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ABSTRACT
Understanding conversations is crucial to enabling conversational
search in technologies such as chatbots, digital assistants, and smart
home devices that are becoming increasingly popular. Conventional
search engines are powerful at answering open domain queries but
are mostly capable of stateless search. In this paper, we define a
conversational query as a query that depends on the context of
the current conversation, and we formulate the conversational
query understanding problem as context-aware query reformula-
tion, where the goal is to reformulate the conversational query into
a search engine friendly query in order to satisfy users’ information
needs in conversational settings. Such context-aware query refor-
mulation problem lends itself to sequence to sequence modeling.
We present a large scale open domain dataset of conversational
queries and various sequence to sequence models that are learned
from this dataset. The best model correctly reformulates over half
of all conversational queries, showing the potential of sequence to
sequence modeling for this task.
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1 INTRODUCTION
The recent rise of technologies such as chatbots, digital personal
assistants, and smart home devices [28] has led to much more con-
versational interactions between humans and machines than ever
before. In conversations, humans naturally ask questions that de-
pend on the context of the current conversation. A basic example
is asking "When was California founded?" followed by "Who is
its governor?" and "What is the population?", where both the fol-
low up questions refer to California. For this paper, we define a
conversational query to be a query that depends on the context
of the current conversation, and the query can be either a natu-
ral language question or a traditional keyword query. Some more
examples of conversational queries can be seen in Table 1.

Humans use this type of questions in conversations because
it is tedious to continuously repeat the context and because we
can maintain context and understand these questions. Therefore,
users also naturally issue conversational queries when interacting
with conversational technologies and expect these technologies to
understand them.

However, information retrieval and question answering systems
have traditionally been designed for stateless or standalone queries,
and existing conversational query understanding capabilities are
very limited. For even the simple aforementioned example about
California, neither of two popular commercial search engines was
able to correctly understand both the follow up queries (as of Octo-
ber 23, 2017).

Therefore, we want to improve query understanding for con-
versational search, by tackling the task of conversational query
understanding (referred to as CQU from now on), which we for-
mulate as a context-aware query reformulation task that consists
of determining 1) whether or not a query depends on the previous
context, and 2) if so, how to reformulate that query to include the
necessary context. This will enable conversational queries to be
reformulated to more search friendly standalone queries that can
be understood by search engines or any other IR/QnA system.

Since we are targeting the open domain search scenario, our
goal is CQU that is also open domain and can handle a wide variety
of queries, both in terms of topic and structure. This is a major
challenge of this open domain CQU task. Other challenges include:
handling different types of context (Table 1 shows that the context
to be maintained can be an entity, concept, question, etc.); knowing
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Table 1: Examples of conversational queries

Previous query Current conversational query Current conversational query including context
when was California founded? who is its governor? who is California’s governor?
California population in 1990 population of California in 1990
Space Needle Seattle its mayor Seattle’s mayor
how tall is Kobe Bryant? what about Lebron James? how tall is Lebron James?
when was the last summer Olympics? and the winter one? when was the last winter Olympics?
animals that live in Asia? and are endangered? animals that live in Asia and are endangered?
similarities between bacteria and viruses differences differences between bacteria and viruses

when to reformulate (e.g. "it" is not always referring to previous
context); and knowing which part of the context to use (e.g. using
"Seattle" instead of "Space Needle" for "its mayor"). It is infeasible
for a rule based solution to address all of these challenges, therefore
we sought to create a suitable dataset and apply machine learning.
The main contributions of our work are:

(1) Defining and presenting the task of CQU.
(2) First open domain and large scale dataset of conversational

queries.
(3) Novel sequence to sequence based model for CQU.
(4) Demonstrating the potential of deep learning for CQU.

2 RELATEDWORK
For conversational queries that include an anaphora, coreference
resolution is a related problem. Coreference resolution seeks to
resolve an anaphora to the term(s) that it refers to. There has been
lots of research done on coreference resolution and recent research
with deep learning has achieved state of the art results [10] on this
challenging task. However, existing coreference resolution systems
have several limitations when applied to CQU. The following ex-
amples were tried with the coreference resolution service from the
Stanford CoreNLP toolkit [24]:

(1) Multiple possible entities (e.g. for "Is Space Needle in Seattle?
Who is its mayor?", the "its" is incorrectly resolved to "Space"
instead of "Seattle")

(2) Knowing when a reformulation is actually needed (e.g. for
"Whenwas California founded?How long does it take bruised
ribs to heal?", the "it" is incorrectly resolved to "California").

(3) When there isn’t an explicit referring anaphora (e.g. for
"When was California founded? What is the population?",
there is no anaphora in the second query that explicitly refers
to "California").

Example 3 shows that even the perfect coreference resolution sys-
tem will not be able to handle the conversational queries that lack
anaphoras, such as some of the examples in Table 1.

Paraphrase generation, where the goal is to generate a para-
phrase for a given sentence, is also a related task. Research has
been done on applying deep learning to paraphrase generation
with state of the art results [27]; however, no existing research
has been done on generating paraphrases that depend on context
beyond just the input sentence.

There has also been research on dialogue agents using neural net-
works and reinforcement learning [13, 31, 33]. While these research

show promising results, they are limited by being very domain
specific, e.g. finding a movie.

Another related area is context-aware search or context-aware
query suggestion for search. Bar-Yossef et al. [3], Li et al. [20, 21],
Cao et al. [6], Sordoni et al. [32] and Dehghani et al. [12] used previ-
ous queries as context along with auto-completion logs and/or click
logs to improve query suggestions for query auto-completion. Their
work consists of either ranking or generating query suggestions.
The query ranking task fundamentally differs from our query refor-
mulation/generation task. For the solutions that generated query
suggestions, they were focused on completing the query instead
of modifying existing parts of the query. Also, these solutions are
well suited for a traditional search engine interface where query
suggestions can be shown to the user for them to select, but not as
suited for the conversational technologies that we are targeting.

Research conducted by Cao et al. [5], Shen et al. [30] and Sun
et al [34] focused on how context can be leveraged to improve
document ranking accuracy. Grbovic et al. [15] proposed a context-
aware query rewriting approach for sponsored search. He et al. [17]
proposed using sequence to sequence for query rewriting. These
research overlap with only individual aspects of our work, such as
leveraging context or sequence to sequence modeling, and they are
focused on the traditional query rewriting task of adding alternative
queries to improve ranking performance by reducing mismatches.

For deep learning, the architecture that we built on top of is the
sequence to sequence model [7, 8, 35]. More details about sequence
to sequence can be found in section 4.2. We also used the technique
of adding attention mechanism to sequence to sequence, which has
been shown in existing research to improve performance [1, 23, 36].
Another deep learning technique that we used is multiple perspec-
tive matching, which has been shown to help with natural language
sentence matching [37]. For our task of CQU, this matching was ap-
plied between the query and the context; more details can be found
in section 4.3.4. For all these deep learning techniques, previous
works have not yet explored applying them to the task of CQU.

3 DATASET
To apply deep learning for open domain CQU, we need a dataset
that is large (at least tens of thousands samples), open domain,
and, of course, containing conversational queries. Several existing
datasets were considered, but unfortunately none of them met all
the criteria, as shown in Figure 1.

The movie dialogue [2] and MSR twitter [33] datasets were both
large and not domain specific, but they contained few conversa-
tional queries, and it would have been very difficult to filter for

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1716



Figure 1: Existing datasets

those queries. The Ubuntu tech support [22] and Wikipedia editors
[11] datasets were both large and contained good examples of con-
versational queries, but they were specific to Ubuntu tech support
queries and Wikipedia editing queries, respectively. The Cortana
(internal dataset), Dialog State Tracking Challenge [19], and UCSB
datasets [14] were also domain specific, and not large enough.

Since there was no suitable existing dataset, data collection was
the crucial first step. We hypothesized that there are users who
interact with search engines as if they’ve having a conversation,
and issue conversational queries, expecting the context of their
previous queries to be maintained. From examining search engine
logs, we did in fact find such queries, and what was particularly
interesting is that because the search engine does not currently
have great CQU, users themselves would often have to reformulate
those queries to include the necessary context.

Therefore, we mined a commercial search engine’s query logs
for triplets of consecutive queries from the same user session, i.e.
consisting of query 1, 2, and 3. The queries are already stored in
sessions based on the search engine’s definition of session. Then a
filtering logic was applied to obtain the triplets where:

(1) query 1 can be any query
(2) query 2 is a conversational query that depends on context

from query 1
(3) query 3 is the user’s own reformulation of query 2 that

includes context from query 1
For example: query 1 = "when was California founded", query 2 =
"who is its governor", query 3 = "who is California’s governor". Note
that query 2 is conversational, and it was reformulated to query 3,
which is non-conversational and can be a standalone query.

Some of the important criteria in the filtering logic include:
• query 2 doesn’t result in any clicks (implies that the search
engine did not understand the query and did not return any
good results)
• query 3 does result in a satisfied user click (implies that the
search engine did understand the query and did return a
good result)
• query 3 consists of terms from query 2 and terms from query
1 that weren’t in query 2 (implies that query 3 is a reformu-
lation of query 2 to include context from query 1)

• query 3 was issued within 30 seconds of query 2 (implies
that the user quickly noticed that the search engine did
not understand query 2, and immediately reformulated it to
query 3)

These criteria combined with the fact that the search engine cur-
rently has low coverage for conversational queries and shows un-
satisfactory results, leads to the assumption that query 2 is a con-
versational query that depends on context from query 1.

Recall that the task of CQU involves reformulating the conversa-
tional query to include the correct context. Therefore, query 1 and
query 2 (previous query and current query) can be treated as the
inputs and query 3 (reformulation of current query) can be treated
as the labels. This dataset currently does not include the previous
answer, but we will explore adding it in the future.

These triplets are the positive samples, and we also mined for
negative samples where no reformulation was needed. This was
done by applying a filtering logic with the criteria that query 2
already resulted in a satisfied user click (implying that the search
engine understood query 2 and returned a good result). In this case,
no user reformulation was needed, so we can just set query 3 to
be equal to query 2. For example: query 1 = "where is California",
query 2 = "how to split string in Python", query 3 = "how to split
string in Python". For these queries, we don’t want to reformulate
query 2, so the desired output query 3 is just the original query 2.
These negative samples were added so that a model trained on this
dataset can also learn whether or not a query depends on previous
context.

For the mined search engine queries, only about 5% were natural
language questions, with the rest being keyword queries. How-
ever, since users tend to issue more natural language questions for
the conversational technologies that we are targeting, we upsam-
pled the natural language questions to be 50% of our dataset. This
upsampling was done for both positive and negative samples.

Note that the filtering logics for both positive and negative sam-
ples are not perfect and will result in some false positive/negative
samples. This is not a surprise because if there is a perfect filter-
ing logic for conversational queries, then the task of CQU can be
solved by simply applying that logic. From manually checking 1000
samples, we found that 71% of positive samples actually contained
conversational queries while 98% of negative samples actually con-
tained standalone queries. Improving the filtering logic to generate
cleaner data is something that we will continue to explore.

Even though the vast majority of search engine queries are not
conversational, we were still able to create a large dataset because of
the massive amount of queries in the search engine logs. The dataset
that we used for our models consists of 3.6 million conversational
query sessions, and also 3.6 million negative samples. This dataset
was mined from only a subset of search engine logs, so additional
samples can easily be obtained; and as new queries continue to
come in daily, this dataset can continue to grow.

Another advantage of this dataset is that it includes human labels
for free, without the need to hire crowdsourced judges to generate
labels. Also, search engine data is very diverse and covers many
domains, and this dataset reflects that. It contains a very wide range
of context that are passed between queries, everything from various
named entities to concepts/noun phrases to verbs. Therefore, this
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dataset satisfies the criteria mentioned earlier, making it the first
ever large scale and open domain dataset of conversational queries.

4 ALGORITHMS
4.1 Problem Formulation
As stated in the introduction, we formulate the problem as a context-
aware query reformulation task. In a generic form, the inputs of the
task are: context (conversation history), which includes previous
queries and answers/results, and current input query; output of
the task is a generated query which reformulates the input query
by infusing information which exists in the context but is missing
from the current query.

We use C to represent conversation history: C = {Qt ,At }−Kt=−1
where K represents the window size of looking back at history, use
Q0 to represent current input query, and use Q ′ to represent the
output after reformulation. The goal of the task can be formulated
to find a function F :

F (C,Q0) → Q ′

In addition, both query and answer are comprised of sequence of
words:

Q = {wQ
t }

M
t=1,A = {w

A
t }Nt=1

We use wt to represent a word at position or time step t in a se-
quence.

In the simplest form where we only use the previous query in a
conversation history as context,C becomes:C = Q−1. For simplicity,
we remove the subscripts from C and Q0 and represent them as:

C = {wC
t }Nt=1,Q = {w

Q
t }

M
t=1

The goal remains as:

F ({wC
t }Nt=1, {w

Q
t }

M
t=1) → {w

Q ′
t }

P
t=1

Words generated in Q ′ : w
Q ′
t can either be from the context:

{wC
t }Nt=1 or current input query: {w

Q
t }Mt=1, or a predefined vocabu-

lary.
This problem setting fits very well as a sequence to sequence

problem. We first briefly review the general sequence to sequence
approach, and then introduce our approaches of applying the se-
quence to sequence technique to solve the context-aware query
reformulation problem.

4.2 Sequence to Sequence Modeling
In the general sequence to sequence scenario, a collection of source-
target sequence pairs is given, and the task is to learn to generate
target sequences from source sequences. Let’s use S and T to repre-
sent a source sequence and a target sequence, respectively:

S = {wS
t }Mt=1,T = {w

T
t }Nt=1

Words in S andT can be from different vocabularies, like in machine
translation, or the same vocabulary, like in text summarization.
Sequences S and T can have different lengths and they represent a
many-to-many relationship.

Sequence to sequence belongs to the broader class of encoder-
decoder models [7], which has two stages: encoding and decoding.
In the encoding stage, an encoder is used to transform the source
sequence into an encoded representation. There are many different

types of encoders targeting different source domains [9, 18]. Here
we are agnostic to the form of the encoder and simply use a general
recurrent neural network (RNN) to present the encoding process
as:

uSt = RNN S (uSt−1,e
S
t ) (1)

Here eSt is the word embedding representation of wordwS
t in source

sequence S = {eSt }Mt=1 and u
S
t represents the internal RNN state

at time step t . After running the RNN through the entire source
sequence, we obtain uS = {uSt }Mt=1, which is considered as the
encoded representation of the source sequence. Instead of using
the entire sequence uS as the encoded representation of the source,
usually the last RNN state, uSM , is treated as the representation of
the entire source sequence and is used for decoding.

Once the source sequence is encoded, sequence to sequence
models generate a target sequence in the decoding stage. In this
stage, a decoder, which is usually another RNN, generates the target
sequence sequentially one word at a time by conditioning on the
source sequence and the previously generated words.

st = RNNT (st−1,h(yt−1, S)) (2)

p(yt |{y<t }, S) = д(st ) (3)

Here st represents the internal state of RNN at time t and yt stands
for the word generated at time t . We use bold font yt to represent
yt ’s corresponding word embedding representation. д is usually
an affine layer followed by a softmax. Usually dependence on S
can be captured by setting s0 to be uSM , which passes the source
information to the target. Since the source information is already
passed, we can set h(yt−1, S) = yt−1.

On top of above sequence to sequence framework, a technique
called attention has been shown to significantly improve sequence
to sequence models’ performances and has become a default com-
ponent in many sequence to sequence applications [1, 23, 36].

Instead of using a fixed vector, e.g. uS , to represent the source
sequence S during decoding, attention mechanism introduces a
dynamically changing attention vector ct to the decoding process.

ct =
M∑
k=1

αt,ku
S
k (4)

αt,k =
ef (st ,u

S
k )∑

k ′ e
f (st ,uSk′ )

(5)

Equations 4 and 5 give the computation of ct . Intuitively, αt,k repre-
sents the strength of attention on the kth word in source sequence
at time step t during decoding. f is the attention function which
is usually a multi-layer neural network with non-linear layers. In
this paper, we use the Bahdanau mechanism introduced in [1]. ct
is computed by a weighted sum of the source words’ representa-
tions based on their corresponding attention strengths. With the
attention mechanism, the decoding process then becomes:

st = RNNT (st−1,h(yt−1,ct−1)) (6)

In this paper, we simply consider concatenating yt−1 and ct−1:
h(yt−1,ct−1) = [yt−1,ct−1]. Equation 3 then becomes:

p(yt |{y<t }, S) = д(st ,ct ) (7)
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Here an attention layer is applied above the RNN cells, and д(st ,ct )
is set to be д([st ,ct ]). Figure 2 illustrates the general sequence to
sequence model with attention, where LSTM [18] is selected the
as RNN cell and the <START> token is used to kick off decoding
process.

Figure 2: General sequence to sequence with attention.

4.3 Context-Aware Query Reformulation with
Sequence to Sequence Modeling

This section will provide details on how we tackled the context-
aware query reformulation problem with various sequence to se-
quence approaches. We proposed four approaches, with each one
building on top of the previous.

4.3.1 Concatenated Sequence to Sequence (Concate_S2S, Base-
line). The unique property of our query reformulation problem,
which doesn’t exist in general sequence to sequence settings, is
that there are two source sequences: 1) context C = {wC

t }Nt=1 and
2) current query Q = {wQ

t }Mt=1. Our first approach is just to con-
catenate C and Q to form one source sequence, and then directly
adopt general sequence to sequence:

S = [{wC
t }Nt=1, _SEP , {w

Q
t }

M
t=1]

_SEP represents a special word used to be able to separate context
and query sequences. This approach is considered as our baseline,
and we derived more advanced approaches on top of it.

4.3.2 Pair Sequences to Sequence (Pair_S2S). Instead of concate-
nating context and query sequences, we keep them separate and
use different RNNs to encode them:

uCt = RNNC (uCt−1,e
C
t )

u
Q
t = RNNQ (uQt−1,e

Q
t )

u
Q
0 is set to beuCN to pass information from context to current query,

simulating natural conversation flow. With this encoding process,
we obtain the encoded context representation uC = {uCt }Nt=1, and
the encoded query representation uQ = {uQt }Mt=1.

In decoding stage, uQM is used to initialize RNN state s0. While
for attention, we expand the traditional attention mechanism to a

two-layer attention. First, attention is conducted on context and
query sequences separately and independently:

cCt =
N∑
k=1

αCt,ku
C
k c

Q
t =

M∑
k=1

α
Q
t,ku

Q
k

αCt,k =
ef (st ,u

C
k )∑

k ′ e
f (st ,uCk′ )

α
Q
t,k =

ef (st ,u
Q
k )∑

k ′ e
f (st ,uQk′ )

Second, another attention is conducted to merge attention vectors
cCt and cQt :

c
C+Q
t = a_αCt,kc

C
t + a_α

Q
t,kc

Q
t

a_αCt,k =
ef (st ,c

C
t )

ef (st ,c
C
t ) + ef (st ,c

Q
t )

a_αQt,k =
ef (st ,c

Q
t )

ef (st ,c
C
t ) + ef (st ,c

Q
t )

wherea_αCt,k anda_αQt,k can be considered as the attention strength

at the sequence level on context and query, respectively. cC+Qt , the
weighted-sum vector ofcCt andcQt , will be used as the final attention
vector for decoding. The rest of the decoding is the same as general
sequence to sequence using Equations 6 and 7.

Figure 3 illustrates the pair sequences to sequence approach with
two layers of attentions. Figure 4 zooms in to the computation of
attention vectors.

Figure 3: Pair sequences to sequence with two layers of at-
tentions.

Keeping context and query separate when encoding makes the
overall model structure more flexible. It provides better support
for incorporating richer context in the future, such as including
multiple previous turns from the conversation history with both
queries and answers. Furthermore, it empowers the model to more
efficiently and deeply capture the relationship between the context
and query, instead of just concatenating them and treating them
equally.
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Figure 4: Computation of two layers of attentions.

4.3.3 Pair Sequences to Sequence With Context Embedding
(Pair_S2S_Cxt_Embed). Based on Pair_S2S, we developed a new
model which embeds context information into query sequence
during encoding, with the purpose of capturing the semantic rela-
tionship between context and query.

In encoding stage, the context sequence is first encoded as done
in model Pair_S2S. Then, the query sequence is encoded. When en-
coding the query, attention mechanism over the context is applied.

c
QC
t =

N∑
k=1

α
QC
t,k u

C
k (8)

α
QC
t,k =

ef (u
Q
t ,uCk )∑

k ′ e
f (uQt ,uCk′ )

(9)

In Equations 8 and 9, αQCt,k represents the attention strength on
the kth word in the context sequence at time t while encoding
the query. cQCt is the corresponding weighted-sum vector over the
encoded context representation. Then the query encoder becomes:

u
Q
t = RNNQ (uQt−1, [e

Q
t ,c

QC
t−1])

The decoding stage remains the same as in Pair_S2S.
You can see the unique property of this approach is the compu-

tation of cQCt and its embedding usage. The attention mechanism
enables cQCt to capture matching information between each word
in the query sequence to all the words in the context sequence.
This additional information was expected to produce better source
representations to be used for decoding. The effectiveness of this
approach can be seen in our experiment results.

4.3.4 Pair Sequences to Sequence With Context Embedding From
Multiple Perspective Matching (Pair_S2S_Cxt_Embed_MP). The ef-
fectiveness of Pair_S2S_Cxt_Embed inspired us to develop this
new model, with the motivation of further improving the context
embedding cQCt .

[37] proposed a multiple perspective matching (MP-matching)
approach to measure similarity between two natural language sen-
tences.We borrowed that idea to compute a new context embedding

c
QC
t . Let’s rephrase MP-matching for our reformulation scenario
and describe how we’re using it.

In MP-matching, a multiple perspective matching function fm
is proposed to compute similarity of two vectors:

m = fm (v1,v2;W )
wherev1 andv2 are two same sized vectors, e.g. with dimension
d , andW ∈ Rl×d is a trainable parameter with l representing the
number of perspectives. The returned value ofm is a l-dimensional
vectorm = [m1, ...,ml ], with each dimensionmk ∈m representing
the matching score from the kth perspective.mk is calculated by
the following formula:

mk = cosine(Wk ⊙ v1,Wk ⊙ v2)

where ⊙ is the element-wise multiplication, andWk is the kth row
ofW .

A few matching strategies based on fm are proposed in [37]. In
the following equations, we use BiRNN to represent a bi-directional
RNN. Beforematching the query against the context, we first encode
them to new representations:

−→
uCt ,
←−
uCt = BiRNN (uCt−1,e

C
t )

−→
u
Q
t ,
←−
u
Q
t = BiRNN (uQt−1,e

Q
t )

Note that context and query are encoded using the same RNN as
proposed in [37].

Matching strategies:
1. Full matching. In this strategy, each time step of the query

representation
−→
u
Q
t (or

←−
u
Q
t ) is compared with the final time step of

the context representation
−−→
uCN (or

←−−
uCN ):

−−−−→
m

f ull
t = fm (

−→
u
Q
t ,
−−→
uCN ;
−−−−−→
W f ull )

2. Max pooling matching. In this strategy, each time step of the

query representation
−→
u
Q
t (or

←−
u
Q
t ) is compared with every time step

of the context representation
−→
uCi (or

←−
uCi ), and the maximum value

of each dimension is selected:
−−−−−→
mmax

t = max
i ∈1, ...,N

fm (
−→
u
Q
t ,
−→
uCi ;
−−−−−→
Wmax )

3. Attentive matching. In this strategy, first, at each time step of

the query representation
−→
u
Q
t (or

←−
u
Q
t ), attentions over the context

representation are computed. Attention weight is computed with
cosine similarity:

−−→at,i =
cosine(

−→
u
Q
t ,
−→
uCi )∑N

j=1 cosine(
−→
u
Q
t ,
−→
uCj )

i = 1, ...,N (10)

Then an attention vector over the entire context representation
−→
uC

(or
←−
uC ) is computed by weighted summing all time steps of the

context representation:

−−−−−−−→
uC,mean
t =

N∑
i=1

−−→at,i ·
−→
uCi
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Finally, each time step of the query representation is matched with
its corresponding attention vector by the fm function:

−−−→
matt
t = fm (

−→
u
Q
t ,
−−−−−−−→
uC,mean
t ;

−−−−→
W att )

4. Max attentive matching. This strategy is similar to atten-
tive matching. It picks the time step from the context represen-
tation which has the highest attention score (cosine similarity com-
puted by Equation 10) as the attention vector, instead of taking the
weighted sum of all the time steps as the attention vector. We use
−−−−−−−−→
mmax_att
t to represent the max attentive matching vectors.
All these match strategies are applicable to the query’s and con-

text’s word embedding representations as well by simply replacing
uQ and uC with eQ and eC respectively and removing the direc-
tion. In our model, we expand max attentive matching with word
embedding representations and represent it as:me,max_att

t . [37]
has demonstrated that applying all strategies together works best.
Therefore, we aggregate all the above matching vectors with an
aggregation layer. The matchings at each time step in the query
sequence are concatenated:

m
QC
t = [

−−−−→
m

f ull
t ,

←−−−−
m

f ull
t ,

−−−−−→
mmax
t ,

←−−−−−
mmax
t ,

−−−→
matt
t ,
←−−−
matt
t ,

−−−−−−−−→
mmax_att
t ,

←−−−−−−−−
mmax_att
t ,me,max_att

t ]

Then {mQC
t }Mt=1 is fed into another RNN:

−−−→
v
QC
t ,
←−−−
v
QC
t = BiRNNAдд(vQC

t−1,m
QC
t )

Finally, the context embedding is obtained as:

c
QC
t = [

−−−→
v
QC
t ,
←−−−
v
QC
t ]

Figure 5 illustrates the Pair_S2S_Cxt_Embed_MP model.

5 EXPERIMENTS
For all the proposed models, the loss function that was optimized
during training is the cross entropy loss, which is given by:

CE = −
∑
i
log(pyi )

where pyi is the model’s predicted probability of the correct target
word yi . Often the cross entropy loss is expressed as perplexity,
which is just the exponential of cross entropy loss, exp(CE). Sto-
chastic gradient descent was the chosen optimizer because of its
popularity for other sequence to sequence models [35].

The final metrics that the models were evaluated on are exact
match and BLEU score. Exact match is the percentage of predicted
sequences that match word for word with the labels. BLEU score is
the standard BLEU score [25]. BLEU score is included as a metric
because the ultimate goal of this task is to allow IR/QnA systems
to answer conversational query and an exact match is not always
needed to correctly answer the query. For example, "what is the
population of California" and "what is California population" should
both result in the same answer for most QnA systems. Exact match
is a very strict metric but it provides a precise measurement of our
approaches. During evaluation, we removed stop-words from both
target and generated sequences.

Table 2: Test set evaluation for different baseline (Con-
cate_S2S) model setups.

Conversational
Non-

conversational
Model EM BLEU EM BLEU
GRU, no att 20.5 52.1 40.7 54.7
LSTM, no att 23.8 53.1 40.6 54.1
LSTM, att 44.8 76.7 75.3 87.7
LSTM, att, bidir 43.7 75.6 73.6 86.5

The dataset described in Section 3 was split into train/dev/test
sets by a 80/10/10 split. Train set was used for training, dev set was
used for hyperparameter tuning, and test set was used for final eval-
uations. The test set was also split into the positive (conversational)
and negative (non-conversational) examples.

A vocabulary size of 200kwas chosen because 600k unique words
were found in the inputs of the train set and the top 200k words
covered 99% of all words. Batch size of 32 was chosen based on
recommendation from [4]. Word embedding size of 300 was cho-
sen since we hypothesized that the model would need as much
expressivity at the word level as possible. The encoder and decoder
share the same embeddings because for this task, the meaning of a
word should be the same in both the input and output. The embed-
dings were trained from random initialization and using pretrained
GloVe embeddings [26] did not help. Hidden size of 300 was cho-
sen based on recommendation to have hidden size ≥ embedding
size [4]. Larger hidden sizes of 400 and 600 were experimented
with but did not result in improvements. Further tuning of these
hyperparameters would be a worthwhile next step.

During training, a checkpoint was saved every 1/20th of an epoch,
and the checkpoint is evaluated on the entire dev set. Training
stopped when the perplexity on the dev set did not improve over 5
consecutive checkpoints.

We first studied the impact of different model architectures for
the Concate_S2S model, including type of RNN cell, with or without
attention, yes or no bidirectional encoder.

Table 2 shows the results of different settings of Concate_S2S
model on the test set, which had about 700k samples total. LSTM
provided an improvement over GRU and adding attention provided
the biggest improvement, while using bidirectional encoders did
not help.

Based on these results, subsequent experiments with the other
models used single direction LSTM with attention.

6 RESULTS
The final results of the various models on the test set are shown in
Table 3.

As mentioned earlier, Concate_S2S model is considered as our
baseline due to its direct application of general sequence to se-
quence.

Pair_S2S model is better than the baseline in terms of EM on
the conversational set but is worse in terms of EM on the non-
conversational set. This might be because Pair_S2S tends to be more
aggressive at reformulating the query. This is actually a good sign
because reformulation on the conversational set is the more difficult

Track: Web Search and Mining WWW 2018, April 23-27, 2018, Lyon, France

1721



Figure 5: Sequences to sequence with context embedding from multiple perspective matching. There are two stages: 1) build-
ing context-aware query 2) feeding the context-aware query representation to pair sequences to sequence with two layers
attentions.

Table 3: Test set evaluation for different models.

Conv Non-conv
Model EM BLEU EM BLEU
Concate_S2S 44.8 76.7 75.3 87.7
Pair_S2S 48.5 75.6 74.5 82.9
Pair_S2S_Cxt_Embed 50.2 76.6 74.9 83.3
Pair_S2S_Cxt_Embed_MP 55.0 79.2 80.0 86.8
Pair_S2S_Cxt_Embed_MP

+ vocab truncate 55.7 82.6 84.0 92.5

task with much lower EM scores. Pair_S2S_Cxt_Embed model is
better than Pair_S2S on all numbers. It indicates that embedding
the context while encoding the current query can bring valuable
information which is beneficial for reformulating the current query.
Results of model Pair_S2S_Cxt_Embed_MP further verify that an
advanced context embedding approach improves both EM and
BLEU on both conversational and non-conversational sets.

For model Pair_S2S_Cxt_Embed_MP, the number of perspectives
was set to be 50, and single layer bi-directional LSTM was used
following the settings in [37]. The hidden size of LSTM is 200 and
the final context embedding dimension is 400. To accommodate
the 400 dimensions, the hidden size of LSTM in the encoder and
decoder was set to be 700 (400 + 300). We also tried 300 hidden
size, which performed slightly worse but still better than the other
models.

We optimized model Pair_S2S_Cxt_Embed_MP further with the
goal of improving latency during online prediction. The perfor-
mance bottleneck for sequence to sequence model is at decoding.
The last layer at each time step projects the LSTM output to a
vocabulary-sized vector (200K here) and then runs a softmax on

top of that, which involves a huge matrix multiplication and el-
ement summation. To mitigate the burden here, during predic-
tion, we truncate the vocabulary to just the words that appear in
the inputs (context + current query), plus some pre-selected stop-
words (to maintain the language model information learned from
training). This optimization improves latency by 10 times. Further-
more, accuracy is also improved, as you can see in the results for
Pair_S2S_Cxt_Embed_MP + vocabulary truncation in Table 3.

This might be because users do not often use new words to
reformulate their conversational queries, they mostly use words
that they already used in the context. This might also expose a
limitation of our current dataset: the lack of paraphrases in target
outputs, due to the constrain that query 3 has to contain terms
from query 2 and query 1, as described in Section 3. To obtain more
paraphrase-style target reformulations, human labeling is required,
which will be part of our future work.

6.1 Examples and Analysis
Here is a sample query session that was inputted to the best se-
quence to sequence model. The arrow indicates the output of the
model. No arrowmeans that the model outputted the original query
without any reformulation. The model and this paper is not con-
cerned with answering the queries, so the answers were simply
obtained by issuing these queries to a commercial search engine.

Q: When was California founded?
A: September 9, 1850
Q: Who is its governor?→Who is California governor?
A: Jerry Brown
Q: Where is Stanford?
A: Palo Alto, California
Q: Who founded it?→Who founded Stanford?
A: Leland and Jane Stanford
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Q: Tuition costs→ Tuition costs Stanford
A: $47,940 USD
Q: How to split string in Python?
A: split()
Q: How to read file?→ How to read file in Python?
A: open()
Q: Kobe Bryant height
A: 6’6"
Q: His birth date→ Kobe Bryant birth date
A: August 23, 1978
Q: What are the similarities between bacteria and viruses?
A: The similarities are...
Q: What are the differences?→What are the differences be-

tween bacteria and viruses?
A: The differences are...
This sample session shows that the model is able to perform

reformulations that involve coreference resolution and also when
there aren’t any anaphoras. The model is able to pass different types
of context, from "Kobe Bryant" to "between bacteria and viruses".
The model is also able to determine when the topic changes and
the query no longer depends on previous context, e.g. when the
topic switched from Stanford to Python, the context of Stanford is
no longer passed. Natural language questions and keyword queries
are both handled.

To illustrate how the Pair_S2S_Cxt_Embed_MP + vocab truncate
model improves on the baseline Concate_S2S model, Table 4 shows
a few examples where this final model produced the correct output
while the baseline was incorrect. For the first example, the baseline
model added the wrong term from the context. For the second and
third examples, it did not append any context. We suspect this is
because both Q2s could be valid standalone queries, only by paying
careful attention to Q1 can it be determined that context needs to
be added.

In summary, the baseline model generated predictions that were
not conditioned as strongly on Q1, a problem that was mitigated
in the final model because of its context-aware query and pair
sequences to sequence architecture, which provide greater depen-
dence on the context, Q1, at both the encoding and decoding steps.

Table 4: Example predictions from different models.

Concate_S2S Pair_S2S_Cxt_Embed_MP
+ vocab truncate

Q1 = common math letter for scalar, Q2 = what is the integral

Prediction what is the integral
in common

what is the integral in
math

Q1 = who is andy from toy story, Q2 = what happened to sid

Prediction what happened to
sid

what happened to sid on
toy story

Q1 = what major studies multiculturalism in college
Q2 = how to ask for a reference

Prediction how to ask for a
reference

how to ask for a
reference for college

However, this final model still has several weaknesses. It does
well with common entities and concepts, but struggles with rare

entities and concepts. For example, the model does not reformulate
"His birth date" if the previous query was about Sasha Vujacic, a less
popular basketball player. The model also still sometimes struggle
with copying over the entire original query when it is necessary,
especially for long queries. Some kind of pointer mechanism might
help here [16]. Another weakness of the model is that it can’t
recognize some specific patterns of conversational queries, such
as "How tall is Kobe Bryant? What about Lebron James?". This is
likely because even among the millions of samples in the dataset,
there is not enough samples of such patterns for the model to learn
from.

7 CONCLUSION
In conclusion, using the first ever large scale and general dataset of
conversational queries, a few sequence to sequence models were
proposed, with the best one successfully reformulating more than
half of all conversational queries across a very wide range of top-
ics. There is still a ton of progress to be made, due to the many
challenges of CQU presented earlier in this paper.

Immediate future work includes mining more data from the
search engine logs to increase the size of the dataset, and retraining
and further tuning the existing models. Incorporating the pointer
mechanism might help as described above. Also based on the er-
rors, augmenting the dataset with entity types, POS tags, and other
NLP properties might help with generalization to uncommon en-
tities. Another approach would be to artificially generating new
samples by swapping entities for other entities of the same type,
which has been shown to improve performance on other tasks [29].
We will also continue to explore new model architectures. For ex-
ample, models proposed in Sordoni et al. [32] and Dehghani et al.
[12] might be worth trying because they also modeled consecutive
queries in a session using sequence to sequence, although they
focused on the query suggestion scenario.

Despite the tremendous potential for further improvements on
this task, the results in this paper already demonstrate a significant
first step towards CQU, which can be incorporated into and improve
any of the aforementioned conversational technologies, and have
shown that deep learning is a promising approach for this task.
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