L))

Check for
updates

Improving MLC PCM Performance through Relaxed Write
and Read for Intermediate Resistance Levels

SAEED RASHIDI and MAJID JALILI, Sharif University of Technology
HAMID SARBAZI-AZAD, Sharif University of Technology & Institute for Research

in Fundamental Sciences (IPM)

Phase Change Memory (PCM) is one of the most promising candidates to be used at the main memory level of
the memory hierarchy due to poor scalability, considerable leakage power, and high cost/bit of DRAM. PCM
is a new resistive memory that is capable of storing data based on resistance values. The wide resistance range
of PCM allows for storing multiple bits per cell (MLC) rather than a single bit per cell (SLC). Unfortunately,
higher density of MLC PCM comes at the expense of longer read/write latency, higher soft error rate, higher
energy consumption, and earlier wearout compared to the SLC PCM. Some studies suggest removing the
most error-prone level to mitigate soft error and write latency of MLC PCM, hence introducing a less dense
memory called Tri-Level memory. Another scheme, called M-Metric, proposes a new read metric to address
the soft error problem in MLC PCM.

In order to deal with the limited lifetime of PCM, some extra storage per memory line is required to correct
permanent hard errors (stuck-at faults). Since the extra storage is used only when permanent faults occur,
it has a low utilization for a long time before hard errors start to occur. In this article, we utilize the extra
storage to improve the read/write latency in a 2-bit MLC PCM using a relaxation scheme for reading and
writing the cells for intermediate resistance levels. More specifically, we combine the most time-consuming
levels (intermediate resistance levels) to reduce the number of resistance levels (making a Tri-Level PCM) and
therefore improve write latency. We then store some error correction metadata in the extra storage section
to successfully retrieve the exact data values in the read operation. We also modify the Tri-Level PCM cell
to increase its read latency when the M-Metric scheme is used. Evaluation results show that the proposed
scheme improves read latency by 57.2%, write latency by 56.1%, and overall system performance (IPC) by
26.9% over the baseline. It is noteworthy that combining the proposed scheme and FPC compression method
improves read latency by 75.2%, write latency by 67%, and overall system performance (IPC) by 37.4%.

CCS Concepts: « Information systems — Phase change memory; - Hardware — Memory and dense
storage; « Computer systems organization — Multicore architectures;

Additional Key Words and Phrases: Tri-Level PCM, M-metric, write speed, read latency, energy consumption

ACM Reference format:

Saeed Rashidi, Majid Jalili, and Hamid Sarbazi-Azad. 2018. Improving MLC PCM Performance through Re-
laxed Write and Read for Intermediate Resistance Levels. ACM Trans. Archit. Code Optim. 15, 1, Article 12
(March 2018), 31 pages.

https://doi.org/l().l145/3177965

Authors’ addresses: S. Rashidi and H. Sarbazi-Azad, HPCAN Lab, Computer Engineering Department, Sharif University of
Technology, Tehran, Iran; emails: rashidice@ce.sharif.edu, azad@sharif.edu; H. Sarbazi-Azad, School of Computer Science,
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; email: azad@ipm.ir; M. Jalili is now at the Department
of Electrical and Computer Engineering, University of Texas at Austin Texas, USA; email: majid@utexas.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

© 2018 ACM 1544-3566/2018/03-ART12 $15.00

https://doi.org/10.1145/3177965

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

https://doi.org/10.1145/3177965
https://doi.org/10.1145/3177965
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3177965&domain=pdf&date_stamp=2018-03-22

12:2 S. Rashidi et al.

1 INTRODUCTION

With the increasing number of cores and developing sophisticated applications in today’s com-
puter systems, larger main memory capacity is increasingly demanded. The large capacity of main
memory results in fewer page faults and more application parallelism. Unfortunately, DRAM can-
not satisfy the increasing demand for larger main memory capacity due to its power and scalability
limits that make further scaling of DRAM infeasible [31]. Therefore, emerging memory technolo-
gies have been proposed to be used in the main memory level of memory hierarchy.

Phase Change Memory (PCM) is an emerging memory that is a candidate for replacing DRAM
technology. A PCM device consists of Chalcogenide material (GST), capable of changing its resis-
tance. Therefore, PCM stores data based on its GST resistance level. Compared to DRAM, PCM is
more scalable [44] and denser, and consumes less standby power.

The large resistance range of GST material allows for considering more than two resistance
levels that lead to storing multiple bits per cell (known as MLC) and creating even denser PCM
memories. However, utilizing MLC PCM has several challenges. In the presence of multiple resis-
tance levels, the write operation should be performed in a more exact way. Therefore, an MLC write
operation is performed using multiple Program and Verify (P&V) iterations that result in longer
write latency and higher energy consumption. In addition, writing to the intermediate resistance
levels in MLC PCM requires a more nondeterministic number of iterations [26, 36].

PCM cells also suffer from a limited lifetime, and extra storage per line can greatly help to
tolerate cells’ failure. However, this extra storage is not utilized for a long time before the line faces
first permanent faults [17, 39]. Another drawback of MLC PCM is its vulnerability to resistance
drift, which is changing cell value based on increasing cell resistance over time. A recent study [51]
proposed Tri-Level PCM to use three resistance levels (instead of four levels in a 2-bit MLC PCM)
to increase the reliability and write speed. In Tri-Level PCM, the most vulnerable resistance level
of MLC PCM to drift (i.e., the third level) is removed, leaving a wide resistance region between the
second and fourth resistance levels. This allows the three remaining levels to be read much more
reliably; it also reduces the write latency in Tri-Level PCM.

The authors in [48] proposed to use a nonresistance metric (M-Metric) for determining cell
value. In M-Metric, a linear voltage ramp is applied to determine the time it takes the cell to see
a predefined reference current I level. Cell values are differentiated by the time they require to
converge to Ig. In this technique, read latency is determined by the highest reference resistance
(the resistance that differentiates the two highest resistance levels). M-Metric shows significant
tolerance to resistance drift. Therefore, by using M-Metric, the soft error rate due to drift is signifi-
cantly decreased, making M-Metric a suitable approach as a read mechanism, although it increases
the average access latency.

To address the challenges of MLC PCM while exploiting its density, in this article, we propose
a morphable MLC/Tri-Level PCM architecture that enjoys the speed and reliability of Tri-Level
PCM and the capacity of MLC PCM. More precisely, we make the following contributions:

e We propose a slight modification on the read mechanism of the previously proposed Tri-
Level PCM to boost its read speed compared to MLC PCM (Section 2.2.1). This is done
by leveraging the vast region between the two highest resistance levels in Tri-Level PCM
to reduce the highest reference resistance while reliability requirements are met. Using
this new design, in the proposed morphable memory architecture using the M-Metric read
mechanism, the memory lines stored in Tri-Level mode can be read much faster than those
kept in MLC mode.

e We propose Relaxed Write/Read (RWR) to improve the write latency of MLC PCM by merg-
ing the intermediate resistance levels (“01” and “10”) to one level (i.e., making it Tri-Level),

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:3

and use the unutilized hard error recovery storage to determine the exact value of the cells
with intermediate resistance levels. To be more specific, in this method, instead of writing
the exact values of intermediate state levels of MLC cells, they are written to the interme-
diate state level of Tri-Level cells, making them approximate. A simple mapping scheme is
used to map each approximate cell to a single correction bit in an unutilized part of the ex-
tra storage section. The mapped bits in the unutilized part then determine the exact values
of the approximate cells in the read operation. This way, the write latency of MLC PCM is
significantly decreased while the capacity of MLC PCM is maintained. We also show that
the RWR method has a positive impact on the energy consumption and lifetime of MLC
PCM.

The objective of this article is to provide a PCM main memory that has the capacity density of
MLC PCM with much better access latency and reliability than the conventional MLC PCM.

2 PRELIMINARIES

There are several challenges in exploiting MLC PCM for mass production. In comparison with SLC
PCM, the MLC write operation must spend more cycles to finish since there are a couple of inter-
mediate states to be programmed. Basically, there are two types of write pulses in MLC PCM; SET
and RESET. A RESET pulse is a short and high-power pulse that drives the cell’s temperature above
its melting point and then quenches its temperature quickly. This results in a larger amorphous
region, thus increasing the resistance of the cell. The SET pulse is a long and moderate-power
pulse that gradually shrinks the amorphous region and hence decreases its resistance. Figure 1
shows typical SET and RESET write pulses. To cope with the difficulty of the write operation in
MLC PCM, the (P&V) method is proposed in [36]. The write operation is divided into multiple
P&V iterations. After each iteration, the resistance of the cell is examined: if it is in the desired
resistance range, the write operation is finished; otherwise, more P&V iterations are applied.

Another issue is the limited write endurance of PCM cells; that is, after a certain number of
writes, the cell will be permanently stuck at a constant value, no matter which write the pulse is
applied to. After each write, a comparison read is required to ensure that the data were correctly
written [17, 47]. Faulty cells are detected if the checking read returns unequal data with respect
to the written data. To deal with this limitation, typically an extra storage per line is required to
cover such permanent cell failures. Typically, the acceptable amount of storage overhead is 12.5%.
For example, for 512-bit lines (a typical line size in PCM), 64-bit storage overhead is reserved to
deal with such errors. Different methods like [17, 47, 50] try to use this storage in different ways
to cover more stuck-at faults.

One of the major concerns related to PCM is soft error caused by resistance drift, that is, increas-
ing the resistance value over time. According to the study in [22], the drift could be modeled as

t a
Ranp(1) = R (—) . 1)
to
In Equation (1), R is the initial resistance of the cell after programming, Rgy(t) is the resistance
of the cell after time ¢, t; is the normalization constant that is usually equal to 1, and « is the drift
exponent. The drift exponent has a normal distribution of N(y,, c2) for each state. It is observed
that the drift exponent is proportional to initial resistance (i.e., Ry), which means higher R, leads to
higher a. Thus, special care must be taken to deal with the resistance drift problem. One common
way is to use the scrubbing mechanism, that is, periodically rewriting the lines to prevent a
further increase of cells’ resistance. Scrubbing comes at the cost of more traffic, more energy

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:4 S. Rashidi et al.

Sense

RESET MQ 11 MaEngo 01
-] .
g SET 3 AN ‘
£ 3
3 =
Time 3 338 Drimargi“4l74- 6 LogR
Fig. 1. SET, RESET, and moderate-quenched Fig. 2. MLC resistance distribution.
(MQ) pulses for programming intermediate
states in MLC and Tri-Level PCM.
Table 1. MLC Resistance Distribution Parameters
LogR a
State Level | Data | Target(ug) | Deviation(og) | Range (30R) | Sensing Margin | R Drift Margin | Mean () | Deviation (o)
0 (Reset) | 00 6.00 - 0.1
1 01 4.74 0.47 0.06
0.098 0.295 0.2 0.4X 1
2 10 3.8 0.16 0.02
3 (Set) 11 3 0.01 0.001

consumption, and earlier wearout. Therefore, the memory system must be designed in a way that
is reliable enough to let the scrubbing period be postponed in order to mitigate its overhead.

Resistance distribution of different states follows normal distribution N (pg, 6123). In this article,
we use the resistance distribution adopted from previous studies [20, 28]. Figure 2 shows the re-
sistance bands of different states. Typically, the resistance domain is divided into three regions:
target resistance band, drift margin region, and sensing margin.

The target resistance band is the desired resistance range that needs to be obtained after cell
programming. Here, the target resistance band is set to be pig + 30g. The drift margin accounts for
dealing with the resistance drift problem. As stated before, the resistance of the cell is increased
over time; thus, for each state, a safety margin (drift margin) is needed to let the resistance be
safely increased while read is still realized correctly (as long as resistance does not pass the drift
margin).

In order to address the noise in the read circuit, the sense margin is required [20]. In the read
operation, the resistance of the cell is compared to the reference resistances (i.e., usually the middle
of sense margins) to determine which state the cell belongs to. Table 1 presents the parameters
associated with the distribution of Figure 2. Note that the parameters in Table 1 are based on [28].

2.1 Write Model

2.1.1 MLC Write Model. In MLC PCM, programming a cell to “00” and “11” states (or SET or
RESET states) is done using a fixed number of iterations, but programming to intermediate states
(“01” and “10” states) requires a number of nondeterministic P&V iterations. Because of the process
variation and nondeterministic characteristics of PCM devices, the number of P&V iterations is cell
dependent. Even for the same cell the number of required iterations varies [26]. Thus, different
approaches have been proposed to model P&V-based write operations [26, 41, 46]. In this article,
we adopt the write model presented in [46] and assume that intermediate states require 4.05 P&V
iterations, on average, to be programmed, as reported in [36]. The detailed description of the model
is presented in Appendix A.

To conclude the write scenario in MLC, Figure 3(a) shows the write operation for different states.
As can be seen, the programming operation begins with a RESET pulse. A RESET pulse is enough

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:5

1 '2 Non-Detrministic 3Non-Detrministic ‘% 1 Z
11:<ResetX Set) : i § :

; ; : L0:<ResetX Set >
10:<Reset>K Set :_ Set \K_ Set \i' i o N

g uiyisining eleniapiaping L1: MQ
01:<Resetx Set 4 Set Y Set Y ———

)

(b) Tri-Level PCM write scenario

00:

(a) MLC PCM write scenario

Fig. 3. Required write pulses for writing different values in MLC and Tri-Level PCM.

Table 2. Tri-Level Resistance Distribution Parameters

LogR o
State Level | Target(ug) | Deviation (oR) | Range (oR) | Sensing Margin | R Drift Margin | Mean (p) | Deviation (o)
L2 6 0.098 0.295(30R) - 0.1
L1 4,042 0.110 0528 02 0.13 0.0269 0-4Ha
(4.80R)
Lo 3 0.098 0.295(30R) 0.01 0.001

for writing “00” data. By applying one SET pulse, the “11” data is written. But for intermediate
states (i.e., “01” and “10”), a variable number of SET pulses should be applied for write operations.

2.1.2 Tri-Level Write Model. As stated before, MLC PCM suffers from several drawbacks. Re-
cent studies in [51] showed that the drift problem might be so severe as to make MLC PCM in-
feasible. Thus, they proposed to remove the most vulnerable resistance level to drift, that is, the
third level. By removing the third level, the reliability of PCM is improved. It is clear that remov-
ing a level will decrease the storage density. By using the coding technique discussed in [51], two
Tri-Level cells could store 3 bits, and consequently the density of Tri-Level becomes 1.5 bits per
cell. Moreover, since the third level is removed, the write operation to the intermediate state can
be done using a single pulse [51]. By applying the moderate-quenched (MQ) programming pulse
(proposed in [27]), the write operation to the intermediate state is done with one iteration in most
cases. Figure 1 shows the MQ pulse. It is a RESET pulse with a controlled falling slope.

According to the study in [51], the latency of the MQ pulse is less than the SET pulse. This makes
the latency of Tri-Level PCM close to SLC write latency. One drawback of MQ programming is its
lesser precision compared to the P&V method [27, 51]. To analyze the distribution change due to
MQ programming, we used a similar method as that used in [51]. Table 2 presents the associated
parameters of Tri-Level PCM. As shown in the table, o of the intermediate state is worsened from
0.098 to 0.110 and pp is increased from 3.8 to 4.042. The mean drift exponent also is increased from
0.02 to 0.0269.

Here, we redefine the resistance regions in a Tri-Level cell to improve its read/write latency.
Since pg is increased, we increase the target resistance band of the intermediate state from 3oy to
4.80g. This results in a 100% - 1.5867E-04% success rate for write operations to the intermediate
state to be finished in only one iteration. For the remaining 1.5867E-04% of writes, another MQ
iteration is required, which is negligible. Thus, a verification step is required to see if the first MQ
iteration is successful. Note that this verification step is not an overhead of MQ programming,
since after each iteration the cell value must be checked for detecting stuck-at faults. We also set
the drift margin of the intermediate state to 0.13. Later, we will show that this amount of drift

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:6 S. Rashidi et al.

margin is sufficient to meet reliability requirements (discussed in Section 2.3). Unlike the original
Tri-Level PCM design in [51], we also decrease the reference resistance between the second and
third levels from 5.605 to 4.80. Decreasing the last reference resistance leads to improving the read
latency as discussed in Section 2.2. As Tables 1 and 2 show, the first level of MLC PCM and first
level of Tri-Level PCM, and the fourth level of MLC PCM and third level of Tri-Level PCM are
equal in terms of resistance distributions.

Figure 3(b) shows the write scenario of Tri-Level PCM. Writing to the first and third levels is
the same as MLC PCM, but for writing to the intermediate state, the MQ iteration is applied.

2.2 Read Model

The conventional read mechanism (called R-Metric) has severe vulnerability to resistance drift
(R-Metric is described in Appendix B). As a result, a recent study [48] proposed to use a less
sensitive read metric to drift, called M-Metric. In M-Metric, the cell is biased to a constant reference
current (Ig) and the voltage across the cell is measured. In order to bias the cell to I, authors in
[37, 48] proposed to apply a linear voltage ramp to the cell. Consequently, the time that it takes the
cell to converge to Ig determines the cell state, because the higher resistance leads to a longer time
to converge to Ig. Figure 4 explains the read process. Figure 4(a) shows a linear voltage ramp that
is applied to the cell. Figure 4(b) shows the MLC read process. The three curves in Figure 4(b) are
reference resistance curves of MLC PCM. According to Figure 4(b), if the cell gets to Ir between
0 and ty, its content is interpreted as “11.” If this time is between ¢; and t,, it shows “10,” and if it
is between t, and ts, its value represents “01.” If the cell does not get to Iz by t3, then its value is
assumed to be “00.”

Therefore, in this method, the read latency is determined by the highest reference resistance
value. Since in Tri-Level PCM the highest reference resistance value is decreased from 402KQ to
63K Q, the read latency is dramatically decreased.

2.2.1 Proposed M-Metric Read Mechanism. In the original Tri-Level PCM design [51], authors
assumed parallel reads using the R-Metric mechanism; therefore, they assumed that the read la-
tency of Tri-Level PCM is the same as SLC PCM. However, in addition to vulnerability of R-Metric
to drift, parallel reading is a costly technique in terms of hardware overhead and sensing current
[19]. By using M-Metric, both MLC and Tri-Level PCMs could be reliably used. Moreover, increased
reliability of Tri-Level PCM compared to MLC PCM makes it possible to decrease the last reference
resistance value in M-Metric, and hence the read speed in Tri-Level PCM is improved.

Figure 4(c) shows the Tri-Level M-Metric reading process, with the same mechanism used in
MLC PCM. Note that in Tri-Level PCM, there are two resistance references.

The reference current is set to be Ir = 1uA [37, 48]. According to [48], by applying a voltage
ramp with a slope of Ko, the time that takes the cell to get to Ix is given by

Ec-Ef
2KTuy, I kT
M(Ig) = —— aresinh % , (2)
qAZK;10pe 2qrry NTAZ

where q is the elementary charge, 7y is the characteristic attempt-to-escape time for a trapped
electron, AZ is the mean intertrap distance, N7 is the trap density, K is the Boltzmann constant, T
is the temperature, and E, = E. — Ey is the activation energy. rg,; is the effective bottom electrode
radius and u,,; is the effective amorphous thickness.

Both TE and u Ay are functions of PCM amorphous thickness, u4. Figure 5(a) shows a PCM de-
vice with indicated amorphous thickness (u4). Figure 5(b) shows the relationship between w4, TE
and ua,;.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:7

V(mvV)

5
0
OCMNMOMNMOMNONONMONMONMONOMNONONONONOMOLNOLL O
HEHANNMOFFTNNOODNDNORAOAOO " " ANNMMNTF TININO O
or v v v e e e v e e e e

T(ns)

(a) Linear voltage ramp with Kjope = 10°

1
165ns

———————— »6.25ns(5clk) (132clk)
1

-*13.75ns(11clk)

0 20 40 60 80 100 120 140 160 180
T(ns)

(b) MLC PCM read scheme.

""" *6.25ns(5clk)

Rrefl ~===Rref2

0 20 40 60 80 100 120 140 160 180
T(ns)

~*>30ns(24clk)

P S N R N O s,

(c) Modified Tri-Level PCM read scheme.
Fig. 4. Timing details of M-Metric read in MLC PCM and proposed M-Metric read for Tri-Level PCM.

Column Decoder 50 50

45
-y&-*—» -y&-ff-b oo 40
A o e 352
2 30 =

H 25

= 20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
-;6—*—} -y&-*—» u,(nm)

(a) Amorphous thickness, u4, of a PCM cell. (b) g, and ug, . curves as a function of ua.

Fig. 5. Amorphous (mushroom) thickness parameters of PCM.

We consider Kjope = 10°. Therefore, by using Equation (2), the sense latency of MLC PCM and
Tri-Level PCM is 165ns and 30ns, respectively.’

INote that according to the study in [48], in Equation (2), the resistance of the crystal part is assumed to be negligible
compared to the amorphous part, and hence it is ignored. But at low resistances, the crystal resistance matters. Therefore,
we have taken into account the crystal resistance by assuming Reyysia1 = 5009, since the lowest resistance in our distribution

is around 500Q.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:8 S. Rashidi et al.

Table 3. M-Metric Distribution

LogM apg
State level | Data | Target(par) | Deviation(oas) | Range (30a1) | Sensing Margin | M drift Margin [Mean (p,,) | Deviation (o,)
O(Reset) 00 2.62 0.101 0.303 - - 0.014
1 01 1.436 0.079 0.237 0.197 0.443 0.01 04410,
2 10 0.893 0.030 0.09 0.124 0.087 0.003
3(Set) 11 0.722 0.0074 0.022 0.052 0.005 0.0001

(a) MLC PCM M distribution

LogM (204
State level | Target(par) | Deviation (o) | Range | Sensing Margin | M drift Margin | Mean (i,) | Deviation (oq,,)
L2 2.62 0.101 0.303(30A1) - - 0.014
L1 1.036 0.052 0251 0.167 0.1 0.0038 0-4fta
(4.80ar)
Lo 0.722 0.0074 0.022(30a1) 0.052 0.005 0.0001

(b) Tri-Level PCM M distribution

The predominant impact of temporal drift is growth in activation energy (E,). In Equation (2),
M is weakly affected by activation energy (E,). According to the study in [48], the drift exponent
of M-Metric is an order of magnitude less than R-Metric.

Applying a linear voltage ramp is a convenient and low-cost method that simplifies the read
circuit logic. In the read operation, the current through the cell needs to be compared with Iz. At
certain times, the read circuit checks if the cell has reached Iy and therefore determines the cell
state.

However, one drawback of the linear voltage ramp is that its latency is determined by the ref-
erence resistances, meaning if the resistance range increases, the latency is increased as well. In
this case, increasing the ramp slope or using a nonlinear voltage ramp may reduce the latency [37,
48]. However, in the range of interest (1KQ — 1MQ), the linear voltage ramp gives reasonable read
latency for MLC PCM, and hence we use this method for our read operation.

2.3 Reliability Model

The probability of soft error rate (SER) should be calculated in order to determine the scrubbing
period. SER is the probability for a cell to change its state due to resistance drift. Since the resistance
of the cell is permanently increased due to drift, the scrubbing operation is needed eventually. The
scrubbing period should be determined in a way that makes its overhead low while keeping the
SER low.

Since we use M-Metric for determining cell state, resistance drift turns into M-Drift. According
to [48], M-Drift can be modeled in the same way as resistance drift by

Maa(t) = M x (ti) , 3

where ay is the drift exponent of M-Metric. Here, we assume the mean value of the drift exponent
in M-Metric (y4,,) to be % of R-Metric(1,), as reported in [5, 55].

In order to determine the SER, first the resistance distribution of MLC PCM (Table 1) and Tri-
Level PCM (Table 2) should be converted to M distribution. Using Equations (5b) and (2), the M
distribution is calculated and presented in Table 3. Table 3a shows the M distribution of MLC PCM
and Table 3b shows that for the Tri-Level PCM.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:9

Table 4. SER of Different Levels of MLC PCM and Tri-Level PCM

Time(s) | State Level 3 | State Level 2 | State Level 1| | Time(s) | State Level LO | State Level L1
210 too small |too small too small 210 too small |too small
224 too small |1.815E-16% |too small 224 too small | 2.0896E-16%
236 too small |5.408E-07% |2.175E-16% 236 too small | 7.5255E-9%
2% | 1.5379E-16% | 6.279E-06% |9.7E-14% 2% | 1.5379E-16% |5.4907E-8%
(a) SER of MLC PCM (b) SER of Tri-Level PCM

It can be seen in Table 3 that the normal distributions of resistances in MLC and Tri-Level
PCMs are turned into normal distributions in the M domain, but with different deviations. At low
resistance levels, the deviation of their corresponding M distribution is smaller.?

In order to calculate SER, we used the analytical model presented in [51]. Our model applies to
Tables 3a and 3b. Here, our objective is to make the memory system as reliable as the Tri-Level
PCM memory proposed in [51]. Thus, we should choose a scrubbing period that results in an SER
of less than 3.6E — 16% for all levels. According to [51], this SER rate results in a line error rate
(uncorrectable errors in a line) of PCM lines, without using soft error correction resources, being
less than the line error rate of typical DRAM lines using a single-error correction and double-error
detection (SECDED) mechanism. Therefore, our memory is more reliable than typical DRAMs even
without using soft error correction resources.

Table 4 shows the SER rate of MLC PCM and Tri-Level PCM levels for different scrubbing pe-
riods. We choose the scrubbing period to be 2%s, since in this period, the SER of both MLC and
Tri-Level PCMs for all levels are less than 3.6E — 16%.

2.4 Techniques to Reduce MLC PCM Latency

High access latency is a major issue in MLC PCM. Therefore, in recent years, many studies tried to
fill the gap between MLC PCM access latency and DRAM access latency. Throughout this section,
we introduce several schemes whose primary goal is to reduce the access latency of PCMs.

The authors in [43] proposed a hybrid main memory consisting of PCM main memory and a
DRAM layer between PCM and the Last-Level Cache (LLC) to hide PCM limitations. The DRAM
layer helps to bear the long access latency of PCM and improve its lifetime by filtering writes to the
same positions. Another work [32] considered a hybrid memory consisting of various technologies
(including PCM) with different characteristics and proposed a hardware-based page management
scheme that intelligently places pages into different sections of the hybrid memory architecture to
maximize performance. The proposed scheme in [1] introduced an OS-based approach to profile
and manage pages to hide the high access latency of slow memory in a dual-technology hybrid
memory.

Arjomand et al. [3] showed that a considerable percentage of write requests only update a small
number of chips, leaving many chips idle. Therefore, it is possible to make use of uninvolved chips
to service other read/write requests while the ongoing write is processed.

Morphable memory [40] takes advantage of both MLC PCM density and SLC PCM access la-
tency by partitioning main memory to SLC and MLC regions. Based on the demand of running

2The reason is that at low resistances, the resistance of the crystal part of the PCM device matters and plays a significant
role in determining M-Metric at low resistances. Since in the range of interest the crystal resistance of the PCM cell is
almost constant for different amorphous thicknesses, the variation of M is small at low resistances.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:10 S. Rashidi et al.

workloads, morphable memory dynamically changes the SLC and MLC types of regions to maxi-
mize performance.

To address the read latency of MLC, Hoseinzadeh et al. [19] introduced the line striping method
in which half of the lines are stored in the least significant bits of two lines, and the other half
in the most significant bits of the two lines. Consequently, half of the lines are read only by one
comparison (i.e., SLC read latency). This comes at the cost of doubling the read/write traffic, which
leads to more energy consumption and shorter lifetime.

Nair et al. [35] introduced two new techniques for boosting the read latency of PCM using
R-Metric: Early Read and Turbo Read. In Early Read, the sense resistance is decreased, and conse-
quently, the sense time will be decreased. However, decreasing the sense resistance leads to wrong
interpretation of a cell’s state; hence, there must be some additional codes to detect such misinter-
pretations and repeat the read operation in the presence of such errors. In Turbo Read, the sense
voltage (i.e., precharge voltage) is increased in order to decrease the sense time. Increasing the
read voltage corresponds to increasing the probability of read disturb (i.e., accidental write to cell),
and therefore there is a need for error correction codes (ECCs) to correct read disturb errors in
subsequent reads.

A recent structure proposed in [16] is based on the observation that in some PCM prototypes,
data bits of a PCM write request are mapped to multiple cell groups. Cell groups are processed in
parallel. Due to programming current and write circuit constraints, a PCM device cannot simulta-
neously program all data bits in a cell group. Therefore, an XOR mapping function between data
bits and cell groups was proposed to evenly distribute bit-flips among cell groups. This method
eliminates the asymmetric write latency of cell groups and improves write bandwidth.

The authors in [59] proposed to decouple the cache-line bits to be stored only on MSB or LSB
bits of MLC PCM cells, since the MSB and LSB bits have different access latencies. Then, the cache
lines that need to be read fast are stored in MSB bits and the cache lines that are needed to be
written faster are stored in LSB bits.

Kim et al. [28] proposed to dynamically change the target resistance bands based on the number
of intermediate cells in order to decrease the number of iterations per write, since wider resistance
bands are correlated with fewer P&V iterations.

Jiang et al. [26] proposed a combination of compression with ECCs. ECCs give the opportunity
to write circuit to truncate the last P&V iterations; since at the final write iterations only a few cells
are not written properly, ECCs can correct them while reading. The compression helps to tolerate
the ECC storage overhead, and additionally converts the MLC write/read to SLC write/read when
the compression ratio is >2. They use the extra storage per line (12.5% storage overhead for hard
error correction) provided by the ECP chip to store the extra bits when compression fails (the size
of compressed data + compression metadata is larger than the original data size). However, adding
ECCs comes at the expense of more bit-flips, which results in more consumed energy and early
wearout. In addition, the ECC correction capability is limited (usually 1 bit correction) to make
its implementation feasible. Additionally, for the cases when compression fails, the compression
metadata with ECCs may not even fit to the extra storage, which makes the compression not an
always applicable option.

To the best of our knowledge, among the proposed schemes that address read/write latency at
memory line granularity, the methods introduced by Jiang et al. [26] provide the best performance.
In addition, many of above techniques (e.g., line stripping, morphable memory) are orthogonal to
line-level schemes and can be employed with slight modifications. Since our proposed scheme
addresses the access latency of PCM at memory line granularity, we choose the schemes proposed
in [26] as the state of the art, for comparison.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:11

W s v

Percent of writes
N

OEN FHE O ANODOYOMNODNFEONANOOOMODNNF A OINASOMNMON F =N
H-HANNMFFITNODNDNDNRDNDO - ="ANMIFIFNOODNRXRXDO=E="ANMMF LN
- o v v v v e e NN NN NN NN

Number of HTW cells

(a) Writes when new line differs from stored line

N

~*39.7%

=
4

62.9%

Percent of reads
(=]
v [

CONRXRFTOOVNRFTOONRXFOONRXRF OO

883
Number of ;l’;‘VF\‘I
(b) Reads
Fig. 6. Read/write distribution of HTW cells for SPEC-CPU2006 workloads.

3 PROPOSED SCHEME
3.1 Motivation

In MLC PCM, the write latency is determined by the cells that need the most P&V iterations. For
the cells to be written to intermediate states, the number of P&V iterations varies; hence, the write
operation needs to continue until all the cells are written correctly. We call the cells that are written
to intermediate states hard-to-write (HTW) cells, since the write latency is determined by them.
The idea behind this article is based on three observations.

OBSERVATION 1. The number of HTW cells in write/read operations is relatively small in typical
workloads.

Figure 6 shows the histogram of HTW cells in write/read operations for 20 SPEC CPU2006
workloads. They are the result of executing 15 billion instructions. Note that the line size of the
PCM was set to 512 bits. As Figure 6 shows, on 47.7% of writes and 62.9% of reads, the number of
HTW cells is less than or equal to 48 (9.3% of line size).

OBSERVATION 2. Decreasing the number of HT'W cells in write operations leads to a smaller average
number of P&V iterations per write.

Figure 7 shows the average required number of P&V iterations to finish the write for different
numbers of HTW cells in the line based on our write model. As the figure indicates, the number
of P&V iterations for a write (i.e., write latency) is proportional to the number of HTW cells. The
reason is clear: the write operation needs to wait for the cell that requires the most iterations.
Hence, the smaller the number of HTW cells, the lower the probability that an HTW cell requires
a high number of P&V iterations. Therefore, if we could decrease the number of HTW cells for a
given write, then the average write latency is decreased as well.

OBSERVATION 3. The dedicated extra storage to correct hard errors per line is not utilized until the
line encounters first permanent faults.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:12 S. Rashidi et al.

In order to cover the permanent faults of PCM, some extra storage (called ES) per line is usually
used to cover such errors. The ES’s size is 12.5% of the line size. For a 512-bit line size, the ES is 64
bits (32 cells in 2-bit MLC). However, ES is not utilized until the line encounters first permanent
faults. Therefore, this unutilized storage could be used for boosting the write/read operations,
before the line faces permanent stuck-at faults.

In order to analyze the utilization of the ES section, first, we assume that the baseline system
uses the well-known Error Correction Pointers (ECPs) [47] scheme for hard error correction. ECP is
considered as the default correction scheme in many works (e.g., [26, 39]) because of its simplicity
and low hardware overhead. In ECP, when a line faces stuck-at faults, its ES section is used to
store some (six in the original proposal) ECP entries. Each entry is responsible for correction of
one failed cell; consequently, each entry contains a pointer to the position of a faulty cell and a
cell that stores the correct value of the failed cell. Since each line has the correction power of six
faulty cells, the method is called ECP;.

When a line encounters more than six faults, ECP entries are not sufficient to cover all; hence,
the operating system retires the page containing the faulty line in the memory manager. In this
article, similar to other studies, we consider a page size of 4KB (i.e., 64 memory lines).

Another issue that needs to be taken into account is different vulnerability of PCM cells to stuck-
at faults, mainly because of process variation [23, 50]. The maximum number of tolerable writes for
different PCM cells is expressed as normalized standard deviation (COV) around the mean value
[39]. That is, some cells are more prone to stuck-at faults and they may encounter hard errors at
the beginning phases of PCM memory lifetime.

Qureshi [39] conducted an extensive study on the utilization of ECP; entries and showed that
many lines do not face stuck-at faults even at the final stages of PCM lifetime. Figure 8 shows the
utilization of ECPg entries during the lifetime of a PCM memory with COV = 20% (it is based on
Figure 2 in [39]).

Figure 8 contains four curves. The FaultyLine curve shows the probability of a memory line to
have at least one stuck-at cell at any point of PCM lifetime. In other words, it shows the percentage
of memory lines that were forced to use their ES section for error correction.

The LineFail curve shows the percentage of memory lines with more than six faults, where ECPg
is not able to recover all faulty cells and, therefore, the line cannot be used.

The PageFail curve shows the probability of pages to have at least one uncorrectable fault, mean-
ing that they have at least one line with more than six faulty cells. Consequently, it shows the per-
centage of retired memory pages. We define the end of PCM lifetime when the memory capacity
drops to half of its size. That is the endpoint where the probability of PageFail is equal to 0.5 (as
indicated in the figure).

FirstLineFail is the probability of PCM memory to face the first line failure. To be more specific,
it indicates the point where PCM capacity starts to drop. The expected time to first page retirement
is when the FirstLineFail curve becomes 0.5.

From Figure 8, we can conclude:

e When memory reaches its half lifetime, only 3.85% of lines have faced stuck-at faults. This
implies that more than 96% of lines have not used their ES section when memory passes
half of its lifetime (point A in the figure).

e When memory capacity starts to drop, still more than 72% of memory lines are healthy
(point B).

e When still 50% of lines have an unused ES section, memory has passed 85.6% of its lifetime
(point C).

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:13

Table 5. Ternary-to-Binary Conversion

-
N

%]
Ternary Values (2 Cells) | Binary Values (3 Bits) ,5 4
512
LOLO 000 E 10
LOL1 001 s 8
L1L2 010 6
v
LOL2 011 g
s> 2
L1L0 100 <,
HOOODVINEMNMA"NOITEONOYVTMNMAN="ONODNONTM
L2Lo 101 HUAeTnOreegddeIERE2a]SRGIR
L2L2 110 Number of intermedate state cells
L2L1 111 Fig. 7. Average number of P&V iterations versus num-
ber of HTW cells.
1
09
0.8 l ~o-FaultyLine -O-LineFail FirstLineFail PageFail]
0.7
£% | sou
05 2 oS
204 :
& 03 27.2% i
B i
0.2 i
0.1 i
3.85% WMM 75.5% 85.6%
0 OO, R R R RRRBLLR 5 ey y U L v vy yy vy vy vy vy vy Y Y Y Y Y Y Y Y Yy Yy Yy ‘(ﬂ

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Memory Lifetime (%)

Fig. 8. Failure probability versus time (as percentage of lifetime).

The expected rate of fault-free lines during the entire memory lifetime is therefore given by

100
Average_rate_of fault — free_lines = f (1 — FaultyLine(t))dt ~ 83%. (4)
=0
Equation (4) reveals a significant amount of unutilized ES sections in the baseline system, and
implies a good opportunity of using ES sections for performance improvement purposes. In the
next section, we will show that it is possible to use this storage for performance improvement with
a positive effect on memory wearout and energy consumption.

3.2 Relaxed Write/Read (RWR) Method

In our proposed method, Relaxed Write/Read (RWR), the extra storage is used for boosting the
write/read performance. The ES is written in Tri-Level format. By using the coding technique
proposed in [51], each pair of two Tri-Level cells represent 3 bits. Table 5 shows ternary-to-binary
conversion.

Since there are 32 ES cells per line, they could represent 48 bits in ternary format. These 48 bits
are used to mitigate 48 HTW cells per line. This is done through a simple one-to-one mapping
from an ES bit to an HTW cell. As Figure 9(a) indicates, we assume that the leftmost bit in ES
corresponds to the leftmost HTW cell, the one after the leftmost bit in ES corresponds to the one
after the leftmost HTW cell in line, and so on. Instead of writing these 48 HTW cells to their exact
values, they are written to the intermediate state of Tri-Level format, and their corresponding bits
are stored in the ES section to determine their exact value. Consequently, as Figure 9(b) shows,
if the mapped bit in the ES section is “0,” its corresponding HTW cell is “01”; otherwise, the cell

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:14 S. Rashidi et al.

Data line(256 cells) Data line(256 cells)
RN -] [o[1To] [a[xo]
Ternary ‘rto Binary Ternary :to Binary Ternary ‘rto Binary Ternary :to Binary
(T T -T1T71] [afrz] . [rzfiz]
ES(32 cells) ES(32 cells)
(a) Indicated mapping in RWR. (b) RWR correction.

Fig. 9. RWR mechanism.

shows “10.” In other words, the intermediate state of Tri-Level is used to mark 48 HTW cells and
let their corresponding bits be stored in the ES section to determine the exact state (01” or “10”).

In a write operation, up to 48 HTW cells are detected and ES is filled according to the value of
these 48 cells, before the write command is issued to the memory array.

In a read operation, the corresponding ES is decoded from ternary to binary to represent the
mapped bits; then, the memory controller finds up to 48 leftmost HTW cells of the line and corrects
their values by their corresponding bits in the ES. Finally, the final data line is delivered to the
requester.

RWR lets up to 48 HTW cells be written in only one iteration, and therefore, by decreasing the
number of HTW cells, the average number of P&V iterations is decreased as well. Based on the
number of HTW cells in each line, two possible scenarios can be considered:

o If the line has no more than 48 HTW cells, then all of them could be covered by ES bits.
Consequently, the write operation is performed using one or two iterations (two iterations
if a cell with “11” value exists or if writing to the intermediate state of Tri-Level requires
another iteration). Since all line cells are in Tri-Level format, the Tri-Level read mechanism
is used for subsequent reads to the line and therefore the read speed is improved. In Tri-
Level read, if a data cell is in the first region, its value is “11”; if it is in the third region,
its value is “00.” For the cells in intermediate region, their corresponding ES bit determines
their exact value (“01” or “10”). We call such line fully Tri-Level.

e If the line has more than 48 HTW cells, the 48 leftmost HTW cells are written to the inter-
mediate state of Tri-Level format. Thus, the average number of P&V iterations is decreased.
However, the subsequent read operations to the line are issued in MLC mode. In MLC read,
the HTW cells that are written to the intermediate state of Tri-Level mode are interpreted
as “01” or “10,” but their exact value is determined by their corresponding bits in the ES
part. The other HTW cells that could not be covered by ES are written exactly (in MLC
mode) and hence are fully determined as in MLC read. Since the ES section is in Tri-Level
format, in MLC read, if a cell in ES is determined to be “01” or “10,” then it is interpreted as
the intermediate state of Tri-Level format. We call such line partially Tri-Level.

Using RWR, both read and write latency to the lines with no more than 48 HTW cells are im-
proved significantly. Moreover, for the lines with more than 48 HTW cells, the write latency is
still improved. If a line encounters stuck-at failure, then its ES section is used for error correction
purposes and the RWR method cannot support the line.

As the memory lines could be in different states, the memory controller needs to track each line’s
state. Therefore, 2 bits per line are needed to indicate whether the line is fully Tri-Level or partially

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:15

~<———DQ(8 bits)——> DQ(8 bits)
1](01|11]/00]10 0|(01|10|11|11

Interprieted As No|change
L1{11|(00(L1 01({10f11(11

Fig. 10. Reusing DM pins for the RWR method.

Tri-Level or the ES is used for permanent failure correction. Therefore, the storage overhead of the
RWR method is about 0.4% (assuming 512-bit memory line size). For example, for a 16GB memory,
64MB storage is needed to track line states. We let these state bits be stored in main memory in
MLC mode, and a small cache, called line-state cache, in the memory controller is used to cache
them. On every read/write request that is issued to the memory controller, the memory controller
adds the request to its corresponding read/write queue and then searches the line-state cache to
determine the requested line’s state. If a miss occurs, the memory controller takes the state bits
from main memory. If the state of the next request to be serviced in any read/write queue is not
determined, the memory controller stops servicing any requests from that queue until the state of
the request is determined.

The main memory also has a DRAM cache in order to hide the PCM read/write latency. Further,
details on CPU & memory organization is explained in Section 4.

To make the RWR method compatible with the DIMM structure, we reuse the Write Data Mask
(DM) pins to indicate the cells that need to be written to the intermediate state of the Tri-Level
mode. Originally, for a write operation, each DM pin is used to mask its respective data byte
(DQ) for any given cycle of the burst. In the RWR method, the DM pin is used to indicate that all
intermediate values of its respective DQ should be written to the intermediate state of Tri-Level.
Figure 10 shows the usage of the DM pin. If the DM pin is set to “1,” then all of the intermediate
values of its respective DQ are written to the intermediate state of Tri-Level. Otherwise, the DQ is
written in MLC mode. It is possible that in the last burst cycle, in one DQ, some HTW cells need
to be written in Tri-Level form while other HTW cells must be written in MLC mode. In such
cases, the Tri-Level write in the corresponding DQ is ignored and all HTW cells are written in
MLC mode for the respective DQ. Therefore, in the worst case, 45 HTW cells are covered rather
than 48 cells.’

3.3 RWR Encoder/Decoder

The RWR is a memory-controller-level technique. Therefore, CODEC circuits should be integrated
with memory controller hardware. Such circuits should have low overheads in terms of power and
area. In this section, we propose the Encoder/Decoder circuits for the RWR method and evaluate
their area, power, and latency overheads.

3.3.1 Encoder. The encoding process happens when a new write request is placed to its corre-
sponding write queue in order to be serviced by the memory controller. While the write request
is waiting for its turn in the write queue, the encoder circuit calculates the 48 correction bits to be

3This condition occurs when DQ has four HTW values; three HTW values are covered by the ES section and can be written
in Tri-Level form, while the other HTW value is not covered by ES.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:16 S. Rashidi et al.

Data In | | | |

1
0 | 1 [eeeeerees 110
: 1 Enable ! I I !

110! 1101
:1:0: --------- :0:0:

0 0
1 1

1!
1

~<———(256x%2-bit) Data Shift Register——>] ~<48-bit ES Shift Register>

Fig. 11. Encoder circuit.

stored in the ES section in Tri-Level form. Writes are not on the critical path and have relatively
high latency. In addition, reads have higher priority than writes for service. Therefore, the average
queue latency of writes is sufficient to hide the encoder latency, even if the encoder is relatively
slow, and hence, the encoder latency overhead does not have a considerable impact on overall IPC.

Figure 11 shows the encoder circuit. The data is first loaded into a 256 X 2 shift register in one
clock. Then, during each clock, the rightmost cell is checked: if it is an HTW cell, the ES shift
register is enabled and the MSB of the rightmost cell is fed to the ES shift register. After each
clock, the data shift register is shifted one cell to the right. If the ES shift register is enabled, it
is also shifted 1 bit to the right. All of the data cells should be checked; therefore, after (1 + 256)
clocks, the ES shift register has the correction bits corresponding to the 48 leftmost HTW cells.
Consequently, the latency of the encoder is 64.25ns per line, assuming a 4GHz CPU clock. Further
details about the area and energy overheads of the encoder appear in Section 3.3.3.

3.3.2 Decoder. The decoding process begins when a new line is read from main memory by
the memory controller. Before the data is passed to the last-level cache, it is first corrected by the
decoder circuit.

Because the read requests are in the critical path, the decoder logic should be fast. Consequently,
analyzing each data cell should be done in parallel with other cells. Figure 12 shows the decoder
circuit. Let’s say in each data line, cell,, is the data cell in position n, where n = 255 is the leftmost
cell index and n = 0 shows the rightmost cell. In order to perform parallel operations on data cells,
each cell,, should know how many HTW cells are among its left-side cells, that is, cellzss . . . cell, 1.
Therefore, each HTW cell could determine whether it has a correction bit in the ES section or not,
and if yes, it finds the location of its correction bit. In the decoder circuit, first the bits of the cells
are passed through XOR gates. The output of XOR gates—called HTW bits—determines whether
the cell is HTW or not. Then, a set of carry-lookahead adders is used to sum the HTW bits and
form partial sums. The partial sums are in S,[i] format, where n indicates the number of cells
that are in the partial sum, and i is the index of that partial sum. For example, S;[127] indicates,
among cellyss and cellysq, how many HTW cells exist. Then, the partial sums are used to calculate
the number of HTW cells on the left side of each cell, called offset. For example, for cellyss, since
it is the leftmost cell, the offset value is 0. For cells,, the offset is S5[127] + S;[253]. In the worst
case, the maximum of four add/subtract operations among partial sums should be performed to
calculate its offset (e.g., cellzzq).

When each cell determines its offset, its decoding operation can be performed independently.
For each HTW cell whose offset is less than 48, a correction bit is considered in the ES section. The
cell’s offset is used to access its correction bit through a 48-to-1 multiplexer. Based on the cell’s
correction bit, the corrected data is produced and selected through a 2-to-1 multiplexer.

Compared to the encoder, the decoder circuit poses more hardware overhead and complexity. In
the next section, we show that the overhead of both encoder/decoder units is negligible in terms
of area, energy consumption, and latency.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:17

Data

Position=0 HTW Bits Stagel Stage2 «+e+eee Stage8 8-bit Offset Data
— Offset[5:0] If(data==HTW && offset<48) select=1
s1[0 —
1 ' 0 1 s256-s1[0] || 1 48 D UX48t01 1 h“ (Out,~Oufeat_ 17
1 1 2 hieD MUX
. 1-bit[S2[0] — '
5 _radder Offset[5:0] lf(data HTW&&nffset<48) select=1
1 1 fm,— szse-s2(o] || O |48 bt fuirisio P fiout -outferm
1 z "bit MUX
ie|s410
5 — 2 bit ol Offset[5:0] lf(data HTW && offset<48) select=1
s1[2] 0 48 blt
0 o szsesziofs1iz]] [0 L oy o
L bt 0 2-bit D
T — adder| $2[1] i Offset[5: o] If(TW && offset<43) select=1
$128[0 -s4[0]
= lo 1 e — ol §256-54[0 6ot MURIBOTF 2 fGut-Oug it
s L1 o] =2
O H H
g s128[1]
E 0 —sizs2] TOﬁset[S 0] lf(data HTW&&nffset<48] select=1
ER 0 nlm SRS o Muxasto1} o fOut-Outl 22k
Mux
8 = — 1-bit|S2[126] L2 z bieD
i S adder —— Offset[5:0] If(data==HTW && nffset<48) select=1
s2[127] 48 blt 1-bit ~
! L Loz JIT o o
LL] L] sat6a) L L] 2-bit Data
2-bit
’ w 1 S1[254] adder o T ggsueltl[s&‘ lf(data HTW && offset<48)tselect 1
1 :.] | stp2ss] | 1 MUX48to1}s om (Out~Out)} o MUX
— 1-bit L= 2-bit D.
—— — adder|S2[127] —___ Offset[5:0] If(data= HTW&&oﬂset<48] select-
1
' 0 T E 1 43 bit T UxaBto1 1 Out,~Out)| 22t
1 S11255] 1 to fout~outl = LUX
L= L | 2 blt D: 0
Position=255
Fig. 12. Decoder circuit.
Table 6. Encoder/Decoder Overhead
Circuit | Latency Energy Area

Encoder | 64.25ns | 0.02p]/cell | 0.0035mm?
Decoder | 4.94ns | 0.16pJ/cell | 0.036mm?

3.3.3 Encoder/Decoder Overhead. We synthesized the encoder/decoder circuits using a 45nm
process library. Table 6 presents the encoder/decoder overhead. The encoder latency is mostly
hidden since encoding is done when the write request is waiting in the queue. The decoder latency
is also negligible compared to the baseline read latency.

The area overhead of encoder and decoder circuits is about 0.3% of the memory controller, based
on the 12mm? area overhead of the memory controller reported in [33].

The energy overhead of both encoder and decoder units is also negligible compared to overall
dissipated read/write energy per cell.

4 EXPERIMENTAL RESULTS

In this section, evaluation results of the proposed scheme are reported.

4.1 Experimental Settings

We used the gem5 simulator for evaluating our proposal. We modified the simulator to model a
PCM-based main memory with a DRAM cache. The detailed baseline parameters can be found
in Table 7. For MQ pulse, we conservatively assumed that its latency is the the sum of SET and
RESET pulses’ duration, and its energy is the sum of SET energy and RESET energy. Note that
according to [51], the latency of MQ pulse is shorter than SET duration; therefore, our assumption

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:18 S. Rashidi et al.

Table 7. Baseline Parameters

System 8-core CMP, 4GHz

Processor core single issue in-order, 32KB iL1, 32KB dL1, 4-way, 2-cycle access latency

L2 cache 2MB, 8-way, LRU, 64B line size, write back, 6-cycle access latency

Line-State cache 16KB, 8-way, LRU, 64B line size, write back, 6-cycle access latency

DRAM Cache 32MB, 16-way, 64B cache line size, 50ns (200 cycles) access latency,
write back

Main Memory LPDDR3-N-1600, 9 X 8b I/O, 18GB PCM (including 2GB ES), 4KB page,

1 channel, 1 rank per channel, 16 banks per rank, 24 entries read/write
queues per bank, read priority scheduling (unless WRQ is >80% full),
with differential write support

PCM write latency RESET: 5V, 100uA, 29.7p] per bit, 50ns operation latency, 125ns
iteration latency; SET: 3V, 50pA, 22.5p] per bit 150ns operation
latency, 250ns iteration latency (including Ty [21] & verify), MLC
Write Parameters: 2-bit MLC [25, 36, 41]; MQ: 52.2p], 200ns operation
latency, 300ns iteration latency [27, 51]

PCM read latency tCL/tRP = 12/2 cycles, tRCD = 132 cycles (165ns) for MLC read/24
cycles (30ns) for Tri-Level read/5 cycles(6.25ns) for SLC read

is an upper bound for MQ latency and energy. We took into account the latency overheads for the
RWR encoder/decoder, Line-State cache hit/miss, and compression circuits when it is combined
with RWR and WT (discussed later) in all of our simulations.

We also employ differential writes [58] to avoid redundant cell writes; therefore, a read operation
is needed prior to each write operation. In addition, read priority scheduling is adopted to prioritize
the read requests, since the reads are in a critical path. We also assumed there are wear-leveling
techniques that evenly distribute writes at intraline (e.g., [47, 63]) and interline (e.g., [42, 49]) levels.
Note that the intraline wear-leveling technique rotates data to distribute writes among data cells
and the ES section in order to improve lifetime through better wear leveling [47]. Therefore, in the
baseline, the ES section cells also wear out. It is shown that in the RWR method, the overall wear
rate is decreased with respect to baseline.

We simulated the RWR method with 20 workloads of SPEC CPU2006. All of the results are
based on 2B fast-forward, 50M warmup, and 1B real simulation instructions. We compared our
scheme against a 2-bit MLC PCM baseline and the Write Truncate (WT) scheme [26]. All results
are normalized to that of the 2-bit MLC PCM baseline. Note that the RWR scheme improves the
read/write latency, but in the WT scheme the read latency is not improved directly. However, im-
proving the write latency decreases the bank service time; hence, the queueing delay is decreased
and the effective read latency is improved as well.

We also evaluated our scheme and WT method with FPC compression. FPC uses frequent pat-
tern compression [2] to capture the most frequent patterns and store them in fewer bits. A study
in [26] showed that the FPC hardware overhead is negligible (0.7ns for compression, 1.2ns for de-
compression). Note that FPC is orthogonal to both RWR and WT schemes. The compatibility of
FPC with WT was shown in [26].

When RWR is used with FPC, first a line is compressed. If the compressed size is less than half
of the data line size, it could be stored in SLC format. Hence, the subsequent reads to it could
be performed in SLC mode. Otherwise, MLC write is needed; therefore, RWR uses the remaining
unutilized cells (i.e., ES or data cells) in order to relax accessing intermediate state cells. Although

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:19

%
@
=]

10 OReadHit @ WriteHit

& & 53‘ I
Fig. 13. Hit rate of Line-State cache for write/read requests.

compression may increase the percentage of HTW cells, on the other hand, it usually leaves more
unutilized cells to be used by the RWR method.

However, one problem of using compression with RWR is the variable size of data when data
is compressed. In FPC compression, metadata embodies the size of compressed data. But when
FPC combines with RWR, tag bits might not be written exactly (if they have intermediate state
cells approximated by RWR); hence, knowing the exact size of compressed data and correction bits
becomes impossible while decoding. Note that this problem also exists when FPC is used with WT.

To address this issue, a specific alignment of data (i.e., metadata in the leftmost cells, correction
bits of metadata in the rightmost cells) in the line is used to help the RWR decoder circuit find the
corresponding correction bits of the metadata segment. This way, the decoding process is accom-
plished in two steps. In the first step, the decoder finds correction bits of the metadata segment,
corrects metadata, and finds the size of compressed data. After this step, the decoder is able to dis-
tinguish data and correction bits. In the second step, the decoder corrects the compressed data. By
doing so, the decoding latency is doubled (i.e., 9.88ns), but compared to the advantages offered by
compression (e.g., SLC reads), this latency is shown to be tolerable. A more thorough description
of this process is given in Appendix C.

The latency of the RWR encoder circuit remains constant when combined with FPC. According
to the proposed architecture for the RWR encoder in Section 3.3.1, all 256 cells of a data line are
checked. Therefore, the only modification needed is to increase the capacity of the shift register
to hold more correction bits.

4.2 Line-State Cache Hit Rate

Figure 13 shows the hit rate of Line-State cache for SPEC2006 workloads. We considered the size of
Line-State cache to be 16KB, meaning that it is capable of storing #Iifage = 1,024 pages. This size
of Line-State cache is relatively the same as TLB entries in an eight-core processor chip. Therefore,
like TLB, its hit rate is expected to be high. As the figure indicates, the hit rate for read and write
requests is 89.5% and 70.6%, respectively. For sphinx, go_13, and libq workloads, the hit rate for
write requests is below 50%, but the miss penalty of Line-State cache has a negligible impact on
write performance (compared to overall write latency, it is negligible). In addition, the miss penalty
hides as a result of improved write latency due to application of the RWR method.

Note that according to the proposed scheme in [26], a Line-State cache is also needed, since the
memory controller must be aware of those lines stored in SLC or MLC mode or those that contain
faulty cells, to disable WT or FPC. Such information is essential for the memory controller to issue
proper read commands and successfully decode data.

Due to the relatively high hit rate of Line-State cache in SPEC2006 workloads, we assumed that
the state bits of all memory lines are stored in MLC mode in PCM memory; hence, it imposes 0.4%
storage overhead. However, for workloads requiring large memory footprints, Line-State cache

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:20 S. Rashidi et al.

I

I I il

I I il
I I i I |
[O it 11
I8l [I It 1l) I8l I8l IIII I8l I8l IIII

L |

&

|
|
|
Il
I I8
o

>

WT(Read Latency) OProposed(Read Latency) BWT(Write Latency) B Proposed(Write Latency) (I
S & >
& & & S
g &
v

& > i
O
&

o N 4 & o $ N R g o LS ,

e o§> & & Q&&' b‘?s é@o S &S
A & ¢

< R « ©

[OWT+FPC(Read Latency) OProposed+FPC(Read Latency) BWT+FPC(Write Latency) M Proposed+FPC(Write Latency) |

Fig. 15. Read & write latency for WT+FPC and RWR+FPC (normalized to 2-bit MLC).

might negatively impact the overall performance due to an increased miss rate. A poor hit rate
might reduce read bandwidth to half since each read operation requires two accesses to memory.
One possible solution is to reduce the miss penalty by storing state bits in SLC form in the main
memory. Due to the high asymmetry of sense latency for different resistance levels in M-Metric,
SLC read has much lower latency than MLC read (6.25ns vs. 165ns); therefore, miss requests will
be responded to faster. In this case, storage overhead of state bits becomes 0.8%, which is still
negligible, while a miss penalty incurs much lower latency overhead.

4.3 Read and Write Latency

Figure 14 shows the effective read and write latency for RWR and WT schemes normalized to the
2-bit MLC PCM baseline. As the figure shows, by using the RWR method, the effective read and
write latency is decreased by 57.2% and 56.1%, respectively. Compared to the WT scheme that
reduces the write latency by 22.8% and read latency by 3.2%, the RWR method outperforms WT
in terms of read/write latency.

Figure 15 shows the effective read/write latency of the RWR+FPC and WT+FPC schemes. As
the figure indicates, applying FPC enhances the overall effective access latency for different work-
loads. However, for some workloads (e.g., Ibm), the effective access latency benefit of WT+FPC and
RWR+FPC is less than WT and RWR, respectively. The reason in this case is that FPC increases
the amount of HTW cells while it mostly fails to store the lines in SLC mode. The combination of
RWR+FPC reduces the write latency by 67% and read latency by 75.2%, while WT+FPC reduces
the write latency by 41.2% and read latency by 59.7%.

4.4 Write Energy

It is important that improving the read/write latency does not come at the cost of increasing write
energy. Moreover, write energy relates to cell wearout; that is, increasing the write energy leads
to decreasing PCM lifetime [45]. Figure 16 shows the write energy of RWR, WT, RWR+FPC, and
WT+FPC methods normalized to 2-bit MLC PCM baseline. As it shown, the RWR method also

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:21

2.02, .8
14 151« 2.2« »1 45

! \
o OF (10 (1 |
I IH OR U {10 (VO | L
I IH OR | UN {10 (VW (O
i LI OR | UN {10 (VW (O
| \ LM (00 (U0 (VA |G [V
bé, e&q ’bb

S ——

T DProposed IWT+FPC lProposed+l~‘PC
0
A & A & & &
& & & S ¥ < e
B ¢ & & & & & & & > < A
& TS S & $ & <
g

Fig. 17. IPC (normalized to 2-bit MLC).

decreases the write energy by 6.6%. This is because the number of P&V iterations for a large
number of HTW cells is decreased. It is also shown that the write latency improvement in the WT
method comes at the cost of increased write energy of 14.6%. It is because in WT, only the last P&V
iteration of a few cells are skipped, while the ECC section itself consumes more energy. Applying
FPC increases the average write energy in both RWR and WT schemes, since it increases the bit-
flip rate. To be more specific, using only FPC increases the write energy by 13.7% over the baseline,
while, for RWR+FPC and WT+FPC, the increased write energy is 6.7% and 19.8%, respectively.

4.5 Overall Performance (IPC)

The impact of reduced read/write latency has improved the overall system performance in terms of
IPC. The improved IPC depends on the reduced read/write latency, which is workload dependent.
Figure 17 shows the IPC results of RWR, WT, RWR+FPC, and WT+FPC. WT increases the IPC by
8.6%, while RWR increases the IPC by 26.9%. WT+FPC increases the IPC by 11.7% and RWR+FPC
increases the IPC by 37.4%. It should be noted that although in WT+FPC, the effective access
latency is close to that of RWR, the IPC benefit of WT+FPC is about half of RWR. It is because in
WT+FPC, most of the improved access latency comes from the workloads that are not memory
intensive. Therefore, in WT+FPC, the improved access latency does not impact IPC significantly.

4.6 Wearout

Reducing write energy corresponds to enhancing PCM lifetime [4, 45, 60]. We evaluated the effect
of our proposed scheme and other implemented methods on memory lifetime. Like [30], since each
bank is a separate entity and can be written independently, we focus on determining the lifetime
of one bank in terms of the number of possible writes to one memory bank. The final lifetime
point for each bank is where the capacity of the bank drops to half. In the evaluated configuration,
each bank has 1GB capacity with 64B lines. Like similar studies in [30, 39], we assume the write
endurance of each cell follows a normal distribution with a mean of 2% writes and Coefficient of
Variation (COV) varying from 10% to 30%. To realize the difference in wearout cost of write pulses

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:22 S. Rashidi et al.

1E+15
] | Baseline OwWT OProposed BWT+FPC H Proposed+FPC |
S 8E+14
=
= 6E+14 J
: \
o 4E+14 \
£ \
£ 2E+14 \
2 N
z 0

0.1 0.15 0.2 0.25 0.3 Gmean

cov

Fig. 18. Lifetime of implemented schemes for different values of COV.

14

13'5 [owr oProposed BWT+FPC W Proposed+FPC
13
o 125
& 12
&
115
11
| [N O 0 mi=l | 1
1

0% 25% 50% 75% 100%

Lifetime

Fig. 19. IPC of implemented schemes at different periods of memory lifetime (normalized to baseline).

(e.g., SET), we weighted their wearout cost based on their energy consumption (as in [4]). This
means that SET pulse has the lowest wearout cost and MQ pulse has the highest wearout cost of
2.32x of SET’s.

We first analyzed the behavior of each workload in order to determine the average cell values
and energy consumption in each write operation. Then, for each workload, we followed the ap-
proach in [47] by creating a test set of 1,024 pages and applying writes to determine the lifetime
of test pages. We also consider disabling the proposed scheme for faulty lines in lifetime analysis.
Afterward, we scaled this lifetime to a 1GB memory bank. Figure 18 shows the average lifetime of
baseline, WT, RWR, WT+FPC, and RWR+FPC memory systems for all workloads. Since in RWR
write energy is reduced, lifetime is expected to improve as well. On the other hand, WT, WT+FPC,
and RWR+FPC reduce the lifetime in accordance with the increased write energy. Our simulations
show that, on average, RWR improves lifetime by 5.6%, while WT, WT+FPC, and RWR+FPC reduce
the lifetime by 10.1%, 13.1%, and 3.4%, respectively.

Wearout degrades the efficiency of the proposed scheme (and also other schemes using the ES
section) when memory ages and stuck-at faults begin to appear. We assume that the proposed
scheme is disabled for lines with faulty cells to simplify the logic. Therefore, memory has less
opportunity to use our proposed scheme as time passes and faulty lines appear. To analyze the
effect of memory aging on the proposed scheme, we first set the COV factor to 20% (like the
similar study in [39]). Figure 19 shows the performance degradation of WT, RWR, WT+FPC, and
RWR+FPC schemes at different points of memory lifetime. Note that for compatibility of WT and
WT+FPC with hard faults, we implemented the original proposal in [26] by sharing unutilized
storage parts among ECP entries and ECC metadata. Note that WT and WT+FPC schemes’ per-
formance also degrades when the number of faults per line accumulates and there is not enough
space for ECC or FPC metadata to fit in the ES section. As Figure 19 indicates, RWR and other im-
plemented schemes show low performance degradation during the first half of memory lifetime.
This is because according to motivation 3 in Section 3.1, less than 4% of memory lines are faulty
in this period. The performance benefits of WT, RWR, WT+FPC, and RWR+FPC schemes remain
unchanged during the first quarter of memory lifetime. When memory reaches its half lifetime,

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:23

the performance gain of WT, RWR, WT+FPC, and RWR+FPC schemes becomes 8.5%, 26.1%, 11.7%,
and 36.7%, respectively. As the time passes, the number of faulty lines increases. When 75% of
memory lifetime is passed, overall performance for WT, RWR, WT+FPC, and RWR+FPC schemes
degrades to 8.3%, 21.8%, 11.6%, and 29.2%, respectively. The reason for the low degradation of WT
and WT+FPC schemes at this point is that the ES section and compression could provide enough
space for both ECP and ECC metadata to fit. Finally, when memory approaches its end of life,
more than 85% of lines are faulty and the performance of RWR and RWR+FPC schemes drastically
falls. At this point, WT and WT+FPC schemes outperform other schemes since they tolerate more
faults (for the cost of having more complexity). Here, the IPC benefit for WT, RWR, WT+FPC, and
RWR+FPC schemes falls to 5.8%, 5.5%, 10.1%, and 7.6%, respectively.

5 RELATED WORK
5.1 Relevant Works to Address Other Aspects of PCM

Despite access latency, PCM memory still suffers from several drawbacks including limited life-
time, soft errors, and high energy consumption. In order to mitigate such drawbacks, several tech-
niques were proposed to make PCM a viable candidate for replacing DRAM.

Lifetime. Zhou et al. [63] introduced a set of techniques to improve PCM lifetime. Differential
write is proposed to omit write operations for the cells whose stored value and new value are
identical. Another scheme, called row shifting, periodically rotates the contents of the row by
1 byte to fairly spread wearout within cells of a row. Segment swapping swaps the segments of
PCM memory to distribute writes among memory lines. In [42, 49], some wear-leveling techniques
for lifetime improvement were also provided.

The authors in [46] suggested to use approximate storage since many applications do not need
exact data. Approximation of PCM is done by relaxing the target resistance bands, which leads
to a smaller number of P&V iterations. Fewer iterations correspond to saving time, energy, and
lifetime. Relaxing the target bands exposes data to drift since margins between neighboring states
are decreased; therefore, this method is suitable only for approximate applications.

Soft Error. To address the drift problem, authors in [57] suggest to dynamically increase refer-
ence resistances for the lines with an outdated last write. Another method called ReadDuo (pro-
posed in [55]) tries to guarantee the reliability of MLC PCM by issuing an M-Metric read if the
R-Metric read fails to retrieve data correctly. The authors in [24] highlighted the fact that in ad-
dition to the initial resistance and elapsed time, resistance drift strongly depends on temperature.
Therefore, they provided a model to take into account temperature as well as other parameters in
order to predict cell resistance after drift. This model allows the read circuit to dynamically adjust
its reference resistance values, and hence soft error probability is decreased.

Energy. The authors in [30] suggested two novel schemes to make PCM a feasible solution as
main memory. In memories, a wide row buffer is used to store contents of adjacent memory lines;
hence, requests to the nearby lines are served via row buffer rather than sensing from PCM cells.
Based on the fact that in PCM, sensing and buffering are performed by separate peripherals, it is
possible to choose a set of narrower row buffers rather than a single row buffer. Narrower write
buffers eliminate excess area and energy of sense peripherals, and multiple row buffers exploit
locality to coalesce writes, and hence, performance is improved as well. Another scheme is to keep
track of modified data at byte/line granularity in the cache level. Consequently, clean bytes/lines
are skipped when a write to PCM memory is issued. This results in additional improvement in
energy consumption and lifetime of PCM.

Wang et al. [54] introduced a dynamic coding technique to reduce the number of cells with
intermediate states, since intermediate levels need more energy to be written. Some cache

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:24 S. Rashidi et al.

management techniques [62], [56] try to organize LLC to decrease the number of writes to PCM
memory, because the writes are more expensive in terms of energy, access time, and endurance.

5.2 Similar Challenges in Other Nonvolatile Technologies

It is worth noting that many concepts in PCM exist in most nonvolatile memory technologies.
As an example, in flash memory, threshold voltages of flash transistors determine the cell value.
For MLC NAND flash, recent work [11] has shown distortion in threshold distribution as a result
of charge leakage (similar to soft errors in PCM). Thereby, dynamically changing sense voltage
[11] or periodically rewriting data [13] (similar to scrubbing in PCM) might mitigate soft errors.
Similar to MLC PCM, writing to MLC NAND flash requires multiple write-read iterations [15,
38]. But flash cell programming can lead to cell-to-cell program interference, which may create
errors in neighboring flash cells [12, 14]. Another issue related to flash is read disturbance, that is,
accidental writes to neighboring cells in read operations [7, 10, 18]. Hence, recent studies in [8]
proposed novel schemes to mitigate program interference and read disturbance at write operations
in MLC flash. Another limitation is the lifetime of flash cells (similar to hard failures in PCM) due to
expansion of voltage distribution as cycles of program/erases accumulate [9, 34]. As a result, some
flash memories (e.g., [52]) rely on dynamically changing sense voltages to a lower bit-error-rate
and improve lifetime as wearout increases. In general, one common way to tolerate soft and hard
errors in commercial flash devices is to use ECC [7]. It is very similar to reserved extra storage in
PCM for error recovery purposes.

STT-RAM is another family of nonvolatile memories that stores data based on the magnetic
orientation of its layers. Each STT-RAM cell consists of two layers. The magnetic orientation
of constitutive layers defines cell resistance. Recent studies in [6, 61] showed the feasibility of
storing MLC in STT-RAM. In recent years, several efforts have been made to use STT-RAM in
cache [53] and main memory [29] levels. Like other types of nonvolatile memories, STT-RAM also
suffers from soft and hard failures that need careful treatment before it is deployed in commercial
products.

Due to common similarities in nonvolatile memories, it is possible to apply some methods of
one technology to another. The ideas of this article (i.e., utilizing reserved storage for performance
purposes) is general and could possibly be applied to other NVM technologies, which is left for
future work.

6 CONCLUSIONS

We proposed the Relaxed Write/Read (RWR) method for improving the performance of MLC
PCM. RWR marks the intermediate state cells by programming them to the intermediate state of
Tri-Level rather than their exact value in MLC mode, and uses the idle extra storage (dedicated to
hard error correction) to determine their exact resistance levels. In addition, RWR writes major
amounts of lines in pure Tri-Level format, hence improving their read latency significantly. Our
technique improved the read latency by 57.2% and write latency by 56.1%, while it decreased the
write energy by 6.6% and improved the IPC by 26.9% over the 2-bit MLC PCM baseline. Also,
RWR with a compression technique (FPC) improved the read latency by 75.2% and write latency
by 67%, while increasing the write energy by 6.7% and improving the IPC by 37.4% over the 2-bit
MLC PCM baseline.

APPENDIXES
A WRITE MODEL FOR MLC PCM

The write model characterizes the write operation. One property of the write model is to describe
the percentage of the cells that finish their write after each P&V iteration. Here, we use the model

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:25

proposed in [28, 46]. Algorithm 1 describes the write model for programming a cell to intermediate
states. As is shown, first a RESET pulse is applied to drive the cell to the amorphous state. Then,
the current resistance of the cell is measured. If it is not in the desired target range, then the
difference between the current and the target resistance is calculated. A new programming
pulse—that is, the SET pulse—is applied to reduce the difference. The process of applying SET
pulses continues until the cell resistance is placed within the desired resistance band. Note that
by applying each SET pulse, the current resistance changes with a Gaussian distribution with the
mean value of target resistance. The parameter P determines the average number of required P&V
iterations. Higher P values imply that the cell resistance is changed at higher variances after each
P&V iteration, and hence, it is less likely that the resistance is placed at an appropriate range after
a P&V iteration, resulting in more write iterations for higher values of P.

ALGORITHM 1: MLC write model for intermediate states
Inputs: TB: Target band
R;: Target resistance (center of TB)
R: Current value of cell resistance
Variables: Nj;: Current # of P&V iterations
size: Difference between R; and R
Outputs: R, Ny
1 Nip=1;
2 R = N(RRESET> 03);
3 while |[R; — R| > TB do
4 Nigr + +;
5 size = Ry — R;
6 R+ = N(size,size.P);
7 end

8 return R, Nj;;

In order to fit the write model results to real data [36], the P parameter should be set in a way
that results in an average iteration of 4.05 for “01” and “10” values, as reported in [36]. Therefore,
we performed a Monte-Carlo simulation by creating a test set of 50 million cells for “01” and “10”
values and applying Algorithm 1 for different Pvalues. The amount of Pthat leads to a 4.05 average
number of iterations for “01” and “10” was 0.6 and 0.51, respectively. Figure 20 shows the percent-
age of programmed cells as a function of P&V iterations in our model and the real prototype in
[36]. As shown in the figure, our model tracks the real data with an acceptable error of less than 5%.

100 C—r
w0 /—‘7

60

[—"10" —'o01 Nirschl |

40

20

Percent of cells

o L
1 2 3 45 6 7 8 9 1011 12 13 14 15 16
Number of iterations

Fig. 20. Percentage of programmed cells versus the number of P&V iterations.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

12:26 S. Rashidi et al.

B CONVENTIONAL READ METRIC (R-METRIC)

In the conventional read mechanism (R-Metric), a fixed bias voltage is applied to the cell and
the cell’s current is sensed. However, the bias voltage should be relatively small to avoid threshold
switching (i.e., accidental writes to the cell). It is called R-Metric because it measures the resistance
characteristics of the PCM cell. According to the study in [48], the conventional R-Metric suffers
from several drawbacks. One drawback is the low signal-to-noise ratio (SNR) of sensed current at
high resistance levels, because at high resistance levels, the sensed current is too small and can be
affected by small noises.

Another drawback is that R-Metric is crucially affected by drift. To be more specific, according
to the study in [48], the I-V equation and resistance equation (for small V) of PCM devices are

given as
2

s teekp) AZV
I =2g—L NpAZe— T Sinh | 127 (5a)
70 ZKTuAeﬁ
Ec—-E
KTuAEﬂ.Toe KT b
= 5
q27rr}23/fNTAZ2 (5b)

The parameters used above are similar to those used and described in Section 2.2.1. As Equat-
ions (5a) and (5b) indicate, the resistance of PCM (and sensed current I) is an exponential function
of activation energy (E. — Er). Thus, R-Metric is too vulnerable to temporal drift, which makes it
inappropriate as a read mechanism [48].

C DATA ALIGNMENT WHEN RWR IS COMBINED WITH FPC

FPC divides data into 32-bit segments and tries to compress each segment individually by find-
ing predefined patterns in it. In FPC, the seven most frequent patterns are defined; hence, if each
segment matches with any of these patterns, it could be coded in a few bits. Therefore, 3 bits per
segment, called prefix, are needed to indicate what pattern is used, or if the segment is incom-
pressible. This implies that for a 512-bit line, 48 bits of metadata (stored in 24 cells) are needed to
store prefixes. In RWR+FPC, a memory line can be in four states:

e SLC form: The line is stored in SLC form due to the efficiency of compression (compression
ratio > 2). In this state, SLC read operations are issued for subsequent reads of the line.

e Fully Tri-Level: The line is in Tri-Level form, since all Hard-to-Write (HTW) cells of the
line are relaxed by RWR. Hence, it could be read as in Tri-Level read operation.

e Partially Tri-Level: The line is in MLC form, and some HTW cells are relaxed by RWR.
Therefore, an MLC read operation is needed to reliably retrieve the data.

o ES section is used for hard error correction: The line contains faulty cells, and hence
both RWR and FPC are disabled for the line and the ES section is used to cover hard failures.
In this state, all reads/writes perform as in the MLC system.

This implies that in RWR+FPC, 2 bits per line are sufficient to track the state of each line (like
RWR). Note that when the line does not contain faulty cells, we assume that FPC always applies to
the line even if it fails to compress the line properly. This is to simplify the encoding/decoding logic.

Figure 21 shows an example data alignment when RWR is used along with FPC. In this arrange-
ment, metadata is always aligned to the 24 leftmost cells among 256 + 32 = 288 cells of the line.
The correction bits region is aligned to the rightmost cells, while compressed data bits are placed
between prefix bits and correction bits. Here, correction bits are arranged in some specific manner.
In this arrangement, the rightmost correction bit is mapped to the leftmost HTW cell in the line,

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

Improving MLC PCM Performance 12:27

<—Metadata (24 cells)—>—<———Compressed data Correction bits——— >

P oo[E11]oo] - [EN11]oo[ro] - r1] [L2[uo] - T[r1frz]

|
Ternary to Binary
1

.......... 0|10

peeeeeeeececeesecseceaea.

Fig. 21. FPC+RWR line cells’ arrangement.

one after the rightmost bit in correction bits corresponds to one after the leftmost HTW cell in
the line, and so on (see Figure 21). Such an alignment allows the RWR decoder to easily correct
the metadata region. Since the size and placement of metadata cells are always fixed, RWR can
detect HTW cells of metadata and their corresponding correction bits and correct metadata. After
constructing metadata, the decoding process becomes like the process explained in Section 3.3.2.

Note that the only assumption here is that all HTW cells of the metadata section have one
mapped bit in the correction bits section. This assumption is always valid. In the worst case, if all
24 cells of metadata are HTW, at least 16 unutilized cells are needed to store 24 correction bits
of the metadata section in Tri-Level form. In the worst case of compression, when all segments
fail to compress in FPC, metadata + data occupies 24 + 256 = 280 cells of the line, leaving only
288 — 280 = 8 cells available for RWR. But in this case, according to the FPC compression method
[2], the prefixes of all segments are “111.” This means in this case, metadata has no HTW cells at
all. In other cases, at least one segment is compressed. Compression of each segment at least adds
eight more unutilized cells in FPC compression. That is, in other cases with at least one segment
being compressed, there are at least 8 + 8 = 16 unutilized cells in the line, sufficient to cover the
whole metadata section. Therefore, each HTW cell of metadata always has 1 mapped bit in RWR.

REFERENCES

[1] N. Agarwal and T. F. Wenisch. 2017. Thermostat: Application-transparent page management for two-tiered main
memory. In Proceedings of the 22nd International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’17). ACM, New York, 631-644. DOI : http://dx.doi.org/10.1145/3037697.3037706

[2] A.R.Alameldeen and D. A. Wood. 2004. Adaptive cache compression for high-performance processors. In Proceedings
of the 31st Annual International Symposium on Computer Architecture, 2004. 212-223. DOI : http://dx.doi.org/10.1109/
ISCA.2004.1310776

[3] M. Arjomand, M. T. Kandemir, A. Sivasubramaniam, and C. R. Das. 2016. Boosting access parallelism to PCM-based
main memory. In Proceedings of the 43rd International Symposium on Computer Architecture (ISCA’16). IEEE Press,
Piscataway, NJ, 695-706. DOI : http://dx.doi.org/10.1109/ISCA.2016.66

[4] M. Asadinia, M. Arjomand, and H. Sarbazi-Azad. 2015. Variable resistance spectrum assignment in phase change
memory systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 23, 11 (Nov. 2015), 2657-2670.
DOI: http://dx.doi.org/10.1109/TVLSI.2014.2363102

[5] A.Athmanathan, M. Stanisavljevic, J. Cheon, S. Kang, C. Ahn, J. Yoon, M. Shin, T. Kim, N. Papandreou, H. Pozidis, and
E. Eleftheriou. 2014. A 6-bit drift-resilient readout scheme for multi-level phase-change memory. In Proceedings of
the 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC’14). 137-140. DOI : http://dx.doi.org/10.1109/ASSCC.2014.
7008879

[6] X.Bi, M. Mao, D. Wang, and H. Li. 2013. Unleashing the potential of MLC STT-RAM caches. In Proceedings of the 2013
IEEE/ACM International Conference on Computer-Aided Design (ICCAD’13). 429-436. DOI : http://dx.doi.org/10.1109/
ICCAD.2013.6691153

[7] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu. 2017. Error characterization, mitigation, and recovery in flash-
memory-based solid-state drives. Proceedings of the IEEE 105, 9 (Sept. 2017), 1666—1704. DOI : http://dx.doi.org/10.1109/
JPROC.2017.2713127

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

http://dx.doi.org/10.1145/3037697.3037706
http://dx.doi.org/10.1109/ISCA.2004.1310776
http://dx.doi.org/10.1109/ISCA.2016.66
http://dx.doi.org/10.1109/TVLSI.2014.2363102
http://dx.doi.org/10.1109/ASSCC.2014.7008879
http://dx.doi.org/10.1109/ICCAD.2013.6691153
http://dx.doi.org/10.1109/JPROC.2017.2713127

12:28 S. Rashidi et al.

(8]

(9]

(10]

(1]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch. 2017. Vulnerabilities in MLC NAND flash memory
programming: Experimental analysis, exploits, and mitigation techniques. In Proceedings of the 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA’17). 49-60. DOI : http://dx.doi.org/10.1109/HPCA.2017.
61

Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. 2013. Threshold voltage distribution in MLC NAND flash memory:
Characterization, analysis, and modeling. In Proceedings of the 2013 Design, Automation Test in Europe Conference
Exhibition (DATE’13). 1285-1290. DOI : http://dx.doi.org/10.7873/DATE.2013.266

Y. Cai, Y. Luo, S. Ghose, and O. Mutlu. 2015. Read disturb errors in MLC NAND flash memory: Characterization,
mitigation, and recovery. In Proceedings of the 2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. 438—449. DOI : http://dx.doi.org/10.1109/DSN.2015.49

Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu. 2015. Data retention in MLC NAND flash memory: Charac-
terization, optimization, and recovery. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA’15). 551-563. DOI : http://dx.doi.org/10.1109/HPCA.2015.7056062

Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai. 2013. Program interference in MLC NAND flash memory: Character-
ization, modeling, and mitigation. In Proceedings of the 2013 IEEE 31st International Conference on Computer Design
(ICCD’13). 123-130. DOI : http://dx.doi.org/10.1109/ICCD.2013.6657034

Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal, and K. Mai. 2012. Flash correct-and-refresh: Retention-
aware error management for increased flash memory lifetime. In Proceedings of the 2012 IEEE 30th International
Conference on Computer Design (ICCD’12). 94-101. DOI : http://dx.doi.org/10.1109/ICCD.2012.6378623

Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai. 2014. Neighbor-cell assisted error correction
for MLC NAND flash memories. SSIGMETRICS Performance Evaluation Review 42, 1 (June 2014), 491-504. DOI : http://
dx.doi.org/10.1145/2637364.2591994

R. A. Cernea, L. Pham, F. Moogat, S. Chan, B. Le, Y. Li, S. Tsao, T. Y. Tseng, K. Nguyen, J. Li, J. Hu, J. H. Yuh, C. Hsu, F.
Zhang, T. Kamei, H. Nasu, P. Kliza, K. Htoo, J. Lutze, Y. Dong, M. Higashitani, J. Yang, H. S. Lin, V. Sakhamuri, A. Li,
F.Pan, S. Yadala, S. Taigor, K. Pradhan, J. Lan, J. Chan, T. Abe, Y. Fukuda, H. Mukai, K. Kawakami, C. Liang, T. Ip, S. F.
Chang, J. Lakshmipathi, S. Huynh, D. Pantelakis, M. Mofidi, and K. Quader. 2009. A 34 MB/s MLC write throughput
16 Gb NAND With all bit line architecture on 56 nm technology. IEEE Journal of Solid-State Circuits 44, 1 (Jan. 2009),
186-194. DOI : http://dx.doi.org/10.1109/JSSC.2008.2007152

Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem. 2013. Bit mapping for balanced PCM cell programming. In
Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA’13). ACM, New York, 428-439.
DOI:http://dx.doi.org/10.1145/2485922.2485959

J. Fan, S. Jiang, J. Shu, Y. Zhang, and W. Zhen. 2013. Aegis: Partitioning data block for efficient recovery of stuck-at-
faults in phase change memory. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-46’13). ACM, New York, 433-444. DOI : http://dx.doi.org/10.1145/2540708.2540745

L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel, and]J. K. Wolf. 2009. Characterizing flash
memory: Anomalies, observations, and applications. In Proceedings of the 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’09). 24-33. DOI : http://dx.doi.org/10.1145/1669112.1669118

M. Hoseinzadeh, M. Arjomand, and H. Sarbazi-Azad. 2015. SPCM: The striped phase change memory. ACM Trans-
actions on Architecture and Code Optimization 12, 4, Article 38 (Nov. 2015), 25 pages. DOI : http://dx.doi.org/10.1145/
2829951

Y. N. Hwang, C. Y. Um, J. H. Lee, C. G. Wei, H. R. Oh, G. T. Jeong, H. S. Jeong, C. H. Kim, and C. H. Chung. 2010.
MLC PRAM with SLC write-speed and robust read scheme. In Proceedings of the 2010 Symposium on VLSI Technology.
201-202. DOI : http://dx.doi.org/10.1109/VLSIT.2010.5556227

Y. N. Hwang, C. Y. Um, J. H. Lee, C. G. Wei, H. R. Oh, G. T. Jeong, H. S. Jeong, C. H. Kim, and C. H. Chung. 2010.
MLC PRAM with SLC write-speed and robust read scheme. In Proceedings of the 2010 Symposium on VLSI Technology.
201-202. DOI: http://dx.doi.org/10.1109/VLSIT.2010.5556227

D. Ielmini, A. L. Lacaita, and D. Mantegazza. 2007. Recovery and drift dynamics of resistance and threshold voltages
in phase-change memories. I[EEE Transactions on Electron Devices 54, 2 (Feb. 2007), 308-315. DOI : http://dx.doi.org/10.
1109/TED.2006.888752

E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Moscibroda. 2010. Dynamically replicated memory: Building
reliable systems from nanoscale resistive memories. In Proceedings of the 15th Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems (ASPLOS XV’°10). ACM, New York, 3-14. DOI : http://dx.
doi.org/10.1145/1736020.1736023

M. Jalili, M. Arjomand, and H. S. Azad. 2014. A reliable 3D MLC PCM architecture with resistance drift predictor. In
Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 204-215.
DOI:http://dx.doi.org/10.1109/DSN.2014.31

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

http://dx.doi.org/10.1109/HPCA.2017.61
http://dx.doi.org/10.7873/DATE.2013.266
http://dx.doi.org/10.1109/DSN.2015.49
http://dx.doi.org/10.1109/HPCA.2015.7056062
http://dx.doi.org/10.1109/ICCD.2013.6657034
http://dx.doi.org/10.1109/ICCD.2012.6378623
http://dx.doi.org/10.1145/2637364.2591994
http://dx.doi.org/10.1109/JSSC.2008.2007152
http://dx.doi.org/10.1145/2485922.2485959
http://dx.doi.org/10.1145/2540708.2540745
http://dx.doi.org/10.1145/1669112.1669118
http://dx.doi.org/10.1145/2829951
http://dx.doi.org/10.1109/VLSIT.2010.5556227
http://dx.doi.org/10.1109/VLSIT.2010.5556227
http://dx.doi.org/10.1109/TED.2006.888752
http://dx.doi.org/10.1145/1736020.1736023
http://dx.doi.org/10.1109/DSN.2014.31

Improving MLC PCM Performance 12:29

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(39]

(40]

(41]

(42]

L. Jiang, B. Zhao, J. Yang, and Y. Zhang. 2014. A low power and reliable charge pump design for phase change
memories. In Proceedings of the 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA’14).
397-408. DOI : http://dx.doi.org/10.1109/ISCA.2014.6853194

L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers. 2012. Improving write operations in MLC phase change
memory. In Proceedings of the IEEE International Symposium on High-Performance Comp Architecture. 1-10. DOI:
http://dx.doi.org/10.1109/HPCA.2012.6169027

D. H. Kang, J. H. Lee, J. H. Kong, D. Ha, J. Yu, C. Y. Um, J. H. Park, F. Yeung, J. H. Kim, W. L. Park, Y. J. Jeon,
M. K. Lee, Y. J. Song, J. H. Oh, G. T. Jeong, and H. S. Jeong. 2008. Two-bit cell operation in diode-switch phase
change memory cells with 90nm technology. In Proceedings of the 2008 Symposium on VLSI Technology. 98—99. DOI:
http://dx.doi.org/10.1109/VLSIT.2008.4588577

Y. Kim, S. Yoo, and S. Lee. 2016. Improving write performance by controlling target resistance distributions in MLC
PRAM. ACM Transactions on Design Automation of Electronic Systems 21, 2, Article 23 (Jan. 2016), 27 pages. DOI : http://
dx.doi.org/10.1145/2820610

E. Kltrsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. 2013. Evaluating STT-RAM as an energy-efficient main
memory alternative. In Proceedings of the 2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS’13). 256-267. DOI : http://dx.doi.org/10.1109/ISPASS.2013.6557176

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. 2009. Architecting phase change memory as a scalable dram alternative. In
Proceedings of the 36th Annual International Symposium on Computer Architecture (ISCA’09). ACM, New York, 2-13.
DOI:http://dx.doi.org/10.1145/1555754.1555758

C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W. Keller. 2003. Energy management for commercial
servers. Computer 36, 12 (Dec. 2003), 39-48. DOI : http://dx.doi.org/10.1109/MC.2003.1250880

Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu. 2017. Utility-based hybrid memory management. In Proceedings
of the 2017 IEEE International Conference on Cluster Computing (CLUSTER’17). 152-165. DOI : http://dx.doi.org/10.1109/
CLUSTER.2017.130

P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, . Picorel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B.
Falsafi. 2012. Scale-out processors. In Proceedings of the 39th Annual International Symposium on Computer Architecture
(ISCA’12). IEEE Computer Society, Washington, DC, 500-511. http://dl.acm.org/citation.cfm?id=2337159.2337217

Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu. 2016. Enabling accurate and practical online Flash channel
modeling for modern MLC NAND flash memory. IEEE Journal on Selected Areas in Communications 34, 9 (Sept. 2016),
2294-2311. DOI : http://dx.doi.org/10.1109/JSAC.2016.2603608

P. J. Nair, C. Chou, B. Rajendran, and M. K. Qureshi. 2015. Reducing read latency of phase change memory via early
read and turbo read. In Proceedings of the 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA’15). 309-319. DOI : http://dx.doi.org/10.1109/HPCA.2015.7056042

T. Nirschl, J. B. Philipp, T. D. Happ, G. W. Burr, B. Rajendran, M. H. Lee, A. Schrott, M. Yang, M. Breitwisch, C. F.
Chen, E. Joseph, M. Lamorey, R. Cheek, S. H. Chen, S. Zaidi, S. Raoux, Y. C. Chen, Y. Zhu, R. Bergmann, H. L. Lung,
and C. Lam. 2007. Write strategies for 2 and 4-bit multi-level phase-change memory. In Proceedings of the 2007 IEEE
International Electron Devices Meeting. 461-464. DOI : http://dx.doi.org/10.1109/IEDM.2007.4418973

N. Papandreou, A. Sebastian, A. Pantazi, M. Breitwisch, C. Lam, H. Pozidis, and E. Eleftheriou. 2011. Drift-resilient
cell-state metric for multilevel phase-change memory. In Proceedings of the 2011 IEEE International Electron Devices
Meeting (IEDM’11). 3.5.1-3.5.4. DOI : http://dx.doi.org/10.1109/IEDM.2011.6131482

K. T. Park, M. Kang, D. Kim, S. W. Hwang, B. Y. Choi, Y. T. Lee, C. Kim, and K. Kim. 2008. A zeroing cell-to-cell
interference page architecture with temporary LSB storing and parallel MSB program scheme for MLC NAND Flash
memories. [EEE Journal of Solid-State Circuits 43, 4 (April 2008), 919-928. DOI : http://dx.doi.org/10.1109/JSSC.2008.
917558

M. K. Qureshi. 2011. Pay-as-you-go: Low-overhead hard-error correction for phase change memories. In Proceedings
of the 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’11). 318-328.

M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montafio, and J. P. Karidis. 2010. Morphable memory system: A
robust architecture for exploiting multi-level phase change memories. In Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA’10). ACM, New York, 153-162. DOI : http://dx.doi.org/10.1145/1815961.
1815981

M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montao. 2010. Improving read performance of phase change
memories via write cancellation and write pausing. In Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA’10). 1-11. DOI : http://dx.doi.org/10.1109/HPCA.2010.5416645

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali. 2009. Enhancing lifetime and se-
curity of PCM-based main memory with start-gap wear leveling. In Proceedings of the 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO 42°09). ACM, New York, 14-23. DOI: http://dx.doi.org/10.1145/
1669112.1669117

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

http://dx.doi.org/10.1109/ISCA.2014.6853194
http://dx.doi.org/10.1109/HPCA.2012.6169027
http://dx.doi.org/10.1109/VLSIT.2008.4588577
http://dx.doi.org/10.1145/2820610
http://dx.doi.org/10.1109/ISPASS.2013.6557176
http://dx.doi.org/10.1145/1555754.1555758
http://dx.doi.org/10.1109/MC.2003.1250880
http://dx.doi.org/10.1109/CLUSTER.2017.130
http://dl.acm.org/citation.cfm?id$=$2337159.2337217
http://dx.doi.org/10.1109/JSAC.2016.2603608
http://dx.doi.org/10.1109/HPCA.2015.7056042
http://dx.doi.org/10.1109/IEDM.2007.4418973
http://dx.doi.org/10.1109/IEDM.2011.6131482
http://dx.doi.org/10.1109/JSSC.2008.917558
http://dx.doi.org/10.1145/1815961.1815981
http://dx.doi.org/10.1109/HPCA.2010.5416645
http://dx.doi.org/10.1145/1669112.1669117

12:30 S. Rashidi et al.

[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(57]

(58]

[59]

[60]

[61]

M. K. Qureshi, V. Srinivasan, and J. A. Rivers. 2009. Scalable high performance main memory system using phase-
change memory technology. In Proceedings of the 36th Annual International Symposium on Computer Architecture
(ISCA’09). ACM, New York, 24-33. DOI: http://dx.doi.org/10.1145/1555754.1555760

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H.
L. Lung, and C. H. Lam. 2008. Phase-change random access memory: A scalable technology. IBM Journal of Research
and Development 52, 4.5 (July 2008), 465-479. DOI : http://dx.doi.org/10.1147/rd.524.0465

M. Hossein Samavatian, M. Arjomand, R. Bashizade, and H. Sarbazi-Azad. 2015. Architecting the last-level cache for
GPUs using STT-RAM technology. ACM Transactions on Design Automation of Electronic Systems 20, 4, Article 55
(Sept. 2015), 24 pages. DOI : http://dx.doi.org/10.1145/2764905

A. Sampson, J. Nelson, K. Strauss, and L. Ceze. 2013. Approximate storage in solid-state memories. In Proceedings
of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-46°13). ACM, New York, 25-36.
DOI: http://dx.doi.org/10.1145/2540708.2540712

S. Schechter, G. H. Loh, K. Strauss, and D. Burger. 2010. Use ECP, Not ECC, for hard failures in resistive memories. In
Proceedings of the 37th Annual International Symposium on Computer Architecture (ISCA’10). ACM, New York, 141-152.
DOI:http://dx.doi.org/10.1145/1815961.1815980

A. Sebastian, N. Papandreou, A. Pantazi, H. Pozidis, and E. Eleftheriou. 2011. Non-resistance-based cell-state metric
for phase-change memory. Journal of Applied Physics 110, 8 (2011), 084505. DOI : http://dx.doi.org/10.1063/1.3653279
N. H. Seong, D. H. Woo, and H.-H. S. Lee. 2010. Security refresh: Prevent malicious wear-out and increase durability for
phase-change memory with dynamically randomized address mapping. In Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA’10). ACM, New York, 383-394. DOI: http://dx.doi.org/10.1145/1815961.
1816014

N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee. 2010. SAFER: Stuck-at-fault error recovery for
memories. In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
43’10). IEEE Computer Society, Washington, DC, 115-124. DOI : http://dx.doi.org/10.1109/MICRO.2010.46

N. H. Seong, S. Yeo, and H.-H. S. Lee. 2013. Tri-level-cell phase change memory: Toward an efficient and reliable
memory system. In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA’13). ACM,
New York, 440-451. DOI : http://dx.doi.org/10.1145/2485922.2485960

H. Shim, S. S. Lee, B. Kim, N. Lee, D. Kim, H. Kim, B. Ahn, Y. Hwang, H. Lee, J. Kim, Y. Lee, H. Lee, J. Lee, S. Chang,
J. Yang, S. Park, S. Aritome, S. Lee, K. O. Ahn, G. Bae, and Y. Yang. 2011. Highly reliable 26nm 64Gb MLC E2NAND
(Embedded-ECC amp; Enhanced-efficiency) flash memory with MSP (Memory signal processing) controller. In Pro-
ceedings of the 2011 Symposium on VLSI Technology - Digest of Technical Papers. 216-217.

C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan. 2011. Relaxing non-volatility for fast and energy-
efficient STT-RAM caches. In Proceedings of the 2011 IEEE 17th International Symposium on High Performance Com-
puter Architecture. 50-61. DOI : http://dx.doi.org/10.1109/HPCA.2011.5749716

J. Wang, X. Dong, G. Sun, D. Niu, and Y. Xie. 2011. Energy-efficient multi-level cell phase-change memory system
with data encoding. In Proceedings of the 2011 IEEE 29th International Conference on Computer Design (ICCD’11). IEEE
Computer Society, Washington, DC, 175-182. DOI : http://dx.doi.org/10.1109/ICCD.2011.6081394

R. Wang, Y. Zhang, and J. Yang. 2016. ReadDuo: Constructing reliable MLC phase change memory through fast and
robust readout. In Proceedings of the 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’16). 203—-214. DOI : http://dx.doi.org/10.1109/DSN.2016.27

Z.Wang, S. Shan, T. Cao, J. Gu, Y. Xu, S. Mu, Y. Xie, and D. A. Jiménez. 2013. WADE: Writeback-aware dynamic cache
management for NVM-based main memory system. ACM Transactions on Architecture and Code Optimization 10, 4,
Article 51 (Dec. 2013), 21 pages. DOI : http://dx.doi.org/10.1145/2555289.2555307

W. Xu and T. Zhang. 2010. Using time-aware memory sensing to address resistance drift issue in multi-level phase
change memory. In Proceedings of the 2010 11th International Symposium on Quality Electronic Design (ISQED’10).
356-361. DOI: http://dx.doi.org/10.1109/ISQED.2010.5450549

B. D. Yang, J. E. Lee, J. S. Kim, J. Cho, S. Y. Lee, and B. G. Yu. 2007. A low power phase-change random access
memory using a data-comparison write scheme. In Proceedings of the 2007 IEEE International Symposium on Circuits
and Systems. 3014-3017. DOI : http://dx.doi.org/10.1109/ISCAS.2007.377981

H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu. 2014. Efficient data mapping and buffering techniques
for multilevel cell phase-change memories. ACM Transactions on Architecture and Code Optimization 11, 4, Article 40
(Dec. 2014), 25 pages. DOI : http://dx.doi.org/10.1145/2669365

L. Zhang, B. Neely, D. Franklin, D. Strukov, Y. Xie, and F. T. Chong. 2016. Mellow writes: Extending lifetime in
resistive memories through selective slow write backs. In Proceedings of the 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA’16). 519-531. DOI : http://dx.doi.org/10.1109/ISCA.2016.52

Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen. 2012. Multi-level cell STT-RAM: Is it realistic or just a dream? In
2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD’12). 526-532.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

http://dx.doi.org/10.1145/1555754.1555760
http://dx.doi.org/10.1147/rd.524.0465
http://dx.doi.org/10.1145/2764905
http://dx.doi.org/10.1145/2540708.2540712
http://dx.doi.org/10.1145/1815961.1815980
http://dx.doi.org/10.1063/1.3653279
http://dx.doi.org/10.1145/1815961.1816014
http://dx.doi.org/10.1109/MICRO.2010.46
http://dx.doi.org/10.1145/2485922.2485960
http://dx.doi.org/10.1109/HPCA.2011.5749716
http://dx.doi.org/10.1109/ICCD.2011.6081394
http://dx.doi.org/10.1109/DSN.2016.27
http://dx.doi.org/10.1145/2555289.2555307
http://dx.doi.org/10.1109/ISQED.2010.5450549
http://dx.doi.org/10.1109/ISCAS.2007.377981
http://dx.doi.org/10.1145/2669365
http://dx.doi.org/10.1109/ISCA.2016.52

Improving MLC PCM Performance 12:31

[62] M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé. 2012. Writeback-aware partitioning and replacement for last-
level caches in phase change main memory systems. ACM Transactions on Architecture and Code Optimization 8, 4,
Article 53 (Jan. 2012), 21 pages. DOI : http://dx.doi.org/10.1145/2086696.2086732

[63] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. 2009. A durable and energy efficient main memory using phase change
memory technology. In Proceedings of the 36th Annual International Symposium on Computer Architecture (ISCA’09).
ACM, New York, 14-23. DOI : http://dx.doi.org/10.1145/1555754.1555759

Received May 2017; revised November 2017; accepted December 2017

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 1, Article 12. Publication date: March 2018.

http://dx.doi.org/10.1145/2086696.2086732
http://dx.doi.org/10.1145/1555754.1555759

