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ABSTRACT 

Functional fault modeling and 
simulation for VLSI devices is 
described(*). A functional fault list 
is compiled using model perturbation and 
mapping of circuit defects into 
functional faults. A set of test vectors 
is then derived which detects all faults 
in the functional fault list. This same 
test vector set is then applied to a 
gate level model of the device. For the 
test case analyzed, a very high level of 
equivalent gate coverage was achieved. 
Conclusions are drawn as to the 
effectiveness of the technique and how 
amenable it is to automation. 

LNTRODUCTION 

The progress in fabrication 
technology has :brought us into an era of 
VLSI circuits. Circuit densities have 
increased manifold. Speeds have also 
increased treme:ndously because of faster 
devices and close proximity on the 
layout. The increased density results 
in increased number of faults per unit 
area, creating problems in testing. 

Logic simulation has been used 
traditionally for obtaining test 
pattern8 and fault signatures for 
existing systems and more recently, for 
design verification and system 
validation. An important 
simulator design is 

aspect of 
the efficiency 

which is defined as the ratio of th& 
host CPU time to the real logic time. 
Efficiency depends on the level of 
simulation"' and generally decreases 
with the increase in the complexity of 
representation. 

* This work was supported by a grant 
from IBM, Mana.ssas. Contract no. YD 
190121. 

Gate level simulation techniques 
used to obtain test vectors for the less 
populated LSS chips have become very 
cumbersome and slow for VLSI circuits. 
Such simulations have been seen to run 
for days on dedicated mainframes'. 

Functional level digital logic 
simulation is a more viable and useful 
approach in the context of these new 
developments. Functional level 
simulations are performed on those 
'descriptions' of the digital logic 
which are a level or two higher than the 
gate level 'descriptions'. This makes 
them much faster and less complicated 
than the gate level simul,ators. 

For gate level simulators, 
increasing size and complexity plague 
the fault simulation with respect to 
computer run time (RT) which depends on 
the gate count (n) as : 

RT = K n2 (1) 

Even the efficiency goes down 
tremendously, being of the order of 10' 
- 10'. In comparison, the efficiency for 
functional level simulators is of the 
order of lo3 - 10". 

In order to make the simulation of 
faults in IC'S meaningful, an 
appropriate fault model is necessary. A 
fault model is the mapping from physical 
defects the simulated faults. It 
shows how a circuit could fail in terms 
of the fault. More importantly, it aims 
at imposing a limit on the number of 
test vectors required, while at the same 
time keeping the coverage high. 

At the gate level, a widely used 
fault model is the stuck-(at fault model. 
Although, many physical defects can be 
modeled as stuck-at faults, the mapping 
from physical defects to stuck-at faults 
is not complete. The problem has become 
worse due to the evolution of new 
fabrication technologies e.g. HNMOS, 
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Fig.1 Functional Fault Modeling Xethodalagy for the AMAC chip. 

CMOS and the shift from LSI to VLSI 
systems. However, because of the lack 
of a proven better method and because of 
the fact that the stuck-at model has 
allowed generation of effective chip 
tests and resulted in a low defect 
level, its popularity remains. 

To date, a generalized and 
effective functional fault model 
corresponding to the gate level stuck-at 
model has eluded the researchers. The 
difficulty lies in the higher level of 
representaion of the functional level 
descriptions. In this paper we furnish 
the details of the functional fault 
modeling work done on some typical 
digital circuits to establish the 
generality and the effectiveness of the 
functional fault model [FM] we have 
proposed"2'4. 

Fault Simulation Methodology 

The flow-chart of fig.1 shows the 
approach taken during the research 
involving the modeling and simulation of 
faults and the generation of functional 
level test vectors. As shown in the 
figure, two different approaches were 
tried for obtaining a list of functional 

i 
MODEL 

I I I 
LIST 1 

I / 

f 
LIST 2 

I I I 

t I I 

- 
I CIRCUIT 

DEFECTS I 

I 

faults: 

1. Functional level defects 
obtained solely from the model 
description, i.e. model perturbation, 
and 

2. Circuit level defects mapped 
into functional level defects. 

The procedure resulted in two fault 
lists; List 1 consisted of faults from 
the models and List 2 consisted of 
circuit level defects mapped onto 
functional level defects [fig.2]. The 
two lists were merged and faults were 
injected into the functional 
descriptions of the circuits under test. 
Functional level simulations were then 
performed with several different inputs 
to obtain the fault detection vectors. 
These functional level test vectors were 
subsequently run on the gate level 
models furnished by IBM, to determine 
the equivalent gate level coverage. 
Comparison of the gate and functional 
coverage levels allowed inference of 
rules for functional fault modeling, and 
in some cases the experience gained 
required further iterations of the 
process. 

For the purpose of modeling, a 
section [fig.31 of IBM's AMAC [Add 
Multiply and ACcumulate] chip was used. 
It consists of a g-bit and two 17-bit 
LSSD, pegisters, three Parity checkers, 
an Adder and an 8x8 modified Dadda-type 
Multiplyer. The chip is designed based 
on the LSSD principle, wherein the 
sequential logic is in the form of 
combinational circuits interspersed with 
sets of Shift Register Latches (SRL) 
connected serially'. The gate count for 
the section of logic mode led was 3700 
gates. 
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prepared for the unit under test IUUTI, 
based on timing specifications, layouts, 

and other logic level informations. 
Three separate models were prepared, one 
each for the adder, the multiplier, and 
the register with parity. The three 
registers and their odd parity 
generators work in the same way and 
hence, only one model was developed for 
the registers. But, for the purpose of 
simulation, three copies of the same 
model were used with the required 
modifications. 

The Adder -- 

The Adder is a 16-bit ALU 
consisting of four 4-bit slices. Each 
slice is a TI 74181 ALU. The carry-look- 
ahead circuit provided with the four 
ALU's obtains a substantial speedup. The 
adder can potentially perform 48 
operations, but in the AMAC unit it is 
used only in lone particular mode to 
realize 32 functions. Table 1 gives the 
ALU functions used. 

The model for the adder was 
prepared as a single functional unit. 
Each of the 32 functions performed by 
the adder is defined as a set of micro- 
operations of the model. The control 

inputs are decoded to jump to the 
section of the code containing the 
corresponding set of micro-operations. 
These micro-operations manipulate 16-bit 
data at a time instead of 4-bit slices 
of data. The carry-look-.ahead function 
was modeled implicitly with the data 
manipulation. Thus, the model was not 
based on the physical structure of the 
circuit. This was done to obtain a 
higher level description which also 
speeds up the simulation to a great 
extent. 

TABLE 1: __ - 3 74JBl ALU Functions used in AMAC chip -- ---- 

Selection M = I (Arithmetk Operallons) 

53 S2 Sl SO Cnbar = H Cnbor = L 

L L L L F=A F = A plus 1 
L L L H F=A+B F = (A + B) plus 1 
t L H L F=A+B' F = (A + B') plus 1 
L L H H F = -1 (2's compl) 
L H L L F = A plus AB' 
L H L H F = (A+B) plus AB' 
L H H L F=A-B-1 
LH H H F = AB' - 1 
H L L L F = A plus AB 
H L L H F = A plus B 
H L H L F = (A+B') plue AB 
H L H H F=AB-1 
HH L L F = A plus A* 
HH L H F = (A+B) plus A 
HH H L F = (A+ B') plus A 
HH l-l H F = A minus 1 

F = &x-o 
F = A plus AB' plus 1 
F = (A+B) plus AB' plus 1 
F = A minus B 
F = AB' 
F = A plus AB plus 1 
F = A plus B plus 1 
F = (A+B') plus AB plus 1 
F = AB 
F = A plus A plus 1 
F = (A+B) plus A plus 1 
F = (A+B') plus A plus 1 
F=A 

The Multiplier 

The AMAC chip has a fully 
combinational, very high speed 
Multiplier. It uses a modified Dadda- 
tsw scheme" to generate the 16-bit 
product of two 8-bit numbers. The 
numbers are represented in signed 2's- 
complement notation. The multiplier uses 
a set of input and output latches to 
store the data temporarily. Summands are 
obtained from the latched inputs and are 
used in groups of two or three to 
generate partial sums and carry's. Three 
stages of full adders are used to obtain 
the final sum and carry. A carry-look- 
ahead circuit then hastens the 
calculation of the final product. 

The flow of control and data in the 
model for the multiplier was modified 
very little from the one in the actual 
layout. In this sense the model is based 
on the structure, but most of the 
individual functions have been defined 
non-structurally, using the two methods 
outlined above. 

The Register with Par= Generator -- 

The registers in the circuit are 
dual latches with serial-shift 
capability for scan. These are popularly 
known as LSSD registers'. Scan 
capability is added to sequential 
circuits in order to simplify testing. 
In the test-mode of operation, the 
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registers are loaded serially with the 
desired patterns of binary values. 
These patterns are then passed through 
one stage of combinational logic, the 
results of which are latched to the 
subsequent stage of registers. The 
output is serially shifted out and 
checked for faults in the preceding 
stage of logic. 

An odd-parity generator provided 
with each register in the UUT is used to 
check the parity of the data latched 
into the register. 

Each register in the chip was 
modeled with its scan operations and its 
parity-check circuit'. The model was 
prepared using a combination of both the 
techniques specified above. 

FUNCTIONAL LEVEL MODELING 

GSP: The Simulation Language 

The functional fault models were 
prepared using GSP (General Simulation 

Program)1'z'4'S" a general 
purpose, two-vaiuedGSql,i? simulation 
language which was developed at Virginia 
Tech specifically to perform the 
simulation of VLSI devices at the chip 
levels. Its most useful application is 
the modeling and simulation of 
complicated VLSI circuits and 
microprocessors. The language has been 
used extensively for modeling 
functional-level faults in simple and 
complex VLSI devices. It also has the 
capability to model such interface 
timing specifications as setup time, 

hold time and minimum pulsewidth""'. 

Modeling in GSP is done in an 
assembly language with special 
instructions for hardware description. 
The instruction set is illustrated in 
the examples given below [figs.6,71. 
The GSP manual' contains detailed 
explanation on the usage of each 
instruction. 

The structure for the GSP 
simulation system is shown in fig.4. 
Each module description file is 
assembled to obtain the microcode file. 
The microcode files are merged together 
with the states into the LINK file. The 
DATA file has the information on module 
interconnections, initializations and 
inputs. The simulator reads the data 
file at the beginning of simulation and 
executes the microcode during 
simulation, generating the outputs. 

1 MODULE #I ; 

\ 

WITH HERGED MICROCODE AND STATES 1 
I 

4 

Methods of Functional Modeling - 

The two general methods for 
modeling digital devices at the 
functional level are shown in fig.5. 

FUNCTIONAL LEVEL MODELING 

/\ 
LOOK-UP TABLE MODEL MICRO-OPERATION MODEL 

Fig.5 

Look-up Table Model -- 

In this method, the functional unit 
is represented in the form of a truth- 
table (combinational logic) or a state- 
table (sequential logic). In order to 
access a particular value in the truth- 
table, the inputs to the functional unit 
are decoded to point to the location 
containing that value in the 'Look-up 
Table'. This is a very simple approach 
to modeling. Several such truth-tables 
for the different functions are put 
together to form the model for the whole 
device. In GSP, the decoding constructs 
are used to perform this operation. The 
example in fig.6 describes the 'look-up 
table' model for an And-Or-Invert 
function of three inputs, F(xl,x2,x3) = 
(x1x2 + x2x3 + x3x1)'. As can be seen 
from the figure, the number of bits of 
the input register that are to be 
decoded, are moved into one of the index 
registers (index register 1, in the 
example). The index register is used as 
the pointer to the locations of a table 
(table AOI, in the example), and the 
value contained in the location pointed 
by the contents of the index register is 
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AND-OR-XNVERT (m) 

; registers for the model 

&G(3) owx 

: pins for the module X1,X2,X3 : 1,2,3 : AOI : 4 

6IN x1x3(1,3),our(4) 

; delays for the moduls 

$vw DELl(40) 

; module description 

BNE XlX3,OLDX.PROC 
EXR ; EXIT 

iROC: MOV XlX3,OLDX ; STORE FOR NEXT CHECK 
IDX owx(o),3,1 ; STARTING WITH OTH BIT, 

; MOVE 3 BITS INTO INDEX REG.1 
MOV(DEL1) AOIBl,OUT ; MOV THE CONTENTS OF LOCATION 

; POINTED BY INDEX REG.1 TO THE 
; OUTPUT, AOI, AFTER DELL. 

EXR ; EXIT AND RESTART 

;LOCATIONS 3 1 2 3 4 S 6 7 
A01 : BYT #1,#1,#1,#0,:~1,#0,#0,#0 

AD 

Fig.6 "Look-up Table" Model. 

then moved out to the destination 
OUT) after a delay of 40 ns.(DELl). 

Micro-Operation Model 

Here, the functional unit 

(pin 

is 
defined as a sequence of model micro- 
operations, using the constructs of the 
modeling language. The example in fig.7 
describes the 'micro-operation' model 

AND-OR-INVERT (&) 

; registers 
R=(l) OWXl , owxz , owx3 
DREG ANDlZ,AND23,AND31 
WC(l) ORBUF 
; pine 
PIN X~(l).xZ(2).K3(3),OU(4) 
; delays 
EVW DELl(40) 

; description 

BNE Xl,OLDXl,PROC ; 
BNE XZ,OLDXS,PROC ; 
BNE XJ.OLDX3,PROC 
EXR 

bROC : MOV Xl, OWXl 
MOV X2,OLDXZ 
MOV X3.OLDX3 

AND Xl,X2,ANDl2 
AND XZ,X3,AND23 
AND X3.Xl.AND31 
OR AND12,AND23,ORBUF 

AND31 ORBUF ORBUF 
%N ORBUF'ORBUF' 
MOV(DEL1) bRBUF, OUT 
EXR 

END 

Fig.7 

BRANCH IF VALUE OF X1,X2,X3 
HAS CHANCED. 

EXIT 

FOR COMPARISON ON NEXT SIGNAL 
C-GE ON Xl, x2, x3. 

; (AND12) = (Xl) (X2) 

; DESTINATION REG. IS ORBUF 
; INVERT 

; EXIT AND RESTART 

“Micro-operation” Model. 

for the And-Or-Invert function of three 
inputs, similar to the one in fig.6. 
GSP modeling constructs like AND, OR, 
and NOT are used in a sequence of micro- 
operations which yield the final output. 
The functional model can be viewed as a 
nodal graph with two kinds of edges 
interconnecting the nodes. Each node is 
a set of model micro-operations with 

control and data being transferred from 
one node to another. 

The functional model:; were prepared 
in a non-structural way i.e., the model 
descriptions were not based on the 
actual physical structure of the device 
layout. This way, a truly functional 
level description is obtained for the 
circuit. 

FAULT MODELING AT THE FUNCTIONAL LEVEL --- 

The functional fault model proposed 

in"' and described in this document is 
independent of the technology used for 
fabrication. Due to the higher level of 
representation, simulation runs are very 
fast. The validity and simplicity of 
using these models for complex VLSI 
circuits was studied during this 
research. 

There are two basic approaches to 
functional fault-modeling. In one, the 
physical structure of .the device is 
given importance and circuit level 
defects are mapped onto f'Jnctiona1 level 
fault5 [fig.2]. While in the other, the 
correct functional model 
description/procedure is faulted to 
obtain an incorrect version of the 
procedure. The fault itelf MAY or MAY 
NOT be directly related to any specific 
circuit-level defect. Once fault5 are 
selected, various input: vectors are 
tried to obtain test vectors that can 
detect those faults. 

Previous research in this respect 
shows that the first approach yields 
good results for gate-level simulation 
because of the closeness of the model 
description to the phys.ical layout of 
the device. But the same does not hold 
for the case of functional-level 
simulation wherein, the physical 
structure of the device is not 
explicitly defined in the model. 

As such, for functional-level fault 
simulation, the second approach is 
favored. We shall call it the Model- 
Perturbation [E] approach. However, 
for the AMAC functional unit, 
simulations were performed using both 
the methods, with greater emphasis on 
Model-Perturbation. 

Model-Perturbation can be defined 
in the following way. If the correct 
model-procedure is C(x) and the set of 
faulty model procedures is F(x), where 
'x' is a set of inputs, then the 
transformation from the correct model 
procedure to the faulty one, can be 
represented as : 

F(x) = [Al C(x) 
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where the transfer function, [Al, is a 
set of faults injected into C(x). 

FAULT-INJECTED AND-OR-INVERT 

I I 
i 

I 
i 

I I I 
I I 

1 C(x) [Al ----->I F(x) 1 

/ 

,---->I 

I 
I 

/ 

I 

-I I I I 

Fig.8 MODEL-PERTURBATION 

Our research dealt with the finding 
of the operator [Al in order to maximize 
coverage of faults at the functional 
level. The extent of coverage is 
defined in terms of the gate-level 
coverage for the present, but we hope to 
obtain an independent definition based 
on the results of our work in this area. 

The models can be 'perturbed' in 
certain ways. In an earlier report2 we 
described these as the "Truth-Table 
Modification" and "Micro-Operation 
Modification" procedures Ifig.91. In the 
modeling and simulation performed on the 
AMAC functional unit, both these methods 
were adopted. 

(FUNCTIONAL LEVEL FAULT MODELING) 
MODEL PERTURBATION 

TRUTH-TABLE MODIFICATION MICRO-OPiRATION MODIFICATION 
(TTM) (MOM) 

Fig.9 

Truth-Table Modification (m) 

Detectable faults in a block of 
functional logic result in truth-tables 
with modified outputs. Hence, the 
truth-table ('look-up table' in GSP) can 
be modified in many ways to simulate 
different faults. This is illustrated in 
fig.10 for the previously cited AOI 
example. A01 table now contains certain 
incorrect values and for corresponding 
combinations of the input, incorrect 
values get moved to the output. 

It should be noted that the tables 
are not exhaustively modified because it 
would result in too many possible 
combinations, with each combination 
being tried for each run. For example, a 
table with 8 (three inputs, 2**3) 
entries can be modified in (2**8 - 1) 
ways! It would take very long to run 
all these simulations even at the 
functional level. The fault list for 
table modification was obtained from a 
study of the VLSI layouts for circuit 
level faults. The circuit-level faults 

: registers for the model 

&G(3) OLDX 

; pins for the module X1,X2,X3 : 1,2,3 ; A01 : 4 

LN x1x3(1,3),ouT(4) 

; delays for the module 

&I DELX(40‘ 

: module description 

BNE XlX3,OLDX,PROC 
EXR ; EXIT AND RESTART 

;ROC: MOV XlX3,OLDX : STORE FOR NEXT CHECK 
IDX X1X3(0),3,1 : STARTING WITH OTH BIT, MOVE 

; 3 BITS XNTO INDEX REG. 1 
MOV(DEL1) AOI@l,OUT : MOV THE CONTENTS OF LOCATION 

; POINTED BY INDEX REG. 1 TO THE 
i OUTPUT, AOI, AFTER DELI. 

EXR ; EXIT AND RESTART 

; table is modified from the previous one, for locations 2.5.7 

;LOCATIONS 0 1 2 3 4 5 5 7 
AOI : BYT #1,#1,#0,#3,#1.#1,#0,#1 

&m 

Fig.10 Truth-Table Modification Technique. 

were then mapped onto functional faults. 

The extent of coverage using this 
method is dependent on the complexity of 
the model because for a simple function, 
there are not many different ways in 
which the look-up table can be 
faulted/modified. The functions employed 
in the modeling were simple. As a 
result, the number of test vectors 
obtained is not high and the few test 
vectors obtained are capable of 
detecting most of the injected faults. 

One important aspect of this 
process is the method of mapping circuit 
level defects to the functional level 
faults. For the AMAC model, each circuit 
level defect chosen was studied to see 
how it affects the behavior of the 
corresponding function. This was done 
'manually' and can be a serious 
limitation in terms of automating the 
fault simulation process. Inspite of 
its limitations, this method is 
attractive as it is very simple and easy 
to inject faults. The process of table 
modification and reassembly of the model 
description for each such modification 
can be automated. 

Micro-Operation Modification (MOM) 

Every model description consists of 
a sequence of micro-operations which 
define the behavior of the simulated 
device. The micro-operation model is 
especially well-suited for the method of 
fault modeling discussed here. In this 
method, the correct model of the device 
is taken to be an entity in itself and 
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any relationship between the model and 
the physical circuit it represents, is 
transparent to the fault modeling 
process. Thus, for all purposes of 
fault simulation, the model is the 
actual circuit. 

The micro-operation model is 
prepared from the control and data- 
manipulation constructs of the modeling 
language. It should be noted that the 
control type micro-operations of the 
model need not necessarily correspond to 
the control signals of the simulated 
device. The cow-rol type micro-operations of 
the model include conditional and 
unconditional branches, loops, decoding 
functions like CASE or computed GOT0 
statements, and jumps to subroutines. 
ALL other micro-operations constitute 
the data-manipulation micro-operations of the 
model. 

Functional level fault modeling is 
done in terms of modifying these model 
micro-operations to make them faulty, 
one at a time. To obtain the test 
vectors for the AMAC functional unit, 
the GSP modeling constructs like AND, 
OR, XOR, ADD, and SUB were modified. In 
addition, control constructs such as BEQ 
and BNE were also changed. 
Modifications like replacing each 
occurrence of AND by OR, OR by AND, ADD 
and SUB by XOR, ADD and SUB by OR, and 
changing conditional-branches to 
unconditional-branches and vice-versa, 
the latter in terms of the immediately 
preceding operation, resulted in the 
generation of a substantial number of 
test vectors. Thus most of the micro- 
operations were replaced by their 
logical duals to perform functional 
fault simulation. This technique of 
failing the model to the 'incorrect' 
mode, which is 'the LOGICAL DUAL (*) of 
the 'correct' mode of operaticyi<lded 
very encouraging results in terms of 
fault coverage. 

The biggest argument in support of 
this method is its simplicity and 
regularity, which make it amenable for 
automation, apart from keeping the 
coverage high. 

RESULTS AND CONCLUSIONS 
'Model Perturbation', as developed 

here, is a simple, 'feasible >nd 
effective technique to inject functional 
level faults. The simplicity of the TTM 
and MOM procedures for fault injection 
makes them viable for automation. 

The results for the simulation of 
AMAC functional unit are very 
encouraging. In all, 857 functional 
faults were injected into the models and 
110 test vectors detected all these 
faults. The functional level coverage 

-------.-----_--_____ 

* Some Logical Duals are : XOR vs. 
Equivalence, OR vs. AND. 

was 100% of the functional fault list, 
while the equivalent gate level coverage 
was 88.60% of the 8919 gate llevel 
faults. 

We believe that further work in 
this direction will y.ield improved 
coverage and help us come up with a well 
defined classification of functional 
level faults and an independent 
definition of functional fault coverage. 
The work reported here was performed 
'manually'. Research is being done on 
the automation of the whole process of 
fault simulation based on the model 
perturbation approach. Several 
algorithms are being studied for optimum 
solutions. The results on these will be 
reported in the future. 

ACKNOWLEDGEMENTS 
The authors would like to extend 

their gratitude and thanks to Mr. Anil 
D. Savkar of IBM, Manassas, who 
continually provided us with useful 
information in the form of discussions 
and design & layout details on the 
project. His support was a great help in 
completing the research successfully. 

REFERENCES 

[ll James R. Armstrong, "Chip Level 
Modeling of LSI Devices", IEEE 
Transactions on Computer-Aided Design, Vol. 
CAD-3, No. 4, October 1984. 
[2] James R. Armstrong et. al., "Interim 
Report for IBM Contract : Functional 
Fault Modeling for VLSI Devices", Dept. 
of Electrical Engineering, VPIBSU, 
Blacksburg, May 1984. 
[3] James R. Armstrong, "Interim Report 
for IBM Contract : Functional Fault 
Modeling for VLSI Devices', Dept. of 
Electrical Engineering, VPldSU, Blacksburg, 
December 1983. 
[4] James R. Armstrong, "Chip Level 
Modeling and Simulation", SIMULATION, 
October 1983. 
[51 James R. Armstrong and D. E. 
Devlin,'GSP: A Logic Simulztor for LSI", 
78th IEEE Conference on Desr’gn Automation, 
1981. 
[61 "Information and S,pecifications 
provided by IBM on AMAC chip", Fall 
1983. 
I71 "The GSP Manual", Dept. of Electrical 
Engineering,VPl&SU, Blacksburg, December 
1982. 
[81 Se June Hong, Daniel L. Ostapko, ' A 
Simple Procedure to Generate Optimum 
Test Patterns for Parity Logic Networks 
I, IEEE Transactions on 
C130, No. 5, May 1981. 

Computers, Vol. 

[9] E. B. Eichelberqer and T. Williams, 
"A Logic Design Structure for LSI 
Testing"; Proc. 14th Design Automation 
Conference, New Orleans, June 1977. 
1101 James B. Stewart, Unpublished 
work, Dept. of Electrical Engineering, VPI & 
SU, Blacksburg, August 1984. 

Paper 43.3 
726 


