
FUNCTIONAL FAULT MODELING AND SIMULATION FOR VLSI DEVICES

Anil K. Gupta and James R. Armstrong

Department of Electrical Engineering
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

ABSTRACT

Functional fault modeling and
simulation for VLSI devices is
described(*). A functional fault list
is compiled using model perturbation and
mapping of circuit defects into
functional faults. A set of test vectors
is then derived which detects all faults
in the functional fault list. This same
test vector set is then applied to a
gate level model of the device. For the
test case analyzed, a very high level of
equivalent gate coverage was achieved.
Conclusions are drawn as to the
effectiveness of the technique and how
amenable it is to automation.

LNTRODUCTION

The progress in fabrication
technology has :brought us into an era of
VLSI circuits. Circuit densities have
increased manifold. Speeds have also
increased treme:ndously because of faster
devices and close proximity on the
layout. The increased density results
in increased number of faults per unit
area, creating problems in testing.

Logic simulation has been used
traditionally for obtaining test
pattern8 and fault signatures for
existing systems and more recently, for
design verification and system
validation. An important
simulator design is

aspect of
the efficiency

which is defined as the ratio of th&
host CPU time to the real logic time.
Efficiency depends on the level of
simulation"' and generally decreases
with the increase in the complexity of
representation.

* This work was supported by a grant
from IBM, Mana.ssas. Contract no. YD
190121.

Gate level simulation techniques
used to obtain test vectors for the less
populated LSS chips have become very
cumbersome and slow for VLSI circuits.
Such simulations have been seen to run
for days on dedicated mainframes'.

Functional level digital logic
simulation is a more viable and useful
approach in the context of these new
developments. Functional level
simulations are performed on those
'descriptions' of the digital logic
which are a level or two higher than the
gate level 'descriptions'. This makes
them much faster and less complicated
than the gate level simul,ators.

For gate level simulators,
increasing size and complexity plague
the fault simulation with respect to
computer run time (RT) which depends on
the gate count (n) as :

RT = K n2 (1)

Even the efficiency goes down
tremendously, being of the order of 10'
- 10'. In comparison, the efficiency for
functional level simulators is of the
order of lo3 - 10".

In order to make the simulation of
faults in IC'S meaningful, an
appropriate fault model is necessary. A
fault model is the mapping from physical
defects the simulated faults. It
shows how a circuit could fail in terms
of the fault. More importantly, it aims
at imposing a limit on the number of
test vectors required, while at the same
time keeping the coverage high.

At the gate level, a widely used
fault model is the stuck-(at fault model.
Although, many physical defects can be
modeled as stuck-at faults, the mapping
from physical defects to stuck-at faults
is not complete. The problem has become
worse due to the evolution of new
fabrication technologies e.g. HNMOS,

Paper 43.3
720

22nd Design Automation Conference

0738-1~X/85/0i'20S01.ooo1985 IEEE

http://crossmark.crossref.org/dialog/?doi=10.5555%2F317825.317969&domain=pdf&date_stamp=1985-06-01

i OBTAIN LIST OF CIRCUIT 1
[

1 DEVELOP FUNCTIONAL
LEVEL DEFECTS _i ; 7 F,;HACXOS / 1

) DEVELOP FAULT MODELS 1 1 DEVELOP TWO-LAYERED
TO MAF DEFECTS INTO 1 MODELING STRUCTURE FOR \

MACRO MODELS

1 MERGE THE TWO LISTS OF ALL THE I
FAULTS FOR INSERTION I

I

r ,
1 SELECT FAULT DETECTION VECTORS BASED ON
1 CXAPACTERISTICS OF FUNCTIONAL MODEL AND

1

1 , FUNCTIONAL "I;" MODELS , 1

CONDUCT FUNCTIONAL GEVEL
: SIMULATION TO DETERMINE COVERAGE \

, 1
I CONDUCT GATE LEVEL SIMULATION ON THE CBIP 1

USING TEST VECTORS DEVELOPED FROM THE
r I ,PYNCTIONAiMODEL ,

1 COMPRRE COVEPAGE. I

, pzyT&Gyy , I-+
1 INFERRULESFOR 1 USE
1 FAULT COVERAGE 1 I EXPERIENCE

c

Fig.1 Functional Fault Modeling Xethodalagy for the AMAC chip.

CMOS and the shift from LSI to VLSI
systems. However, because of the lack
of a proven better method and because of
the fact that the stuck-at model has
allowed generation of effective chip
tests and resulted in a low defect
level, its popularity remains.

To date, a generalized and
effective functional fault model
corresponding to the gate level stuck-at
model has eluded the researchers. The
difficulty lies in the higher level of
representaion of the functional level
descriptions. In this paper we furnish
the details of the functional fault
modeling work done on some typical
digital circuits to establish the
generality and the effectiveness of the
functional fault model [FM] we have
proposed"2'4.

Fault Simulation Methodology

The flow-chart of fig.1 shows the
approach taken during the research
involving the modeling and simulation of
faults and the generation of functional
level test vectors. As shown in the
figure, two different approaches were
tried for obtaining a list of functional

i
MODEL

I I I
LIST 1

I /

f
LIST 2

I I I

t I I

-
I CIRCUIT

DEFECTS I

I

faults:

1. Functional level defects
obtained solely from the model
description, i.e. model perturbation,
and

2. Circuit level defects mapped
into functional level defects.

The procedure resulted in two fault
lists; List 1 consisted of faults from
the models and List 2 consisted of
circuit level defects mapped onto
functional level defects [fig.2]. The
two lists were merged and faults were
injected into the functional
descriptions of the circuits under test.
Functional level simulations were then
performed with several different inputs
to obtain the fault detection vectors.
These functional level test vectors were
subsequently run on the gate level
models furnished by IBM, to determine
the equivalent gate level coverage.
Comparison of the gate and functional
coverage levels allowed inference of
rules for functional fault modeling, and
in some cases the experience gained
required further iterations of the
process.

For the purpose of modeling, a
section [fig.31 of IBM's AMAC [Add
Multiply and ACcumulate] chip was used.
It consists of a g-bit and two 17-bit
LSSD, pegisters, three Parity checkers,
an Adder and an 8x8 modified Dadda-type
Multiplyer. The chip is designed based
on the LSSD principle, wherein the
sequential logic is in the form of
combinational circuits interspersed with
sets of Shift Register Latches (SRL)
connected serially'. The gate count for
the section of logic mode led was 3700
gates.

Paper 43.3
721

-- ;
j /RI IRI ’

j WI I E I

+Gl I I I IGI

141 I /-++- :15q

----- _---- : --_-_-___ -mm-- mm-..-

I
/

IPI ,;I I. ; IPI I

I 1 I ’ I I I 2 I

----- I ADDER I ! m-e--

Ii, , I-i

I -

IRI

I E I

ICI I

ICI I

-mm-- -_-es

I p I

I 3 I

s-w..-

! junctional units for AMfC model.

Accurate functional models were _ _

.- I

I I

._-----_ _-- ----

I I

I MULT I

I 0x8 I

I I

..-----__------

prepared for the unit under test IUUTI,
based on timing specifications, layouts,

and other logic level informations.
Three separate models were prepared, one
each for the adder, the multiplier, and
the register with parity. The three
registers and their odd parity
generators work in the same way and
hence, only one model was developed for
the registers. But, for the purpose of
simulation, three copies of the same
model were used with the required
modifications.

The Adder --

The Adder is a 16-bit ALU
consisting of four 4-bit slices. Each
slice is a TI 74181 ALU. The carry-look-
ahead circuit provided with the four
ALU's obtains a substantial speedup. The
adder can potentially perform 48
operations, but in the AMAC unit it is
used only in lone particular mode to
realize 32 functions. Table 1 gives the
ALU functions used.

The model for the adder was
prepared as a single functional unit.
Each of the 32 functions performed by
the adder is defined as a set of micro-
operations of the model. The control

inputs are decoded to jump to the
section of the code containing the
corresponding set of micro-operations.
These micro-operations manipulate 16-bit
data at a time instead of 4-bit slices
of data. The carry-look-.ahead function
was modeled implicitly with the data
manipulation. Thus, the model was not
based on the physical structure of the
circuit. This was done to obtain a
higher level description which also
speeds up the simulation to a great
extent.

TABLE 1: __ - 3 74JBl ALU Functions used in AMAC chip -- ----

Selection M = I (Arithmetk Operallons)

53 S2 Sl SO Cnbar = H Cnbor = L

L L L L F=A F = A plus 1
L L L H F=A+B F = (A + B) plus 1
t L H L F=A+B' F = (A + B') plus 1
L L H H F = -1 (2's compl)
L H L L F = A plus AB'
L H L H F = (A+B) plus AB'
L H H L F=A-B-1
LH H H F = AB' - 1
H L L L F = A plus AB
H L L H F = A plus B
H L H L F = (A+B') plue AB
H L H H F=AB-1
HH L L F = A plus A*
HH L H F = (A+B) plus A
HH H L F = (A+ B') plus A
HH l-l H F = A minus 1

F = &x-o
F = A plus AB' plus 1
F = (A+B) plus AB' plus 1
F = A minus B
F = AB'
F = A plus AB plus 1
F = A plus B plus 1
F = (A+B') plus AB plus 1
F = AB
F = A plus A plus 1
F = (A+B) plus A plus 1
F = (A+B') plus A plus 1
F=A

The Multiplier

The AMAC chip has a fully
combinational, very high speed
Multiplier. It uses a modified Dadda-
tsw scheme" to generate the 16-bit
product of two 8-bit numbers. The
numbers are represented in signed 2's-
complement notation. The multiplier uses
a set of input and output latches to
store the data temporarily. Summands are
obtained from the latched inputs and are
used in groups of two or three to
generate partial sums and carry's. Three
stages of full adders are used to obtain
the final sum and carry. A carry-look-
ahead circuit then hastens the
calculation of the final product.

The flow of control and data in the
model for the multiplier was modified
very little from the one in the actual
layout. In this sense the model is based
on the structure, but most of the
individual functions have been defined
non-structurally, using the two methods
outlined above.

The Register with Par= Generator --

The registers in the circuit are
dual latches with serial-shift
capability for scan. These are popularly
known as LSSD registers'. Scan
capability is added to sequential
circuits in order to simplify testing.
In the test-mode of operation, the

Paper43.3
722

registers are loaded serially with the
desired patterns of binary values.
These patterns are then passed through
one stage of combinational logic, the
results of which are latched to the
subsequent stage of registers. The
output is serially shifted out and
checked for faults in the preceding
stage of logic.

An odd-parity generator provided
with each register in the UUT is used to
check the parity of the data latched
into the register.

Each register in the chip was
modeled with its scan operations and its
parity-check circuit'. The model was
prepared using a combination of both the
techniques specified above.

FUNCTIONAL LEVEL MODELING

GSP: The Simulation Language

The functional fault models were
prepared using GSP (General Simulation

Program)1'z'4'S" a general
purpose, two-vaiuedGSql,i? simulation
language which was developed at Virginia
Tech specifically to perform the
simulation of VLSI devices at the chip
levels. Its most useful application is
the modeling and simulation of
complicated VLSI circuits and
microprocessors. The language has been
used extensively for modeling
functional-level faults in simple and
complex VLSI devices. It also has the
capability to model such interface
timing specifications as setup time,

hold time and minimum pulsewidth""'.

Modeling in GSP is done in an
assembly language with special
instructions for hardware description.
The instruction set is illustrated in
the examples given below [figs.6,71.
The GSP manual' contains detailed
explanation on the usage of each
instruction.

The structure for the GSP
simulation system is shown in fig.4.
Each module description file is
assembled to obtain the microcode file.
The microcode files are merged together
with the states into the LINK file. The
DATA file has the information on module
interconnections, initializations and
inputs. The simulator reads the data
file at the beginning of simulation and
executes the microcode during
simulation, generating the outputs.

1 MODULE #I ;

\

WITH HERGED MICROCODE AND STATES 1
I

4

Methods of Functional Modeling -

The two general methods for
modeling digital devices at the
functional level are shown in fig.5.

FUNCTIONAL LEVEL MODELING

/\
LOOK-UP TABLE MODEL MICRO-OPERATION MODEL

Fig.5

Look-up Table Model --

In this method, the functional unit
is represented in the form of a truth-
table (combinational logic) or a state-
table (sequential logic). In order to
access a particular value in the truth-
table, the inputs to the functional unit
are decoded to point to the location
containing that value in the 'Look-up
Table'. This is a very simple approach
to modeling. Several such truth-tables
for the different functions are put
together to form the model for the whole
device. In GSP, the decoding constructs
are used to perform this operation. The
example in fig.6 describes the 'look-up
table' model for an And-Or-Invert
function of three inputs, F(xl,x2,x3) =
(x1x2 + x2x3 + x3x1)'. As can be seen
from the figure, the number of bits of
the input register that are to be
decoded, are moved into one of the index
registers (index register 1, in the
example). The index register is used as
the pointer to the locations of a table
(table AOI, in the example), and the
value contained in the location pointed
by the contents of the index register is

Paper 43.3
723

AND-OR-XNVERT (m)

; registers for the model

&G(3) owx

: pins for the module X1,X2,X3 : 1,2,3 : AOI : 4

6IN x1x3(1,3),our(4)

; delays for the moduls

$vw DELl(40)

; module description

BNE XlX3,OLDX.PROC
EXR ; EXIT

iROC: MOV XlX3,OLDX ; STORE FOR NEXT CHECK
IDX owx(o),3,1 ; STARTING WITH OTH BIT,

; MOVE 3 BITS INTO INDEX REG.1
MOV(DEL1) AOIBl,OUT ; MOV THE CONTENTS OF LOCATION

; POINTED BY INDEX REG.1 TO THE
; OUTPUT, AOI, AFTER DELL.

EXR ; EXIT AND RESTART

;LOCATIONS 3 1 2 3 4 S 6 7
A01 : BYT #1,#1,#1,#0,:~1,#0,#0,#0

AD

Fig.6 "Look-up Table" Model.

then moved out to the destination
OUT) after a delay of 40 ns.(DELl).

Micro-Operation Model

Here, the functional unit

(pin

is
defined as a sequence of model micro-
operations, using the constructs of the
modeling language. The example in fig.7
describes the 'micro-operation' model

AND-OR-INVERT (&)

; registers
R=(l) OWXl , owxz , owx3
DREG ANDlZ,AND23,AND31
WC(l) ORBUF
; pine
PIN X~(l).xZ(2).K3(3),OU(4)
; delays
EVW DELl(40)

; description

BNE Xl,OLDXl,PROC ;
BNE XZ,OLDXS,PROC ;
BNE XJ.OLDX3,PROC
EXR

bROC : MOV Xl, OWXl
MOV X2,OLDXZ
MOV X3.OLDX3

AND Xl,X2,ANDl2
AND XZ,X3,AND23
AND X3.Xl.AND31
OR AND12,AND23,ORBUF

AND31 ORBUF ORBUF
%N ORBUF'ORBUF'
MOV(DEL1) bRBUF, OUT
EXR

END

Fig.7

BRANCH IF VALUE OF X1,X2,X3
HAS CHANCED.

EXIT

FOR COMPARISON ON NEXT SIGNAL
C-GE ON Xl, x2, x3.

; (AND12) = (Xl) (X2)

; DESTINATION REG. IS ORBUF
; INVERT

; EXIT AND RESTART

“Micro-operation” Model.

for the And-Or-Invert function of three
inputs, similar to the one in fig.6.
GSP modeling constructs like AND, OR,
and NOT are used in a sequence of micro-
operations which yield the final output.
The functional model can be viewed as a
nodal graph with two kinds of edges
interconnecting the nodes. Each node is
a set of model micro-operations with

control and data being transferred from
one node to another.

The functional model:; were prepared
in a non-structural way i.e., the model
descriptions were not based on the
actual physical structure of the device
layout. This way, a truly functional
level description is obtained for the
circuit.

FAULT MODELING AT THE FUNCTIONAL LEVEL ---

The functional fault model proposed

in"' and described in this document is
independent of the technology used for
fabrication. Due to the higher level of
representation, simulation runs are very
fast. The validity and simplicity of
using these models for complex VLSI
circuits was studied during this
research.

There are two basic approaches to
functional fault-modeling. In one, the
physical structure of .the device is
given importance and circuit level
defects are mapped onto f'Jnctiona1 level
fault5 [fig.2]. While in the other, the
correct functional model
description/procedure is faulted to
obtain an incorrect version of the
procedure. The fault itelf MAY or MAY
NOT be directly related to any specific
circuit-level defect. Once fault5 are
selected, various input: vectors are
tried to obtain test vectors that can
detect those faults.

Previous research in this respect
shows that the first approach yields
good results for gate-level simulation
because of the closeness of the model
description to the phys.ical layout of
the device. But the same does not hold
for the case of functional-level
simulation wherein, the physical
structure of the device is not
explicitly defined in the model.

As such, for functional-level fault
simulation, the second approach is
favored. We shall call it the Model-
Perturbation [E] approach. However,
for the AMAC functional unit,
simulations were performed using both
the methods, with greater emphasis on
Model-Perturbation.

Model-Perturbation can be defined
in the following way. If the correct
model-procedure is C(x) and the set of
faulty model procedures is F(x), where
'x' is a set of inputs, then the
transformation from the correct model
procedure to the faulty one, can be
represented as :

F(x) = [Al C(x)

Paper 43.3
724

where the transfer function, [Al, is a
set of faults injected into C(x).

FAULT-INJECTED AND-OR-INVERT

I I
i

I
i

I I I
I I

1 C(x) [Al ----->I F(x) 1

/

,---->I

I
I

/

I

-I I I I

Fig.8 MODEL-PERTURBATION

Our research dealt with the finding
of the operator [Al in order to maximize
coverage of faults at the functional
level. The extent of coverage is
defined in terms of the gate-level
coverage for the present, but we hope to
obtain an independent definition based
on the results of our work in this area.

The models can be 'perturbed' in
certain ways. In an earlier report2 we
described these as the "Truth-Table
Modification" and "Micro-Operation
Modification" procedures Ifig.91. In the
modeling and simulation performed on the
AMAC functional unit, both these methods
were adopted.

(FUNCTIONAL LEVEL FAULT MODELING)
MODEL PERTURBATION

TRUTH-TABLE MODIFICATION MICRO-OPiRATION MODIFICATION
(TTM) (MOM)

Fig.9

Truth-Table Modification (m)

Detectable faults in a block of
functional logic result in truth-tables
with modified outputs. Hence, the
truth-table ('look-up table' in GSP) can
be modified in many ways to simulate
different faults. This is illustrated in
fig.10 for the previously cited AOI
example. A01 table now contains certain
incorrect values and for corresponding
combinations of the input, incorrect
values get moved to the output.

It should be noted that the tables
are not exhaustively modified because it
would result in too many possible
combinations, with each combination
being tried for each run. For example, a
table with 8 (three inputs, 2**3)
entries can be modified in (2**8 - 1)
ways! It would take very long to run
all these simulations even at the
functional level. The fault list for
table modification was obtained from a
study of the VLSI layouts for circuit
level faults. The circuit-level faults

: registers for the model

&G(3) OLDX

; pins for the module X1,X2,X3 : 1,2,3 ; A01 : 4

LN x1x3(1,3),ouT(4)

; delays for the module

&I DELX(40‘

: module description

BNE XlX3,OLDX,PROC
EXR ; EXIT AND RESTART

;ROC: MOV XlX3,OLDX : STORE FOR NEXT CHECK
IDX X1X3(0),3,1 : STARTING WITH OTH BIT, MOVE

; 3 BITS XNTO INDEX REG. 1
MOV(DEL1) AOI@l,OUT : MOV THE CONTENTS OF LOCATION

; POINTED BY INDEX REG. 1 TO THE
i OUTPUT, AOI, AFTER DELI.

EXR ; EXIT AND RESTART

; table is modified from the previous one, for locations 2.5.7

;LOCATIONS 0 1 2 3 4 5 5 7
AOI : BYT #1,#1,#0,#3,#1.#1,#0,#1

&m

Fig.10 Truth-Table Modification Technique.

were then mapped onto functional faults.

The extent of coverage using this
method is dependent on the complexity of
the model because for a simple function,
there are not many different ways in
which the look-up table can be
faulted/modified. The functions employed
in the modeling were simple. As a
result, the number of test vectors
obtained is not high and the few test
vectors obtained are capable of
detecting most of the injected faults.

One important aspect of this
process is the method of mapping circuit
level defects to the functional level
faults. For the AMAC model, each circuit
level defect chosen was studied to see
how it affects the behavior of the
corresponding function. This was done
'manually' and can be a serious
limitation in terms of automating the
fault simulation process. Inspite of
its limitations, this method is
attractive as it is very simple and easy
to inject faults. The process of table
modification and reassembly of the model
description for each such modification
can be automated.

Micro-Operation Modification (MOM)

Every model description consists of
a sequence of micro-operations which
define the behavior of the simulated
device. The micro-operation model is
especially well-suited for the method of
fault modeling discussed here. In this
method, the correct model of the device
is taken to be an entity in itself and

Paper 43.3
725

any relationship between the model and
the physical circuit it represents, is
transparent to the fault modeling
process. Thus, for all purposes of
fault simulation, the model is the
actual circuit.

The micro-operation model is
prepared from the control and data-
manipulation constructs of the modeling
language. It should be noted that the
control type micro-operations of the
model need not necessarily correspond to
the control signals of the simulated
device. The cow-rol type micro-operations of
the model include conditional and
unconditional branches, loops, decoding
functions like CASE or computed GOT0
statements, and jumps to subroutines.
ALL other micro-operations constitute
the data-manipulation micro-operations of the
model.

Functional level fault modeling is
done in terms of modifying these model
micro-operations to make them faulty,
one at a time. To obtain the test
vectors for the AMAC functional unit,
the GSP modeling constructs like AND,
OR, XOR, ADD, and SUB were modified. In
addition, control constructs such as BEQ
and BNE were also changed.
Modifications like replacing each
occurrence of AND by OR, OR by AND, ADD
and SUB by XOR, ADD and SUB by OR, and
changing conditional-branches to
unconditional-branches and vice-versa,
the latter in terms of the immediately
preceding operation, resulted in the
generation of a substantial number of
test vectors. Thus most of the micro-
operations were replaced by their
logical duals to perform functional
fault simulation. This technique of
failing the model to the 'incorrect'
mode, which is 'the LOGICAL DUAL (*) of
the 'correct' mode of operaticyi<lded
very encouraging results in terms of
fault coverage.

The biggest argument in support of
this method is its simplicity and
regularity, which make it amenable for
automation, apart from keeping the
coverage high.

RESULTS AND CONCLUSIONS
'Model Perturbation', as developed

here, is a simple, 'feasible >nd
effective technique to inject functional
level faults. The simplicity of the TTM
and MOM procedures for fault injection
makes them viable for automation.

The results for the simulation of
AMAC functional unit are very
encouraging. In all, 857 functional
faults were injected into the models and
110 test vectors detected all these
faults. The functional level coverage

-------.-----_--_____

* Some Logical Duals are : XOR vs.
Equivalence, OR vs. AND.

was 100% of the functional fault list,
while the equivalent gate level coverage
was 88.60% of the 8919 gate llevel
faults.

We believe that further work in
this direction will y.ield improved
coverage and help us come up with a well
defined classification of functional
level faults and an independent
definition of functional fault coverage.
The work reported here was performed
'manually'. Research is being done on
the automation of the whole process of
fault simulation based on the model
perturbation approach. Several
algorithms are being studied for optimum
solutions. The results on these will be
reported in the future.

ACKNOWLEDGEMENTS
The authors would like to extend

their gratitude and thanks to Mr. Anil
D. Savkar of IBM, Manassas, who
continually provided us with useful
information in the form of discussions
and design & layout details on the
project. His support was a great help in
completing the research successfully.

REFERENCES

[ll James R. Armstrong, "Chip Level
Modeling of LSI Devices", IEEE
Transactions on Computer-Aided Design, Vol.
CAD-3, No. 4, October 1984.
[2] James R. Armstrong et. al., "Interim
Report for IBM Contract : Functional
Fault Modeling for VLSI Devices", Dept.
of Electrical Engineering, VPIBSU,
Blacksburg, May 1984.
[3] James R. Armstrong, "Interim Report
for IBM Contract : Functional Fault
Modeling for VLSI Devices', Dept. of
Electrical Engineering, VPldSU, Blacksburg,
December 1983.
[4] James R. Armstrong, "Chip Level
Modeling and Simulation", SIMULATION,
October 1983.
[51 James R. Armstrong and D. E.
Devlin,'GSP: A Logic Simulztor for LSI",
78th IEEE Conference on Desr’gn Automation,
1981.
[61 "Information and S,pecifications
provided by IBM on AMAC chip", Fall
1983.
I71 "The GSP Manual", Dept. of Electrical
Engineering,VPl&SU, Blacksburg, December
1982.
[81 Se June Hong, Daniel L. Ostapko, ' A
Simple Procedure to Generate Optimum
Test Patterns for Parity Logic Networks
I, IEEE Transactions on
C130, No. 5, May 1981.

Computers, Vol.

[9] E. B. Eichelberqer and T. Williams,
"A Logic Design Structure for LSI
Testing"; Proc. 14th Design Automation
Conference, New Orleans, June 1977.
1101 James B. Stewart, Unpublished
work, Dept. of Electrical Engineering, VPI &
SU, Blacksburg, August 1984.

Paper 43.3
726

