
Co-Regularized Deep Multi-Network Embedding

Jingchao Ni1, Shiyu Chang2, Xiao Liu3, Wei Cheng4, Haifeng Chen4, Dongkuan Xu1, Xiang Zhang1
1College of Information Sciences and Technology, Pennsylvania State University, 2IBM T. J. Watson Research Center

3Department of Biomedical Engineering, Pennsylvania State University, 4NEC Laboratories America
1{jzn47, dux19, xzhang}@ist.psu.edu, 2shiyu.chang@ibm.com
3xxl213@engr.psu.edu, 4{weicheng, haifeng}@nec-labs.com

ABSTRACT

Network embedding aims to learn a low-dimensional vector rep-

resentation for each node in the social and information networks,

with the constraint to preserve network structures. Most existing

methods focus on single network embedding, ignoring the relation-

ship between multiple networks. In many real-world applications,

however, multiple networks may contain complementary informa-

tion, which can lead to further re�ned node embeddings. Thus, in

this paper, we propose a novel multi-network embedding method,

DMNE. DMNE is �exible. It allows di�erent networks to have dif-

ferent sizes, to be (un)weighted and (un)directed. It leverages multi-

ple networks via cross-network relationships between nodes in dif-

ferent networks, which may form many-to-many node mappings,

and be associated with weights. To model the non-linearity of the

network data, we develop DMNE to have a new deep learning ar-

chitecture, which coordinates multiple neural networks (one for

each input network data) with a co-regularized loss function.With

multiple layers of non-linear mappings, DMNEprogressively trans-

forms each input network to a highly non-linear latent space, and

in the meantime, adapts di�erent spaces to each other through a

co-regularized learning schema. Extensive experimental results on

real-life datasets demonstrate the e�ectiveness of our method.

KEYWORDS

Multi-network; Network embedding; Representation learning

1 INTRODUCTION

Networks (or graphs) are pervasive in real-life applications. The

rapid growth of information has generated a large volume of net-

work data, such as social networks [22], document citation net-

works [19], and biological networks [13]. Network data are char-

acterized by the complex dependencies between nodes. To analyze

network data, one fundamental problem is to resolve the depen-

dencies and learn low-dimensional vector representation for each

node, such that the network structure is preserved in the learned

vector space [29]. By doing so, network analysis such as node clas-

si�cation [21], node clustering [31] and link prediction [9] can

then be readily performed in vector space by using the vast o�-

the-shelf machine learning algorithms. Usually, learning network

representation is also known as network embedding [29]. The low-

dimensional vectors to be learned are called node embeddings.

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW 2018, April 23–27, 2018, Lyon, France

© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186113

U4

U3

U5

U6

U2U1

U4

U3

U2U1

U7

U6

U5

U3

U2

U1

U6

U5

U8

Social network 1 Social network 2 Social network 3

(a) Multiple related social networks

0.5

Domain 1 Domain 2 Domain 3

(b) Multiple interconnected domain networks

Network 1 Network 2 Network 3

x

z

1

3

2

0.9

0.7

0.6

0.7
0.9

0.8
0.9

0.7

0.9

0.1

0.6
0.7

0.7

0.8

(c) A general example of multi-network

Figure 1: Examples of multi-network. In (b) and (c), the dot-

ted lines represent cross-network relationships. The value

on each dotted line indicates the weight of the relationship.

To tackle this problem, many methods have been proposed re-

cently. For example, Laplacian Eigenmaps [1] solves leading eigen-

vectors of the Laplacian matrix of a graph as node embeddings,

which can preserve the direct relationship between nodes in the

graph. DeepWalk [29] uses random walks to extract local commu-

nities of each node in a network, which are preserved via a word

embedding technique called skip-gram [23]. LINE [34] optimizes a

KL-divergence function to learn embeddings, which can preserve

both 1st- and 2nd-order proximities between nodes in a network.

node2vec [9] further extends DeepWalk by adopting a biased ran-

dom walk, so as to preserve both breadth �rst search (BFS) and

depth �rst search (DFS) based neighborhoods of each node.

Despite the encouraging progress, the focus of most existing

methods is single network embedding. In many emerging applica-

tions, however, related multiple networks are common to observe.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

469

https://doi.org/10.1145/3178876.3186113
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3178876.3186113&domain=pdf&date_stamp=2018-04-23

For example, nowadays users are often involved in more than one

online social networks. Thus multiple social networks from Face-

book, Twitter, LinedIn, etc. are related one another by those com-

mon users. Fig. 1(a) illustrates this example, where the three social

networks may be collected from di�erent social platforms. Some

users in them are common (e.g., U1, U2, U3) while others may be

unique (e.g., U7, U8). In this scenario, there is a one-to-one cor-

respondence between users from di�erent networks, which repre-

sents the identity of users across di�erent social networks, e.g., U1

represents the same user who appears in all networks.

In some applications, nodes in di�erent networks may repre-

sent di�erent entities. Fig. 1(b) shows a di�erent type of multi-

network. In this case, multiple networks may contain nodes of dif-

ferent domains, such as text documents, users and color images.

Here, text-text links are formed by the hyper-links between di�er-

entWeb documents. Users are involved in a social network. Images

co-occurring within the same Web page provide explicit linkages

between them. Moreover, users may interact with texts and im-

ages by responding to them or clicking on them, which forms the

cross-network relationships that interconnect multiple networks,

as represented by the dotted lines in Fig. 1(b). In this scenario, the

mappings between nodes in di�erent networks may form a many-

to-many correspondence, instead of one-to-one, e.g., one user may

interact with multiple Web documents, and vice versa.

Similar examples can also be observed in the information net-

works of many other �elds. In bioinformatics, one important prob-

lem is to classify genetic diseases in a disease similarity network

[8]. In this network, each node is a disease, and each edge depicts

the phenotype similarity between two diseases [39]. To re�ect the

molecular foundation, we may explore the disease similarity net-

work together with its underlying protein-protein interaction (PPI)

network, where disease nodes and protein nodes are related one an-

other via the known disease-protein associations [13]. The disease-

protein associations form a many-to-many mapping. This is be-

cause multiple proteins can function synergistically to cause a sin-

gle disease and a single protein can participate in the formation of

multiple diseases.

In practice, because of measurement errors and data access limi-

tations, a single networkmay contain dummy nodes and false links

(i.e., noise), and missing nodes and missing links (i.e., incomplete-

ness). Such defects can largely reduce the learned embedding qual-

ity. Whereas, the false or missing information in one network may

be corrected in other related networks. Therefore, a promising ap-

proach to overcome the limitation of single network embedding is

to exploit the compatible and complementary information in mul-

tiple networks to re�ne the embedding quality. Based on this in-

tuition and the prevalence of multi-network data on the web, in

this paper, we propose to investigate network embedding in the

context of multiple networks.

Fig. 1(c) shows a general example of multi-network that covers

the instances in both Fig. 1(a) and 1(b). There are several charac-

teristics that should be noticed. First, di�erent networks may be

about either the same or di�erent sets of nodes, thus may have

di�erent sizes. Second, a node in one network may be associated

withmultiple nodes in another, making the cross-network relation-

ship a many-to-many mapping, which is a generalization of one-

to-one mapping. Third, each cross-network relationship may be

associated with a weight, which is a generalization of a binary re-

lationship. Fourth, some nodes in one network may not have corre-

sponding node in another, making the cross-network relationship

an incomplete, partial mapping.

In the previous social and biological applications, all these char-

acteristics can be observed. For instance, in Fig. 1(b), a user-image

relationship may be weighted by the frequency of the interaction.

In the biological example, domain experts may specify weights on

the disease-protein relationships using their prior knowledge, so

as to mark the correlation levels of some disease-protein pairs.

To be practically useful, all the characteristics in Fig. 1(c) should

be properly handled, so that re�ned embeddings can be learned

from both instances of multi-network in Fig. 1(a) and 1(b). So far,

few methods have been developed to multi-network embedding

problem. Until very recently, there is one method proposed on em-

bedding multi-view network [30]. However, this method can only

be applied to a special case of Fig. 1(c) when di�erent networks are

about the same set of nodes, with a strict one-to-one cross-network

relationship. Hence, a more �exible method is in demand.

Another vital challenge in our problem is how to model the non-

linearity of network data. As shown by [40], the underlying struc-

tures of many real-life information networks are highly non-linear,

which cannot be fully captured by linear projection approaches

such as SVD. To be e�ective, a preferable approach thus should

o�er the ability to catch the non-linearity of the data.

Motivated by the powerful representation learning ability of

deep learning and its intrinsic non-linearity [15], we propose a

novel algorithm, Deep Multi-Network Embedding (DMNE), based

on a deep learning model. DMNE coordinates multiple neural net-

works (one for each input network data) with a co-regularized loss

function to manipulate cross-network relationships, which can be

many-to-many, weighted and incomplete. With multiple layers of

non-linear functions, DMNE can progressively map each input net-

work into a highly non-linear latent space. In the meantime, di�er-

ent latent spaces are adaptive to each other via a joint learning

procedure. Our contributions are summarized as follows.

• Wepropose to investigate the problem ofmulti-network em-

bedding in a general context, where multiple networks can

be (un)weighted and (un)directed, the cross-network rela-

tionships can be many-to-many, weighted and incomplete.

This problem �nds wide applications in real practice.

• We propose the �rst deep learning based multi-network em-

bedding algorithm DMNE, which not only allows the gen-

eral multi-network in Fig. 1(c), but also can capture the non-

linear structures in multi-network data.

• We design an e�ective optimization algorithm, which has

a solid theoretical guarantee on convergence, and can be

easily parallelized to scale to large datasets.

• Weperform comprehensive experiments on real-life datasets

including document networks, social networks, biological

networks. The results demonstrate DMNE outperforms re-

cent network embedding methods by a large margin.

The rest of the paper is organized as follows. Sec. 2 gives the

problem de�nition. Sec. 3 introduces DMNE method. Sec. 4 intro-

duces the optimization solution. Sec. 5 discusses the experimental

results. Sec. 6 reviews the related work. Sec. 7 concludes the paper.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

470

Table 1: Summary of notation

Symbol Meaning

д The number of networks

ni The number of nodes in the i-th network

di The dimensionality of the i-th embedding space

Li The number of neural net. layers for the i-th net. data

G(i) The adjacency matrix of the i-th network

A(i) The structural context matrix of the i-th network

S(i j) The relationship matrix between nodes in G(i) and G(j)

S̃(i j) The row-normalized version of S(i j)

U(i) The embedding matrix of the i-th network

{W
(i)

l
}
Li
l=1

The weight matrices for the i-th network data

{b
(i)

l
}
Li
l=1

The bias vectors for the i-th network data

θ
(i) The model parameters θ (i)

= {W
(i)

l
, b

(i)

l
}
Li
l=1

I The set of cross-network relationships

2 PROBLEM AND BACKGROUND

Suppose we have д networks, each is represented by an adjacency

matrix G(i) ∈ R
ni×ni
+

(1 ≤ i ≤ д), where ni denotes the number

of nodes in the i-th network. In this paper, our analysis applies

to any (un)directed and (un)weighted network. Thus G(i) can be

either symmetric or asymmetric, and either continued or binary,

with G
(i)
xy indicating the edge weight between nodes x and y in

G(i) . We denote the set of pairwise cross-network relationships by

I = {(i, j)}. For example, I = {(1, 2), (2, 3)} contains two cross-

network relationships: the relationships between networks G(1)

and G(2) , and the relationships between G(2) and G(3) . Each pair

(i, j) is coupled with a matrix S(i j) ∈ R
ni×nj
+

, with S
(i j)
xy measuring

the weight between node x in G(i) and node y in G(j) . For clarity,

important notations are summarized in Table 1.

After embedding, each node x in network G(i) (1 ≤ i ≤ д) will

obtain a low dimensional vector, i.e., the embedding vector. We

use h
(i)
x ∈ R1×di to represent this vector, where di is the dimen-

sionality of the embedding space of network G(i) , which can be

di�erent for di�erent i’s. In this work, our goal is to learn embed-

ding vectors of all nodes in all networks, based on the structures

of {G(i)}
д
i=1 and the regularizing constraints implicitly represented

by the cross-network relationships in I.

2.1 Structural Context Extraction

Real-life networks are often so sparse that only using the very lim-

ited observed links is insu�cient to capture reasonable relation-

ships between nodes. In addition to direct neighbors, nodes in a

network also have dependencies with indirect neighbors. There-

fore, existing embeddingmethods usually employ certain sampling

strategies to extract local community information as the structural

context of each node [9, 29]. Among di�erent strategies, random

walk is the most widely used because of its intrinsic e�ectiveness

in local clustering [32]. In this paper,we follow existing approaches

[3] and use random walk with restart (RWR) to obtain structural

context of each node.

Given a networkG of n nodes, a starting node x , we introduce a

k-step RWR vector p(k) ∈ R1×n
+

, with p
(k)
y indicates the probability

ED loss

PD loss
or

H
(1)

()1 H
(1)

()2 H
(1)

()3 H
(1)

()4

H
(2)

()1 H
(2)

()2

Individual network embedding

A
(1)

A
(2)

S
(12)

S
(21)

H
(2)

()3 H
(2)

()4 H
(2)

()5 H
(2)

()6

Cross-network regularization

Figure 2: The architecture of DMNE for two networks as an

example.A(1) andA(2) are structural contexts obtained from

the two networks. S(12) and S(21) are weighted cross-network

relationships. (H(i))l contains vectors that represent the la-

tent representations of all nodes at the l-th layer of the i-th

network. ED andPD are twokinds of loss functions for cross-

network regularization. In DMNE, di�erent input networks

can have di�erent numbers of neural network layers. Here

the two input networks have 5 and 7 layers, respectively.

of visiting node y after k step transitions from x . Let p(0) be the

initial vector with p
(0)
x = 1 and all other entries being 0, then a

RWR process is de�ned as [38]

p(k) = cp(k−1)[(D)−1G] + (1 − c)p(0) (1)

where D is a diagonal matrix with Dxx =
∑n
y=1Gxy , and 1 − c

(0 < c < 1) represents the probability that the random walker will

restart from node x .

To capture local information, we follow [3] and use several short-

step RWR vectors to de�ne the structural context vector a (a ∈

R
1×n) for each node x .

a =

K
∑

k=1

p(k) (2)

where K is a small integer indicating the number of considered

steps. In practice,K = 3 is usually su�cient. Thus the computation

of this step is fast.

After obtaining vectors a for all nodes, a structural context ma-

trixA can be formedwith each row as a for one node. An entryAxy

indicates to what degree a node y will appear in the local commu-

nity of node x . Using the same approach, we can obtain structural

context matrices {A(1), ...,A(д) } for all networks {G(1), ...,G(д) }.

In the following, {A(i)}
д
i=1 will be used as the input of our multi-

network embedding method.

3 DEEP MULTI-NETWORK EMBEDDING

In this section, we introduce DMNE, a deep model that partially in-

corporates AutoEncoder [10]. Fig. 2 illustrates the key architecture

of DMNE for two networks as an example. Here, each input net-

work (i.e., A(i)) will be fed into a neural network to minimize the

reconstruction error. Meanwhile, the bottleneck layer representa-

tions of all input networks, which are the desired node embeddings,

are adapted to each other via a co-regularization function (i.e., ED

loss or PD loss) that leverages the weighted cross-network rela-

tionships (i.e., S(i j)). Next, to be self-contained, we �rst review the

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

471

key idea of deep AutoEncoder. Then, we propose the two kinds of

loss functions to leverage cross-network relationships. Finally, we

discuss a speedup strategy and the joint optimization problem.

3.1 Single-Network Embedding

For the i-th input network A(i) , the neural network consists of

Li + 1 layers for performing Li non-linear transformations. The

�rst Li/2 hidden layers are encoders to learn a set of compact rep-

resentations (i.e., dimension reduction) and the last Li/2 layers are

decoders to progressively reconstruct the input. For ease of pre-

sentation, we �rst provide the following de�nitions. Let (h
(i)
x)0 =

A
(i)
x∗ ∈ R

1×ni (i.e., the x-th row of A(i)) be an input vector of node

x to the �rst layer and

(h
(i)
x)l = σ ((h

(i)
x)l−1W

(i)

l
+ b

(i)

l
) ∈ R1×kl (3)

be the output of the l-th layer, where l = 1, ..., Li , and σ (·) is a

non-linear activation function1. kl denotes the dimensionality of

the output at the l-th layer, W
(i)
l
∈ Rkl−1×kl and bl ∈ R

1×kl de-

note theweight and bias associatedwith the l-th layer, respectively.

Thus, given A
(i)
x∗ as the input, (h

(i)
x)Li (i.e., the last layer represen-

tation) is the reconstruction of A
(i)
x∗ , while (h

(i)
x)Li /2 is the desired

embedding of node x . Let Â(i) be an ni by ni matrix with x-th row

as (h
(i)
x)Li , the goal of AutoEncoder is to minimize the reconstruc-

tion error

min
θ
(i)

L
(i)
ae = ‖A

(i) − Â(i) ‖2F + λ

Li
∑

l=1

‖W
(i)

l
‖2F (4)

where θ
(i)
= {W

(i)

l
, b

(i)

l
}
Li
l=1

are model parameters. The last ℓ2
norm terms are used to prevent over�tting, and λ is the regular-

ization parameter.

Since each row of the inputA(i) in Eq. (4) encodes the local com-

munity of a node, minimizing the reconstruction error will enforce

the learned embeddings to preserve the local neighborhood of each

node. This is desirable because neighboring nodes in the network

should also be close to each other in the embedding space.

3.2 Cross-Network Regularization

To incorporate the cross-network relationship, the key idea is to

add pairwise regularizers to the single-network embedding objec-

tive function. We develop two kinds of loss functions to regular-

ize the cross-network embeddings. Both are designed to penalize

the embedding inconsistency with the given cross-network rela-

tionships. The �rst loss function, ED loss, considers a simple case

when the dimensionality of embeddings are the same in di�erent

networks. The second loss function, PD loss, is more �exible and

has no such constraint.

3.2.1 EmbeddingDisagreement (ED) Loss Function. We startwith

a simple case when the dimensionality of embeddings are the same

for di�erent networks, i.e., d1 = ... = dд = d . For simplicity, in

the following, we use h
(i)
x to represent the embedding of a node

x in network G(i) , i.e., h
(i)
x = (h

(i)
x)Li /2. Intuitively, if a node x

in network G(i) is mapped to a node y in network G(j) , then the

1In this work, we use sigmoid function σ (x) = 1
1+exp (−x)

embeddings h
(i)
x and h

(j)
y should be similar. Nowwe generalize the

relationship to many-to-many. We useN (i→j) (x) to denote the set

of nodes in G(j) that are mapped to x in G(i) with positive weights.

To penalize the inconsistency of cross-network embeddings, we

propose the following loss function.

Lx = ‖h
(i)
x − h

(i→j)
x ‖2F (5)

where

h
(i→j)
x =

1
∑

y∈N (i→j) (x) S
(i j)
xy

∑

y∈N (i→j) (x)

S
(i j)
xy h

(j)
y (6)

is the weighted mean of the embeddings of nodes in network G(j)

that are mapped to x . Recall that S
(i j)
xy is the weight on the cross-

network relationship between node x in G(i) and node y in G(j) .

Let S̃(i j) be row-normalized S(i j) . That is

S̃
(i j)
xy =

S
(i j)
xy

∑nj
z=1 S

(i j)
xz

(7)

and let H(i)
= [(h

(i)
1)T , ..., (h

(i)
ni)

T]T ∈ Rni×di . Then, by summing

up Eq. (5) over all nodes in network G(i) , we have the following

embedding disagreement (ED) loss function.

L
(i j)
ed
= ‖O(i j)H(i) − S̃(i j)H(j) ‖2F (8)

where we introduce a diagonal indicator matrixO(i j) ∈ {0, 1}ni×ni ,

with O
(i j)
xx = 0 if the x-th row of S̃(i j) is all-zero; and O

(i j)
xx = 1

otherwise.

3.2.2 Proximity Disagreement (PD) Loss Function. Next, we de-

velop a more �exible loss function. The intuition is based on the

following shortcoming of ED loss. In Eq. (6), we observe that h
(i→j)
x

is a weighted mean of the embeddings in N (i→j) (x). The ED loss

compare h
(i)
x and h

(i→j)
x directly to make them consistent. This is

reasonable when the nodes in N (i→j) (x) are close to each other

within network G(j) . When nodes in N (i→j) (x) are far from each

other (e.g., in di�erent communities), their embeddings should be

dissimilar to each other within G(j) . However, directly making

their mean consistent with h
(i)
x will enforce them to be similar to

each other, which is counterintuitive.

To overcome this problem, the key is to avoid direct comparison

between h
(i)
x and h

(i→j)
x . Thus, for each pair of nodes x and z in

networkG(i) , we �rst measure the proximity between h
(i)
x and h

(i)
z ,

and the proximity between h
(i→j)
x and h

(i→j)
z . Then, we measure

the disagreement between these two proximity values. Taking Fig.

1(c) as an example. Note node x in network 1 is mapped to node

1 in network 2. Node z in network 1 is mapped to nodes {2, 3} in

network 2. Intuitively, if the proximity between the embedding of

node 1 and themean embedding of nodes {2, 3} is small, the proxim-

ity between node x and node z should also be small. In this paper,

we choose inner product to measure the proximity between two

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

472

embeddings, e.g., h
(i)
x (h

(i)
z)T . Therefore, the cross-network prox-

imity disagreement (PD) loss function is de�ned as

L
(i j)

pd
=

ni
∑

x=1

ni
∑

z=1

[h
(i)
x (h

(i)
z)T − h

(i→j)
x (h

(i→j)
z)T]2

= ‖O(i j)H(i) (O(i j)H(i))T − S̃(i j)H(j) (S̃(i j)H(j))T ‖2F

(9)

It is worth to note that in Eq. (9), without direct comparison

of embeddings, PD loss allows embeddings in di�erent networks

G(i) to have the di�erent dimensionality di , which is more �exible

than ED loss. Moreover, both ED loss in Eq. (8) and PD loss in

Eq. (9) can handle many-to-many, weighted and incomplete cross-

network relationships as encoded in {S(i j) }(i, j)∈I .

3.3 Joint Optimization with Speedup Strategy

Next, we further develop our model to allow e�cient optimization

via stochastic gradient descent (SGD). In Eq. (8) and (9), all train-

ing samples, i.e., the rows ofH(j) , are coupled together through the

multiplication S̃(i j)H(j) , so SGD cannot be applied in sample-wise.

As pointed out by [41], to speedup SGD via parallelization and to

save memory, the model should allow samples to be divided by

minibatch, which means an objective function should be decom-

posed into sums over training samples. Therefore, we relax Eq. (8)

and (9) by introducing new variables {U(i)}
д
i=1 to replace {H

(i)}
д
i=1

such that

L
(i j)

ed
= ‖O(i j)U(i) − S̃(i j)U(j) ‖2F

L
(i j)

pd
= ‖O(i j)U(i) (O(i j)U(i))T − S̃(i j)U(j) (S̃(i j)U(j))T ‖2F

(10)

and introduce a regularizer

L
(i)

hu
= ‖U(i) − H(i) ‖2F (11)

to require U(i) to be similar to H(i) .

Now,we can integrate individual network reconstruction in Eq. (4),

the loss function in Eq. (10) and the regularizer Eq. (11) into a uni-

�ed objective function

min
{θ (i)

,U(i) }
д
i=1

L =

д
∑

i=1

L
(i)
ae + α

∑

(i, j)∈I

L
(i j)
R
+ β

д
∑

i=1

L
(i)

hu (12)

where L
(i j)
R

can be either L
(i j)

ed
or L

(i j)

pd
. {θ (i)}

д
i=1 are weights

and biases (see Eq. (4)). α , β ≥ 0 are trade-o� parameters.

Note in Eq. (12), there is no multiplication S̃(i j)H(j) , thus Eq. (12)

can be decomposed into sums over rows of H(i) , which means

{θ (i)}
д
i=1 can be solved e�ciently using SGD via parallelization. To

solve {U(i)}
д
i=1, we also develop e�cient iterative algorithm, which

will be detailed in next section.

Theoretically, Eq. (11) is the negative log likelihood function of a

sampling process U
(i)
x∗ ∼ N (H

(i)
x∗, Idi /2) where H

(i)
x∗ represents the

mean of the Gaussian distribution, Idi is a di -by-di identity matrix,

and U
(i)
x∗ represents the sampled embedding of node x in network

G(i) . Therefore, in our method, we use U(i) , instead of H(i) , as the

learned embeddings of nodes in G(i) .

4 LEARNING ALGORITHM

In this section, we develop an alternating minimization algorithm

to optimize L in Eq. (12). That is, the objective function is al-

ternately minimized w.r.t. one variable while �xing others, until

a stationary point is achieved. Next, we provide the solution to

{U(i)}
д
i=1 and {θ }

д
i=1, respectively.

Learning {U(i)}
д
i=1. Given current {θ (i)}

д
i=1, we derive a multi-

plicative updating rule to solve {U(i)}
д
i=1. The solutions are sum-

marized in the following theorems, which are derived using the

Auxiliary Function approach [17]. The detailed proofs of the the-

orems are omitted for brevity, which can be found in an online

Supplementary Material2.

Theorem 1. For ED loss, updatingU(i) by Eq. (13)monotonically

decreases the objective value in Eq. (12) until convergence.

U(i)
= U(i) ◦

(
∑

(i, j)∈I Θ
(i j)
+

∑

(j,i)∈I Λ
(ji)
+ βH(i)

∑

(i, j)∈I Φ
(i j)
+

∑

(j,i)∈I Π
(ji)
+ βU(i)

)
1
2

(13)

where

Θ
(i j)
= α (O(i j))T S̃(i j)U(j), Φ

(i j)
= α (O(i j))TO(i j)U(i)

Λ
(ji)
= α (S̃(ji))TO(ji)U(j)

, Π
(ji)
= α (S̃(ji))T S̃(ji)U(i)

Theorem 2. For PD loss, updatingU(i) by Eq. (14)monotonically

decreases the objective value in Eq. (12) until convergence.

U(i)
= U(i) ◦

(
∑

(i, j)∈I Θ̂
(i j)
+

∑

(j,i)∈I Λ̂
(ji)
+ βH(i)

∑

(i, j)∈I Φ̂
(i j)
+

∑

(j,i)∈I Π̂
(ji)
+ β Ũ(i)

)
1
4

(14)

where

Θ̂
(i j)
= 2α (O(i j))T S̃(i j)U(j) (S̃(i j)U(j))TO(i j) Ũ(i)

Φ̂
(i j)
= 2α (O(i j))TO(i j)U(i) (U(i))T (O(i j))TO(i j)U(i)

Λ̂
(ji)
= 2α (S̃(ji))TO(ji)U(j) (O(ji)U(j))T S̃(ji)U(i)

Π̂
(ji)
= 2α (S̃(ji))T S̃(ji)U(i) (U(i))T (S̃(ji))T S̃(ji)U(i)

where ◦,
[·]
[·]
, (·)

1
2 and (·)

1
4 are entry-wise operators.

Learning {W
(i)

l
, b

(i)

l
}
д
i=1.Given current {U

(i)}
д
i=1, we can learn the

weight and bias for each layer using the back-propagation (BP) al-

gorithm [10]. Here, the key step is to calculate the gradients of L

in Eq. (12) w.r.t.W
(i)

l
and b

(i)

l
, which are

∇
W

(i)

l

L = (H
(i)
l−1

)T (δ
(i)
l
+ β∆

(i)
l

) + λW
(i)
l

∇
b
(i)

l

L = (1(i))T (δ
(i)

l
+ β∆

(i)

l
)

(15)

where

δ
(i)

l
=





2(Â(i) − A(i)) ◦ σ ′(Z
(i)

l
) l = Li

[δ
(i)
l+1

(W
(i)
l

)T] ◦ σ ′ (Z
(i)
l

) otherwise

∆
(i)

l
=





2(H(i) − U(i)) ◦ σ ′ (Z
(i)

l
) l = Li/2

[∆
(i)
l+1

(W
(i)
l

)T] ◦ σ ′(Z
(i)
l

) l < Li/2

0 otherwise

(16)

and 1(i) is a length-ni column vector with all entries as 1, σ ′(·) is

the derivative of σ (·), and Z
(i)

l
= H

(i)

l−1
W

(i)

l
+ 1(i)b

(i)

l
.

2https://nijingchao.github.io/dmnesup/dmnesup.pdf

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

473

Algorithm 1: Deep multi-network embedding (DMNE)

Input: Networks {A(i) }
д
i=1, cross-network relationships

{S(i j) }(i, j)∈I , parameters α , β and λ

Output: {U(i) }
д
i=1 and {θ

(i) }
д
i=1

Pretrain neural network for each A(i) to obtain initial {θ (i) }
д
i=1 and1

{H(i) }
д
i=1, initialize each U(i)

= H(i) ;

repeat2

for i ← 1 to д do3

Back-propagation to update θ (i) based on Eq. (15);4

end5

for i ← 1 to д do6

Forward propagation to obtain H(i) ;7

Update U(i) by Eq. (13) or Eq. (14);8

end9

until Convergence10

return {U(i) }
д
i=1 and {θ

(i) }
д
i=1.11

Summary. Alg. 1 summarizes our algorithm, which alternates be-

tween the updating of {U(i)}
д
i=1 and {θ

(i)}
д
i=1. According to Theo-

rem 1 and 2, updating U(i) monotonically decreases the objective

L in Eq. (12). Using SGD, updating {θ (i)}
д
i=1 also decreases the

objective value with proper learning rate and momentum [41]. Be-

cause Eq. (12) is bounded below by 0, the alternating algorithmwill

eventually converge.

Since the key di�erence between standard BP and our algorithm

is the updating of U(i), we analyze the time complexity for Eq. (13)

and (14). Let M be the maximal number of cross-network links in

any S(i j) , N be the maximal number of nodes in any network,D be

the maximal dimensionality of embeddings di . We can verify that,

using sparse matrix multiplication, the complexity of Eq. (13) and

(14) areO ((M +N)D) andO (MD +ND2), respectively. In practice,

D is a small number, M is often linear in N for sparse networks,

thus the actual time complexity can be considered as linear O (N).

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our

method. Speci�cally, we focus on two widely considered applica-

tions: multi-label classi�cation and data visualization.

5.1 Datasets

We use four publicly available social/information networks with

class labels in our experiments, which are detailed in the following.

The statistics of the datasets are summarized in Table 2.

20-Newsgroup dataset3 contains about 20,000 documents of 20

classes. Following [3, 37], we constructed two kinds of networks:

6-NG and 9-NG, which are formed by documents of 6 and 9 dif-

ferent classes, respectively. For brevity, we omit the names of se-

lected classes, which are listed in [37]. For 6-NG, we generate 5

networks of di�erent sizes. The �rst network contains randomly

sampled 600 documents (100 from each class). For the remaining

four networks, the numbers of sampled documents of each class

are {125, 150, 175, 200}, forming networks of sizes {750, 900, 1050,

3http://qwone.com/%7Ejason/20Newsgroups/

1200}. Using the same approach, 9-NG contains 5 networks of sizes

{900, 1125, 1350, 1575, 1800}. Here, link weight is the cosine similar-

ity between the tf-idf vectors of two documents. To reduce noises,

we further construct a k-nn graph for each network with k = 5.

The cross-network relationship is calculated by cosine similarity

between documents from each pair of networks.

Disease-protein network (DP-NET) [13] consists of a disease

network and a protein-protein interaction (PPI) network. The dis-

ease network has 5,080 nodes (diseases) and 19,729 links. Each link

is weighted by the phenotype similarity between two diseases. The

PPI network has 8,503 nodes (proteins) and 32,189 links. Each link

has a binary weight, where 1 indicates a functional interaction be-

tween two proteins. Moreover, the disease network and the PPI

network are interconnected by 2,107 disease-protein association

relationships. Here, only 675 diseases are labeled, each in one of

18 classes (disease categories).

DBIS [35] is a social collaboration dataset, which contains a collab-

oration network of 12,002 nodes (authors) and 37,587 links. Each

link is weighted by the number of co-authored papers. It also has

a paper-paper similarity network of 12,533 nodes (papers). Each

paper is �rst represented by a tf-idf vector based on its title, then

pairwise cosine similarities are calculated using these vectors. To

reduce noises, a k-nn graph is constructed for the paper network

with k = 5, resulting in 47,597 weighted links. Additionally, collab-

oration network and paper network are interconnected by 38,035

author-paper publication relationships. Here, 2,890 authors are la-

beled, each in one of 4 classes (research areas) [14].

CiteSeer-M10 [18] is a subset of CiteSeerX data. It has a collabo-

ration network of 3,284 nodes (authors) and 13,781 weighted links,

and two paper networks: a citation network and a similarity net-

work. The citation network has 2,035 nodes (papers) and 3,356 bi-

nary weighted links. Each link indicate a citation relationship. The

similarity network is constructed in the same way as DBIS dataset,

with 10,214 nodes (papers) and 39,411 weighted links. The collabo-

ration network and paper citation network are interconnected by

2,634 author-paper relationships, and the number is 7,173 between

collaboration network and paper similarity network. The two pa-

per networks are interconnected by 2,021 one-to-one correspon-

dence between papers. Here, each author is labeled in one of 10

classes (research areas).

In the �rst three datasets, the cross-network relationships are

many-to-many. CiteSeer-M10 contains two paper networks with

di�erent link types, thus has a mixture of one-to-one and many-

to-many cross-network relationships. This represents a mixture of

the cases in Fig. 1(a) and 1(b), which cannot be handled by existing

embedding methods.

5.2 Comparing Methods

Since no existingmethod can handle the co-regularizedmulti-network

embedding problem, we compare the proposedDMNEwith the fol-

lowing eight state-of-the-art network embedding methods:

(1) Laplacian Eigenmaps (LE) [1]: it uses leading eigenvectors of

the Laplacian matrix of a network as node embeddings.

(2) Spectral clustering (Spectral) [31]: it also uses eigenvectors,

but di�ers from LE by using a normalized Laplacian matrix.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

474

Table 2: Statistics of datasets

Dataset # Networks # Nodes # Links # CrossLinks LabeledNet. # LabeledNodes # Classes

6-NG 5 4,500 16,447 66,756 All 4,500 6

9-NG 5 6,750 24,778 100,585 All 6,750 9

DP-NET 2 13,583 51,918 2,107 Disease 675 18

DBIS 2 24,535 85,184 38,035 Collaboration 2,890 4

CiteSeer-M10 3 15,533 56,548 11,828 Collaboration 3,284 10

LE Spectral DeepWalk LINE GraRep node2vec DNGR AE DMNE (ED) DMNE (PD)

0 0.2 0.4 0.6 0.8 1
Training ratio

0.6

0.65

0.7

0.75

0.8

0.85

0.9

M
ic

ro
-F

1

6-NG

0 0.2 0.4 0.6 0.8 1
Training ratio

0.6

0.65

0.7

0.75

0.8

0.85

0.9

M
ic

ro
-F

1

9-NG

0 0.2 0.4 0.6 0.8 1
Training ratio

0.45

0.5

0.55

0.6

0.65

0.7

0.75

M
ic

ro
-F

1

DP-NET

0 0.2 0.4 0.6 0.8 1
Training ratio

0.55

0.6

0.65

0.7

0.75

0.8

0.85

M
ic

ro
-F

1

DBIS

0 0.2 0.4 0.6 0.8 1
Training ratio

0.7

0.75

0.8

0.85

0.9

0.95

M
ic

ro
-F

1

CiteSeer-M10

0 0.2 0.4 0.6 0.8 1
Training ratio

0.6

0.65

0.7

0.75

0.8

0.85

0.9

M
ac

ro
-F

1

6-NG

0 0.2 0.4 0.6 0.8 1
Training ratio

0.6

0.65

0.7

0.75

0.8

0.85

0.9

M
ac

ro
-F

1

9-NG

0 0.2 0.4 0.6 0.8 1
Training ratio

0.35

0.4

0.45

0.5

0.55

0.6

0.65

M
ac

ro
-F

1

DP-NET

0 0.2 0.4 0.6 0.8 1
Training ratio

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

M
ac

ro
-F

1

DBIS

0 0.2 0.4 0.6 0.8 1
Training ratio

0.5

0.6

0.7

0.8

0.9

M
ac

ro
-F

1

CiteSeer-M10

Figure 3: Multi-label classi�cation results of the compared methods on di�erent datasets.

(3) DeepWalk [29]: it uses truncated random walk and skip-gram

to generate node embeddings.

(4) LINE [34]: it minimizes a loss function to learn embeddings

that preserve both 1st- and 2nd-order proximity between nodes.

(5) GraRep [2]: a SVD based embedding method that preserves

high-order proximity between nodes.

(6) node2vec [9]: it extends DeepWalk by using a biased random

walk to generate node embeddings.

(7) DNGR [3]: a stacked AutoEncoder based embedding method

that uses the structural contexts in Eq. (2) as input, and trains the

neural network in layer-wise.

(8) AutoEncoder (AE) [10]: it also uses the structural contexts in

Eq. (2) as input but trains the neural network as a whole.

There is another AutoEncoder based method SDNE [40] which

only preserves 1st- and 2nd-order proximity between nodes. We

found byusing RWRbased structural contexts in Eq. (2), AE outper-

forms SDNE. Thus we omit SDNE for brevity. Note multi-view net-

work embedding method [30] cannot be applied on these datasets

since the cross-network relationships are many-to-many.

The parameters of the compared methods are set as follows. LE

and Spectral do not have model parameters. For DeepWalk, LINE,

GraRep, and node2vec, we set their parameters the same as the op-

timal settings in their papers. Speci�cally, DeepWalk uses window

size 10, walk length 40, walks per vertex 80; LINE uses learning rate

0.025, # negative samples 5, # total samples 10 billion. We use its

advanced version with both 1st- and 2nd-order of node proximity;

GraRep uses # transition step 3; node2vec useswindow size 10,walk

length 80, walks per vertex 10, return p = 1, In-out q = 1. For DNGR,

AE and DMNE, we follow [3] to set c = 0.98 and K = 3 in Eq. (2),

and set the dimensionality of each layer as below.

6NG, 9NG B-200-100-200-B
DP-NET B-500-100-500-B
DBIS B-1000-500-100-500-1000-B

CiteSeer-M10
author net., paper citation net.: B-500-100-500-B
paper similarity net.: B-1000-500-100-500-1000-B

For 6-NG, 9-NG, DP-NET, DBIS, the dimensionality are set the

same for di�erent networks, due to the relatively small change in

the sizes of networks. Here, B represents the number of nodes in

each network. For example, B = 5, 080 for the disease network

in DP-NET, and B = 8, 503 for the PPI network. For all methods,

the dimensionality of embeddings are 100. For DMNE, the penalty

parameter λ is set as 10−4. The model parameters α and β are set

as 1. A study about these model parameters will be discussed later.

5.3 Multi-Label Classi�cation

First, we compare di�erent methods through a classi�cation task.

On each dataset, the embeddings are learned from the full data.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

475

LE Spectral DeepWalk LINE GraRep

node2vec DNGR AE DMNE (ED) DMNE (PD)

Figure 4: Visualization results of the compared methods.

Then, the embeddings of labeled nodes are used as input to the

SVM classi�er in LIBLINEAR package [7]. When training the clas-

si�er, we randomly sample a portion of the labeled nodes as train-

ing data and the rest as testing data. The ratio of training data is

varied from 10% to 90% for all datasets. The classi�cation accuracy

is evaluated using the widely used Macro-F1 and Micro-F1 scores

[9, 29]. For each method, the prediction experiment is repeated 100

times and the averaged performance is reported.

Fig. 3 shows the results on all datasets. Considering the available

labeled data, on 6-NG and 9-NG, the accuracy is averaged over all

networks; on DP-NET, the disease network is evaluated; on DBIS

and CiteSeer-M10, their collaboration networks are evaluated.

From the �gure, we have the following observations. First,DMNE

signi�cantly outperforms all competitors in terms of both metrics.

This is because DMNE leverages the complementary information

inmultiple networks to re�ne node embeddings, while the baseline

methods are subject to the noises and incompleteness in individual

networks. Especially, DMNE is much better than other methods

when the training ratio is small, e.g., 10%, which means DMNE is

more useful in real practice when the available labels are scarce.

This advantage comes from the reinforcement learning of DMNE

which better uses the available information in multiple networks.

On DP-NET, the performance gain of DMNE is relatively small.

This is because the number of available disease-protein relation-

ships is small, limiting the cross-network reinforcement of embed-

dings. We also notice, for DMNE, PD loss is usually better than

ED loss. This veri�es our early discussions in Sec. 3.2.2 about the

superiority of PD loss when handling cross-network relationships.

5.4 Visualization

To better understand the di�erence between the compared meth-

ods, we visualize their embeddings using the visualization tool t-

SNE [20], which projects the learned embeddings of each method

to a 2D space. Fig. 4 shows the results on the �rst network of 6-NG,

which has 600 nodes. The colors (or shapes) represent 6 classes.

From the �gure, we can observe the eigenvector based methods

LE and Spectral cannot e�ectively identify di�erent classes. Other

baseline methods can detect the classes to varying extents. Both

DMNE (ED) and DMNE (PD) perform best as they clearly separate

Table 3: Micro-F1 score results on number of layers

Dataset
DMNE (ED) DMNE (PD)

3 layer 5 layer 7 layer 3 layer 5 layer 7 layer

6-NG 0.8091 0.8250 0.8276 0.8328 0.8428 0.8399

9-NG 0.7309 0.7850 0.7939 0.7948 0.8224 0.8188

red, cyan and purple classes from each other, with large bound-

aries. For the other three classes, although all methods have di�-

culty to separate them, DMNE, especially DMNE (PD), still detects

the boundaries among them. These results further demonstrate the

better quality of the embeddings learned by DMNE.

5.5 Insights of E�ectiveness

To get more insights aboutDMNE, we perform experiments to eval-

uate DMNE in detail using 6-NG and 9-NG datasets.

Varying cross-network relationships. First, we divide the pair-

wise cross-network relationships in 6-NG into 5 equal parts. Each

time, we add one part (i.e., 20% relationships) into the data and ap-

plyDMNE. Fixing the training data ratio at 10%, Fig. 5(a) shows the

classi�cation accuracyw.r.t. the ratio of available cross-network re-

lationships. From the �gure, both loss functions are e�ective to en-

hance the embedding quality as more cross-network relationships

are added. Consistent with the results in Fig. 3, PD loss is superior

than ED loss when handling cross-network relationships.

Parameter study. In our model in Eq. (12), there are two major

parameters α and β . Fig. 5(b) and 5(c) show the classi�cation accu-

racy on 6-NG by changing one parameter while �xing another as 1,

with training data ratio at 10%. As can be seen, both loss functions

are stable w.r.t. these parameters, and PD loss is better. For both

loss functions, α and β are almost best as 1. Thus it is reasonable

to set them at 1 in our experiments. Moreover, the non-zero choices

of α and β demonstrate the importance of the regularization terms

in our model L in Eq. (12).

Shallowmodel vsdeepmodel.To see the e�ectiveness of DMNE

in capturing the non-linear structures of multi-network data, we

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

476

0 0.2 0.4 0.6 0.8 1
Relationship ratio

0.75

0.78

0.81

0.84

M
ic

ro
-F

1

DMNE (ED)
DMNE (PD)

(a) Varying cross-net. relationship ratio

0 0.01 0.1 1 10 100
0.7

0.75

0.8

0.85

0.9

M
ic

ro
-F

1

DMNE (ED)
DMNE (PD)

(b) Varying α

0 0.01 0.1 1 10 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ic

ro
-F

1

DMNE (ED)
DMNE (PD)

(c) Varying β

0 50 100 150 200
Number of iterations

0

0.5

1

1.5

2

2.5

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

105

6-NG
9-NG
DP-NET
DBIS
CiteSeer-M10

(d) Convergence evaluation

Figure 5: Performance evaluation of DMNE.

vary the neural network structures by B-100-B (3 layer), B-200-

100-200-B (5 layer) and B-200-200-100-200-200-B (7 layer). Table

3 shows the Micro-F1 scores when training data ratio is 10%. For

both ED and PD loss functions, deep models (i.e., 5 or 7 layer) are

better than shallow models (3 layer), indicating the importance of

using deep structures. For PD loss, we also notice it starts to over�t

when the model exceeds 5 layers.

5.6 Convergence Evaluation

In this section, we study the performance of the proposed DMNE

algorithm, in terms of the number of iterations before converging

to a local optima. Fig. 5(d) shows the value of the objective function

L in Eq. (12) with respect to the number of iterations on di�erent

datasets. From the �gure, we observe the objective function value

decreases steadily with more iterations. Usually, less than 100 iter-

ations are su�cient for convergence.

6 RELATED WORK

To our best knowledge, this is the �rst work to study deep multi-

network embedding problem. Existing network embedding meth-

ods are mostly developed on a single network, such as eigenvector

based methods [1, 36], skip-gram based methods [9, 29, 34], SVD

based methods [2, 27] and AutoEncoder based methods [3, 40]. As

discussed before, these single network based methods are subject

to noises and incompleteness in individual information network.

Recently, several methods have been proposed to embed an at-

tributed network, in which each node is associated with an at-

tribute vector [11, 12, 28, 42, 43]. Their key idea is to integrate

a dimension reduction component of attribute vectors into a net-

work embedding framework to leverage the complementary infor-

mation in node attributes and network structure. Despite their suc-

cess in using node attributes to improve performance, these meth-

ods never consider multiple networks.

There are also some methods on embedding heterogeneous in-

formation network (HIN) [4, 6]. In these methods, an HIN is a spe-

cial case of ourmulti-network in Fig. 1(c) in two aspects. First, they

ignore the scenario when any two networks are about the same

nodes but have di�erent topological structures, i.e., the case in Fig.

1(a). Second, they neglect edge weights, either within-network or

cross-network (as shown by their mathematical formations). More

speci�cally, the method in [4] was proposed on an HIN with node

attributes. Its prerequisite is that each node must be associated an

attribute vector, otherwise it cannot learn node embeddings from

network structure only. However, in many applications, we only

have link information, which necessitates methods on embedding

network structures. The method in [6], on the other hand, requires

users to specify meta-paths as its input, which is hard to choose in

practice due to the absence of gold standard. This makes it hard

to generalize to any applications. In [33], there is a text based HIN

embedding method, which, however, is strictly designed for word-

word, word-doc andword-label networks. It requires label informa-

tion to be provided because it is a semi-supervised method. Then,

how to generalize it tomultiple networks of any shape for unsuper-

vised learning is unknown. Clearly, all these methods have strong

limitations, preventing them from being applied to our problem.

More importantly, the goal of HIN based methods is to resolve the

semantic meanings of di�erent types of links, rather than using the

complementary information in multiple networks to re�ne embed-

ding quality. Therefore, there is a distinct di�erence between HIN

based methods and multi-network based methods.

The multi-view network embedding method [30] may be the

most relevant work, but, as discussed before in Sec. 1, it cannot

be applied when the cross-network relationship is many-to-many,

weighted and incomplete, as shown in Fig. 1(c).

Our method is also inspired by traditional multi-view and multi-

graph learning methods [5, 16, 24–26, 41], which aim to integrate

multiple data sources in a certain task, such as instance clustering,

to obtain performance gain. However, these methods are not de-

signed for multi-network embedding, and none of them uses deep

model to exploit the non-linear structures of the network data.

7 CONCLUSION

Integrating the rich social and information networks on the web

is important to improve the robustness of representation learning

methods. In this paper, we propose a �exible co-regularized deep

multi-network embedding algorithm DMNE, which is developed

on a very practical scenario of multi-network, thus is widely appli-

cable.DMNEmanipulates cross-network relationships to reinforce

the learning of node embeddings in di�erent networks. Its deep

architecture also provides the ability to capture the highly non-

linear structures of multiple networks. Extensive experiments on

real-world datasets demonstrate the e�ectiveness of our method.

ACKNOWLEDGMENTS

This work was partially supported by the National Science Foun-

dation grants IIS-1664629 and CAREER.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

477

REFERENCES
[1] Mikhail Belkin and Partha Niyogi. 2003. Laplacian eigenmaps for dimensionality

reduction and data representation. Neural Comput. 15, 6 (2003), 1373–1396.
[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-

sentations with global structural information. In CIKM. ACM, 891–900.
[3] Shaosheng Cao,Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for learn-

ing graph representations. In AAAI. 1145–1152.
[4] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and

Thomas S Huang. 2015. Heterogeneous network embedding via deep architec-
tures. In KDD. ACM, 119–128.

[5] Wei Cheng, Xiang Zhang, Zhishan Guo, Yubao Wu, Patrick F Sullivan, and Wei
Wang. 2013. Flexible and robust co-regularized multi-domain graph clustering.
In KDD. ACM, 320–328.

[6] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In KDD. ACM,
135–144.

[7] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. 2008. LIBLINEAR: A library for large linear classi�cation. J. Mach. Learn.
Res. 9, Aug (2008), 1871–1874.

[8] Kwang-Il Goh, Michael E Cusick, David Valle, Barton Childs, Marc Vidal, and
Albert-László Barabási. 2007. The human disease network. Proc. Natl. Acad. Sci.
U.S.A. 104, 21 (2007), 8685–8690.

[9] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD. ACM, 855–864.

[10] Geo�rey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimension-
ality of data with neural networks. Science 313, 5786 (2006), 504–507.

[11] Xiao Huang, Jundong Li, and Xia Hu. 2017. Accelerated attributed network em-
bedding. In SDM. SIAM, 633–641.

[12] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network
embedding. InWSDM. ACM, 731–739.

[13] TaeHyun Hwang, Gowtham Atluri, MaoQiang Xie, Sanjoy Dey, Changjin Hong,
Vipin Kumar, and Rui Kuang. 2012. Co-clustering phenome–genome for pheno-
type classi�cation and disease gene discovery. Nucleic Acids Res. 40, 19 (2012),
e146–e146.

[14] Ming Ji, Jiawei Han, and Marina Danilevsky. 2011. Ranking-based classi�cation
of heterogeneous information networks. In KDD. ACM, 1298–1306.

[15] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. Imagenet classi-
�cation with deep convolutional neural networks. In NIPS. 1097–1105.

[16] Abhishek Kumar, Piyush Rai, and Hal Daume. 2011. Co-regularized multi-view
spectral clustering. In NIPS. 1413–1421.

[17] Daniel D Lee and H Sebastian Seung. 2001. Algorithms for non-negative matrix
factorization. In NIPS. 556–562.

[18] Kar Wai Lim and Wray Buntine. 2015. Bibliographic analysis with the citation
network topic model. In ACML. 142–158.

[19] Kar Wai Lim and Wray Buntine. 2016. Bibliographic analysis on research pub-
lications using authors, categorical labels and the citation network. Machine
Learning 103, 2 (2016), 185–213.

[20] Laurens van der Maaten and Geo�rey Hinton. 2008. Visualizing data using t-
SNE. J. Mach. Learn. Res. 9, Nov (2008), 2579–2605.

[21] Sofus AMacskassy and Foster Provost. 2007. Classi�cation in networked data: A
toolkit and a univariate case study. J. Mach. Learn. Res. 8, May (2007), 935–983.

[22] Julian McAuley and Jure Leskovec. 2012. Learning to discover social circles in
ego networks. In NIPS. 539–547.

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS. 3111–3119.

[24] Jingchao Ni, Wei Cheng, Wei Fan, and Xiang Zhang. 2018. ComClus: A self-
grouping framework for multi-network clustering. IEEE Trans. Knowl. Data Eng.
30, 3 (2018), 435–448.

[25] Jingchao Ni, Hanghang Tong, Wei Fan, and Xiang Zhang. 2014. Inside the atoms:
ranking on a network of networks. In KDD. ACM, 1356–1365.

[26] Jingchao Ni, Hanghang Tong, Wei Fan, and Xiang Zhang. 2015. Flexible and
robust multi-network clustering. In KDD. ACM, 835–844.

[27] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In KDD. ACM, 1105–1114.

[28] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. 2016. Tri-
party deep network representation. In IJCAI. 1895–1901.

[29] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learn-
ing of social representations. In KDD. ACM, 701–710.

[30] Meng Qu, Jian Tang, Jingbo Shang, Xiang Ren, Ming Zhang, and Jiawei Han.
2017. An Attention-based Collaboration Framework for Multi-View Network
Representation Learning. In CIKM. ACM, 1767–1776.

[31] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 22, 8 (2000), 888–905.

[32] Daniel A Spielman and Shang-Hua Teng. 2004. Nearly-linear time algorithms
for graph partitioning, graph sparsi�cation, and solving linear systems. In STOC.
ACM, 81–90.

[33] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. Pte: Predictive text embedding
through large-scale heterogeneous text networks. In KDD. ACM, 1165–1174.

[34] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW. Interna-
tional World Wide Web Conferences Steering Committee, 1067–1077.

[35] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-
netminer: extraction and mining of academic social networks. In KDD. ACM,
990–998.

[36] Joshua B Tenenbaum, Vin De Silva, and John C Langford. 2000. A global geomet-
ric framework for nonlinear dimensionality reduction. Science 290, 5500 (2000),
2319–2323.

[37] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. 2014. Learning deep
representations for graph clustering. In AAAI. 1293–1299.

[38] Hanghang Tong, Christos Faloutsos, and Jia-yu Pan. 2006. Fast random walk
with restart and its applications. In ICDM. IEEE, 613–622.

[39] Marc A Van Driel, Jorn Bruggeman, Gert Vriend, Han G Brunner, and Jack AM
Leunissen. 2006. A text-mining analysis of the human phenome. Eur. J. Hum.
Genet. 14, 5 (2006), 535.

[40] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In KDD. ACM, 1225–1234.

[41] Weiran Wang, Raman Arora, Karen Livescu, and Je� Bilmes. 2015. On deep
multi-view representation learning. In ICML. 1083–1092.

[42] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015.
Network representation learning with rich text information. In IJCAI. 2111–
2117.

[43] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2016. Homophily,
structure, and content augmented network representation learning. In ICDM.
IEEE, 609–618.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

478

	Abstract
	1 Introduction
	2 Problem and Background
	2.1 Structural Context Extraction

	3 Deep Multi-Network Embedding
	3.1 Single-Network Embedding
	3.2 Cross-Network Regularization
	3.3 Joint Optimization with Speedup Strategy

	4 Learning Algorithm
	5 Experiments
	5.1 Datasets
	5.2 Comparing Methods
	5.3 Multi-Label Classification
	5.4 Visualization
	5.5 Insights of Effectiveness
	5.6 Convergence Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

