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FROM DISSIPATIVITY THEORY TO COMPOSITIONAL CONSTRUCTION OF FINITE

MARKOV DECISION PROCESSES

ABOLFAZL LAVAEI1, SADEGH SOUDJANI2, AND MAJID ZAMANI1

Abstract. This paper is concerned with a compositional approach for constructing finite Markov decision
processes of interconnected discrete-time stochastic control systems. The proposed approach leverages the
interconnection topology and a notion of so-called stochastic storage functions describing joint dissipativity-
type properties of subsystems and their abstractions. In the first part of the paper, we derive dissipativity-
type compositional conditions for quantifying the error between the interconnection of stochastic control
subsystems and that of their abstractions. In the second part of the paper, we propose an approach to
construct finite Markov decision processes together with their corresponding stochastic storage functions for
classes of discrete-time control systems satisfying some incremental passivablity property. Under this property,
one can construct finite Markov decision processes by a suitable discretization of the input and state sets.
Moreover, we show that for linear stochastic control systems, the aforementioned property can be readily
checked by some matrix inequality. We apply our proposed results to the temperature regulation in a circular
building by constructing compositionally a finite Markov decision process of a network containing 200 rooms in
which the compositionality condition does not require any constraint on the number or gains of the subsystems.
We employ the constructed finite Markov decision process as a substitute to synthesize policies regulating the
temperature in each room for a bounded time horizon.

1. Introduction

Large-scale interconnected systems have received significant attentions in the last few years due to their
presence in real life systems including power networks, air traffic control, and so on. Each complex real-world
system can be regarded as an interconnected system composed of several subsystems. Since these large-scale
networks of systems are inherently difficult to analyze and control, one can develop compositional schemes
to employ the abstractions of the given subsystems as a replacement in the controller design process. Those
abstractions allow us to design controllers for them, and then refine the controllers to the ones for the concrete
subsystems, while provide us with the quantified errors for the overall interconnected system in this controller
synthesis detour.

Construction of finite abstractions was introduced in recent years as a method to reduce the complexity of
controller synthesis problems in particular for enforcing complex logical properties. Finite abstractions are
abstract descriptions of the continuous-space control systems in which each discrete state corresponds to a
collection of continuous states of the original system. Since the abstractions are finite, algorithmic approaches
from computer science are applicable to synthesize controllers enforcing complex logic properties including
those expressed as linear temporal logic formulae.

In the past few years, there have been several results on the construction of (in)finite abstractions for stochastic
systems. Existing results for continuous-time systems include infinite approximation techniques for jump-
diffusion systems [JP09], finite bisimilar abstractions for incrementally stable stochastic switched systems
[ZAG15] and randomly switched stochastic systems [ZA14], and finite bisimilar abstractions for incrementally
stable stochastic control systems without discrete dynamics [ZMEM+14]. Recently, compositional construction
of infinite abstractions is discussed in [ZRME17] using small-gain type conditions and of finite bisimilar
abstractions in [MESM17] based on a new notion of disturbance bisimilarity relation.
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For discrete-time stochastic models with continuous state spaces, finite approximations are initially proposed in
[APLS08] for formal verification and synthesis of this class of systems. The algorithms are improved in terms of
scalability in [EA13, Esm14]. Those techniques have been implemented in the tool FAUST [EGA15]. Extension
of the techniques to infinite horizon properties is proposed in [TA11] and formal abstraction-based policy
synthesis is discussed in [TMKA13]. Recently, compositional construction of finite abstractions is discussed
in [EAM15] using dynamic Bayesian networks and infinite abstractions in [LEMZ17] using small-gain type
conditions both for discrete-time stochastic control systems. Our proposed approach extends the abstraction
techniques in [EAM15] from verification to synthesis, by proposing a different quantification of the abstraction
error, and leveraging the dissipativity properties of subsystems and structure of interconnection topology to
show the compositonal results for the finite Markov decision processes. Although the results in [LEMZ17] deal
only with infinite abstractions (reduced order models), our proposed approach considers finite Markov decision
processes as abstractions which are the main tools for automated synthesis of controllers for complex logical
properties. To the best of our knowledge, this is the first time a closed form dynamical representation of the
abstract finite Markov decision processes is used to facilitate the use of dissipativity properties of subsystems
in the error quantification.

In particular, we provide a compositional approach for the construction of finite Markov decision processes
of interconnected discrete-time stochastic control systems. The proposed compositional technique leverages
the interconnection structure and joint dissipativity-type properties of subsystems and their abstractions
characterized via a notion of so-called stochastic storage functions. The provided compositionality conditions
can enjoy the structure of interconnection topology and be potentially satisfied independently of the number
or gains of the subsystems (cf. case study section). The stochastic storage functions of subsystems are utilized
to quantify the error in probability between the interconnection of concrete stochastic subsystems and that of
their finite Markov decision processes. As a consequence, one can leverage the proposed results here to solve
particularly safety/reachability problems over the finite interconnected systems and then carry the results over
the concrete interconnected ones.

We also propose an approach to construct finite Markov decision processes together with their correspond-
ing stochastic storage functions for classes of stochastic control subsystems satisfying some incremental pas-
sivability property. Under this property, one can construct a finite Markov decision process by a suitable
discretization of the input and state sets. Moreover, we show that for linear stochastic control systems, the
mentioned property can be readily verified by some matrix inequality. Finally, we illustrate the effectiveness
of the results using the temperature regulation in a circular building by constructing compositionally a finite
Markov decision process of a network containing 200 rooms in which the compositionality condition does not
require any constraint on the number or gains of the subsystems. We leverage the constructed finite Markov
decision process as a substitute to synthesize policies regulating the temperature in each room for a bounded
time horizon. We benchmark our results against the compositional abstraction technique of [EAM15] which
is based on construction of finite dynamic Bayesian networks.

2. Discrete-Time Stochastic Control Systems

2.1. Preliminaries. We consider a probability space (Ω,FΩ,PΩ), where Ω is the sample space, FΩ is a sigma-
algebra on Ω comprising subsets of Ω as events, and PΩ is a probability measure that assigns probabilities
to events. We assume that random variables introduced in this article are measurable functions of the form
X : (Ω,FΩ) → (SX ,FX). Any random variable X induces a probability measure on its space (SX ,FX) as
Prob{A} = PΩ{X

−1(A)} for any A ∈ FX . We often directly discuss the probability measure on (SX ,FX)
without explicitly mentioning the underlying probability space and the function X itself.

A topological space S is called a Borel space if it is homeomorphic to a Borel subset of a Polish space (i.e.,
a separable and completely metrizable space). Examples of a Borel space are the Euclidean spaces R

n, its
Borel subsets endowed with a subspace topology, as well as hybrid spaces. Any Borel space S is assumed to be
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endowed with a Borel sigma-algebra, which is denoted by B(S). We say that a map f : S → Y is measurable
whenever it is Borel measurable.

2.2. Notation. The following notation is used throughout the paper. We denote the set of nonnegative
integers by N := {0, 1, 2, . . .} and the set of positive integers by N≥1 := {1, 2, 3, . . .}. The symbols R, R>0,
and R≥0 denote the set of real, positive and nonnegative real numbers, respectively. For any set X we
denote by 2X the power set of X that is the set of all subsets of X . Given N vectors xi ∈ R

ni , ni ∈ N≥1,
and i ∈ {1, . . . , N}, we use x = [x1; . . . ;xN ] to denote the corresponding vector of dimension

∑
i ni. Given

a vector x ∈ R
n, ‖x‖ denotes the Euclidean norm of x. The symbol In denotes the identity matrix in

R
n×n. Also, the identity map on a set A in denoted by 1A. We denote by diag(a1, . . . , aN) a diagonal

matrix in R
N×N with diagonal matrix entries a1, . . . , aN starting from the upper left corner. Given functions

fi : Xi → Yi, for any i ∈ {1, . . . , N}, their Cartesian product
∏N
i=1 fi :

∏N
i=1Xi →

∏N
i=1 Yi is defined as

(
∏N

i=1 fi)(x1, . . . , xN ) = [f1(x1); . . . ; fN (xN )]. For any set A we denote by AN the Cartesian product of a
countable number of copies of A, i.e., AN =

∏∞

k=0 A. Given a measurable function f : N → R
n, the (essential)

supremum of f is denoted by ‖f‖∞ := (ess)sup{‖f(k)‖, k ≥ 0}. A function γ : R+
0 → R

+
0 , is said to be a class

K function if it is continuous, strictly increasing, and γ(0) = 0. A class K function γ(·) is said to be a class
K∞ if limr→∞ γ(r) = ∞.

2.3. Discrete-Time Stochastic Control Systems. We consider stochastic control systems in discrete time
(dt-SCS) defined over a general state space and characterized by the tuple

Σ=(X,U,W, ς, f, Y1, Y2, h1, h2), (2.1)

where X is a Borel space as the state space of the system. We denote by (X,B(X)) the measurable space with
B(X) being the Borel sigma-algebra on the state space. Sets U and W are Borel spaces as the external and
internal input spaces of the system. Notation ς denotes a sequence of independent and identically distributed
(i.i.d.) random variables on a set Vς

ς := {ς(k) : Ω → Vς , k ∈ N}.

The map f : X ×U ×W × Vς → X is a measurable function characterizing the state evolution of the system.
Finally, sets Y1 and Y2 are Borel spaces as the external and internal output spaces of the system, respectively.
Maps h1 : X → Y1 and h2 : X → Y2 are measurable functions that map a state x ∈ X to its external and
internal outputs y1 = h1(x) and y2 = h2(x), respectively.

For given initial state x(0) ∈ X and input sequences ν(·) : N → U and w(·) : N → W , evolution of the state
of dt-SCS Σ can be written as

Σ :




x(k + 1) = f(x(k), ν(k), w(k), ς(k))
y1(k) = h1(x(k))
y2(k) = h2(x(k)),

k ∈ N. (2.2)

Given the dt-SCS in (2.1), we are interested in Markov policies to control the system.

Definition 2.1. A Markov policy for the dt-SCS Σ in (2.1) is a sequence ρ = (ρ0, ρ1, ρ2, . . .) of universally
measurable stochastic kernels ρn [BS96], each defined on the input space U given X ×W and such that for all
(xn, wn) ∈ X ×W , ρn(U(xn, wn)|(xn, wn)) = 1. The class of all such Markov policies is denoted by ΠM .

We associate respectively to U and W the sets U and W to be collections of sequences {ν(k) : Ω → U, k ∈ N}
and {w(k) : Ω → W, k ∈ N}, in which ν(k) and w(k) are independent of ς(t) for any k, t ∈ N and t ≥ k. For
any initial state a ∈ X , ν(·) ∈ U , and w(·) ∈ W , the random sequences xaνw : Ω×N → X , y1aνw : Ω×N → Y1
and y2aνw : Ω×N → Y2 that satisfy (2.2) are called respectively the solution process and external and internal
output trajectory of Σ under external input ν, internal input w and initial state a.

In this sequel we assume that the state space X of Σ is a subset of Rn. System Σ is called finite if X,U,W
are finite sets and infinite otherwise. In this paper we are interested in studying interconnected discrete-time
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stochastic control systems without internal inputs and outputs that result from the interconnection of dt-SCS
having both internal and external inputs and outputs. In this case, the interconnected dt-SCS without internal
input and output in indicated by the simplified tuple (X,U, ς, f, Y, h) with f : X × U × Vς → X .

2.4. General Markov Decision Processes. A dt-SCS Σ in (2.1) can be equivalently represented as a general
Markov decision process (gMDP) [HEA17]

Σ=(X,W,U, Tx, Y1, Y2, h1, h2) ,

where the map Tx : B(X)×X × U ×W → [0, 1], is a conditional stochastic kernel that assigns to any x ∈ X ,
w ∈ W and ν ∈ U a probability measure Tx(·|x, ν, w) on the measurable space (X,B(X)) so that for any set
A ∈ B(X),

P(x(k + 1) ∈ A |x(k), ν(k), w(k)) =

∫

A

Tx(dx̄|x(k), ν(k), w(k)).

For given inputs ν(·), w(·), the stochastic kernel Tx captures the evolution of the state of Σ and can be uniquely
determined by the pair (ς, f) from (2.1).

The alternative representation as gMDP is utilized in [EAM15] to approximate a dt-SCS Σ with a finite Σ̂.
Algorithm 1 adapted from [EAM15] with some modifications presents this approximation. The algorithm first
constructs a finite partition of state set X and input sets U , W . Then representative points x̄i ∈ Xi, ν̄i ∈ Ui
and w̄i ∈ Wi are selected as abstract states and inputs. Transition probabilities in the finite gMDP Σ̂ are also

computed according to (2.3). The output maps ĥ1, ĥ2 are the same as h1, h2 with their domain restricted to

finite state set X̂ (cf. Step 7) and the output sets Ŷ1, Ŷ2 are just image of X̂ under h1, h2, respectively (cf.
Step 6).

Algorithm 1 Abstraction of dt-SCS Σ by a finite gMDP Σ̂

Require: input dt-SCS Σ=(X,W,U, Tx, Y1, Y2, h1, h2)
1: Select finite partitions of sets X,U,W as X = ∪nx

i=1Xi, U = ∪nν

i=1Ui, W = ∪nw

i=1Wi

2: For each Xi,Ui, and Wi, select single representative points xi ∈ Xi, νi ∈ Ui, wi ∈ Wi

3: Define X̂ := {xi, i = 1, ..., nx} as the finite state set of gMDP Σ̂ with external and internal input sets

Û := {νi, i = 1, ..., nν} Ŵ := {wi, i = 1, ..., nw}
4: Define the map Ξ : X → 2X that assigns to any x ∈ X , the corresponding partition set it belongs to, i.e.,

Ξ(x) = Xi if x ∈ Xi for some i = 1, 2, . . . , nx
5: Compute the discrete transition probability matrix T̂x for Σ̂ as:

T̂x(x
′|x, ν, w) = Tx(Ξ(x

′)|x, ν, w), (2.3)

for all x, x′ ∈ X̂, ν ∈ Û , w ∈ Ŵ
6: Define output spaces Ŷ1 := h1(X̂), Ŷ2 := h2(X̂)

7: Define output maps ĥ1 := h1|X̂ and ĥ2 := h2|X̂
Ensure: output finite gMDP Σ̂ = (X̂, Û , Ŵ , T̂x, Ŷ1, Ŷ2, ĥ1, ĥ2)

In the following theorem we give a dynamical representation of the finite gMDP, which is more suitable for
the study of this paper.

Theorem 2.2. Given a dt-SCS Σ = (X,U,W, ς, f, Y1, Y2, h1, h2), the finite gMDP Σ̂ constructed in Algo-
rithm 1 can be represented as

Σ̂ = (X̂, Û , Ŵ , ς, f̂ , Ŷ1, Ŷ2, ĥ1, ĥ2), (2.4)

where f̂ : X̂ × Û × Ŵ × Vς → X̂ is defined as

f̂(x̂, ν̂, ŵ, ς) = Π(f(x̂, ν̂, ŵ, ς)),
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and Π : X → X̂ is the map that assigns to any x ∈ X, the representative point x̂ ∈ X̂ of the corresponding

partition set containing x. The initial state of Σ̂ is also selected according to x̂0 := Π(x0) with x0 being the
initial state of Σ.

Proof. It is sufficient to show that (2.3) holds for dynamical representation of Σ̂ in (2.4) and that of Σ. For

any x, x′ ∈ X̂ , ν ∈ Û and w ∈ Ŵ ,

T̂x(x
′|x, ν, w) = P(x′ = f̂(x, ν, w, ς)) = P(x′ = Π(f(x, ν, w, ς))) = P(f(x, ν, w, ς) ∈ Ξ(x′)),

where Ξ(x′) is the partition set with x′ as its representative point as defined in Step 4 of Algorithm 1. Using
the probability measure ϑ(·) of random variable ς we can write

T̂x(x
′|x, ν, w) =

∫

Ξ(x′)

f(x, ν, w, ς)dϑ(ς) = Tx(Ξ(x
′)|x, ν, w),

which completes the proof. �

Dynamical representation provided by Theorem 2.2 uses the map Π : X → X̂ that assigns to any x ∈ X , the
representative point x̂ ∈ X̂ of the corresponding partition set containing x. This map satisfies the inequality

‖Π(x) − x‖ ≤ δ, ∀x ∈ X, (2.5)

where δ := sup{‖x− x′‖, x, x′ ∈ Xi, i = 1, 2, . . . , nx} is the discretization parameter. We use this inequality
in Section 5 for compositional construction of finite gMDPs.

Algorithm 1 is used in [EAM15] for compositional verification of interconnected dt-SCS. In order to provide
formal guarantee on the compositional approximation, [EAM15] uses distance in probability as a metric. In
other words, for a given specification ϕ and accuracy level ǫ, the discretization parameters for each subsystem
can be selected a priori such that after composition

|P(Σ � ϕ)− P(Σ̂ � ϕ)| ≤ ǫ, (2.6)

where ǫ depends on the horizon of formula ϕ, Lipschitz constants of the stochastic kernels of subsystems,
discretization parameters, and structure of the interconnection (cf. [EAM15, Theorem 9]).

In the next sections, we provide an approach for compositional synthesis of interconnected dt-SCS. We first
define the notions of stochastic storage and simulation functions for quantifying the error between two dt-SCS
and two interconnected dt-SCS without internal signals, respectively. Then we establish an explicit dynamical

representation of finite Σ̂ constructed in [EAM15] and show how it can be used to compare interconnections
of dt-SCS and those of their finite abstract counterparts based on these new notions. Finally, in the example
section, we synthesize policies for abstract dt-SCS locally and refine them back to the original dt-SCS while
providing guarantees on the quality of the synthesized policies with respect to satisfaction of local specifications.
This guarantee is compared against the approach of [EAM15] with the metric in (2.6) in the example section.

3. Stochastic Storage and Simulation Functions

In this section, we first introduce a notion of so-called stochastic storage functions for dt-SCS with both
internal and external inputs, which is adapted from the notion of storage functions from dissipativity theory.
We then define a notion of so-called stochastic simulation functions for systems with only external inputs and
outputs. We use these definitions to quantify closeness of two dt-SCS.

Definition 3.1. Consider dt-SCS Σ = (X,U,W, ς, f, Y1, Y2, h1, h2) and Σ̂ = (X̂, Û , Ŵ , ς, f̂ , Ŷ1, Ŷ2, ĥ1, ĥ2)

where Ŷ1 ⊆ Y1. A function V : X × X̂ → R≥0 is called a stochastic storage function (SStF) from Σ̂ to Σ if

there exist α ∈ K∞, κ ∈ K, ρext ∈ K∞ ∪ {0}, constant ψ ∈ R≥0, matrices G, Ĝ,H of appropriate dimensions,
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and symmetric matrix X̄ with conformal block partitions X̄ ij, i, j ∈ {1, 2}, such that for any x ∈ X and x̂ ∈ X̂
one has

α(‖h1(x) − ĥ1(x̂)‖) ≤ V (x, x̂), (3.1)

and ∀ν̂ ∈ Û ∃ν ∈ U such that ∀ŵ ∈ Ŵ ∀w ∈ W one obtains

E

[
V (f(x, ν, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν, ν̂, w, ŵ
]
− V (x, x̂) ≤ −κ(V (x, x̂))+ρext(‖ν̂‖)+ψ

+

[
Gw − Ĝŵ

h2(x) −Hĥ2(x̂)

]T [
X̄11 X̄12

X̄21 X̄22

]

︸ ︷︷ ︸
X̄:=

[
Gw − Ĝŵ

h2(x) −Hĥ2(x̂)

]
. (3.2)

If there exists an SStF V from Σ̂ to Σ, this is denoted by Σ̂ �S Σ and the control system Σ̂ is called an

abstraction of concrete (original) system Σ. Note that Σ̂ may be finite or infinite depending on cardinalities

of sets X̂, Û , Ŵ .

Remark 3.2. The last term in inequality (3.2) is interpreted in dissipativity theory as the energy supply rate
of the system [AMP16]. Here we choose this function to be quadratic which results in tractable compositional
conditions later in the form of linear matrix (in)equalities.

Remark 3.3. The second condition in Definition 3.1 implies implicitly the existence of a function ν =
νν̂(x, x̂, ν̂) for the satisfaction of (3.2). This function is called the interface function and can be used to refine

a synthesized policy ν̂ for Σ̂ to a policy ν for Σ.

Now, we modify the above notion for the interconnected dt-SCS without internal inputs and outputs.

Definition 3.4. Consider two dt-SCS Σ = (X,U, ς, f, Y, h) and Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ) without internal inputs

and outputs, where Ŷ ⊆ Y . A function V : X × X̂ → R≥0 is called a stochastic simulation function (SSF)

from Σ̂ to Σ if

• there exists α ∈ K∞ such that for all x ∈ X and x̂ ∈ X̂,

α(‖h(x) − ĥ(x̂)‖) ≤ V (x, x̂), (3.3)

• for all x ∈ X, x̂ ∈ X̂, ν̂ ∈ Û , there exists ν ∈ U such that

E

[
V (f(x, ν, ς), f̂(x̂, ν̂, ς))

∣∣ x, x̂, ν, ν̂
]
− V (x, x̂) ≤ −κ(V (x, x̂))+ρext(‖ν̂‖)+ψ, (3.4)

for some κ ∈ K, ρext ∈ K∞ ∪ {0}, and ψ ∈ R≥0.

If there exists an SSF V from Σ̂ to Σ, this is denoted by Σ̂ � Σ and Σ̂ is called an abstraction of Σ.

The next theorem shows usefulness of SSF in comparing output trajectories of two dt-SCS in a probabilistic
sense.

Theorem 3.5. Let Σ = (X,U, ς, f, Y, h) and Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ) be two dt-SCS without internal inputs and

outputs, where Ŷ ⊆ Y . Suppose V is an SSF from Σ̂ to Σ, and there exists a constant 0 < κ̂ < 1 such that
the function κ ∈ K in (3.4) satisfies κ(r) ≥ κ̂r ∀r ∈ R≥0. For any external input trajectory ν̂(·) ∈ Û that

preserves Markov property for the closed-loop Σ̂, and for any random variables a and â as the initial states of
the two dt-SCS, there exists an input trajectory ν(·) ∈ U of Σ through the interface function associated with
V such that the following inequality holds

P

{
sup

0≤k≤Td

‖yaν(k)− ŷâν̂(k)‖≥ε | [a; â]

}
≤




1−

(
1− V (a,â)

α(ε)

)(
1− ψ̂

α(ε)

)Td

if α (ε) ≥ ψ̂
κ̂
,(

V (a,â)
α(ε)

)
(1−κ̂)Td+

(
ψ̂

κ̂α(ε)

)
(1−(1−κ̂)Td) if α (ε) < ψ̂

κ̂
,
. (3.5)

where the constant ψ̂ ≥ 0 satisfies ψ̂ ≥ ρext(‖ν̂‖∞) + ψ.
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Proof. Since V is an SSF from Σ̂ to Σ, we have

P

{
sup

0≤k≤Td

‖yaν(k)− ŷâν̂(k)‖ ≥ ε | [a; â]

}
= P

{
sup

0≤k≤Td

α (‖yaν(k)− ŷâν̂(k)‖) ≥ α(ε) | [a; â]

}

≤P

{
sup

0≤k≤Td

V (xaν(k), x̂âν̂(k)) ≥ α(ε) | [a; â]

}
. (3.6)

The equality holds due to α being a K∞ function. The inequality is true due to condition (3.3) on the SSF
V . The results follows by applying Theorem 3 in [Kus67, pp. 81] to (3.6) and utilizing inequality (3.4). �

The results shown in Theorem 3.5 provide closeness of output trajectories of two dt-SCS in finite-time horizon.

We can extend the result to infinite-time horizon given that ψ̂ = 0 as presented in the next corollary.

Corollary 3.6. Let Σ and Σ̂ be two dt-SCS without internal inputs and outputs, where Ŷ ⊆ Y . Suppose V

is an SSF from Σ̂ to Σ such that ρext(·) ≡ 0 and ψ = 0. For any external input trajectory ν̂(·) ∈ Û preserving

Markov property for the closed-loop Σ̂, and for any random variables a and â as the initial states of the two
dt-SCS, there exists ν(·) ∈ U of Σ through the interface function associated with V such that the following
inequality holds:

P

{
sup

0≤k<∞

‖yaν(k)− ŷâν̂(k)‖ ≥ ε | [a; â]

}
≤
V (a, â)

α (ε)
.

Proof. Since V is an SSF from Σ̂ to Σ with ρext(·) ≡ 0 and ψ = 0, for any x ∈ X and x̂ ∈ X̂ and any ν̂ ∈ Û ,
there exists ν ∈ U such that

E

[
V (f(x, ν, ς), f̂(x̂, ν̂, ς))

∣∣ x, x̂, ν, ν̂
]
− V (x, x̂) ≤ −κ(V (x, x̂)),

which makes the function V (xaν(k), x̂âν̂(k)) a nonnegative supermartingale [Oks13] for the joint process
(xaν(k), x̂âν̂(k)). The rest of the proof follows from the proof of Theorem 3.5 and the nonnegative super-
martingale property [Kus67]. �

4. Compositional Abstractions for Interconnected Systems

In this section, we analyze networks of stochastic control subsystems and show how to construct their ab-
stractions together with the corresponding simulation functions by using abstractions and stochastic storage
functions of the subsystems.

4.1. Interconnected Stochastic Control Systems. We first provide a formal definition of interconnection
of discrete-time stochastic control subsystems.

Definition 4.1. Consider N ∈ N≥1 stochastic control subsystems Σi = (Xi, Ui,Wi, ςi, fi, Y1i, Y2i, h1i, h2i),
i ∈ {1, . . . , N}, and a matrix M defining the coupling between these subsystems. We require the condition

M
∏N

i=1 Y2i ⊆
∏N

i=1Wi to have a well-posed interconnection. The interconnection of Σi, ∀i ∈ {1, . . . , N},

is the dt-SCS Σ = (X,U, ς, f, Y, h), denoted by I(Σ1, . . . ,ΣN ), such that X :=
∏N

i=1Xi, U :=
∏N

i=1 Ui,

f :=
∏N
i=1 fi, Y :=

∏N
i=1 Y1i, and h =

∏N
i=1 h1i, with the internal inputs constrained according to

[w1; . . . ;wN ] =M [h21(x1); . . . ;h2N (xN )].

In the above definition we allow the interconnection matrix M to have real entries. This is a generalization of
composition performed in [MESM17] where the interconnection matrix takes only binary entries.
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4.2. Compositional Abstractions. We assume that we are given N stochastic control subsystems Σi =

(Xi, Ui,Wi, ςi, fi, Y1i, Y2i, h1i, h2i) together with their corresponding abstractions Σ̂i=(X̂i, Ûi, Ŵi, ςi, f̂i, Ŷ1i, Ŷ2i,

, ĥ1i, ĥ2i) with SStF Vi from Σ̂i to Σi. Indicate by αi, κi, ρiext, Hi, Gi, Ĝi, X̄i, X̄
11
i , X̄12

i , X̄21
i , and X̄22

i , the
corresponding functions, matrices, and the conformal block partitions appearing in Definition 3.1. In the next
theorem, as one of the main results of the paper, we provide sufficient conditions for having an SSF from the

interconnection of abstractions Σ̂ = I(Σ̂1, . . . , Σ̂N ) to that of concrete ones Σ = I(Σ1, . . . ,ΣN). This theorem
enables us to quantify in probability the error between the interconnection of stochastic control subsystems
and that of their abstractions in a compositional manner by leveraging Theorem 3.5.

Theorem 4.2. Consider the interconnected stochastic control system Σ = I(Σ1, . . . ,ΣN ) induced by N ∈ N≥1

stochastic control subsystems Σi and the coupling matrix M . Suppose that each stochastic control subsystem

Σi admits an abstraction Σ̂i with the corresponding SStF Vi. Then the weighted sum

V (x, x̂) :=

N∑

i=1

µiVi(xi, x̂i) (4.1)

is a stochastic simulation function from the interconnected control system Σ̂ = I(Σ̂1, . . . , Σ̂N ), with coupling

matrix M̂ , to Σ = I(Σ1, . . . ,ΣN ) if µi > 0, i ∈ {1, . . . , N}, and M̂ satisfy matrix (in)equality and inclusion

[
GM
Iq̃

]T
X̄cmp

[
GM
Iq̃

]
� 0, (4.2)

GMH = ĜM̂, (4.3)

M̂

N∏

i=1

Ŷ2i ⊆

N∏

i=1

Ŵi, (4.4)

where

G := diag(G1, . . . , GN ), Ĝ := diag(Ĝ1, . . . , ĜN ), H := diag(H1, . . . , HN ),

X̄cmp:=




µ1X̄
11
1 µ1X̄

12
1

. . .
. . .

µN X̄
11
N µN X̄

12
N

µ1X̄
21
1 µ1X̄

22
1

. . .
. . .

µN X̄
21
N µN X̄

22
N




, (4.5)

and q̃ =
∑N

i=1 q2i with q2i being the internal output dimensions of subsystems Σi.

Proof. We first show that SSF V in (4.1) satisfies the inequality (3.3) for some K∞ function α. For any

x = [x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂, one gets:

‖h(x)− ĥ(x̂)‖=‖[h11(x1); . . . ;h1N (xN )]−[ĥ11(x̂1); . . . ; ĥ1N (x̂N )]‖ ≤

N∑

i=1

‖h1i(x̂i)− ĥ1i(xi)‖

≤

N∑

i=1

α−1
i (Vi(xi, x̂i)) ≤ ᾱ(V (x, x̂)),

with function ᾱ : R≥0 → R≥0 defined for all r ∈ R≥0 as

ᾱ(r) := max
{∑N

i=1 α
−1
i (si)

∣∣ si≥ 0,
∑N

i=1 µisi = r
}
.
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E

[ N∑

i=1

µi

[
Vi(fi(xi, νi, wi, ςi), f̂i(x̂i, ν̂i, ŵi, ςi))|x, x̂, ν̂

]]
−
N∑

i=1

µiVi(xi, x̂i)=
N∑

i=1

µiE
[
Vi(fi(xi, νi, wi, ςi), f̂i(x̂i, ν̂i, ŵi,

, ςi)) |x, x̂, ν̂
]
−

N∑

i=1

µiVi(xi, x̂i)=

N∑

i=1

µiE
[
Vi(fi(xi, νi, wi, ςi), f̂i(x̂i, ν̂i, ŵi, ςi)) |xi, x̂i, ν̂i

]
−

N∑

i=1

µiVi(xi, x̂i)

≤

N∑

i=1

µi

(
−κi(Vi(xi, x̂i))+ρiext(‖ν̂i‖) + ψi+

[
Giwi − Ĝiŵi

h2i(xi)−Hiĥ2i(x̂i)

]T [
X̄11
i X̄12

i

X̄21
i X̄22

i

] [
Giwi − Ĝiŵi

h2i(xi)−Hiĥ2i(x̂i)

])

=

N∑

i=1

−µiκi(Vi(xi, x̂i)) +

N∑

i=1

µiρiext(‖ν̂i‖) +

N∑

i=1

µiψi +




G1w1 − Ĝ1ŵ1

...

GNwN − ĜN ŵN
h21(x1)−H1ĥ21(x̂1)

...

h2N (xN )−HN ĥ2N (x̂N )




T




µ1X̄
11
1 µ1X̄

12
1

. . .
. . .

µN X̄
11
N µN X̄

12
N

µ1X̄
21
1 µ1X̄

22
1

. . .
. . .

µN X̄
21
N µN X̄

22
N







G1w1 − Ĝ1ŵ1

...

GNwN − ĜN ŵN
h21(x1)−H1ĥ21(x̂1)

...

h2N (xN )−HN ĥ2N (x̂N )




=
N∑

i=1

−µiκi(Vi(xi, x̂i))

+

N∑

i=1

µiρiext(‖ν̂i‖)+

N∑

i=1

µiψi+




GM



h21(x1)

...
h2N (xN )


− ĜM̂



ĥ21(x̂1)

...

ĥ2N (x̂N )




h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )




T

X̄cmp




GM



h21(x1)

...
h2N (xN )


− ĜM̂



ĥ21(x̂1)

...

ĥ2N (x̂N )




h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )




=

N∑

i=1

−µiκi(Vi(xi, x̂i)) +

N∑

i=1

µiρiext(‖ν̂i‖) +

N∑

i=1

µiψi +




h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )




T

[
GM
Iq̃

]T
X̄cmp

[
GM
Iq̃

]




h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )


≤

N∑

i=1

−µiκi(Vi(xi, x̂i))+

N∑

i=1

µiρiext(‖ν̂i‖)+

N∑

i=1

µiψi≤−κ (V (x, x̂))+ρext(‖ν̂‖)+ψ. (4.6)

It is not hard to verify that function ᾱ(·) defined above is a K∞ function. By taking the K∞ function
α(r) := ᾱ−1(r), ∀r ∈ R≥0, one obtains

α(‖h(x) − ĥ(x̂)‖) ≤ V (x, x̂),

satisfying inequality (3.3). Now we prove that SSF V in (4.1) satisfies inequality (3.4). Consider any x =

[x1; . . . ;xN ] ∈ X , x̂ = [x̂1; . . . ; x̂N ] ∈ X̂, and ν̂ = [ν̂1; . . . ; ν̂N ] ∈ Û . For any i ∈ {1, . . . , N}, there exists νi ∈ Ui,

consequently, a vector ν = [ν1; . . . ; νN ] ∈ U , satisfying (3.2) for each pair of subsystems Σi and Σ̂i with the in-

ternal inputs given by [w1; . . . ;wN ] =M [h21(x1); . . . ;h2N (xN )] and [ŵ1; . . . ; ŵN ] = M̂ [ĥ21(x̂1); . . . ; ĥ2N (x̂N )].
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Then we have the chain of inequalities in (4.6) using conditions (4.2) and (4.3) and by defining κ(·), ρext(·), ψ
as

κ(r) := min

{
N∑

i=1

µiκi(si)
∣∣ si≥ 0,

N∑

i=1

µisi = r

}

ρext(r) := max

{
N∑

i=1

µiρiext(si)
∣∣ si≥ 0, ‖[s1; . . . ; sN‖ = r

}
]

ψ :=
N∑

i=1

µiψi.

Note that κ and ρext in (4.6) belong to K and K∞ ∪ {0}, respectively, because of their definition provided

above. Hence, we conclude that V is an SSF from Σ̂ to Σ. �

Figure 1 illustrates schematically the result of Theorem 4.2.

Remark 4.3. Note that condition (4.2) with G = I is exactly similar to the linear matrix inequality (LMI) ap-
peared in [AMP16] as composotional stability condition based on dissipativity theory. As discussed in [AMP16],
the LMI holds independently of the number of subsystems in many physical applications with specific intercon-
nection structures including communication networks, flexible joint robots, and power generators.

Remark 4.4. For the compositional construction of finite gMDPs provided in the next section, condition (4.3)

is satisfiable by simply selecting M̂ = M . Moreover, condition (4.4) is not restrictive for the results provided

in the next section since Ŵi and Ŷ2i are internal input and output sets of the abstract subsystems Σ̂i, which are
finite. Thus one can readily choose internal input sets Ŵi such that

∏n

i=1 Ŵi := M̂
∏n

i=1 Ŷ2i which implicitly
implies a condition on the granularity of discretization for sets Wi and Y2i.

Figure 1. Compositionality results provided that conditions (4.2), (4.3), and (4.4) are satisfied.

5. Construction of Finite Markov Decision Processes

In the previous sections, Σ and Σ̂ were considered as general discrete-time stochastic control systems without

discussing the cardinality of their state spaces. In this section, we consider Σ as an infinite dt-SCS and Σ̂ as
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its finite abstraction constructed as in Section 2.4. We impose conditions on the infinite dt-SCS Σ enabling us

to find SStF from its finite abstraction Σ̂ to Σ. The required conditions are first presented in a general setting
for nonlinear stochastic control systems in Section 5.1 and then represented via some matrix inequality for
linear stochastic control systems in Section 5.2.

5.1. Discrete-Time Nonlinear Stochastic Control Systems. The stochastic storage function from finite

MDP Σ̂ of Section 2.4 to Σ is established under the assumption that the original discrete-time stochastic
control system Σ is so-called incrementally passivable as in Assumption 1.

Assumption 1. A dt-SCS Σ = (X,U,W, ς, f, Y1, Y2, h1, h2) is called incrementally passivable if there exist
functions L : X → U and V : X ×X → R≥0 such that ∀x, x′ ∈ X, ∀ν ∈ U , ∀w,w′ ∈W , the inequalities:

α(‖h1(x) − h1(x
′)‖) ≤ V (x, x′), (5.1)

and

E

[
V (f(x, L(x) + ν,w, ς), f(x′, L(x′) + ν, w′, ς))

∣∣x, x′, ν, w, w′
]
−V (x, x′) ≤−κ̂(V (x, x′))

+

[
w − w′

h2(x) − h2(x
′)

]T
X̄:=︷ ︸︸ ︷[

X̄11 X̄12

X̄21 X̄22

] [
w − w′

h2(x) − h2(x
′)

]
, (5.2)

hold for some α ∈ K∞, κ̂ ∈ K, and matrix X̄ of appropriate dimension.

Remark 5.1. Note that Assumption 1 implies that V is a SStF from system Σ equipped with the state feedback
controller L to itself. This type of property is closely related to the notion of so-called incremental stabilizability
[Ang02, PTS09].

In Section 5.2, we show that inequalities (5.1)-(5.2) for a candidate quadratic function V and linear stochastic
control systems boil down to some matrix inequality.

Under Assumption 1, the next theorem shows a relation between Σ and Σ̂, constructed as in Algorithm 1, via
establishing a stochastic storage function between them.

Theorem 5.2. Let Σ be an incrementally passivable dt-SCS via a function V as in Assumption 1 and Σ̂ be
a finite MDP as in Algorithm 1. Assume that there exists a function γ ∈ K∞ such that V satisfies

V (x, x′)− V (x, x′′) ≤ γ(‖x′ − x′′‖), ∀x, x′, x′′ ∈ X. (5.3)

Then V is a stochastic storage function from Σ̂ to Σ.

Proof. Since system Σ is incrementally passivable, from (5.1), ∀x ∈ X and ∀x̂ ∈ X̂, we have

α(‖h1(x)− h1(x̂)‖) = α(‖h1(x) − ĥ1(x̂)‖) ≤ V (x, x̂),

satisfying (3.1) with α(s) := α(s) ∀s ∈ R≥0. Now by taking the conditional expectation from (5.3), ∀x ∈

X, ∀x̂ ∈ X̂, ∀ν̂ ∈ Û , ∀w ∈ W, ∀ŵ ∈ Ŵ , we have

E

[
V (f(x, L(x)+ν̂, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]
−E

[
V (f(x, L(x)+ν̂, w, ς), f(x̂, L(x̂) + ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]

≤ E

[
γ(‖f̂(x̂, ν̂, ŵ, ς)− f(x̂, L(x̂) + ν̂, ŵ, ς)‖)

∣∣x̂, x̂, ν̂, w, ŵ
]
,

where f̂(x̂, ν̂, ŵ, ς) = Π(f(x̂, L(x̂) + ν̂, ŵ, ς)). Using Theorem 2.2 and inequality (2.5), the above inequality
reduces to

E

[
V (f(x, L(x)+ν̂, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]
−E

[
V (f(x, L(x)+ν̂, w, ς), f(x̂, L(x̂) + ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]

≤ γ(δ).
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Employing (5.2) and since h2 = ĥ2, we get

E

[
V (f(x, L(x)+ν̂, w, ς), f(x̂, L(x̂) + ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]
− V (x, x̂) ≤ −κ̂(V (x, x̂))

+

[
w − ŵ

h2(x) − ĥ2(x̂)

]T [
X̄11 X̄12

X̄21 X̄22

] [
w − ŵ

h2(x) − ĥ2(x̂)

]
.

It follows that ∀x ∈ X, ∀x̂ ∈ X̂, ∀û ∈ U, and ∀w ∈W, ∀ŵ ∈ Ŵ , one obtains

E

[
V (f(x, L(x)+ν̂, w, ς), f̂(x̂, ν̂, ŵ, ς)))

∣∣x, x̂, ν̂, w, ŵ
]
− V (x, x̂) ≤ −κ̂(V (x, x̂)) + γ(δ)

+

[
w − ŵ

h2(x) − ĥ2(x̂)

]T [
X̄11 X̄12

X̄21 X̄22

] [
w − ŵ

h2(x) − ĥ2(x̂)

]
,

satisfying (3.2) with ψ = γ(δ), ν = L(x)+ ν̂, κ = κ̂, ρext ≡ 0, and G, Ĝ, H are identity matrices of appropriate

dimensions. Hence, V is an SStF from Σ̂ to Σ, which completes the proof. �

Remark 5.3. As shown in [ZMEM+14] and by employing the mean value theorem, assumption (5.3) is not
restrictive provided that V is restricted to a compact subset of X ×X.

Now we provide similar results as in Subsection 5.1 but tailored to linear stochastic control systems.

5.2. Discrete-Time Linear Stochastic Control Systems. In this subsection, we focus on the class of
discrete-time linear stochastic control systems Σ and quadratic stochastic storage functions V . First, we
formally define the class of discrete-time linear stochastic control systems. Afterwards, we construct their

finite Markov decision processes Σ̂ as in Theorem 2.2, and then provide conditions under which a candidate

V is an SStF from Σ̂ to Σ.

The class of discrete-time linear stochastic control systems is given by

Σ:





x(k + 1)=Ax(k)+Bν(k)+Dw(k)+Nς(k),
y1(k) = C1x(k),
y2(k) = C2x(k),

(5.4)

where the additive noise ς(k) is a sequence of independent random vectors with multivariate standard normal
distributions.

We use the tuple

Σ = (A,B,C1, C2, D,N),

to refer to the class of discrete-time linear stochastic control systems of the form (5.4).

Consider the following quadratic function

V (x, x̂) = (x− x̂)T M̃(x − x̂), (5.5)

where M̃ is a positive-definite matrix of appropriate dimension. In order to show that V in (5.5) is an SStF

from Σ̂ to Σ, we require the following key assumption on Σ.

Assumption 2. Let Σ = (A,B,C1, C2, D,N). Assume that for some constant 0 < κ̂ < 1 and π > 0 there

exist matrices M̃ ≻ 0, K, X̄11, X̄12, X̄21, and X̄22 of appropriate dimensions such that matrix inequality
(5.6) holds.

Now, we provide another main result of this section showing that under some conditions V in (5.5) is an SStF

from Σ̂ to Σ.
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[
(1 + π)(A +BK)T M̃(A+BK) (A+BK)T M̃D

DT M̃(A+BK) (1 + π)DT M̃D

]
�

[
κ̂M̃ + CT2 X̄

22C2 CT2 X̄
21

X̄12C2 X̄11

]
(5.6)

E

[
V (f(x, ν, w, ς), f̂ (x̂, ν̂, ŵ, ς))

∣∣ x, x̂, ν̂, w, ŵ
]
−V (x, x̂) = (x− x̂)T (A+BK)T M̃(A+BK)(x− x̂) + 2(x− x̂)T

(A+BK)T M̃D(w − ŵ)+(w − ŵ)TDT M̃D(w − ŵ)+2(x− x̂)T (A+BK)T M̃E

[
F |x, x̂, ν̂, w, ŵ

]
+2(w − ŵ)T

DT M̃E

[
F |x, x̂, ν̂, w, ŵ

]
+E

[
FT M̃F |x, x̂, ν̂, w, ŵ

]
− V (x, x̂)

≤

[
x− x̂
w − ŵ

]T [
(1 + π)(A +BK)T M̃(A+BK) (A+BK)T M̃D

DT M̃(A+BK) (1 + π)DT M̃D

] [
x− x̂
w − ŵ

]
+ (1 + 2/π)λmax(M̃)δ2 − V (x, x̂)

≤

[
x− x̂
w − ŵ

]T [
κ̂M̃ + CT2 X̄

22C2 CT2 X̄
21

X̄12C2 X̄11

] [
x− x̂
w − ŵ

]
+ (1 + 2/π)λmax(M̃)δ2 − V (x, x̂)

= −(1− κ̂)(V (x, x̂)) +

[
w − ŵ

C2x− Ĉ2x̂

]T [
X̄11 X̄12

X̄21 X̄22

] [
w − ŵ

C2x− Ĉ2x̂

]
+ (1 + 2/π)λmax(M̃)δ2. (5.7)

Theorem 5.4. Let Σ = (A,B,C1, C2, D,N) and Σ̂ be a finite Markov decision process with discretization

parameter δ, and Ŷ1 ⊆ Y1. Suppose Assumption 2 holds, C1 = Ĉ1, and C2 = Ĉ2, then function V defined

in (5.5) is an SStF from Σ̂ to Σ.

Proof. Here, we show that ∀x, ∀x̂, ∀ν̂, ∃ν, ∀ŵ, ∀w, V satisfies λmin(M̃)

λmax(CT

1
C1)

‖C1x− Ĉ1x̂‖
2 ≤ V (x, x̂) and

E

[
V (f(x, ν, w, ς), f̂(x̂, ν̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]
− V (x, x̂) ≤ −(1− κ̂)(V (x, x̂)) + (1 + 2/π)λmax(M̃)δ2

+

[
w − ŵ

h2(x) − ĥ2(x̂)

]T [
X̄11 X̄12

X̄21 X̄22

] [
w − ŵ

h2(x) − ĥ2(x̂)

]
.

Since C1 = Ĉ1, we have ‖C1x−Ĉ1x̂‖
2 = (x−x̂)TCT1 C1(x−x̂). Since λmin(C

T
1 C1)‖x−x̂‖

2 ≤ (x−x̂)TCT1 C1(x−

x̂) ≤ λmax(C
T
1 C1)‖x − x̂‖2 and similarly λmin(M̃)‖x − x̂‖2 ≤ (x − x̂)T M̃(x − x̂) ≤ λmax(M̃)‖x − x̂‖2, it can

be readily verified that λmin(M̃)

λmax(CT

1
C1)

‖C1x− Ĉ1x̂‖
2 ≤ V (x, x̂) holds ∀x, ∀x̂, implying that inequality (3.1) holds

with α(s) = λmin(M̃)

λmax(CT

1
C1)

s2 for any s ∈ R≥0. We proceed with showing that the inequality (3.2) holds, as well.

Given any x, x̂, and ν̂, we choose ν via the following interface function:

ν = νν̂(x, x̂, ν̂) := K(x− x̂) + ν̂. (5.8)

By employing the definition of the interface function, we simplify

Ax+Bνν̂(x, x̂, ν̂)+Dw+Nς−Π(Ax̂+Bν̂+Dŵ+Nς)

to

(A+BK)(x− x̂)+D(w − ŵ)+ F,

where F =Ax̂+Bν̂+Dŵ+Nς−Π(Ax̂+Bν̂+Dŵ+Nς). Using Young’s inequality [You12] as ab ≤ π
2 a

2+ 1
2π b

2,

for any a, b ≥ 0 and any π > 0, and by employing Cauchy-Schwarz inequality, C2 = Ĉ2, and since
{

‖F‖ ≤ δ,

FT M̃F ≤ λmax(M̃)δ2,

one can obtain the chain of inequalities in (5.7). Hence, the proposed V in (5.5) is an SStF from Σ̂ to Σ,
which completes the proof. Note that functions α ∈ K∞, κ ∈ K, ρext ∈ K∞ ∪ {0}, and matrix X̄ in Definition
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3.1 associated with V in (5.5) are defined as α(s) = λmin(M̃)

λmax(CT

1
C1)

s2, κ(s) := (1 − κ̂)s, ρext(s) := 0, ∀s ∈ R≥0,

and X̄ =

[
X̄11 X̄12

X̄21 X̄22

]
. Moreover, positive constant ψ in (3.2) is ψ = (1 + 2/π)λmax(M̃)δ2. �

6. Case Study

In this section, we apply our results to the temperature regulation of n ≥ 3 rooms each equipped with a heater
and connected on a circle. The model of this case study is adapted from [MGWed] by including stochasticity
in the model as additive noise. The evolution of temperature T sampled at time interval of length τ = 9
minutes can be described by the interconnected discrete-time stochastic control system

Σ :

{
T (k + 1) = AT (k) + γThν(k) + βTE + ς(k),
y(k) = T (k),

where A is a matrix with diagonal elements aii = (1− 2η − β − γνi(k)), i ∈ {1, . . . , n}, off-diagonal elements
ai,i+1 = ai+1,i = a1,n = an,1 = η, i ∈ {1, . . . , n− 1}, and all other elements are identically zero. Parameters
η, β, and γ are conduction factors respectively between the rooms i± 1 and the room i, between the external
environment and the room i, and between the heater and the room i. Moreover, T (k) = [T1(k); . . . ;Tn(k)],
ν(k) = [ν1(k); . . . ; νn(k)], ς(k) = [ς1(k); . . . ; ςn(k)], TE = [Te1; . . . ;Ten], where Ti(k) and νi(k) are taking
values in [19, 21] and [0, 0.6], respectively, for all i ∈ {1, . . . , n}. The parameter Tei = −1 ◦C are the outside
temperature ∀i ∈ {1, . . . , n}, and Th = 50 ◦C is the heater temperature. Now, by introducing Σi described as

Σi :




Ti(k + 1) = (1− 2η − β − γνi(k))Ti(k) + γThνi(k) + ηwi(k) + βTei + ςi(k),
y1i(k) = Ti(k),
y2i(k) = Ti(k),

one can readily verify that Σ = I(Σ1, . . . ,ΣN ) where the coupling matrix M is such that mi,i+1 = mi+1,i =
m1,n = mn,1 = 1, i ∈ {1, . . . , n − 1}, and all other elements are identically zero. One can also verify that,

∀i ∈ {1, . . . , n}, condition (5.6) is satisfied with M̃i = 1, Ki = 0, X̄11 = η2(1 + πi), X̄
22 = −3.38η(1 + πi),

X̄12 = X̄21 = ηλ, where λ = 1 − 2η − β − γνi(k), and selecting some appropriate values for κ̂i, πi. Hence,

function Vi(Ti, T̂i) = (Ti − T̂i)
2 is an SStF from Σ̂i to Σi satisfying condition (3.1) with αi(s) = s2 and

condition (3.2) with κi(s) := (1− κ̂i)s, ρiext(s) = 0, ∀s ∈ R≥0, ψi = (1 + 2/πi)δ
2
i , Gi = Ĝi = Hi = I, and

X̄i =

[
η2(1 + πi) ηλ

ηλ −3.38η(1 + πi)

]
, (6.1)

where the input νi is given via the interface function in (5.8) as νi = ν̂i. Now, we look at Σ̂ = I(Σ̂1, . . . , Σ̂N )

with a coupling matrix M̂ satisfying condition (4.3) as M̂ = M . Choosing µ1 = · · · = µN = 1 and using X̄i

in (6.1), matrix X̄cmp in (4.5) reduces to

X̄cmp =

[
η2(1 + π)In ηλIn

ηλIn −3.38η(1 + π)In

]
,

and condition (4.2) reduces to

[
M
In

]T
X̄cmp

[
M
In

]
=η2(1+π)MTM + ηλM + ηλMT− 3.38η(1 + π)In � 0,

without requiring any restrictions on the number or gains of the subsystems. In order to satisfy the above
inequality, we used M = MT, and 4η2(1 + π) + 4ηλ− 3.38η(1 + π) � 0 employing Gershgorin circle theorem
[Bel65] which can be satisfied for the appropriate values of η, π and λ. By choosing finite internal input

sets Ŵi of Σ̂ such that
∏n

i=1 Ŵi = M̂
∏n

i=1 X̂i, condition (4.4) is also satisfied. Now, one can verify that

V (T, T̂ ) =
∑n

i=1(Ti − T̂i)
2 is an SSF from Σ̂ to Σ satisfying conditions (3.3) and (3.4) with α(s) = s2,

κ(s) := (1− κ̂)s, ρext(s) = 0, ∀s ∈ R≥0, and ψ = n(1 + 2/π)δ2.
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Figure 2. Closed loop state trajectories of a representative room, left plot in a network of
15 rooms and right plot in a network of 200 rooms.

To demonstrate the effectiveness of proposed approach, we fix n = 15. By taking the state set discretization
parameter δ = 0.005, κ̂i = 0.99, πi = 0.04, ηi = 0.1, βi = 0.022, γi = 0.05, ∀i ∈ {1, . . . , n}, one can readily
verify that conditions (4.2) and (5.6) are satisfied. Accordingly, by using the stochastic simulation function

V as in inequality (3.5) and starting the initial states of the interconnected systems Σ and Σ̂ from 20, we

guarantee that the distance between outputs of Σ and of Σ̂ will not exceed ε = 0.63 during the time horizon
Td = 10 with probability at least 90%, i.e.

P(‖yaν(k)− ŷâν̂(k)‖ ≤ 0.63, ∀k ∈ [0, 10]) ≥ 0.9 .

Note that for the construction of finite gMDP, we have selected the center of partition sets as representative
points. This choice has further tightened the above inequality.

Let us now synthesize a controller for Σ via the abstraction Σ̂ such that the controller maintains the tem-
perature of any room in the safe set [19,21]. The idea here is to first design a local control for abstraction

Σ̂i, and then refine it to system Σi using interface function. Consequently, controller for the interconnected
system Σ would be a vector such that each of its components is the controller for the interconnected system
Σi. We employ here software tool FAUST [EGA15] to synthesize a controller for Σ by taking the input set
discretization parameter θ = 0.04, and standard deviation of the noise σi = 0.28, ∀i ∈ {1, . . . , n}. A closed-
loop state trajectories of the representative room is illustrated in Figure 2 left. The optimal policy ν and the
associated safety probability for a representative room in the network are plotted in Figure 3 as a function of
initial temperature of the room. The synthesized optimal policy ν is smoothly decreasing from the maximum
input 0.6 to the minimum 0 as temperature increases. The maximum safety probability is around the center
of the interval [19, 21], and its minimums are at the two boundaries. Note that the oscillations appeared in
Figure 3 are due to the state and input discretization.

We now compare the guarantees provided by our approach and by [EAM15]. Note that our result is based
on finite gMDP while [EAM15] uses Dynamic Bayesian Network (DBN) to capture the dependencies between
subsystems. The comparison is shown in Figure 4 in logarithmic scale. In Figure 4 left, we have fixed ε = 0.2
(cf. (3.5)) and plotted the error as a function of discretization parameter δ and standard deviation of the noise
σ. Our error of (3.5) is independent of σ while the error of [EAM15] converges to infinity when σ goes to
zero. Thus our new approach outperforms [EAM15] for smaller standard deviation of noise. In Figure 4 right,
we have fixed σ = 0.28 and plotted the error as a function of discretization parameter δ and ε. The error in
[EAM15] is independent of ε while our error increases when ε goes to zero. Thus there is a tradeoff between
ε and δ to get better bounds in comparison with [EAM15].

In order to show scalability of our approach, we increase the number of rooms to n = 200. If we take the
state set discretization parameter δ = 0.005, κ̂i = 0.99, πi = 0.98, ηi = 0.1, βi = 0.4, γi = 0.5, ∀i ∈ {1, . . . , n},
conditions (4.2) and (5.6) are readily met. Moreover, if the initial states of the interconnected systems Σ and
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Figure 3. Optimal policy ν (left) and optimal safety probability (right) with time horizon
Td = 10 for a representative room in a network of 15 rooms.
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Figure 4. Comparison of error bound provided by the approach of this paper based on finite
gMDP with that of [EAM15] based on finite DBN. Plots are in logarithmic scale for a fixed
ε = 0.2 (cf. (3.5)) in the left and for a fixed noise standard deviation σ = 0.28 in the right.

Σ̂ are started from 20, one can readily verify that the norm of error between outputs of Σ and of Σ̂ will not
exceed 0.63 with probability at least 90% computed by the stochastic simulation function V as in inequality

(3.5) for Td = 10. Similarly, we synthesize a controller for Σ via the abstraction Σ̂ by taking the input set
discretization parameter θ = 0.04, and σi = 0.21, ∀i ∈ {1, . . . , n}. A closed-loop state trajectories of the
representative room is illustrated in Figure 2 right.
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