
HTTP/2 Prioritization and its Impact on Web Performance

Maarten Wijnants
Hasselt University ś tUL

Expertise Centre for Digital Media
Diepenbeek, Belgium

maarten.wijnants@uhasselt.be

Robin Marx
Hasselt University ś tUL

Expertise Centre for Digital Media
Diepenbeek, Belgium

robin.marx@uhasselt.be

Peter Quax
Hasselt University ś tUL ś Flanders Make

Expertise Centre for Digital Media
Diepenbeek, Belgium

peter.quax@uhasselt.be

Wim Lamotte
Hasselt University ś tUL

Expertise Centre for Digital Media
Diepenbeek, Belgium

wim.lamotte@uhasselt.be

ABSTRACT

Web performance is a hot topic, as many studies have shown a

strong correlation between slow webpages and loss of revenue due

to user dissatisfaction. Front and center in Page Load Time (PLT)

optimization is the order in which resources are downloaded and

processed. The new HTTP/2 speciication includes dedicated re-

source prioritization provisions, to be used in tandem with resource

multiplexing over a single, well-illed TCP connection. However,

little is yet known about its application by browsers and its impact

on page load performance.

This article details an extensive survey of modern User Agent

implementations, with the conclusion that the major vendors all ap-

proach HTTP/2 prioritization in widely diferent ways, from naive

(Safari, IE, Edge) to complex (Chrome, Firefox). We investigate the

performance efect of these discrepancies with a full-factorial exper-

imental evaluation involving eight prioritization algorithms, two

of-the-shelf User Agents, 40 realistic webpages, and ive hetero-

geneous (emulated) network conditions. We ind that in general

the complex approaches yield the best results, while naive schemes

can lead to over 25% slower median visual load times. Also, priori-

tization is found to matter most for heavy-weight pages. Finally, it

is ascertained that achieving PLT optimizations via generic server-

side HTTP/2 re-prioritization schemes is a non-trivial task and that

their performance is inluenced by the implementation intricacies

of individual browsers.

CCS CONCEPTS

· Information systems → Browsers; · Networks → Appli-

cation layer protocols; Packet scheduling; Network perfor-

mance evaluation; Traic engineering algorithms; Public Internet; ·

Computer systems organization→Client-server architectures;

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW 2018, April 23ś27, 2018, Lyon, France

© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186181

KEYWORDS

HTTP/2; Web Performance Optimization (WPO); Page Load Time

(PLT); resource loading; prioritization; experimental evaluation

ACM Reference Format:

MaartenWijnants, RobinMarx, Peter Quax, andWimLamotte. 2018. HTTP/2

Prioritization and its Impact on Web Performance. In WWW 2018: The 2018

Web Conference, April 23ś27, 2018, Lyon, France. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3178876.3186181

1 INTRODUCTION

It has long been known that good webpage load performance is

paramount to a satisfactory User Experience (UX) [20, 28, 34, 40, 43].

A hallmark of the webpage load process is that not all of the com-

posing resources have equal utility and purpose, as some need to be

processed and executed at client side (e.g., HTML, CSS, JavaScript

(JS)) while others chiely contribute to the visual completeness of

the page (e.g., images, fonts). Since not all resources can be down-

loaded at the same time and the average webpage size as well as the

resource count per individual webpage continues to grow [25], the

correct prioritization of resource delivery is an important research

topic.

When the time came to design a replacement for the aging

HTTP/1.1, the creators of SPDY [41] and its successor, HTTP/2 [24],

recognized the signiicance of prioritization. Next to other Web

performance-related changes, such as switching to a binary format

and the new Server Push mechanism [35], HTTP/2 aims to make

optimal use of a single TCP connection (as opposed to the 6-17

parallel connections typically seen for HTTP/1.1 [8]) by allowing

resources to be multiplexed and their data interleaved. To mitigate

contention at the TCP layer among multiplexed assets, the protocol

encompasses a prioritization system (see Section 3) that empowers

the client to specify resource delivery precedence. HTTP/2’s priori-

tization paradigm hence holds great potential as a viable instrument

to optimize the Page Load time (PLT) of webpages. However, de-

spite this potential, HTTP/2 prioritization has to date received little

attention from the academic community. Even very recent scholarly

work on resource (re-)prioritization [27, 31, 36] uses non-standard

methods or complex workarounds with various inherent downsides

(see Section 2), instead of relying on HTTP/2’s built-in mechanism.

Track: Industry WWW 2018, April 23-27, 2018, Lyon, France

1755

https://doi.org/10.1145/3178876.3186181
https://doi.org/10.1145/3178876.3186181
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3178876.3186181&domain=pdf&date_stamp=2018-04-10


To this end, this paper addresses two research questions. The irst

one revolves around contemporary User Agents and how they ex-

ploit the HTTP/2 prioritization afordances when loading webpages

(see Section 4). We found that there are roughly three extremely

disparate methods in use by the most popular browsers today. This

diversity is interpreted to be an indication that the optimal prior-

itization approach might be dependent on the browser’s internal

implementation. In efect, loading a webpage involves an interplay

between a multitude of correlated processes, only one of which

is network delivery [51, 52]. The second research question then

focuses on investigating the impact of a total of eight prioritization

algorithms on PLT performance. The investigated algorithms en-

compass both real-world implementations (e.g., the default HTTP/2

prioritization schemes utilized by Chrome and Firefox) and custom

implemented variations thereof, as well as more naive approaches.

This research question is tackled by conducting a full-factorial

experimental benchmark on a corpus of 40 pages, tested using

Chrome and Firefox under heterogeneous network conditions (see

Sections 5 and 6).

2 BACKGROUND AND RELATEDWORK

2.1 The Webpage Load Process

Modern webpages are often comprised of a large amount of het-

erogeneous resources (e.g., CSS stylesheets, JS code, fonts, images).

Due to network limitations, these resources cannot all be down-

loaded concurrently. This leads to the need for User Agents to

somehow prioritize the resource delivery order, as typically not all

resources are needed to start rendering or even interacting with

the page. From a user experience perspective, browsers might want

to prioritize assets that have a direct visual impact on the webpage

[9, 27, 43], such as images and fonts. However, these assets are often

positioned using CSS stylesheets, which need to be processed irst

to provide an acceptable graphical layout to the user. Similarly, JS

code might not have a large visual impact, but often adds function-

ality which the user needs to successfully accomplish her task in

the webpage. Since CSS and JS resources can alter the webpage

content, User Agents are forced to be conservative by blocking

HTML parsing and/or the rendering of the page until those types

of resources have been processed [51].

To aggravate matters, the browser does not know the full list of

a webpage’s constituent resources upfront; instead, it incrementally

discovers them by evaluating previously received resources. In par-

ticular, parsing the HTML code of a webpage will reveal references

to embedded resources, some of which can include resources on

their own (e.g., import statements or font declarations in CSS iles,

JS modules, XHR fetches [42]).

2.2 Resource Prioritization Schemes

2.2.1 User Agents. Web browsers harness a complex set of heuris-

tics to prioritize requests. These heuristics have grown as best prac-

tices for the HTTP/1.x protocols, which sufer from Head-Of-Line

(HOL) blocking. This means a resource needs to be fully down-

loaded before another ile can be fetched over the connection and

prevents dynamic re-prioritization of in-light resources. Because

HTTP/1.x lacks dedicated prioritization features, resources are im-

plicitly prioritized by requesting them in the desired order, often

fragmented across multiple TCP connections. To derive this order,

browsers traditionally use a speculative parser [3] to discover all

referenced resources in the HTML code and then sort them based

on the heuristics.

In contrast, HTTP/2 solves the HOL blocking problem by coa-

lescing resources on a single underlying TCP connection. HTTP/2

includes an explicit resource prioritization mechanism based on

dependency relationships and weights (see Section 3). Our study

shows that modern User Agents map the HTTP/1.x-era heuris-

tics and request orders onto HTTP/2 priorities in widely difering

manners (see Section 4).

2.2.2 Experimental Improvements. While the browsers’ heuris-

tics are grounded in years of empiric expertise and therefore work

well in the general case, they are suboptimal in many ways. For

example, the implementations often do not take the dynamic fac-

tors of computation and network quality into account. Additionally,

they are mostly coarse-grained, prioritizing resources based on

their type instead of their individual impact on the page load. In

response, a large body of prior work has sought to improve these

default browser behaviors.

WProf instruments the browser to capture resource load de-

pendencies and as such extracts the łcritical pathž for a page load.

Resources on this critical path should be given maximal priority,

as only their delivery can improve the observed performance [51].

Netravali et al. query the browser’s JavaScript engine to capture

more ine-grained resource dependencies, with the intent of re-

ducing the time client-side computation needs to wait for the net-

work [31]. Similarly, Ruamviboonsuk et al. prioritize the delivery

of resources that incur a heavy processing cost, aiming to keep

both the CPU and network fully utilized at all times [36]. So-called

łsplit-browserž systems irst actively rewrite and execute resources

on the server before sending optimized resource bundles to the

client [12, 32, 37, 38, 53]. Finally, several works focus on improving

user perceived performance and employ either the concept of ex-

plicit user preferences (combined with fast visual load progress) [9]

or explicitly track the user’s focus of attention [27] to prioritize

individual resources.

2.2.3 Priority Enforcement. The systems discussed in Section 2.2.2

typically include a proprietary implementation to enforce the re-

source priorities they calculate, which requires them to circumvent

the browsers’ existing heuristics and network behavior. Remark-

ably, despite the fact that most of these implementations employ

HTTP/2 or SPDY, many of them neglect the protocol’s built-in

prioritization system, instead relying on non-standard methods or

complex workarounds that can introduce new problems. For exam-

ple, some implementations [22, 31, 36] use a JS-based client-side

scheduler that fetches resources using XmlHTTPRequests (XHRs),

bypassing the browser’s built-in streaming engine and thus incur-

ring additional delays. Others rely heavily on the new HTTP/2

Server Push feature [24], allowing them to partly solve both the

resource discovery and prioritized delivery problems at the same

time. However, Push sufers from complex interactions with the

underlying TCP connection [6], potentially leading to bandwidth

contention and hence impairing network performance [9, 27, 35, 36].

Finally, split-browsers often require a custom browser implementa-

tion [38, 53] or the installation of a local proxy [32, 37]. Only two

Track: Industry WWW 2018, April 23-27, 2018, Lyon, France

1756



papers mention HTTP/2 prioritization at all [9, 36], but indicate

that they simply use the default browser implementation.

The limited adoption of the HTTP/2 prioritization system might

be explained by the lack of easy-to-use interfaces to directly interact

with it in a standards-complaint way, though such interfaces are

being worked on [33, 56]. Existing Web standards (e.g., preload,

async/defer JS, Service Workers) only allow indirect access or

map suboptimally to HTTP/2 priorities in present-day implementa-

tions (see Section 4.4). The only fully standards-compliant method

(without resorting to a custom User Agent implementation) is then

to have the server override the client-issued priorities, which is

perfectly acceptable behavior according to the HTTP/2 speciica-

tion [24].

Contrary to existing academic eforts, our work does not aspire

to draft elaborate resource dependency graphs, but rather uses a

custom server implementation to directly manipulate the HTTP/2

prioritization directives emitted by of-the-shelf User Agents. As

such, our work is complementary to the related work and ofers

insights into a more standards-compliant avenue for their imple-

mentation.

2.3 HTTP/2 Prioritization

While there exists a large body of research into the performance of

HTTP/2 and its predecessor SPDY [11, 13, 18, 29, 35, 44, 52], only

a few papers investigate their standard prioritization mechanisms.

Wang et al. [52] conclude that the impact of explicit (re-)prioritization

is minimal because the internal browser implementation inherently

limits the order in which resources can be processed. Our work

partly conirms this, but also shows that mis-prioritization can

lead to severe performance penalties (see Section 6.1). Bergan [5]

published the only in-depth benchmarking efort, comparing the

PLT performance of HTTP/2 prioritization against a server-side

lottery scheduler [50]. Only for 31% of the test corpus was HTTP/2

prioritization found to yield an improvement. Our work considers

more realistic generic resource scheduling algorithms and factors

heterogeneous network conditions and multiple User Agent imple-

mentations into the evaluation.

3 HTTP/2’S PRIORITIZATION SYSTEM

In HTTP/2, each resource (including its request and response) is

conceptually carried over a unique stream. Resource content is

transmitted in relatively small chunks to enable data pertaining

to concurrent HTTP/2 streams to be delivered in an interleaved

fashion over the uniied TCP connection. Multiplexing data this way

can however cause contention among in-light resources to emerge.

In response, the HTTP/2 speciication includes a lexible resource

prioritization model [24]. The client (e.g., User Agent) can draft

a dependency tree to inform the resource origin (i.e., Web server)

about the way it would prefer the delivery of concurrent streams to

be handled. Each HTTP/2 stream is identiied by a unique ID and

added to the dependency tree, of which the root node (with ID 0)

denotes the TCP connection. Nodes are added as new resources are

requested and removed when their corresponding resources have

been fully downloaded.

B C

Make D 

dependent on A

A

B C

A

B C

A

D

D OR

exclusively non-exclusively

Figure 1: HTTP/2 dependencies: exclusive vs non-exclusive.

The irst facet of HTTP/2’s prioritization model is the establish-

ment of dependencies among streams. The existence of a parent-

child relationship among two resources indicates that the trans-

mission of the dependent resource must be postponed until its

ancestor has been downloaded completely (or until it is temporarily

impossible to make progress on the parent). Alternatively, a sibling

relationship between nodes indicates that the corresponding re-

sources must be delivered in parallel. The dependency relationships

can be marked to be either exclusive or non-exclusive by the client.

An exclusive dependency between ancestor A and dependent D

will render D the sole child of A, with A’s original children (if any)

becoming dependent on D (see Figure 1 and also the tree in Figure 2

(a), which was constructed using only exclusive dependencies). If

instead a non-exclusive dependency would have been installed, D

would have become a sibling of A’s original children (see Figure 1

and also the dependency tree in Figure 2 (b)).

The second element of HTTP/2’s prioritization approach, stream

weighting, then allows ine-grained interleaved delivery of sibling

resources. Siblings should be allocated network bandwidth propor-

tionally to their weight, which can take on any natural number in

the [1,256] range. For instance, given three siblings X, Y and Z with

weight values 10, 20 and 30, the client would like these streams to

respectively be granted one sixth, one third and half of the available

bandwidth.

HTTP/2’s prioritization model paves the way for two naive ap-

proaches. First, making each resource exclusively dependent on the

previously requested one produces a serial dependency tree where

each node has at most one parent and one child, yet never any sib-

lings. This model, referred to as First-Come First-Served (FCFS),

causes resources to be downloaded integrally before continuing

with the next one in the request chain. FCFS is the standard per-

TCP-connection behavior of HTTP/1.x. Secondly, by only installing

non-exclusive dependencies on the root, a broad tree is constructed

where resources never have any children, only siblings. Combined

with a uniform weighting scheme, this Round Robin (RR) model

yields a completely fair distribution of the bandwidth budget among

pending resources; this is in fact the default prioritization logic rec-

ommended by the HTTP/2 speciication [24].

4 USER AGENT IMPLEMENTATIONS

User Agent vendors are free to exploit the prioritization mechanism

included in the HTTP/2 standard in any way they ind appropriate.

In this section, we will look at how the most popular Desktop and

Mobile browsers [4, 39] approach HTTP/2 prioritization. Our ind-

ings are summarized in Table 1 andwere obtained via a combination

of empirical analysis (i.e., HTTP/2 network traic inspection) and

source code review. With the exception of Opera, all multi-platform

browsers behave equivalently in their Desktop and Mobile versions

Track: Industry WWW 2018, April 23-27, 2018, Lyon, France

1757



Table 1: Browser prioritization strategies. Identical in Desk-

top and Mobile versions unless indicated.

Strategy User Agents

Dynamic FCFS Chrome 58, Opera 48 (Desktop), Brave 1

(Mobile), Dolphin 12 (Mobile)

Naive RR Internet Explorer (IE) 11 (Desktop), Edge

40, Opera Mini 30 (Mobile)

Weighted RR Safari 11, UC browser 11.4 (Mobile)

Tree-based Firefox 54

Table 2: Top: Chrome 58’s resource classiication in prior-

ity buckets, with associated HTTP/2 weight values. Bottom:

Resource type weighting in Safari 11 (left) and Firefox 54

(right).

Bucket Content Types Weight

Lowest pushed assets (initially) 110

Low images, async and defer JS 147

Normal JS declared after irst image 183

High JS declared prior to irst image, XHR 220

Highest HTML, CSS, fonts 256

Weight Content Types Weight Content Types

16 pushed assets 2 pushed assets

8 images (initially)

16 fonts, XHR 22 images

24 JS, CSS 32 HTML, JS, CSS, XHR

255 HTML 42 fonts

(Safari was tested on iOS, Edge on Windows Phone, the others on

Android). As many specialty browsers (e.g., Opera and Brave) use

(parts of) the source code of the more established projects, we will

only zoom in on the leading implementations.

4.1 Chrome: Dynamic FCFS

Google Chrome generates completely linear HTTP/2 dependency

trees, akin to the naive FCFS approach. Chrome categorizes web-

page assets in ive priority buckets (see Table 2) and resorts to

exclusive dependencies on both an intra- and inter-priority bucket

level (see Figure 2 (a)). As such, requests for webpage resources

belonging to the same bucket are made exclusively subordinate

to each other in request order, with the oldest still outstanding

request in a priority bucket depending exclusively on the most

recent pending request in a higher priority bucket . This results

in a dynamic FCFS variant, where the transmission of in-light

lower-priority resources can be pre-empted by emerging resources

in higher-priority buckets. The net intent of Chrome’s HTTP/2 pri-

oritization strategy is non-interleaved transmission, in strict order

of decreasing resource priority. All resource requests that fall in a

particular priority bucket will share the same HTTP/2 weight value

(see Table 2). These weight values are inconsequential in practice,

as nodes in the dependency tree will never have siblings.

0

..
.

Highest

256

256

256

..
.

High

220

220

220

220

183

..
.

Normal

183

183

183

147

..
.

Low

147

147

147

..
.

Lowest

110

110

110

110

256

(a)

(b)

...

CSS, JS

24 24

...

Fonts, XHR

16 16

...

images

8 8256

HTML

0

3

(leaders)

0

5 

(unblocked)

7 

(background)

1101201

...

XHR, <body> JS, ...11 

(followers)

9 

(speculative)

...

HTML, images, fonts, favicon, ...

...

<head> & <body> CSS, <head> JS, ...

11

(c)

Figure 2: HTTP/2 dependency tree layout produced by (a)

Chrome 58, (b) Safari 11 and (c) Firefox 54.

4.2 IE, Edge and Safari : (Weighted) RR

IE, Edge and Safari take an almost orthogonal approach to that of

Chrome. They generate wide, completely parallel dependency trees,

using only non-exclusive relationships.

IE and Edge in fact do not include any prioritization information

in their requests. Assuming a standards-compliant server implemen-

tation, a fallback to the default prioritization behavior as stipulated

in the HTTP/2 speciication (i.e., naive RR) will then be enacted:

each resource will be made non-exclusively dependent on the root

node with weight 16 [24].

Safari is more intelligent in that it does explicitly specify diferent

weights for individual resource types, as shown in Table 2 and

Figure 2 (b). It however lacks some of Chrome’s nuances (e.g., not

diferentiating between JS resources declared before and after the

irst image in the webpage).

Track: Industry WWW 2018, April 23-27, 2018, Lyon, France

1758



4.3 Firefox: A Class Apart

Firefox is unique in our survey, in that it is the only User Agent that

builds a complex, multi-layered dependency tree. Upon HTTP/2

connection establishment, Firefox organizes the dependency tree

in a predeined layout by opening a total of ive perpetually idle

streams. The resulting prioritized phantom nodes are then used as

parents to cluster resource requests using non-exclusive dependency

relationships. This clustering is based on a combination of resource

type and declaration location in the encompassing HTML docu-

ment, see Figure 2 (c). For example, the initiating HTML request is

assigned to the followers class (represented by the idle HTTP/2

stream with ID 11), CSS assets (declared in either the <head> or

<body> of the HTML document) and <head> JS iles are grouped

in the leaders class (idle stream ID 3), while XHR and <body> JS

resources belong to the unblocked class (idle stream ID 5). To difer-

entiate between heterogeneously typed siblings clustered under the

same phantom node, Firefox employs a 5-level weighting strategy,

which is non-exhaustively summarized in Table 2. As such, each

individual phantom node employs a weighted RR prioritization

setup and siblings under the same phantom parent are serviced in

parallel, sharing bandwidth according to their weights.

4.4 Contemporary Web Technologies

The previous sections show that HTTP/2 prioritization is (semi-)well

deined for basic webpage loading in Safari, Chrome and Firefox.

However, prioritization support for cutting-edge Web techniques

that hold the power to inluence resource request order was empir-

ically found to often still be lacking.

For example, HTTP/2 Server Push, which can be used to proac-

tively transmit resources to the client before having received a

request for them [6, 24] and which is popular in previous work [9,

27, 36], seemed to work as expected in Chrome but not in Firefox

or Safari. While Chrome eventually promotes pushed resources to

their rightful priority bucket (and hence place in the serial depen-

dency tree) based on their type, Firefox makes them non-exclusively

dependent on the root node (i.e., as a direct sibling of the top-level

phantom nodes) with a weight that eventually switches to the cor-

rect content type-driven value (see Table 2). This can lead to pushed

resources contending for bandwidth with other top-level nodes, po-

tentially granting them a higher perceived priority than equivalent

pulled resources. Similarly, Safari does not (re-)prioritize pushed

resources and keeps the default server-assigned weight (16, equal

to font/XHR requests, see Table 2).

A bigger problem was identiied for the Service Workers spec-

iication [14, 48], which allows developers to install a JS-based

client-side proxy that can capture and amend egress resource re-

quests [1, 7, 19], thus enabling various Web performance optimiza-

tions (such as split-browser setups). For both Chrome and Fire-

fox, resource requests proxied through the Service Worker script

become devoid of ine-grained HTTP/2 prioritization reasoning

and are instead all grouped in the High priority bin or under the

followers phantom node (with the default 22 weight value), re-

spectively. Service Worker support for Safari is still in development.

Other techniques, such as preload/prefetch [47, 49] as well

as async and defer JS [46] showed similar implementation dei-

ciencies or unexpected behavior concerning HTTP/2 prioritization.

Though it seems likely that these deiciencies will be mitigated in

future User Agent releases, their current state might help explain

why previous work has shied away from these Web technologies

in favor of less standardized approaches.

5 EXPERIMENTAL SETUP

Our survey in Section 4 reveals that there is signiicant variation

in User Agents’ approaches to HTTP/2 prioritization. Even after

source code review however, it remained unclear why the two most

complex implementations, Chrome and Firefox, choose such or-

thogonal setups. Potentially their approach is simply a continuance

of previous HTTP/1.x or SPDY heuristics, or possibly they have not

yet experimentally determined optimal prioritization settings. We

deem it more likely however that the diferences relect the char-

acteristics of browser implementations as a whole (e.g., if Chrome

is faster in a single-threaded setup it proits from a predominantly

FCFS approach, while Firefox might opt for added parallelism be-

cause it is more optimized for multi-threading). Additionally, we

hypothesized that (naive) RR will consistently hurt performance, as

it allows contention among low- and high-priority assets, possibly

delaying the latter category. We were therefore surprised that RR

is implemented by several major browser vendors and promoted

by the HTTP/2 speciication.

5.1 Tested Schedulers

To validate our intuitions and assess the PLT performance impact

of various prioritization approaches, we experimentally evaluated

eight resource scheduling algorithms. Primarily, we compared the

default HTTP/2 prioritization schemes of Chrome and Firefox (1)

with the naive RR (2) and FCFS (3) schedulers, as they provide the

two orthogonal extremes. We also included HTTPS/1.1 measure-

ments (4), as here the same high-level prioritization heuristics are

used, yet in a radically diferent way from HTTP/2 (HOL blocking

on multiple connections, see Section 2.2.1). Finally, to assess how

much Chrome’s and Firefox’s observed strategies are entangled

with their overall implementation, we derived four lavors (5-8) of

a scheduler that blends the HTTP/2 prioritization schemes of both

User Agents. The four instantiations of this hybrid serial/parallel

scheduling algorithm are described next.

5.1.1 Parallel+ for Chrome. Inspired by Firefox’s tree-based

setup, Parallel+ adds parallelism to Chrome (see Figure 3 (a)). High-

priority resources are still transported serially, whereas medium-

and low-priority assets are served in a parallelized fashion, as they

can often take efect without having to be downloaded entirely (e.g.,

progressively renderable images). This setup is realized by intro-

ducing three top-level phantom nodes for grouping high-, medium-

and low-priority requests. The left- and rightmost phantom nodes

are statically granted the maximum and minimum HTTP/2 weight

value, respectively. The weight value of the midmost phantom node

is dynamically switched between these extremes depending on the

presence of high-priority resources. In particular, the central clus-

tering node will have a 256 weight value only when the leftmost

branch of the HTTP/2 dependency tree is empty.

5.1.2 Serial+ for Firefox. Serial+ partly serializes resource de-

livery in Firefox (see Figure 3 (b)). More speciically, resources

Track: Industry WWW 2018, April 23-27, 2018, Lyon, France

1759



High-Priority

0

Medium-

Priority
Low-Priority

..
.

1

Resources from Chrome s 

Highest & High Priority 

Buckets (weight value 256 or 220)

... ...

Resources from Chrome s 

Normal Priority Bucket 

(weight value 183)

Resources from Chrome s 

Low & Lowest Priority 

Buckets (weight value 

147 or 110)

1 or 256256

(a)

High-Priority

0

Medium-

Priority
Low-Priority

..
.

1

leaders & (high-

weight) followers 

resources (e.g., CSS, font)

1 or 256256

..
.

unblocked 

resources (e.g., 

XHR, <body> JS)

3

(leaders)

11

(followers)

5

(unblocked)

7

(background)

9

(speculative)

...

(low-weight) followers 

resources (e.g., images)

201 101 1

1 1

(b)

Figure 3: Drafting hybrid Parallel+/Serial+ HTTP/2 depen-

dency trees for (a) Chrome and (b) Firefox.

from Firefox’s leaders category (e.g., CSS, <head> JS) as well as

followers resources with a weight larger than the default 22 value

(e.g., HTML, font assets) are linearized under the leftmost phantom

node via exclusive dependency relationships, while unblocked re-

sources are made exclusively dependent on the midmost phantom

node. The residual part of Firefox’s original HTTP/2 dependency

tree is then integrally preserved under the rightmost phantom node.

The weights allotted to the phantom nodes are identical to those in

the Parallel+ case, as is the logic to re-weight the midmost phan-

tom node at run-time. For both Parallel+ and Serial+, all resource

requests retain their original HTTP/2 weight value.

5.1.3 Simplified Parallel and Serial. Parallel+ and Serial+ actu-

ally represent the advanced lavors of the hybrid scheduling logic.

In the łsimpliiedž Parallel and Serial scenarios, the central phan-

tom node is eliminated. Chrome’s Normal priority resources are

serially appended to their higher-priority counterparts under the

auspices of the leftmost phantom node, while unblocked Firefox re-

sources retain their position in the original dependency tree under

the rightmost phantom node.

0 1875 3750 5625 7500 0 53 107 160 214
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

page weight (KB) resource count (#)

Figure 4: Cumulative Distribution Functions (CDFs) of page

weight and asset count in our test corpus (n=40).

5.2 Apparatus and Evaluation Setup

To enact the discussed prioritization strategies, we extended version

2.1.0 of the H2O webserver [21]. Our server-side implementation

ignores the client-issued prioritization directives and instead drafts

a custom dependency tree according to the new scheduling logic,

except of course when evaluating the default browser implemen-

tations. Note again that this is completely in accordance with the

HTTP/2 speciication [24]. We chose H2O because it is built and

optimized for HTTP/2 from the ground up, as opposed to more pop-

ular server implementations which include HTTP/2 support as an

additional plugin (e.g., NGINX, Apache). Previous work also shows

H2O to be one of the most complete HTTP/2 capable servers [26].

We deployed our experimental setup using the Speeder frame-

work [29], which integrates the WebPageTest tool [54] and exploits

host virtualization to automate Web performance measurements

across various (emulated) network conditions and conigurable

User Agents. As User Agents, we used versions 58 and 54 of respec-

tively Chrome and Firefox, as these were the most stable versions

compatible with WebPageTest at the time. These browsers were

deployed on virtualized 64-bit Microsoft Windows 10 hosts, while

H2O was run on 64-bit Linux Debian Jessie Virtual Machines (VMs).

All VMs were accommodated on two Dell PowerEdge R420 ma-

chines, interconnected via 1 Gbps Ethernet, and were allocated at

least 2 dedicated logical CPU cores and 2 GB RAM per VM.

The network emulations were performed using tc/netem and

spanned both a Cable network link (30Mbps throughput, 40ms

Round-Trip Time (RTT), no packet loss) and four cellular connec-

tion types with varying quality characteristics (termed Noloss,

Good, Fair and Poor in order of degrading performance). The cel-

lular connections were emulated by dynamically reenacting real-

world mobile network performance traces previously used in Web

performance research [16, 17]. Per example, Good has a median RTT

of 39ms, median throughput of 7170Kbps and (very) short bursts of

1.7% to 73% packet loss (versus 86ms, 146Kbps and 2.7% to 85% for

Poor).

5.3 Content Corpus

We evaluated the diferent prioritization methods on a total of 40

real-world webpages. Note that the HTTP/2 best practices [6, 20]

indicate that sites should be distributed over as few servers as pos-

sible, thus making optimal use of HTTP/2’s single TCP connection

and maximizing the usefulness of the prioritization mechanism. We

therefore cloned the pages with Wget [15] and served them locally

from a single server. This approach is consistent with previous

work [5, 27, 29, 35]. The tested pages are diverse in nature, ranging

Track: Industry WWW 2018, April 23-27, 2018, Lyon, France

1760



from news sites, over landing pages to product marketing content.

The pages were selected from the Alexa Top 50 and Moz Top 500

rankings [2, 30] in such a way to obtain a good distribution of page

weights and resource counts (see Figure 4).

6 EXPERIMENTAL RESULTS

This section summarizes the principal outcomes of our full-factorial

HTTP/2 prioritization benchmark (full set of results available at

https://speeder.edm.uhasselt.be). We recorded multi-metric mea-

surements from combining eight individual prioritization algo-

rithms, two diferent User Agents, 40 pages and ive network quali-

ties into distinct experiments, each repeated 20 times. Due to space

limitations, only the loadEventEnd and SpeedIndex results will

be presented. The former metric is an indicator of the time it takes

to load all the synchronous resources on a page [45], while the

latter expresses the rate at which the page is populated with visual

elements [55]. For both metrics, smaller values denote better PLT

performance. Combined, these metrics provide a decent impres-

sion of both the quantitative and qualitative load performance of

a webpage, though they are not necessarily strongly correlated

with real user perceived performance [27, 43, 57]. While this can

be considered a limitation of our study, conducting a full-factorial

subjective evaluation of this magnitude is practically hard.

To facilitate comparison with prior work, we adopted the pre-

sentation and analysis method used by Bergan [5]. In particular,

we applied the statistical Mann-Whitney U test with a very conser-

vative p value of 0.005. Each metric was considered individually.

When an experiment X yielded statistically signiicant diferences

compared to a baseline experiment Y for PLT metric Z (i.e., p <

0.005), we calculated the relative change of X compared to Y ac-

cording to the following formula:

relative Z change = 1 −
median(samples X expressed in Z)

median(samples Y expressed in Z)

These relative changes will be presented in tabular form. In these

tables, cells highlighted in grey mark results referenced in the run-

ning text. For example, Table 3 ofsets the performance of the naive

approaches (RR and FCFS) to that of the default browser imple-

mentations as a baseline. For each combination of User Agent, PLT

metric and prioritization case, the table lists per network conigura-

tion the quantity of testpages that were found to show no or small

statistically signiicant diferences with the baseline (reported in

the R (Rest) column, ⩽5%), as well as the number of testpages that

exhibited either a relative performance improvement or degrada-

tion of more than ive and 25 percent (⩾5% and ⩾25% columns).

For instance, from the irst row in Table 3, we learn that in the

Cable network setting no statistically signiicant loadEventEnd

diferences ⩾5% existed between the FCFS and default Chrome case

for 24 out of the 40 tested webpages. On the other hand, two disjoint

sets of eight webpages showed a statistically signiicant speedup

or slowdown ⩾5%; three of the eight slower pages even incurred a

penalty ⩾25% compared to the default.

As we have found page weight to be an important factor in the

observed PLT trends, we will present not only results spanning

the full corpus (in Tables 3, 4) but also yield split results for the 10

low-weight pages (total size ⩽600KB and/or resource count ⩽10)

0 2500 5000 7500 10000 0 2500 5000 7500 10000

loadEventEnd (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

low-weight pages (n=10) heavy-weight pages (n=20)

(a)

Chrome, cable network

HTTPS/1.1

parallel

parallel+

FCFS

default

RR

0 2500 5000 7500 10000 0 2500 5000 7500 10000

SpeedIndex (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F
low-weight pages (n=10) heavy-weight pages (n=20)

(b)

Firefox, poor cellular network

HTTPS/1.1

serial

serial+

FCFS

default

RR

Figure 5: PLT performance CDFs for low-weight (left) versus

heavy-weight (right) testpages.

0 2500 5000 7500 10000 0 2500 5000 7500 10000

SpeedIndex (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

fair cellular network poor cellular network

Chrome, heavy-weight pages (n=20)

HTTPS/1.1

parallel

parallel+

FCFS

default

RR

Figure 6: SpeedIndex CDFs for heavy-weight testpages in

Chrome over Fair (left) and Poor (right) networks.

versus the 20 heavy-weight pages (total size ⩾1MB) in our corpus

(in Figures 5, 6).

6.1 HTTP/2 Naive versus Default

We irst look at the performance of the two naive methods, upon

which the browsers’ default implementations are expected to sig-

niicantly improve. The results are summarized in Table 3, with the

default browser implementations acting as the baseline case. We

observe four important trends.

Firstly, as expected, the use of RR scheduling nearly unanimously

led to slower page loads compared to the default algorithms. This

inding manifests itself most prominently when considering the

SpeedIndex metric, yet to a lesser extent also for loadEventEnd.

Track: Industry WWW 2018, April 23-27, 2018, Lyon, France

1761

https://speeder.edm.uhasselt.be


Table 3: Default browser HTTP/2 prioritization implementations (baseline) versus naive methods (n=40).

Cable network Good cellular network Poor cellular network

speedup slowdown speedup slowdown speedup slowdown

setting case R ⩾5% ⩾25% ⩾5% ⩾25% R ⩾5% ⩾25% ⩾5% ⩾25% R ⩾5% ⩾25% ⩾5% ⩾25%

Chrome,

loadEventEnd

FCFS 24 8 1 8 3 40 0 0 0 0 40 0 0 0 0

RR 20 11 1 9 2 35 2 0 3 3 36 1 1 3 3

vsFirefox 3 37 15 0 0 34 6 6 0 0 38 1 1 1 1

Chrome,

SpeedIndex

FCFS 28 6 1 6 3 35 1 0 4 3 37 1 1 2 2

RR 25 5 1 10 2 29 2 2 9 9 31 1 1 8 8

vsFirefox 4 35 17 1 0 26 14 12 0 0 32 6 6 2 2

Firefox,

loadEventEnd

FCFS 27 8 0 5 0 38 1 0 1 1 38 2 1 0 0

RR 26 3 0 11 1 38 0 0 2 1 37 1 1 2 1

Firefox,

SpeedIndex

FCFS 27 6 0 7 1 34 3 1 3 3 36 0 0 4 4

RR 25 1 0 14 2 30 0 0 10 8 30 1 1 9 9

Consider for example Firefox on the Poor network quality; RR

resulted in a signiicant SpeedIndex speedup for only a single web-

page, whereas nine other webpages recorded signiicant slowdowns

⩾25%. Figures 5 (b) and 6 show that especially heavy weight pages’

SpeedIndex deteriorates on RR. The largest slowdowns (up to 214%)

were due to very deep dependency chains (e.g., a JS ile uses XHR

to fetch a JSON ile which includes image URLs).

Secondly, the FCFS and default schedulers were roughly bal-

anced in the Cable network setting (i.e., the number of page load

speedups and slowdowns is similar), whereas this balance tended to

slightly tip in favor of the default approaches as network conditions

deteriorated. Additionally, the quantity of diferences ⩾25% were

limited, especially when compared to RR. We initially interpreted

the surprisingly good performance of the naive FCFS approach

to be an indication of User Agents’ intelligence for re-ordering

resource requests (e.g., using a heuristics-based speculative HTML

parser, see Section 2.2.1). However, when trying to conirm this

thesis via a lexical scheduler (i.e., one that delivers resources in the

exact order they are declared in the HTML), the results showed

a comparable level of performance (results omitted due to space

constraints). We therefore tentatively infer that the high FCFS and

lexical performance might be explained by the optimized HTML

code of the tested popular webpages, which likely underwent man-

ual subresource declaration order optimization.

Thirdly, the quantity of statistically relevant PLT performance

diferences decreased nearly monotonically as network link quality

degraded. As an example, for Chrome on Cable, statistically signii-

cant SpeedIndex diferences ⩾5% were recorded between the FCFS

and default implementation for 30% (12 out of 40) of the webpage

corpus; this amount was more than halved on Good cellular and

further dropped to 7.5% when network quality was most impaired.

This shows that the browsers’ default behaviors often only scarcely

outsmart naive algorithms on impaired networks, which helps ex-

plain why prior work is able to achieve impressive speedups on

mobile networks [31, 36, 53].

Fourthly, for low-weight pages, the PLT performance diferences

became marginal across network conditions (Figure 5 left side). It

seems that Web transport optimization for low-weight webpages is

subject to the law of diminishing returns.

Interestingly, a number of unexpected anomalies could be ex-

plained by speciic page setups. For example, the single site with

⩾25% faster SpeedIndex on RR for Chrome on the Poor network

consisted of many smaller images which had a large impact on the

inal page render, while it also encompassed large JS iles with little

visual efect. On RR, Chrome could start rendering much sooner

than under the default prioritization behavior. A second page in-

cluded a number of large images, of which only one was visible

łabove the foldž. Using FCFS on Firefox caused this łhero imagež to

be downloaded before the other images, instead of being interleaved

with them, leading to 24% faster SpeedIndex on Cable. These re-

sults showcase that browsers’ tendency to coarsely group resources

by type (Section 4) can proit from additional manual control [56].

Finally, we also compared the default HTTP/2 prioritization

implementations of Firefox and Chrome directly in Table 3 (vsFirefox).

The results show that Firefox is as a whole profoundly faster than

Chrome, especially on faster networks. It is however impossible to

assess how much of this superior performance is due to Firefox’s

more complex HTTP/2 prioritization setup, as the two browsers

also difer signiicantly in almost all aspects of their underlying

engine.

6.2 Parallel(+), Serial(+) and HTTPS/1.1

Recall that Parallel(+) and Serial(+) should help us assess whether

the browsers’ default HTTP/2 prioritization implementations were

chosen speciically to work in symphony with their overall under-

lying engines. Unexpectedly, the results in Table 4 show no obvious

trends. For some settings, parallelization improved performance in

Chrome (e.g., by ⩾25% on Good, SpeedIndex), as does serializing

assets in Firefox (e.g., on Cable for loadEventEnd, though only by

⩾5%). On the other hand, situations exist where these schedulers

incurred a PLT performance penalty compared to the default be-

haviors and there is no consistent winner between the simple and

advanced (+) versions.

Especially for Parallel(+) it came as a surprise that the added in-

terleaving of image assets did not lead to an improved SpeedIndex,

as Chrome can typically progressively render multiple images at the

same time (e.g., when they are downloaded on multiple HTTP/1.x

connections). For the 20 heaviest testpages (17 of which incorporate

a decent quantity of images) in Figure 6, simpliied parallelization in

fact did seem to yield (mostly statistically insigniicant) SpeedIndex

gains for the two most impaired network conigurations, without

hereby substantially impacting loadEventEnd performance.

Track: Industry WWW 2018, April 23-27, 2018, Lyon, France

1762



Table 4: Default browser implementations (baseline) versus Parallel(+)/Serial(+) variations and HTTPS/1.1 (n=40).

Cable network Good cellular network Poor cellular network

speedup slowdown speedup slowdown speedup slowdown

setting case R ⩾5% ⩾25% ⩾5% ⩾25% R ⩾5% ⩾25% ⩾5% ⩾25% R ⩾5% ⩾25% ⩾5% ⩾25%

Chrome,

loadEventEnd

Parallel 22 7 0 11 1 39 0 0 1 1 36 2 2 2 2

Parallel+ 19 9 1 12 2 38 0 0 2 2 37 2 2 1 1

HTTPS/1.1 17 7 1 16 5 37 1 1 2 1 35 5 4 0 0

Chrome,

SpeedIndex

Parallel 29 3 0 8 2 34 5 4 1 1 35 3 3 2 2

Parallel+ 31 4 1 5 0 36 2 2 2 1 34 3 3 3 3

HTTPS/1.1 24 3 2 13 4 36 3 3 1 1 32 8 7 0 0

Firefox,

loadEventEnd

Serial 26 8 0 6 1 36 0 0 4 3 38 0 0 2 2

Serial+ 22 12 0 6 2 38 0 0 2 1 37 1 0 2 2

HTTPS/1.1 18 2 0 20 4 34 3 1 3 3 32 8 8 0 0

Firefox,

SpeedIndex

Serial 26 10 1 4 1 34 1 1 5 5 37 0 0 3 3

Serial+ 25 6 0 9 1 35 1 1 4 4 35 2 2 3 3

HTTPS/1.1 16 4 0 20 5 31 4 3 5 4 35 3 3 2 2

Finally, our results for HTTPS/1.1 demonstrate that HTTP/2 sig-

niicantly outperformed HTTPS/1.1 in the highest-quality network

setting (i.e., Cable), while HTTPS/1.1 decisively took the upper

hand for Poor. This is most likely attributable to HTTPS/1.1’s use

of multiple TCP connections, which adds overhead on fast networks

but ofers robustness in the case of packet loss (as corroborated

by previous work [10, 11, 18, 29, 52], which indicates that HTTP/2

could also beneit from using additional TCP connections on slower

networks).

7 DISCUSSION AND CONCLUSIONS

Our survey of contemporary User Agents in Section 4 is the irst to

irmly showcase large discrepancies in how they approach webpage

resource prioritization and in how this is consequently mapped to

the HTTP/2 protocol. However, we were unable to ind conclusive

proof that these distinct schemes are fully optimized for the pe-

culiarities of the underlying browser engines. While some results

(e.g., for Parallel(+)/ Serial(+), and the slowdowns on RR) could be

accredited to this efect, there are also counter-arguments, such

as the fact that the browsers’ built-in schedulers do not always

improve on naive HTTP/2 prioritization algorithms, especially for

low-weight pages.

In our opinion, this can have two main reasons. First, various

User Agents might not yet be (fully) optimized with respect to

HTTP/2’s prioritization system (and/or prioritization in general).

We judge this is most likely the case for IE, Edge and Safari (and to

a lesser extent for Chrome and Firefox for techniques like Push and

Service Workers, see Section 4.4) and expect them to evolve their

approach over time. The other reason (which was also hypothesized

in related work [31, 52]) is that it is non-trivial to improve PLT

purely via generic network-level prioritization due to the complex

interplay that exists with other parts of the browser engine. This

seems to be the primary case for Firefox and Chrome andwould also

explain why advanced re-prioritization techniques [31, 36, 53] often

need to optimize priorities for both computation and networking

aspects on a per-page basis to obtain substantial PLT gains (and why

our generic Parallel(+) and Serial(+) failed to perform as expected).

However, given the large internal diferences between browser

engines, we put forward that these re-prioritization systems should

also take into account the User Agent to achieve optimal results,

which to date none seem to do.

In all, we conclude that (HTTP/2) prioritization can indeed inlu-

ence Web performance (and hence user experience), yet that careful

alignment with other components of the webpage load process (e.g.,

HTML optimization, browser internals) is needed, likely on a per-

page basis, to warrant PLT speedups. Additionally, in our results

RR performs worst and thus should perhaps not be recommended

by the HTTP/2 speciication.

Fortunately, the HTTP/2 prioritization standard has proven to

be versatile enough to aford complex resource scheduling logic

as well as run-time (re-)prioritization. As such, the advanced per-

page prioritization accelerators of the future can make use of this

standard setup instead of having to circumvent the browser with

custom methods. In the short term, this can be achieved by drafting

custom dependency trees at the server (as shown by our evalua-

tion), while future Web standards (such as Service Workers [14]

and Priority Hints [56]) will allow developers to inluence priorities

emitted by the client directly. Interesting future work lies in ana-

lyzing why the FCFS scheduler performed so well and in looking

at cross-connection prioritization, either when sharding HTTP/2

over multiple domains or with the QUIC protocol [23].

8 ACKNOWLEDGMENTS

Part of this work was funded by the imec ICON Pro-Flow project.

Industrial partners involved in the Pro-Flow project include AN-

DROME, Nokia and Barco. Robin Marx is a SB PhD fellow at FWO,

Research Foundation - Flanders, project number 1S02717N.

REFERENCES
[1] Addy Osmani. 2017. The PRPL Pattern. Online, https://w3c.github.io/webvr/

spec/latest/. (May 2017).
[2] Alexa. 2017. Top 500 Global Sites. Online, http://www.alexa.com/topsites.

(2017).
[3] Andy Davies. 2013. How the Browser Pre-loader Makes Pages Load Faster.

Online, https://andydavies.me/blog/2013/10/22/how-the-browser-pre-loader-
makes-pages-load-faster/. (2013).

[4] Awio Web Services LLC. 2017. Web Browser Usage Trends. Online, https:
//www.w3counter.com/trends. (2017).

[5] Tom Bergan. 2016. Benchmarking HTTP/2 Priorities. Online,
https://docs.google.com/document/d/1oLhNg1skaWD4DtaoCxdSRN5erEXrH-
KnLrMwEpOtFY/. (October 2016).

Track: Industry WWW 2018, April 23-27, 2018, Lyon, France

1763

https://w3c.github.io/webvr/spec/latest/
https://w3c.github.io/webvr/spec/latest/
http://www.alexa.com/topsites
https://andydavies.me/blog/2013/10/22/how-the-browser-pre-loader-makes-pages-load-faster/
https://andydavies.me/blog/2013/10/22/how-the-browser-pre-loader-makes-pages-load-faster/
https://www.w3counter.com/trends
https://www.w3counter.com/trends
https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/
https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/


[6] Tom Bergan, Simon Pelchat, and Michael Buettner. 2016. Rules of
Thumb for HTTP/2 Push. Online, https://docs.google.com/document/d/
1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0/edit. (August 2016).

[7] Andreas Biùrn-Hansen, Tim A. Majchrzak, and Tor-Morten Grùnli. 2017. Pro-
gressive Web Apps: The Possible Web-native Uniier for Mobile Development. In
Proceedings of the 13th International Conference on Web Information Systems and
Technologies - Volume 1: WEBIST. SciTePress, 344ś351.

[8] Browserscope. 2017. Max connections per browser. Online, http://
www.browserscope.org/?category=network. (October 2017).

[9] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha, and Vyas
Sekar. 2015. KLOTSKI: Reprioritizing Web Content to Improve User Experience
on Mobile Devices. In Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation (NSDI’15). 439ś453.

[10] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. 2015. HTTP over UDP:
an Experimental Investigation of QUIC. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing. ACM, 609ś614.

[11] Hugues de Saxcé, Iuniana Oprescu, and Yiping Chen. 2015. Is HTTP/2 really
faster than HTTP/1.1?. In Proceedings of the IEEE Conference on Computer Com-
munications Workshops. 293ś299.

[12] Dev.Opera. 2012. Opera Mini and JavaScript. Online, http://dev.opera.com/
articles/view/opera-mini-and-javascript/. (September 2012).

[13] Jefrey Erman, Vijay Gopalakrishnan, Rittwik Jana, and K. K. Ramakrishnan. 2013.
Towards a SPDY’ier Mobile Web?. In Proceedings of the 9th ACM International
Conference on emerging Networking EXperiments and Technologies (CoNEXT’13).
303ś314.

[14] Matt Gaunt. 2017. Service Workers: an Introduction. Online,
https://developers.google.com/web/fundamentals/getting-started/primers/
service-workers. (May 2017).

[15] GNU Project. 2017. Wget. Online, https://www.gnu.org/software/wget/. (2017).
[16] Utkarsh Goel. 2016. A script based on TC netem to emulate the latency, loss, and

bandwidth of a real-world cellular network. Online, https://github.com/akamai/
cell-emulation-util. (2016).

[17] Utkarsh Goel, Moritz Steiner, Mike P. Wittie, Martin Flack, and Stephen Ludin.
2016. Poster: HTTP/2 Performance in Cellular Networks. In Proceedings of
the 22nd Annual International Conference on Mobile Computing and Networking
(MobiCom’16). 433ś434.

[18] Utkarsh Goel, Moritz Steiner, Mike P Wittie, Stephen Ludin, and Martin Flack.
2017. Domain-Sharding for Faster HTTP/2 in Lossy Cellular Networks. arXiv
preprint arXiv:1707.05836 (2017).

[19] Utkarsh Goel, Mike P Wittie, and Moritz Steiner. 2015. Faster Web through
Client-assisted CDN Server Selection. In Computer Communication and Networks
(ICCCN), 2015 24th International Conference on. IEEE, 1ś10.

[20] Ilya Grigorik. 2013. High Performance Browser Networking: What every web
developer should know about networking and web performance. " O’Reilly Media,
Inc.".

[21] H2O. 2017. The optimized HTTP/1.x, HTTP/2 server. Online, https://
h2o.examp1e.net/. (2017).

[22] BoHan, Shuai Hao, and FengQian. 2015. MetaPush: Cellular-Friendly Server Push
For HTTP/2. In Proceedings of the Workshop on All Things Cellular: Operations,
Applications and Challenges (AllThingsCellular’15). 57ś62.

[23] IETF Network Working Group. 2016. QUIC: A UDP-Based Secure and Reliable
Transport for HTTP/2. Online, https://tools.ietf .org/html/draft-tsvwg-quic-
protocol-02. (January 2016).

[24] IETF RFC7540. 2015. Hypertext Transfer Protocol Version 2 (HTTP/2). Online,
https://tools.ietf .org/html/rfc7540. (May 2015).

[25] Ilya Grigorik, Pat Meenan, Rick Viscomi. 2017. HTTP Archive. Online, http:
//httparchive.org/. (October 2017).

[26] Muhui Jiang, Xiapu Luo, Tungngai Miu, Shengtuo Hu, and Weixiong Rao. 2017.
Are HTTP/2 Servers Ready Yet?. In Distributed Computing Systems (ICDCS), 2017
IEEE 37th International Conference on. IEEE, 1661ś1671.

[27] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R Das. 2017. Im-
proving User Perceived Page Load Times Using Gaze.. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI). 545ś559.

[28] Ron Kohavi, Alex Deng, Roger Longbotham, and Ya Xu. 2014. Seven rules
of thumb for web site experimenters. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 1857ś
1866.

[29] Robin Marx, Peter Quax, Axel Faes, and Wim Lamotte. 2017. Concatenation,
Embedding and Sharding: Do HTTP/1 Performance Best Practices Make Sense in
HTTP/2?. In Proceedings of the 13th International Conference on Web Information
Systems and Technologies (WEBIST’17). 160ś173.

[30] Moz. 2017. Top Sites: The 500 Most Important Websites on the Internet. Online,
https://moz.com/top500. (2017).

[31] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016. Po-
laris: Faster Page Loads Using Fine-grained Dependency Tracking. In Proceedings
of the 13th USENIX Conference on Networked Systems Design and Implementation
(NSDI’16). 123ś136.

[32] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP.. In USENIX Annual Technical Conference. 417ś429.

[33] Shubhie Panicker. 2016. Hero Element Timing
API. Online, https://docs.google.com/document/d/
1yRYfYR1DnHtgwC4HRR04ipVVhT1h5gkI6yPmKCgJkyQ. (September
2016).

[34] Radware. 2016. Web Performance State of the Union. Online, https://
www.radware.com/social/industry-sotu2016/. (June 2016).

[35] Sanae Rosen, Bo Han, Shuai Hao, Z Morley Mao, and Feng Qian. 2017. Push
or Request: An Investigation of HTTP/2 Server Push for Improving Mobile
Performance. In Proceedings of the 26th International Conference on World Wide
Web. International World Wide Web Conferences Steering Committee, 459ś468.

[36] Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha V Mad-
hyastha. 2017. VROOM: Accelerating the Mobile Web with Server-Aided Depen-
dency Resolution. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. ACM, 390ś403.

[37] Ali Sehati and Majid Ghaderi. 2015. WebPro: A proxy-based approach for low
latency web browsing on mobile devices. In Quality of Service (IWQoS), 2015 IEEE
23rd International Symposium on. IEEE, 319ś328.

[38] Ashiwan Sivakumar, Shankaranarayanan Puzhavakath Narayanan, Vijay
Gopalakrishnan, Seungjoon Lee, Sanjay Rao, and Subhabrata Sen. 2014. PAR-
CEL: Proxy Assisted BRowsing in Cellular Networks for Energy and Latency
Reduction. In Proceedings of the 10th ACM International Conference on emerging
Networking EXperiments and Technologies (CoNEXT’14). 325ś336.

[39] StatCounter Global Stats. 2017. Browser, OS, Search Engine including Mobile
Usage Share. Online, http://gs.statcounter.com/browser-market-share/mobile/
worldwide/#monthly-201709-201709-bar. (2017).

[40] Tammy Everts, Tim Kadlec. 2017. WPO Stats. Online, https://wpostats.com/.
(October 2017).

[41] The Chromium Projects. 2014. SPDY Protocol. Online, https://
www.chromium.org/spdy/spdy-protocol. (2014).

[42] Anne van Kesteren. 2017. XMLHttpRequest Living Standard. Online, https:
//xhr.spec.whatwg.org/. (May 2017).

[43] Matteo Varvello, Jeremy Blackburn, David Naylor, and Konstantina Papagiannaki.
2016. EYEORG: A Platform For Crowdsourcing Web Quality Of Experience Mea-
surements. In Proceedings of the 12th ACM International Conference on emerging
Networking EXperiments and Technologies (CoNEXT’16). 399ś412.

[44] Matteo Varvello, Kyle Schomp, David Naylor, Jeremy Blackburn, Alessandro
Finamore, and Konstantina Papagiannaki. 2016. Is the Web HTTP/2 Yet?. In
International Conference on Passive and Active Network Measurement. Springer,
218ś232.

[45] W3C Recommendation. 2012. Navigation Timing. Online, https://www.w3.org/
TR/navigation-timing. (December 2012).

[46] W3C Recommendation. 2014. HTML5 - A vocabulary and associated APIs for
HTML and XHTML. Online, https://www.w3.org/TR/html5/. (October 2014).

[47] W3C Working Draft. 2016. Preload. Online, https://www.w3.org/TR/preload/.
(November 2016).

[48] W3C Working Draft. 2016. Service Workers 1. Online, https://www.w3.org/TR/
service-workers-1/. (October 2016).

[49] W3C Working Draft. 2017. Resource Hints. Online, https://www.w3.org/TR/
resource-hints/. (May 2017).

[50] Carl A. Waldspurger and William E. Weihl. 1994. Lottery Scheduling: Flexible
Proportional-share Resource Management. In Proceedings of the 1st USENIX
Conference on Operating Systems Design and Implementation (OSDI’94). Article 1.

[51] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load Performance withWProf. In Proceedings
of the 10th USENIX Conference on Networked Systems Design and Implementation
(NSDI’13). 473ś486.

[52] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2014. How Speedy is SPDY?. In Proceedings of the 11th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’14). 387ś399.

[53] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016. Speeding
Up Web Page Loads with Shandian. In Proceedings of the 13th USENIX Conference
on Networked Systems Design and Implementation (NSDI’16). 109ś122.

[54] WebPagetest. 2017. Website Performance and Optimization Test. Online, https:
//www.webpagetest.org/. (2017).

[55] WebPageTest Documentation. 2012. Speed Index. Online, https:
//sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/
speed-index. (2012).

[56] Addy Osmani Yoav Weiss. 2017. Priority Hints. Online, https://github.com/
WICG/priority-hints. (August 2017).

[57] Torsten Zimmermann, Benedikt Wolters, and Oliver Hohlfeld. 2017. A QoE
Perspective on HTTP/2 Server Push. In Proceedings of the Workshop on QoE-based
Analysis and Management of Data Communication Networks. ACM, 1ś6.

Track: Industry WWW 2018, April 23-27, 2018, Lyon, France

1764

https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0/edit
https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0/edit
http://www.browserscope.org/?category=network
http://www.browserscope.org/?category=network
http://dev.opera.com/articles/view/opera-mini-and-javascript/
http://dev.opera.com/articles/view/opera-mini-and-javascript/
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://www.gnu.org/software/wget/
https://github.com/akamai/cell-emulation-util
https://github.com/akamai/cell-emulation-util
https://h2o.examp1e.net/
https://h2o.examp1e.net/
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02
https://tools.ietf.org/html/rfc7540
http://httparchive.org/
http://httparchive.org/
https://moz.com/top500
https://docs.google.com/document/d/1yRYfYR1DnHtgwC4HRR04ipVVhT1h5gkI6yPmKCgJkyQ
https://docs.google.com/document/d/1yRYfYR1DnHtgwC4HRR04ipVVhT1h5gkI6yPmKCgJkyQ
https://www.radware.com/social/industry-sotu2016/
https://www.radware.com/social/industry-sotu2016/
http://gs.statcounter.com/browser-market-share/mobile/worldwide/#monthly-201709-201709-bar
http://gs.statcounter.com/browser-market-share/mobile/worldwide/#monthly-201709-201709-bar
https://wpostats.com/
https://www.chromium.org/spdy/spdy-protocol
https://www.chromium.org/spdy/spdy-protocol
https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://www.w3.org/TR/navigation-timing
https://www.w3.org/TR/navigation-timing
https://www.w3.org/TR/html5/
https://www.w3.org/TR/preload/
https://www.w3.org/TR/service-workers-1/
https://www.w3.org/TR/service-workers-1/
https://www.w3.org/TR/resource-hints/
https://www.w3.org/TR/resource-hints/
https://www.webpagetest.org/
https://www.webpagetest.org/
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://github.com/WICG/priority-hints
https://github.com/WICG/priority-hints

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 The Webpage Load Process
	2.2 Resource Prioritization Schemes
	2.3 HTTP/2 Prioritization

	3 HTTP/2's Prioritization system
	4 User Agent Implementations
	4.1 Chrome: Dynamic FCFS
	4.2 IE, Edge and Safari : (Weighted) RR
	4.3 Firefox: A Class Apart
	4.4 Contemporary Web Technologies

	5 Experimental Setup
	5.1 Tested Schedulers
	5.2 Apparatus and Evaluation Setup
	5.3 Content Corpus

	6 Experimental Results
	6.1 blackHTTP/2 Naive versus Default
	6.2 Parallel(+), Serial(+) and HTTPS/1.1

	7 Discussion and Conclusions
	8 Acknowledgments
	References



