 RAS Size Buffer type II Fill RAS with n call instructions. When n exceeds the RAS size, IPC
decreases due to increased branch misprediction.

8 Bimodal Bpred Size Buffer type II Fill bimodal counter table with n branches. When the table overflows,
IPC decreases due to increased branch misprediction.

9 Bimodal Bpred
Counter Bit Size

Buffer type II Execute conditional branches that follow {T aken }n {N otT aken }n
pattern, increasing n from 1. IPC starts to increase when

n ≥ 2count er _bit s as the miss ratio reduces.

10 Two-level Bpred
History Size

Buffer type II Create n distinct branch patterns and vary n, If the pattern becomes
too diverse to fit in the history buffer, IPC starts to degrade due to
increased branch misprediction.

11 L1D$ Capacity Buffer type II Fill L1D$ with pointer-chasing memory accesses and vary the working
set. When the working set size exceeds L1D$ capacity, IPC decreases.

12 L1D$ Block Size Buffer type II Access memory with stride n and vary n. As n increases, IPC
decreases due to increased miss ratio, and IPC becomes minimized
when n exceeds the block size.

13 L1D$ Associativity Buffer type II Fill the cache with n pointer-chasing loads that share a set. When n

exceeds the set’s associativity, IPC decreases.

14 L2D$ Capacity Buffer type II Similar to L1D$ Capacity diagnosis (#11)

15 L2D$ Block Size Buffer type II Similar to L1D$ Block Size diagnosis (#12)

16 L2D$ Associativity Buffer type II Similar to L1D$ Associativity diagnosis (#13)

17 DTLB Capacity Buffer type II Similar to L1D$ Capacity diagnosis (#14). Align memory addresses to
page size instead of word size.

18 DTLB Associativity Buffer type II Similar to L1D$ Associativity diagnosis (#13). Align memory addresses
to page size instead of word size and ensure that they access the same
set.

19 L1D$ MSHR
Outstanding #

Buffer type II Execute n concurrent loads that incur L1 misses with different
addresses. When n exceeds MSHR capacity, IPC drops as some misses
are serialized.

20 L1D$ MSHR
Coalescing #

Buffer type II Similar to L1D$ MSHR Outstanding diagnosis (#19). Execute n

concurrent loads accessing the same address instead.

21 I$ Capacity Buffer type II Similar to L1D Capacity diagnosis (#11). Execute non-memory
instructions instead of loads to fill I$.

22 I$ Block Size Buffer type II Similar to L1D Block Size diagnosis (#12). Execute unconditional
branches that jump with stride n, instead of loads.

23 I$ Associativity Buffer type II Similar to I$ Block Size diagnosis (#13). n branches jump to the next
addresses sharing a set.

24 ITLB Capacity Buffer type II Similar to I$ Block Size diagnosis (#22). The branches should jump to
the next pages. If n exceeds ITLB size, IPC decreases.

25 ITLB Associativity Buffer type II Similar to I$ Block Size diagnosis (#12). The branches should jump to
the next nth pages that share a set.

(Continued)

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:9

Table 1. Continued

Diagnosis Category Operation detail

26 L1I$ MSHR
Outstanding #

Buffer type II Repeat instructions which take n cache blocks to create n outstanding
L1I$ accesses. When n exceeds MSHR capacity, IPC reduces.

27 Functional Unit
Latency

Latency Execute a chain of instructions that use the target functional unit. CPI
determines the target functional unit latency plus data forwarding
latency used to form the chain.

28 Branch
Misprediction
Penalty

Latency Execute a chain of mispredicted branches. CPI is same with branch
misprediction penalty.

29 Forward Latency Latency Compare the CPI of two instruction streams, dependent instructions and
independent instructions, which consist of the same operation. The
difference shows data forward latency.

30 I$ Load-to-Use
Latency

Latency Execute a chain of mispredicted branches that fit in L1I$. CPI becomes I$
load-to-use latency plus misprediction penalty.

31 L1D$ Load-to-Use
Latency

Latency Execute a chain of L1D$-hit loads. CPI determines L1D$ load-to-use
latency.

Table 2. Details of DiagSim Design (2 of 2)

Diagnosis Category Operation detail

32 L2D$ Load-to-Use
Latency

Latency Similar to L1D$ Load-to-Use Latency diagnosis (#31). Make the loads
hit at L2D$.

33 DTLB Latency Latency Similar to L1D$ Load-to-Use Latency diagnosis (#31). Make the loads
access distinct pages to miss at DTLB. CPI determines DTLB
access/refill latency (+ L1D$, address calculation, data forward
latency).

34 ITLB Latency Latency Similar to I$ Load-to-Use Latency diagnosis (#30). Execute branches
that jump to distinct pages. CPI determines ITLB access/refill latency
(+ L1I$, branch mis-prediction penalty).

35 DRAM Load-to-Use
Latency

Latency Similar to L1D$ Load-to-Use Latency diagnosis (#31). Make the loads
access main memory.

36 Functional Unit
Count/Throughput

Width Execute independent instructions that use the target function unit.
IPC determines the count/throughput of the target unit.

37 Commit Width Width Use a group of instructions that can commit together to control
commit width utilization. Different groups cannot commit together
due to data dependency. IPC becomes maximum when the group size
matches the commit width.

38 Writeback Width Width Use a group of load instructions that utilize writeback width together;
different groups cannot writeback together due to data dependency.
IPC becomes maximum when the group size matches the writeback
width.

39 Fetch Width Width Use an instruction group which ends with a taken branch to control
fetch width utilization; the taken branch prevents fetching two groups
together. IPC becomes maximum when the group size matches the
fetch width.

40 Minimum Width Width Repeat nops that reside in the same I$ block. IPC determines the
minimum width of pipeline stages.

41 Virtual to Physical
Address Mapping

Behavior Check how the simulator maps virtual address to physical address
affects the performance. First, get a physically contiguous page with
mmap() and run L2D$ Associativity diagnosis (#16). Next, get
arbitrary-ordered pages and run the diagnosis again. If the results
differ, the way the simulator maps virtual address to physical address
has performance effect.

(Continued)

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

4:10 J. Jo et al.

Table 2. Continued

Diagnosis Category Operation detail

42 RAW Dep. Check
for Reg.

Behavior Compare the IPC of two streams of instructions. One has
independent instructions and the other has instructions with
RAW dependencies via register. If the IPCs differ, the target
simulator correctly enforces the dependency.

43 RAW Dep. Check
for Mem.

Behavior Compare the IPCs of two streams of instructions. One has
independent loads/stores and the other has loads/stores with
RAW dependencies via memory. If IPCs differ, the target
simulator correctly enforces the dependency.

44 Spec. Memory
Disambiguation

Behavior Compare IPCs of two load/store streams that access different
addresses. Address calculation of stores in one stream takes
longer than the other’s. If two IPCs are similar, we can deduce
the target simulator does not perform memory speculative
disambiguation.

45 Bpred Stability Behavior Check IPC converges to a certain value while repeatedly
executing a stream of branches.

46 Bpred Type Check Behavior Execute branches with two patterns: one can be handled by a
certain type of predictor and the other cannot. If IPC of the
pattern that the certain type favors is higher than the other’s,
we can deduce the predictor is of that type.

47 Bpred Accuracy
Check

Behavior Verify IPC with given branch patterns with known accuracy.

48 Cache
Replacement
Policy

Behavior Execute loads with two access patterns: one can be handled by a
certain replacement policy and the other cannot. If IPC of the
access pattern that the certain policy favors is higher than the
other’s, we can deduce the cache uses that type of policy.

49 Commit
Granularity

Behavior Check the target simulator commits an instruction only when
all micro ops of the instruction complete. Execute two load
instructions incurring LLC misses and separate them by
ROB-size nop instructions to serialize two LLC misses. If the
simulator commits an instruction while its micro ops are
partially complete, two LLC misses unexpectedly overlap and
IPC would be higher than that of the case where two LLC
misses are serialized.

50 D$ Prefetcher Behavior Compare the IPCs of two data address patterns. One
sequentially accesses memory for a certain type of prefetcher
(type-A) to successfully predict, but the other randomly accesses
it. If two IPCs differ, the simulator has the type-A predictor.

51 I$ Prefetch Behavior Similar to D$ Prefetcher diagnosis (#50). Use instruction address
patterns instead of data address patterns.

52 LLC Miss
Creation

Condition Check whether a LLC miss occurs.

53 MLP ≥ 2 Condition Check loads/stores run in parallel.

54 Unoptimized NOP Condition Check whether nops flow through the pipeline.

55 LLC Miss Latency
� Fetch Latency.

Condition Check whether a LLC miss incurs larger penalty than
instruction fetch.

56 Check whether
the diagnosis fits
in L1I$

Condition Check whether the code size of a diagnosis fits in I$.

4.1 Overview of The Process

Figure 6 illustrates the overall steps to utilize DiagSim. First, we examine the diagnosis depen-

dency map, which is a graph indicating the relationship between diagnoses. For example, the A→D
dependency tells that diagnosis A should pass (i.e., confirm the correctness of a module/parameter)

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:11

Fig. 8. Diagnosis method for Buffer type 1.

Fig. 9. Diagnosis method for Buffer type 2.

for diagnosis D to be functional, because diagnosis D is built assuming that diagnosis A will pass

(i.e., the module/parameter to be correct). In other words, the dependency map informs us which

diagnoses should run first.

When testing all modules and parameters, we run all the diagnoses starting from the lowest

level in the dependency map (i.e., start with the ones without dependency requirements). In case

we diagnose only a specific module, we extract the subgraph from the dependency map and run

only the related diagnoses. In our example (Figure 6), to run diagnosis F, we only need to run

diagnoses A, B, C, D, and E.

In DiagSim, running a diagnosis is to sweep a range of potential parameter values with an

assembly-based microbenchmark. As illustrated in Figure 6, our approach observes the IPC pattern

of the microbenchmark results to detect what the parameter’s actual value is. Section 4.2 further

describes how the microbenchmarks are designed and the patterns can be interpreted. Note that

each microbenchmark run is very short so that testing a wide range of values does not incur large

overhead.

From diagnosis results, we check whether the target module/parameter matches the expected

behavior. If there is a discrepancy between the expected value and the detected value, assuming

all the lower level diagnoses passed, there are hidden modeling details or bugs to deal with. The

user may further investigate the module to modify the behavior, or simply adjust the simulator

configurations to offset the discrepancies (if possible).

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

4:12 J. Jo et al.

Fig. 10. Diagnosis method for Latency.

Fig. 11. Diagnosis method for Width.

We now introduce two practical issues in running the diagnosis (Figure 7). First, the diagnosis

may not exist for some modules either due to a user’s choice (i.e., decide not to implement) or the

simplicity of the module (i.e., it is better to validate with source code investigation or documenta-

tion). We have two options for such cases. First, we may manually inspect the module to guarantee

the correctness; this is the recommended option. Second, we may decide to assume its correctness

and move on to higher level diagnoses. If a higher level diagnosis fails in this scenario, instead of

suspecting the module related to the failed diagnosis, we should first inspect the skipped modules

and validate their correctness.

The second issue is a cyclic diagnosis dependency which makes the hierarchy ambiguous. For

this case, we recommend to manually investigate any (but preferably the simplest) module in the

loop to break the cycle.

4.2 Generic Per-category Diagnosis Ideas

To efficiently construct the diagnoses, DiagSim classifies the modules and proposes a generic

approach for each category. Table 1 and 2 show the modules and parameters we consider and how

they are categorized. We observe that six categories—buffer type I, buffer type II, latency, width,

feature/behavior, and condition—successfully cover the modules. We believe that they embrace

currently uncovered modules as well. The following paragraphs elaborate the diagnosis idea for

each category. Note that we also provide example codes for each category in Appendix A.

Buffer type I. Buffers are one of the most common structures in a processor. The first type of

buffers are semi-sequential buffers such as issue queue, reorder buffer, load store queue, and register

file. We use the term semi-sequential because these buffers tend to fill and drain a sequential stream

of data. In other words, they are similar to queue but sometimes allow out of order insertion and

removal.

Figure 8 shows how the size of this type of buffers can be examined. Basically, we put

buffer-filling operations in between two long-latency operations (e.g., LLC miss), and observe the

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:13

Table 3. DiagSim Dependency Map

performance sensitivity against the number of buffer-filling operations. If the buffer does not con-

tain both the long-latency operations, reducing the buffer-filling operations simply drops the per-

formance because the portion of long-latency operation becomes higher in the instruction stream.

However, as two long-latency operations begin to fit in the buffer, the performance drop reduces

because the long-latency operations now execute concurrently and (partially) overlap. In other

words, the refraction (or discontinuous) point of the IPC–buffer-fill operation count plot shows

the buffer size. Table 1 describes what should be the buffer-filling operation for different modules.

Buffer type II. The second type of buffers are key-value-like storages. Cache and main mem-

ory, miss handling state registers (MSHR), branch target buffer (BTB), return address stack (RAS),

branch history buffer, and many others belong to this category. These buffers simply return the

previously stored data for a given key (e.g., address, hash value, location determined by a logic).

To examine these buffers, we investigate the performance sensitivity against the working set

(i.e., actively accessed region) size. As shown in Figure 9, the performance stays stable if the work-

ing set fits in the buffer, but starts to change if we access outside the buffer; usually, the performance

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

4:14 J. Jo et al.

degrades because such an access is considered a miss. We leverage this nature to identify the size,

associativity, and boundaries (e.g., bank, channel, transfer granularity) of various buffers. The key

idea is to gradually change the working set size (or pattern, for associativity and boundary diagno-

sis) and observe the point where the performance changes (i.e., the boundary crossing happens).

Figure 9 shows an example for the size. Table 1 summarizes which operations are used to form the

working set for different buffers.

Latency. Figure 10 shows the method to test the operation latency of modules. We form a chain

of dependent instructions where the instruction has the target operation latency. Since this chain

becomes the critical path and determines the overall pipeline flow rate, we can deduce the opera-

tion latency from the performance.

Assuming an ideal case, we may form the chain using only the target operations (Figure 10, left).

In this case, the cycles per instruction (CPI) equals to the operation latency. In practice, we often

need auxiliary operations (e.g., conditionals to terminate the diagnosis; Figure 10, right). Assuming

that the target operation has a long latency and therefore becomes the bottleneck of the pipeline

flow, we can deduce that a group of operations (i.e., a set of target and auxiliary operations) retires

every target operation latency. The latency is therefore the cycles per instructions multiplied by

the group size.

Width. To measure the width of a module, we leverage the correlation between the performance

and width utilization. Figure 11 visualizes the testing method. We flow groups of instructions

through the pipeline to occupy the width as we wish. We control the dependencies between the

instructions so that the instructions in a group execute concurrently but different groups do not

run together. We detect the width by changing the group size (i.e., number of instructions in a

group) and observing the corresponding performance. The maximum performance appears if the

group size matches the width, because it maximizes the utilization. Further increasing the group

size initially decreases the performance because the width utilization drops, but the performance

reaches the maximum point again if the group size becomes multiples of the width.

Note that by setting an instruction to a specific type, we can measure other (band)widths as well.

For example, by setting the instructions to always access DRAM (i.e., LLC miss), we can measure

effective DRAM access throughput and hence the bandwidth (limited by LLC’s MSHR or DRAM

bandwidth). Section 5.4 explains the implication of the word effective in detail.

Feature/Behavior. Testing the feature or behavior of a module requires familiarity with the mod-

ule’s operation logic. The basic idea is to generate two instruction patterns—one that triggers

the module logic and the other that does not trigger the logic—and observe whether there is a

significant performance difference. If the module has the feature or behavior, the performance dif-

ference would be large. Otherwise, the two patterns would have negligible performance difference

(i.e., we should design the patterns in this way).

For example, prefetcher diagnosis consists of memory access patterns such as random access

and N-byte stride access. As random access keeps the confidence counter of any prefetchers low,

we obtain almost identical IPC values regardless of what prefetcher (and even no prefetcher) is

used. On the other hand, with N-byte stride patterns, any prefetchers yield significantly better IPC

values than before, while the no-prefetcher case is unchanged. We can further differentiate various

prefetchers by testing more complex memory access patterns.

As seen in the example, this category requires manual effort to implement the diagnosis case

by case. However, we provide a few templates which can test popular features and behaviors such

as branch prediction, cache replacement policy, and prefetcher. The users may expand these diag-

noses to cover a wider set of behaviors.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:15

Fig. 12. DiagSim execution process and overhead.

Conditions. This category is a collection of artificial diagnoses which we define to tidy up the

hierarchical/systematic diagnosis process. We observe that many diagnoses assume the correctness

of simple architectural conditions (e.g., able to create LLC miss) to function correctly. To make the

whole diagnosis process systematic, we consider these simple conditions as diagnoses and include

them in the dependency map. It allows us to explain all the prerequisites using a single dependency

map to keep the overall process clear and concise. We note that many of the diagnoses in this

category are special conditions of the existing diagnoses or simple fact checks, and thus can be

handled with negligible overheads (even without actual microbenchmarks to verify them).

4.3 Diagnosis Dependency Map

The diagnosis ideas proposed in the previous section in fact assume the integrity of the other

modules to correctly operate, because they utilize their parameter values and behaviors to trigger

certain operations. For example, to utilize LLC miss events as we wish, we should know the exact

LLC capacity to trigger a miss at the right point. We therefore construct a diagnosis dependency

map to thoroughly track such requirements and ensure a diagnosis does not fail due to external

factors (i.e., other than the diagnosis itself).

Table 3 shows the dependency map for DiagSim. For the 56 diagnoses, we mark which other

diagnoses must pass (i.e., ensure the correctness of a module/parameter) to guarantee the func-

tionality of the diagnosis. A diagnosis usually depends on another module/parameter (and the di-

agnosis which validates it) if it uses the characteristics of the module/parameter to trigger specific

events (e.g., LLC miss) or it is tightly coupled to the module/parameter itself (e.g., cache associativ-

ity and capacity). Note that the table specifies only the direct dependency between two diagnoses.

To reveal all the dependencies related to a diagnosis, we should track it until we reach a diagnosis

that depends on no others (i.e., leaf nodes in the graph), or we re-visit a diagnosis (i.e., forming

a loop). For example, the cache replacement policy diagnosis (#48) has two direct dependencies

(#11 and #56), which lead to further dependencies (#21, #55). We note that the maximum depth of

the dependency is not very large (#49→#1→#52→#14→#11→#55→#30→#56→#21 in the current

implementation) and the overall diagnosis overhead is manageable.

4.4 DiagSim Execution Overhead

In this section, we analyze the overhead of running the diagnoses. Figure 12 illustrates a typical

DiagSim execution overhead. First, we assume running N ≈ 102 diagnoses, which is about twice

as many as the current diagnoses (Table 1). We make a conservative estimation as simulators

are continuously adding modules to cover newer architectures, and the number of diagnoses to

cover the modules would grow accordingly. Next, for each diagnosis, we have a loop of M ≈ 102

instructions. As illustrated in Section 4.2, our diagnoses consist of relatively simple operations and

therefore can be represented with few dozens of instructions. We then run the loop Q ≈ 103 times

to achieve the steady-state behavior. We empirically confirm that 1000-iteration is sufficient and

set it as the hard limit. To sweep the parameter space, we would run such a diagnosis for P ≈ 10

different values. To minimize the number of values to test, we first sweep a wide range with coarser

intervals and focus on a narrower range with finer-grain values.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

4:16 J. Jo et al.

Putting the numbers together, we execute total N ×M × P ×Q = 108 instructions to run all

the diagnoses; running a specific diagnosis would reduce the overhead by an order. Running all

diagnoses would take about 103 seconds (i.e., <1 hour) on a cycle-level simulator with 100 KIPS

(i.e., 105 instructions per second) speed. In addition, we may further boost the whole process by

running the independent diagnoses in parallel; the overhead would decrease to several minutes

in this case. We emphasize that the diagnosis overhead is much more affordable compared to the

performance evaluation simulations running billions of instructions.

4.5 Implementation Efforts

In this section, we introduce our efforts to realize the diagnosis ideas proposed in the previous

sections. Currently, we implement DiagSim as x86-64 ISA assembly-based microbenchmarks.

Appendix A illustrates example microbenchmark codes. Porting DiagSim to the other ISAs should

be straightforward since we provide generic insights behind the diagnosis designs (Section 4.2)

as well as the following implementation efforts.

First, we extensively leverage nop to generate various patterns. nops allow us to align instruc-

tions to specific addresses, just as compilers. It also occupies pipeline (i.e., ROB) without dependen-

cies and register consumptions. We may therefore insert an arbitrary amount of padding between

the instructions of interest. For architectures crushing nop at issue stage, we may use equivalents

(e.g., or %reg1, %reg1).

Second, we frequently use long-latency instructions to generate back-pressure to the pipeline.

The most reliable way is to incur LLC misses; this is why many of the diagnoses depend on cache-

related diagnoses. We generate an LLC miss using a series of three instructions: lea (i.e., load

effective address), and, and mov. While simple random accesses may suffice, we decide to access a

buffer larger than the LLC capacity to ensure that we always incur an LLC miss. The lea and and
set up the address to access and mov triggers the LLC miss. The address calculation ensures that

we perform the accesses within a given address range (otherwise, it would cause a segmentation

fault). In addition, if access randomization is required, we put mul before the lea to implement

linear congruential generator [27] and generate pseudo-random access sequences.

Third, we make a diagnosis binary for each parameter value to test, rather than taking the

parameter value as an argument to the assembly program (i.e., diagnosis). In other words, if there

are 10 parameters to test, we generate and run 10 different binaries. This allows us to eliminate

unnecessary setup codes which can introduce noises to the IPC behaviors of the diagnoses.

Lastly, we make sure to measure the steady-state behavior by repeating the same diagnosis

multiple times. This eventually introduces a loop (i.e., jmp instruction). For example, consider

ROB size diagnosis which constitutes a loop of LLC misses followed by many nops and finally

jmp. If we decrease the number of nops from a large number, at a certain point the ROB starts to

capture two LLC misses (Figure 8). Due to instructions other than nops, the number of nops is not

the ROB size; we need to offset the number of auxiliary instructions such as lea, and, mov, and

jmp.

4.6 Adding a New Diagnosis

Although DiagSim covers major performance-critical modules and parameters, users may need to

implement their own diagnoses to ensure the correctness of new/customized modules and param-

eters. This section describes the general steps to implement a new diagnosis.

First, users identify which category the diagnosis belongs to. If the diagnosis validates a be-

havior/feature, it is classified as the behavior/feature category. Otherwise, the diagnosis should be

validating the module’s parameter values. Depending on the type of the parameter (e.g., latency,

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:17

Table 4. Baseline Architecture Configuration

capacity, width), the diagnosis can be classified accordingly. Lastly, the buffer type (if the diagnosis

is about a buffer) can be distinguished by the module’s operation logic; ROB-like semi-sequential

buffers fall into type I and key-value-like buffers fall into type II, as discussed in Section 4.2.

Second, users implement the diagnosis based on the category’s generic ideas. We stongly rec-

ommend to modify the existing diagnoses of the same category to ease the task.

Lastly, users update the dependency map to incorporate the new diagnosis. Dependencies ap-

pear if a module’s diagnosis assumes and leverages the correctness of the other modules. Some

dependencies are obvious (e.g., to utilize LLC miss behavior, we should know the correct LLC ca-

pacity to generate misses), while some others are not (e.g., cache hierarchy). To avoid omitting

these dependencies, we can perform sensitivity tests on a new diagnosis. For example, if changing

the parameter of module B affects module A’s diagnosis outcomes, we would know that module

A’s diagnosis depends on module B’s.

5 EVALUATION

5.1 Experimental Setup

We use three popular open source x86 ISA cycle-level full-system simulators to evaluate DiagSim.

Table 4 describes the baseline architecture configuration.

We perform three case studies to show the effectiveness of DiagSim. First, we perform basic

diagnosis for the three simulators modeling the baseline architecture. We aim to identify any dis-

crepancies between the specified architecture configuration and the actual architecture behavior.

Second, we modify the simulators to account for hidden factors and eliminate the discrepancies

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

4:18 J. Jo et al.

Fig. 13. Examples of diagnosing gem5’s int register file size.

detected in the first step, and show the corresponding performance impact. Third, we change the

baseline architecture and run DiagSim again to check whether there are extra hidden factors that

were not accounted for in the first step.

Throughout the case studies, we use SPEC CPU 2006 workloads to consider a wide range of

application behaviors. We present all the workloads that run on each simulator. We use SimPoint

to select and simulate representative 100M instructions for each workload. Note that there are some

workloads that are not presented for all three simulators, because they fail during checkpointing

or simulation phases.

5.2 Case Study I: Basic Diagnosis

In this step, we run DiagSim for the three simulators modeling the baseline architecture. To detect

all possible discrepancies, we run all the diagnoses following the dependency map.

First, we illustrate the importance of diagnosis following the dependency map. Figure 13 illus-

trates an example of detecting gem5’s int register file size. Using the diagnosis, we sweep the range

around the expected parameter value (128) and observe the IPC pattern to detect the actual value.

Typically, the deflection point tells what the detected value is (detailed IPC behaviors to observe

are described in Table 1 and 2). Figure 13(a) shows that we get clear and accurate diagnosis results

(92) by faithfully following the dependency map. In this case, the prerequisite was to check the

LLC capacity to correctly generate long-latency LLC misses. In Figure 13(b), we ignore the LLC ca-

pacity diagnosis and naively perform long distance memory accesses, expecting to get LLC misses.

This time, the diagnosis results are not clear because we generate a mix of long/short latency op-

erations and the int register diagnosis’ functionality breaks. Note that through this example, we

successfully detect that gem5 has smaller int register count (92) than expected (128).

Figure 14 shows the simulator diagnosis results illustrated as dependency graphs. For brevity,

we show only the modules with discrepancy and the lower-level diagnoses required to test the

modules. We observe that many of the modules behave differently from the expectations. For the

cases where a lower level diagnosis shows discrepancies, we first modify the module to assure

the expected behavior before moving on to the higher levels. This allows us to significantly reduce

the diagnosis overhead. For example, if there were no such systematic orders, we would have run

diagnosis #35 first and make adjustments to resolve the discrepancies, only to find that the other

modules (diagnoses #31 and #32) affect diagnosis #35 and the previous adjustment was in fact

incomplete.

Table 5 summarizes the discrepancies of the three simulators. We further investigate the simu-

lators to identify the root causes as follows.

gem5. The physical register file is smaller than expected because the general and flag registers

occupy a portion in the register file. BTB size is also different from the expectation due to alignment

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:19

Fig. 14. Using dependency map to systematically diagnose simulators. We show only the diagnoses related

to performance discrepancies.

Table 5. Discrepancies Between the Baseline Design and Actual Behavior

issues; the entries have the low 2-bits of the addresses truncated and allow four different branch

PCs to land on one entry (i.e., similar to 4-way set associative cache). The load-to-use latency of

L2 data cache and DRAM are much higher than expected because there are hidden models related

to message responses and evictions.2 The fetch width is smaller due to the implicit skid buffer

modeling.3

MARSSx86. The ROB size is smaller because the circular queue implementation loses one entry.

The integer add and multiply latencies are higher because the back-to-back wakeup mechanism

has an additional latency due to implementation issues. The memory latencies are higher due to

hidden modeling factors similar to gem5.

Multi2Sim. The register file is smaller than expected because architectural registers are counted

within the physical registers. The memory latencies are higher due to the similar reasons to the

other two simulators. In addition, we observe that certain logics to check dependency conditions

are not rigorous (i.e., macro-op commit, load-store address disambiguation, BTB entry update),

yielding higher performance than expected.

Fortunately, we find that the discrepancies are generally straightforward to fix. We (1) modify

the architecture configuration file to create offsets and match the expected parameters, (2) fix the

2We assume that a user considers the cache and DRAM latency parameters in simulator configurations as the load-to-use

latencies. This is valid for many simulators with simplified memory systems, but our simulators have detailed interconnec-

tion models which add a hidden amount of extra latencies to the configured values. Since a simple inspection on simulator

configuration cannot calculate this extra latency, we define it as a discrepancy and use DiagSim to measure its amount.
3Skid buffer holds the pending instructions from the current cycle and blocks the previous stage until the buffered instruc-

tions drain.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

4:20 J. Jo et al.

Fig. 15. Performance changes upon eliminating the discrepancies.

parameters in the source code to match the expected parameters, and (3) fix the logic in the source

code to enforce expected behaviors. Note that without the help from DiagSim, it would have been

challenging to detect and account for these small but performance-critical details.

5.3 Case Study II: Performance Impact of Accounting for the Hidden Factors

We now describe how the performance changes after addressing the issues diagnosed in Sec-

tion 5.2. For each simulator, we eliminate the discrepancies and compare the new performance

with the unmodified simulators’ performance.

Figure 15 shows the performance change from fixing a single discrepancy (bars) and all

the discrepancies (dashed line). We find that all three simulators have noticeable performance

changes after all corrections, and eliminating a single discrepancy is not enough to reach the

true performance. This emphasizes that to achieve the best possible results, we should employ

DiagSim to thoroughly check and resolve all the discrepancies.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:21

Fig. 16. Diagnosing int register file size for two different architectures (ROB size 128 and 192). For the small

ROB architecture, the diagnosis detects the largest register file size (144) as ROB size (128) because it is

impossible to utilize the register file past the ROB size. For the large ROB case, all sizes are correctly detected.

Fig. 17. Performance impact of considering extra hidden factors which appear upon architecture changes.

5.4 Case Study III: Diagnosis Upon Architecture Modifications

Lastly, we demonstrate how DiagSim always ensures healthy simulations for various architectural

changes. In this scenario, we first address all the discrepancies detected in Section 5.2. We then

change the architecture by modifying the module parameters, and run DiagSim again to ensure

the correctness.

Surprisingly, we discover that extra hidden factors and issues start to appear as we modify the

architecture. Figure 16 explains why such factors may exist. In the example, we observe that an

int register file’s size can be measured up to the ROB size, because it is impossible to utilize the

register file past that size. Note that this is a normal and intended behavior as DiagSim detects

the effective/actual parameter value. Therefore, if ROB size is maintained small, we would ignore

the potential issues in int register file size as we cannot test the value larger than the ROB size (but

consider it normal). For example, even if there is a hard-coded limit of 128 in the int register file

size, it would remain hidden until we explore designs with ROB size and register file size >128.

We now introduce such extra factors discovered for each simulator.

gem5. We notice that gem5 has a fixed limit in the writeback bandwidth. We find this issue upon

increasing the MSHR size from 2 (default) to 10. For the baseline, the writeback bandwidth is

(relatively) large enough so that it does not appear in the diagnosis. Increasing the bandwidth to

match the MSHR size effectively improved the overall performance, as illustrated in Figure 17.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

4:22 J. Jo et al.

MARSSx86. We increase the pipeline width and functional unit counts to model a powerful core

design (default: 4-way execution; new: 8-way execution). Strangely, we observe only 1.5% improve-

ment in the performance (for SPEC). Running DiagSim reveals that the effective pipeline width is

still 4, so we further investigate the execution stage. We eventually find out that the maximum

pipeline width and functional unit counts are hard-coded. Fixing this issue improved the average

IPC gain from 1.5% to 8.4%.

Multi2Sim. Multi2Sim has issues with load-store address dependency resolution (discussed in

Section 5.2). We therefore fix the resolution logic to correctly enforce all the dependencies; this re-

sults in 22.9% degradation in performance. Without DiagSim, we would naively believe that such

a performance degradation is normal as we have added more restrictions. However, running Di-

agSim again reveals that we actually enforced too strict dependency checks and the performance

is underestimated. Relaxing this incorrectly enforced condition alleviated the performance degra-

dation from 22.9% to 13.2%.

As shown in the examples, DiagSim allows us to constantly enforce healthy simulation for var-

ious architecture configurations. It detects previously hidden modeling issues as well as newly

introduced user-induced errors (e.g., Multi2Sim). We therefore recommend to run DiagSim for

every architecture modification.

6 DISCUSSION

Expansion to new modules. In this article, we focus on the modules which have first-order per-

formance impacts (discussed in Section 3.2). We open source DiagSim so that the simulator user

community may expand the diagnoses to cover new modules, following the steps in Section 4.6.

Although implementing new diagnoses would require extra efforts, the developers of the new

modules are the best people to understand the details and develop accurate diagnoses (i.e., diag-

nosis development would be much more difficult for ordinary users). It would ensure the future

users of the module to easily verify the correctness of simulations.

Interpreting the DiagSim results. DiagSim requires manual efforts to observe the IPC trend,

find the deflection points, and determine the detected value. We believe that this procedure can be

automated with the help of a machine-learning technique in most cases. For ambiguous patterns,

we can request a manual user inspection.

Expansion to other architectures. We develop DiagSim focusing on out-of-order architectures

because the timing model of in-order processor is simpler and thus less subject to the modeling

errors than out-of-order processors. However, it is possible for DiagSim to support in-order (or

other) microarchitecture with some effort.

As in-order architectures (e.g., low-power processors, GPU cores) have generally different

performance dynamics compared to the out-of-order architectures, we suggest to provide an in-

dependent diagnoses rather than configuring and reusing the existing diagnoses. For example, in-

order processor diagnoses do not need to model out-of-order issue logics (e.g., register renaming,

IQ, LSQ, complex ROB) and the list of diagnoses will be reduced. In addition, as the performance

of in-order architectures are largely determined by individual instruction latencies (compared

to out-of-order which more freely overlap latencies), modeling each diagnosis would be more

straightforward.

As our next work, we are further developing DiagSim to handle various heterogeneous core

architectures consisting of out-of-order and in-order processors.

Simulator modification affecting DiagSim. We emphasize that major modifications to a sim-

ulator such as introducing a new module may affect diagnoses themselves, but DiagSim would

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:23

correctly detect such changes and inform the users. For example, if a new module significantly

affects the existing diagnoses (e.g., new D$ prefetcher interrupting cache related diagnoses), the

dependency map will detect such events (e.g., prefetcher diagnoses) and tell which diagnoses (e.g.,

D$ related) get affected to inform the users. In our case, after detecting such effects, we added

address randomization to D$ diagnoses to ensure a prefetcher does not affect the results.

Expansion to multicores. Currently, DiagSim targets a single core design (including a single core

in a multicore processor) because we find enough performance discrepancies. We are expanding

our work to cover multicore designs as well. Specifically, we are working on the coherency proto-

cols and synchronization issues (e.g., atomic instructions), as they have large performance impact

in general.

DiagSim for real machines. Theoretically, it is possible to run DiagSim for a real hardware if the

hardware supports running bare-metal assembly codes. Nonetheless, we add a caveat that some

of the diagnoses would be difficult to run or validate. For example, we must ensure whether the

condition diagnoses pass or fail because we cannot manually investigate real hardware to check

whether certain properties are met. In addition, we would need high-precision performance coun-

ters telling the exact number of instructions and cycles because we rely on IPC patterns to perform

diagnoses.

7 RELATED WORK

Formal verification. Formal verification (FV) builds an abstract mathematical model (finite state

machine) of the target system, and mathematically proves that the target system does not fall into

erroneous states. Given the model faithfully describes the target system, FV rigorously guarantees

no errors. However, building the abstract mathematical model is very complex and hard even for a

very small system. Together with the simulation’s primary goal, fast evaluation, the applicability

of FV is usually constrained within some modules [34]. The examples include Intel’s method

to verify Pentium 4’s floating point units [5], and Biere et al.’s [6] method to check a set of

safety properties of a PowerPC processor. Unlike FV which focuses on formal correctness of a

module, our work reveals hidden details and inter-module interactions of simulators in holistic

ways.

Coverage-driven verification. Coverage-driven verification (CDV) is an alternative to slow for-

mal verification for detecting real-hardware functional bugs. CDV uses statistical methods to gen-

erate test cases. The test cases exercise many different data paths to detect any possible errors.

For this reason, CDV requires many simulations but can guarantee nearly error-free designs. As

notable examples, Intel applied a variation of this verification approach to the RTL design of a real

microprocessor [17]. Benjamin et al. also applied coverage-driven verification to the RTL design of

another microprocessor[4] rather than a high level model in architectural simulators. Contrary to

CDV, architectural simulators are more concerned with fast delivery of performance results than

error-free design. In this regard, simulators favor abstracting out some unnecessary details and

are not thoroughly examined to eliminate rare errors. These rare errors normally do not affect the

performance statistics of the simulator. However, if the errors affect the timing of usual events,

DiagSim can detect it.

Simulator validation/evaluation using (micro)benchmarks. Many prior works use bench-

marks or microbenchmarks (synthetic workloads) to validate the simulator against a reference

processor model. For example, Gutierrez et al. and Butko et al. [12, 18] evaluated the accuracy

of gem5 simulator with SPEC and PARSEC benchmarks to model the existing multi-core sys-

tems, and Saidi et al. [31] did a similar analysis on the M5 simulator, but focused on the network

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

4:24 J. Jo et al.

workloads. Bose [10] defined possible failure modes on a RISC processor similar to POWER and

derived microbenchmarks to cover those failure cases. By comparing the CPI of microbench-

marks on the simulator and the expected CPI, Bose could discover the error of the simulator.

Moudgil et al. [24] calibrated the Turandot simulator against the reference model. They used mi-

crobenchmarks to tune the simulator until the performance of running SPECInt across the simula-

tor and the reference model becomes very close. Desikan et al. [13] designed a set of microbench-

marks to stress different stages of the pipeline and found the mismatches between a simulator and

an Alpha 21264 processor.

These prior works try to validate or calibrate a single simulator model against the reference

model. However, we provide architects with a systematic approach to apply generic diagnoses to

different simulators and find the hidden details and complex interactions between their compo-

nents. DiagSim eventually facilitates getting stable results on various simulators.

Recently, Wagstaff et al. [35] proposed a new set of microbenchmarks to mainly evaluate the

execution speed of the full-system simulators. This work is orthogonal to ours as we focus on

simulator anomalies rather than its execution speed.

Reverse-engineering of the real hardware. A group of synthetic workloads have been pro-

posed to reverse-engineer certain features of a real system [1, 23, 33, 36]. We can adopt their

ideas to add more diagnoses to the DiagSim framework. It is not appropriate to use their diag-

noses implementations directly, as their diagnoses usually require a large number of instructions

to overcome noises. Thanks to the fully controlled simulation environment, we can simplify the

implementation to get efficient diagnoses.

Synthetic workloads as the real workload miniatures. Researchers have proposed a group of

synthetic workloads as easy-to-run short programs which exhibit similar characteristics of a target

real workload. These real workload miniatures are usually generated by extracting representative

patterns of the respective real workload. For example, [3] provides synthetic workloads that mimic

SPEC CPU 2000 and STREAM workloads, [26] for big-data workloads, and [15] for SPEC CPU 2006,

and ImplantBench. DiagSim also depends on a set of short synthetic workloads. However, DiagSim

workloads (diagnoses in our term) have different purposes and they do not require a reference from

a real workload. We build diagnoses based on generic per-parameter category ideas (Section 4.2).

During diagnosis simulation, we also do not directly use the generated IPC value; instead, we

use the IPC trend to detect a specific point that reveals the effective value for the parameter of

interest.

Synthetic workloads as stress generators. Several studies have proposed frameworks to gen-

erate synthetic workloads to stress certain features of a system [16, 20, 21]. These workloads iter-

atively stress the system and check the properties such as power consumption, until they reach a

maximum value. DiagSim can also adopt the idea of the synthetic workloads that stress a specific

module. However, DiagSim does not use the stress generation as a means to determine the max-

imum value of a performance metric like IPC or power consumption. Instead, DiagSim uses the

performance trend to detect the effective value of the parameter of interest in a simulator.

8 CONCLUSION

In this article, we proposed DiagSim, an efficient and systematic method to diagnose simulators and

eliminate behavioral discrepancies. We proposed generic methods to develop diagnoses to make

DiagSim highly portable and expandable. We diagnosed three popular open source simulators

and reported hidden discrepancies incurring large performance deviations. We demonstrated that

DiagSim correctly detects and eliminates the issues to ultimately promote healthy simulations.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:25

A APPENDIX: DIAGNOSIS IMPLEMENTATION

This section presents a code example for each generic per-category diagnosis idea. The codes

follow the syntax of GNU Assembler (GAS) x86 assembly language.

REFERENCES

[1] A. Abel and J. Reineke. 2014. Reverse engineering of cache replacement policies in Intel microprocessors and their

evaluation. In Proceedings of the 2014 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS’14). 141–142. DOI:https://doi.org/10.1109/ISPASS.2014.6844475

[2] Ehsan K. Ardestani and Jose Renau. 2013. ESESC: A fast multicore simulator using time-based sampling. In Proceedings

of the 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA’13). IEEE Computer

Society, 448–459. DOI:https://doi.org/10.1109/HPCA.2013.6522340

[3] Robert H. Bell, Jr. and Lizy K. John. 2005. Improved automatic testcase synthesis for performance model validation.

In Proceedings of the 19th Annual International Conference on Supercomputing (ICS’05). ACM, New York, 111–120.

DOI:https://doi.org/10.1145/1088149.1088164

[4] Mike Benjamin, Daniel Geist, Alan Hartman, Yaron Wolfsthal, Gerard Mas, and Ralph Smeets. 1999. A study in

coverage-driven test generation. In Proceedings of the 36th Design Automation Conference. IEEE, 970–975.

[5] Bob Bentley. 2001. Validating the Intel (R) Pentium (R) 4 microprocessor. In Proceedings of the Design Automation

Conference. IEEE, 244–248.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

https://doi.org/10.1109/ISPASS.2014.6844475
https://doi.org/10.1109/HPCA.2013.6522340
https://doi.org/10.1145/1088149.1088164

4:26 J. Jo et al.

[6] Armin Biere, Edmund Clarke, Richard Raimi, and Yunshan Zhu. 1999. Verifying safety properties of a PowerPC-

microprocessor using symbolic model checking without BDDs. In Proceedings of the 11th International Conference on

Computer Aided Verification. Springer, 60–71.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,

Mark D. Hill, and David A. Wood. 2011. The Gem5 simulator. SIGARCH Comput. Archit. News 39, 2 (Aug. 2011), 1–7.

DOI:https://doi.org/10.1145/2024716.2024718

[8] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt. 2006. The M5 simulator: Modeling

networked systems. IEEE Micro 26, 4 (July 2006), 52–60. DOI:https://doi.org/10.1109/MM.2006.82

[9] Bryan Black and John Paul Shen. 1998. Calibration of microprocessor performance models. Computer 31, 5 (May

1998), 59–65. DOI:https://doi.org/10.1109/2.675637

[10] P. Bose. 1994. Architectural timing verification and test for super scalar processors. In Proceedings of the 24th Interna-

tional Symposium on Fault-Tolerant Computing. FTCS-24. Digest of Papers. 256–265. DOI:https://doi.org/10.1109/FTCS.

1994.315635

[11] Pradip Bose and Thomas M. Conte. 1998. Performance analysis and its impact on design. Computer 31, 5 (May 1998),

41–49. DOI:https://doi.org/10.1109/2.675632

[12] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli. 2012. Accuracy evaluation of GEM5 simulator system. In Proceedings

of the 2012 7th International Workshop on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC’12). 1–7.

DOI:https://doi.org/10.1109/ReCoSoC.2012.6322869

[13] Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler. 2001. Measuring experimental error in microprocessor

simulation. In Proceedings of the 28th Annual International Symposium on Computer Architecture (ISCA#x02019;01).

ACM, New York, 266–277. DOI:https://doi.org/10.1145/379240.565338

[14] Agner Fog. 2000. Test programs for measuring clock cycles and performance monitoring. http://www.agner.org/

optimize/#testp.

[15] Karthik Ganesan, Jungho Jo, and Lizy K. John. 2010. Synthesizing memory-level parallelism aware miniature clones

for SPEC CPU2006 and implantbench workloads. In Proceedings of the 2010 IEEE International Symposium on Perfor-

mance Analysis of Systems & Software (ISPASS’10). IEEE, 33–44.

[16] Karthik Ganesan and Lizy K. John. 2011. MAximum Multicore POwer (MAMPO): An automatic multithreaded syn-

thetic power virus generation framework for multicore systems. In Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis. ACM, 53.

[17] Alon Gluska. 2003. Coverage-oriented verification of banias. In Proceedings of the 40th Annual Design Automation

Conference. ACM, 280–285.

[18] Anthony Gutierrez, Joseph Pusdesris, Ronald G. Dreslinski, Trevor Mudge, Chander Sudanthi, Christopher D.

Emmons, Mitchell Hayenga, and Nigel Paver. 2014. Sources of error in full-system simulation. In Proceedings of

ISPASS.

[19] Alex Izvorski. 2006. mubench. http://mubench.sourceforge.net.

[20] Ajay M. Joshi, Lieven Eeckhout, Lizy K. John, and Ciji Isen. 2008. Automated microprocessor stressmark generation.

In Proceedings of the IEEE 14th International Symposium on High Performance Computer Architecture (HPCA’08). IEEE,

229–239.

[21] Youngtaek Kim, Lizy Kurian John, Sanjay Pant, Srilatha Manne, Michael Schulte, William Lloyd Bircher, and Madhu

Saravana Sibi Govindan. 2012. AUDIT: Stress testing the automatic way. In Proceedings of the 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’12). IEEE, 212–223.

[22] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hallberg, Johan Hogberg, Fredrik

Larsson, Andreas Moestedt, and Bengt Werner. 2002. Simics: A full system simulation platform. Computer 35, 2 (2002),

50–58.

[23] Larry McVoy and Carl Staelin. 1996. Lmbench: Portable tools for performance analysis. In Proceedings of the 1996

Annual Conference on USENIX Annual Technical Conference (ATEC’96). USENIX Association, 23–23. http://dl.acm.org/

citation.cfm?id=1268299.1268322

[24] M. Moudgill, P. Bose, and J. H. Moreno. 1999. Validation of turandot, a fast processor model for microarchitecture

exploration. In Proceedings of the 1999 IEEE International Performance, Computing and Communications Conference.

451–457. DOI:https://doi.org/10.1109/PCCC.1999.749471

[25] T. Nowatzki, J. Menon, C. H. Ho, and K. Sankaralingam. 2015. Architectural simulators considered harmful. IEEE

Micro 35, 6 (Nov. 2015), 4–12. DOI:https://doi.org/10.1109/MM.2015.74

[26] R. Panda and L. K. John. 2017. Proxy benchmarks for emerging big-data workloads. In Proceedings of the 2017 IEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS’17). 139–140. DOI:https://doi.org/

10.1109/ISPASS.2017.7975285

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/MM.2006.82
https://doi.org/10.1109/2.675637
https://doi.org/10.1109/FTCS.1994.315635
https://doi.org/10.1109/2.675632
https://doi.org/10.1109/ReCoSoC.2012.6322869
https://doi.org/10.1145/379240.565338
http://www.agner.org/optimize/#testp
http://mubench.sourceforge.net
http://dl.acm.org/citation.cfm?id$=$1268299.1268322
https://doi.org/10.1109/PCCC.1999.749471
https://doi.org/10.1109/MM.2015.74
https://doi.org/10.1109/ISPASS.2017.7975285

DiagSim: Systematically Diagnosing Simulators for Healthy Simulations 4:27

[27] Stephen K. Park and Keith W. Miller. 1988. Random number generators: Good ones are hard to find. Commun. ACM

31, 10 (1988), 1192–1201.

[28] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. 2011. MARSS: A full system simulator for multicore x86

CPUs. In Proceedings of the 48th Design Automation Conference (DAC’11). ACM, 1050–1055. DOI:https://doi.org/10.

1145/2024724.2024954

[29] Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic, Luis Ceze, Smruti Sarangi, Paul Sack, Karin

Strauss, and Pablo Montesinos. 2005. SESC simulator. Retrieved January 2005 from http://sesc.sourceforge.net.

[30] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. DRAMSim2: A cycle accurate memory system simulator. IEEE

Comput. Arch. Lett. 10, 1 (Jan. 2011), 16–19. DOI:https://doi.org/10.1109/L-CA.2011.4

[31] Ali G. Saidi, Nathan L. Binkert, Lisa R. Hsu, and Steven K. Reinhardt. 2005. Performance validation of network-

intensive workloads on a full-system simulator. In Proceedings of the 1st Annual Workshop on Interaction Between

Operating System and Computer Architecture. 33–38.

[32] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli. 2012. Multi2Sim: A simulation frame-

work for CPU-GPU computing. In Proceedings of the 21st International Conference on Parallel Architectures and Com-

pilation Techniques (PACT’12). ACM, New York, 335–344. DOI:https://doi.org/10.1145/2370816.2370865

[33] V. Uzelac and A. Milenkovic. 2009. Experiment flows and microbenchmarks for reverse engineering of branch pre-

dictor structures. In Proceedings of the 2009 IEEE International Symposium on Performance Analysis of Systems and

Software. 207–217. DOI:https://doi.org/10.1109/ISPASS.2009.4919652

[34] Antti Valmari. 1998. The State Explosion Problem. Springer, Berlin, 429–528. DOI:https://doi.org/10.1007/3-540-

65306-6_21

[35] Harry Wagstaff, Bruno Bodin, Tom Spink, and Bjoern Franke. 2017. SimBench: A Portable Benchmarking Methodology

for Full-System Simulators. IEEE.

[36] H. Wong, M. M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. 2010. Demystifying GPU microarchitecture

through microbenchmarking. In Proceedings of the 2010 IEEE International Symposium on Performance Analysis of

Systems Software (ISPASS’10). 235–246. DOI:https://doi.org/10.1109/ISPASS.2010.5452013

Received June 2017; revised October 2017; accepted December 2017

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 4. Publication date: March 2018.

https://doi.org/10.1145/2024724.2024954
http://sesc.sourceforge.net
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1145/2370816.2370865
https://doi.org/10.1109/ISPASS.2009.4919652
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1109/ISPASS.2010.5452013

