
4

Network Resilience and the Length-Bounded Multicut
Problem: Reaching the Dynamic Billion-Scale with
Guarantees

ALAN KUHNLE, VICTORIA G. CRAWFORD, and MY T. THAI, University of Florida, USA

Motivated by networked systems in which the functionality of the network depends on vertices in the network

being within a bounded distance T of each other, we study the length-bounded multicut problem: given a set

of pairs, find a minimum-size set of edges whose removal ensures the distance between each pair exceeds T .
We introduce the first algorithms for this problem capable of scaling to massive networks with billions of

edges and nodes: three highly scalable algorithms with worst-case performance ratios. Furthermore, one of

our algorithms is fully dynamic, capable of updating its solution upon incremental vertex / edge additions or

removals from the network while maintaining its performance ratio. Finally, we show that unless NP ⊆ BPP ,
there is no polynomial-time, approximation algorithmwith performance ratio better than Ω(T), which matches

the ratio of our dynamic algorithm up to a constant factor.

Additional Key Words and Phrases: Scalable algorithms; length-bounded multicut

ACM Reference Format:
Alan Kuhnle, Victoria G. Crawford, and My T. Thai. 2018. Network Resilience and the Length-Bounded

Multicut Problem: Reaching the Dynamic Billion-Scale with Guarantees. Proc. ACM Meas. Anal. Comput. Syst.
2, 1, Article 4 (March 2018), 26 pages. https://doi.org/10.1145/3179407

1 INTRODUCTION
Connectivity in a graph has historically been an important metric of the functionality of a network;

that is, the service provided by the network is extant between two nodes if there exists a path

between these two nodes. This consideration has led to the study of many forms of cutting problems

in a network: e.g. the minimum cut problem, the minimum multicut problem and the sparsest cut

problem, among many others [1]. In addition, various measures of connectivity have formed the

basis for assessment of a network’s vulnerability to external perturbation [2, 3].

Transcending connectivity, many network applications depend on some measure of network

distance between a pair of connected nodes. An edgeweight representing ametric related to network

functionality may be associated to each edge, and a pair of nodes only benefits from the network if

the weighted, shortest-path distance between the pair is below a threshold T . For example, in an

Industrial Internet-of-Things (IIoT) network [4], Quality-of-Service (QoS) metrics (e.g. packet loss,
time delay) between a pair in the network are critical to many applications, and communication

protocols have been developed to guarantee a threshold of QoS between communicating pairs [5].

As another example, consider a time-sensitive delivery on a road network, weighted by the travel

time between destinations. Mere connectivity between a source and destination is insufficient when

Authors’ address: Alan Kuhnle, kuhnle@ufl.edu; Victoria G. Crawford, vcrawford01@ufl.edu; My T. Thai, mythai@ufl.edu,

University of Florida, Computer & Information Science & Engineering, Gainesville, FL, 32306, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.

2476-1249/2018/3-ART4 $15.00

https://doi.org/10.1145/3179407

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

https://doi.org/10.1145/3179407
https://doi.org/10.1145/3179407

4:2 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

a guarantee on the delivery time is desired; such guarantees are offered by popular retailers such

as Amazon [6].

Consequently, a natural question is which edges or links in the network are critical for the

network functionality between a desired set of pairs [7]. With this motivation, we consider the

length-boundedmulticut problem (LB MULTICUT), in which a weighted1, directed graphG , threshold
T , and set of pairs S is given, and the problem is to identify a minimum-size set of edges whose

removal ensures the weighted, shortest-path distance between each pair in S is greater than the

threshold T . Intuitively, the goal of this problem is to assess how robust the network is; the larger

the size of the set of edges found, the more resilient the network is to perturbation in terms of edge

failure; in addition, membership in this set of edges provides an indication of the importance of an

edge to the desired functionality.

In the context of network reliability, the node version of the LB MULTICUT problem was studied

by Kuhnle et al. [7], who formulated several algorithms that are fixed-parameter tractable (FPT)

with respect to the parameter T ; that is, they run in polynomial time if T is considered to be a

constant. However, these algorithms do not scale beyond tens of thousands of edges and nodes,

as we demonstrate in Section 4. Modern networked systems are increasingly massive in scale [8],

often with sizes of at least millions of vertices and edges. For example, one network of autonomous

systems in the internet obtained from traceroutes has more then 12 million vertices and edges [9].

A simple, primal-dual algorithm
2
for LB MULTICUT does scale to large networks, but its solution

quality in practice is often far from optimal, as we demonstrate in our experimental evaluation.

Furthermore, modern networks rapidly change as nodes and links enter and leave the network

[4, 9–11]. Hence there is a need for dynamic algorithms that can efficiently update their solution

in response to changes in the network, rather than recomputing from scratch on the modified

network.

Contributions. Given an instance (G,d,S,T) of LB MULTICUT, let n be the number of vertices in

G,m be the number of edges, and T0 = T /d0, in which d0 is the minimum edge weight on G.

• We provide three highly scalable algorithms for LB MULTICUT: (1) SAP, a probabilistic, FPT-
approximation algorithmwith performance ratioO (T0 logn)with probability at least (1−1/m);
(2) MIA, a multicut-based algorithm with performance ratio O (Mn11/23), in which M is the

number of directed multicuts employed by MIA; and (3) TAG, an approximation algorithm

with performance ratioT0. Here, the performance ratio is the maximum ratio over all problem

instances of the size of the set of edges returned by the algorithm divided by the optimal size.

• In the presence of dynamic edge / vertex insertions and deletions to the network, the dynamic

version of TAG can efficiently update its solution in response to these incremental changes,

while maintaining its performance guarantee ofT0. Thus, our algorithm TAG is fully dynamic,

which leads to massive speedups over static TAG.
• When T is fixed and edge weights are uniform, the previous best lower bound on the

approximability of LB MULTICUT is Ω
(√
T
)
[12] assuming the Unique Games Conjecture.

We improve this lower bound to Ω(T) unless NP ⊆ BPP 3
.

• We extensively evaluate our algorithms on large-scale, real-world networks. All three of our

algorithms are demonstrated to scale to networks with billions of edges in under a few hours

and to return nearly optimal solutions, up to a factor of 1000 and usually a factor of at least 5

1
Each edge e ∈ G has a positive weight d (e)

2
We present and analyze the primal-dual approach to LB MULTICUT in Section 2.

3
Bounded-error probabilistic polynomial time: class of decision problems solvable by a probabilistic Turing machine in

polynomial time with an error probability bounded away from 1/2 [13].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:3

smaller than the primal-dual algorithm. The source code of our implementation is available

[14].

Related work. Length-bounded cuts. For the case that the target set S contains a single pair and

edge weights are uniform, length-bounded cuts and flows were studied extensively by Baier et al.
[15]. In their work, the problem is proven to be NP-hard and a T /2-approximation algorithm is

given. This algorithm cannot be directly applied to the LB MULTICUT problem; our algorithm MIA
generalizes it through the novel concept of compatible paths (Section 3.2). The hardness results for

the length-bounded, edge cut were improved in Lee [12], wherein an Ω
(√
T
)
-hardness result is

shown under the Unique Games Conjecture (UGC). In this work, we show that when multiple pairs

are allowed, a stronger lower bound of Ω(T) can be proven under the much weaker assumption

NP ⊈ BPP .
The parameterized complexity of the length-bounded cut problem was studied in Golovach et al.

[16], wherein the parameterization is with respect to the size c of the cut and the lengthT of the paths.

They provide an FPT-exact algorithm with running time O (T c+1m) and analyze the relationship

among related problems in terms of FPT reducibility. The parameterized complexity is further

studied in Dvorak et al. [17], who also consider the complexity of the length-bounded multicut

problem in addition to the case of a single pair. Neither of these works consider approximation

algorithms, which are the focus of this paper.

Kuhnle et al. [7] have studied the node version of the LB MULTICUT problem. They provide two

FPT-approximation algorithms [18], GEN and FEN, wherein the parameterization is with respect

to the length T of the paths. These algorithms require a listing of all paths of lengths at most T
and hence do not scale to large networks, as shown in our experimental evaluation (Section 4)

wherein we compare to our adaptation of GEN to the edge version of LB MULTICUT. They also

provide a greedy, sampling-based approximation GEST which has a probabilistic, bicriteria ratio of

O (α∆T0 + logk), where α is a parameter in (0, 1), ∆ is the maximum degree in the graph, and k is

the number of pairs in the problem instance. Since in the worst case ∆ = n − 1, this performance

guarantee can be almost as bad as the trivial ratio n. Although it is offset by α , the running time of

GEST is proportional to k3/α2
; therefore, to meaningfully ameliorate the ∆T0 factor by choosing a

small α would make the running time prohibitive. Additionally, in practice, Kuhnle et al. had to

augment this approach with a heuristic due to difficulty obtaining valid path samples.

Our algorithm SAP is inspired by GEST in that we use a greedy approach based upon path

sampling; however, we boost the number of valid path samples by using probabilistic hints based

upon shortest-path computations to guide the sampling. Because of these biased path samples, we

found it unnecessary to use any heuristic to obtain valid samples in practice. Furthermore, we prove

a stronger performance guarantee of O (T0 logn) for SAP, which holds with probability 1 − 1/m.

Finally, our implementation of SAP is scalable to networks with billions of edges, as shown in our

experimental evaluation.

The shortest-path network interdiction problem. In the case of a single pair of vertices (s, t), the
shortest-path network interdiction (SPNI) problem is defined as follows: given a budget of size B,
remove B edges from a graph to maximize the distance d (s, t). While related to the single-pair LB
MULTICUT problem (i.e. LB CUT), the objective is to maximize the distance d (s, t) rather than to

minimize the size required before the distance is above a threshold. In terms of approximability, we

are unaware of any approximation algorithms for SPNI.

An exact algorithm for SPNI was formulated by Malik et al. [19]. The problem was formulated as

a bilevel mixed-integer program by Israeli et al. [20], who explored exact solutions to the problem

using Benders decomposition. Generalizations of the problem and this exact algorithm to more

general Attacker-Defender games have been studied by Brown et al. [21] and Yates et al. [22].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

4:4 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

However, these exact approaches are suitable only for tiny networks; furthermore, any multi-pair

generalization of SPNI has not been studied, to the best of our knowledge.

Classical multicut problem. The LB MULTICUT problem generalizes the classical multicut problem,

wherein given a set of k pairs S, the problem asks for the minimum number of edges (or nodes)

whose removal ensures each pair in S is topologically disconnected. Results on this problem depend

on whether the node version or edge version is considered and whether the graph is undirected or

directed. For the edge version in undirected graphs, an O (logk)-approximation was developed by

Garg et al. [23] by considering multicommodity flow. In directed graphs, Gupta [24] developed an

O (
√
n)-approximation algorithm, which was later improved toO (n11/23) by Agarwal et al. [25]. Our

algorithm MIA employs an approximation algorithm for directed edge multicut on subproblems

constructed to ensure that such a multicut lower bounds the optimal solution of LB MULTICUT; the
performance ratio of MIA is the numberM of such multicuts it requires times the approximation

ratio of the directed multicut algorithm employed. Despite the fact that these multicut algorithms

employ an LP solution via the ellipsoid method and are not scalable to large networks, the multicut

instances required by MIA are small enough that we found MIA to be surprisingly scalable in practice.

Technical contributions.
• By using a biased self-avoiding randomwalk in Section 3.1, we were able to use fewer samples

in practice to estimate the number of paths upon which an edge lies than previous approaches

[7, 26]. The improved practical performance of this estimator may be independently useful

for other applications that require this value.

• For the algorithm MIA (Section 3.2), we introduce a notion of compatible paths, which is a

set of paths such that no path longer than any in the set can be created from the union

of subpaths of paths in this set. This notion could be of independent interest for problems

involving bounded-length paths.

• For the algorithm TAG (Section 3.3), we use a primal-dual solution to bound the worst-case

performance of TAG under incremental graph changes and improve this solution in practice

by periodic pruning. This dynamic approach could be useful for other combinatorial problems

on dynamic networks. As an example, consider subgraph transversal problems, where a

minimum-size set of edges having non-empty intersection with all subgraphs of a specified

type is desired; LB MULTICUT is a problem of this type.

Organization. The rest of this paper is organized as follows. In Section 2 we formally define the

problem and discuss the primal-dual approach, and our inapproximability result is presented in

Secton 2.2. In Sections 3.1, 3.2, and 3.3, we present and analyze SAP, MIA, and TAG, respectively.
In Section 4, we evaluate our algorithms and compare to previously developed algorithms for LB
MULTICUT.

2 DEFINITIONS AND INAPPROXIMABILITY
In this section, we formally define the length-bounded multicut (LB MULTICUT) problem considered

in this work.We also present an IP formulation of the problem and present the primal-dual algorithm

to approximate the LB MULTICUT problem. We prove our inapproximability result in Section 2.2.

Problem 1 (Min. length-bounded multicut (LB MULTICUT)). Given digraphG , positive weight
function d : E → R, threshold T , and target set S = {(s1, t1), (s2, t2), . . . , (sk , tk)}, determine a
minimum-size set S of edges such that d (si , ti) > T for all i after the removal of S from G, in which
d (s, t) is the d-weighted shortest paths distance from s to t . A problem instance may be represented by
the tuple (G,d,S,T).

IP formulation. A path p = p0p1 . . .pl ∈ G is a sequence of vertices such that (pi−1,pi) ∈ E for

i = 1, . . . , l . A simple path is a path containing no cycles (i.e. repeated vertices); the length of a path

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:5

Table 1. Notation

Notation Definition

G = (V ,E,d) Simple, directed graph, with edge weights d
V (G),E (G) Vertex and edge sets of digraph G, respectively
n(G),m(G) Number of vertices, edges in G, respectively

k The number of pairs in target set S

T The threshold or bound on the path length

d0 Minimum edge weight in problem instance

T0 T /d0
E (p) Set of edges on the simple path p
d (p) The sum of the edge weights of edges in path p
∆ max{out-degree(s) + in-degree(s) : s ∈ G}
Γ max{out-degree(s), in-degree(t) : (s, t) ∈ S}

P,P (G,d,T) Set of T -bounded paths in G between pairs in S

f : X → Y f is a function from set X to set Y
G\S The digraph (V ,E\S)
U Set of edge-disjoint paths maintained by TAG

OPT (instance) Optimal solution to problem instance

γ ∈ (0, 1) Bias parameter in the sampling of SAP

is the sum of its edge weights. Let P
ti
si (G,d,T) denote the set of simple paths p in digraph G from

si to ti that satisfy the condition d (p) ≤ T , in which d (p) =
∑l

i=1 d (pi−1,pi). Any path p for which

d (p) ≤ T is termed T -bounded. Let P (G,d,T) =
⋃k

i=1 P
ti
si (G,d,T); when G,T , and d are clear from

context, we write P = P (G,d,T).
The problem LB MULTICUT can be formulated as the following integer program (IP 1), where

x (e) represents whether edge e is chosen into the solution set S :

min

∑
e ∈E

x (e), such that∑
e ∈p

x (e) ≥ 1, ∀p ∈ P (1)

x (e) ∈ {0, 1}, ∀e ∈ E (2)

In the following, we will refer to LP 1, the linear relaxation of IP 1, in which constraints (2) are

replaced with 0 ≤ x (e).
Discussion. If T and the minimum edge weight d0 are regarded as fixed parameters, it is possible

to list all paths in P in polynomial time and hence also solve LP 1 in polynomial time. However,

this path listing is very expensive in practice, since it requires Ω(nT0) time in the worst case, in

which T0 = T /d0. Even in the case in which T is a fixed parameter and edge weights are uniform,

LB MULTICUT is NP-hard as shown in Baier et al. [15] for the case when S consists of a single pair.

Our algorithms SAP, TAG, and MIA are designed to be efficient even when T is large and hence do

not require a listing of P or a solution to LP 1.

The primal-dual algorithm.4 The LB MULTICUT problem can be efficiently tackled by the following

primal-dual algorithm. Pick any pair (s, t) ∈ S, such that d (s, t) ≤ T , and compute a shortest-path p

4
For a detailed treatment of the primal-dual approach to the design of approximation algorithms, we refer the reader to the

textbook [1] by Vazirani.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

4:6 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

between s, t . Add all edges of this path p to the solution S . Repeat this process until all pairs satisfy
d (s, t) > T .

After the primal-dual algorithm, the edges of S obtained will form a union of edge-disjoint paths,

each with at most T0 edges; denote this set of edge-disjoint paths asU . Since any optimal solution

must choose at least one edge in each path p ∈ U and these paths are edge-disjoint, the primal-dual

algorithm has a performance ratio of T0 to the optimal size. By our inapproximability result in

Section 2.2 there is no better worst-case guarantee up to a constant factor unless NP ⊆ BPP .
Although the primal-dual algorithm is efficient and able to run on large networks, it often

performs far from the optimal solution as we show in our evaluation in Section 4. To upper bound

its solution, our algorithm TAG employs a set of edge-disjoint pathsU corresponding to a primal-

dual solution, which allows TAG to maintain the same worst-case guarantee ofT0 but perform close

to the optimal size in practice. Finally, we show how to efficiently update the solution of TAG in
response to changes in the network while maintaining the same performance guarantee.

Node version of the problem. The node version of the LB MULTICUT problem asks for the set S to be

a subset of vertices rather than edges in the problem definition above. Both node and link resiliency

are of interest; Kuhnle et al. [7] studied primarily the length-bounded node cutting problems. Our

algorithms TAG and SAP can be easily adapted for the node version, as we adapt the algorithm GEN
of [7] to the edge version of the problem for comparison in Section 4. Our algorithm MIA changes

more significantly when adapted to the node version, since there is not yet an approximation

algorithm for directed node multicut.

2.1 Motivation and applications
In this section, we give brief overviews of two potential applications of LB MULTICUT.

2.1.1 Industrial Internet of Things. An emerging application for pseudocut problems is the

Industrial Internet of Things (IIoT). As everyday objects become increasingly equipped with means

for electronic identification and communication, from Radio Frequency Identification (RFID) to

smarter communication capabilities, new applications and scenarios have emerged in the Internet

of Things [4, 29].

As surveyed in [30], an emerging trend is to integrate communication capabilities into industrial

production systems. Such cyberphysical systems (CPS) in the production process are connected

to conventional business IT networks. Integrated CPS allow extensive monitoring and control of

production facilities in real time. However, the QoS requirements for control of production systems

are very strict, and special routing protocols have been formulated to guarantee acceptable QoS

conditions [5]. An IEEE task group on Time-Sensitive Networking (TSN) [31] is currently chartered

to provide specifications to allow time-synchronized low latency streaming services through 802

networks. Critical data streams are guaranteed certain end-to-end QoS by resource reservation;

this service is intended for industrial applications such as process control, machine control, and

vehicles; and for audio/video streams.

As an example application for the LB MULTICUT, consider a set of communicating pairs S in

IIoT as described above. Further, suppose that an acceptable level of packet loss ratio between any

pair in S is 10
−10

. Then, the problem instance is the IIoT network G, with edges e weighted by the

metric d defined in Lemma 2.1 below, the set of pairs S andT = 10
−10

. A solution S to this instance

quantifies the resilience of the network in the sense that the cumulative packet loss ratio of at most

10
−10

can be maintained between at least one pair in S under any amount of edge failure smaller

than |S |.
To convert the packet error rate between nodes to an additive metric, we define the following

transformation. Given network G = (V ,E), let puv ∈ [0, 1] represent packet error rate for each

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:7

edge (u,v) ∈ E. Then, the transformation is

puv → − log (1 − puv) . (3)

Lemma 2.1. Let puv represent packet error rate between each (u,v) ∈ E. Then the transformation
(3) yields an additive metric d such that 1 − exp (−d (s, t)) is the lowest cumulative packet error rate
between nodes s, t over all possible routing paths.

Proof. Let G = (V ,E) with packet error rate per (e) ∈ (0, 1) be given for each e ∈ E. Let
d (e) = − log(1 − per (e)). Let s, t ∈ G, and P be the set of all paths in G from s to t . Then

d (s, t) = min

p∈P

∑
e ∈p

d (e)

= min

p∈P

∑
e ∈p

− log(1 − per (e))

= −max

p∈P
log

∏
e ∈p

(1 − per (e))

Now,

∏
e ∈p (1 − per (e)) is the probability a packet is successfully transmitted along path p. Thus,

maximizing this probability over all paths minimizes both d (s, t) and the cumulative packet error

rate between s, t .
Furthermore, if packet error rate threshold P is given, then by similar reasoning

d (s, t) < − log(1 − P) ⇐⇒ per (s, t) < P ,

where per (s, t) is the cumulative packet error rate between s, t . □

2.1.2 Military communications networks. Next generation millitary communications networks

will be multilayer, interdependent networks [32–34] comprising wired fiber-optic and wireless com-

ponents, including satellite communications. For example, consider the proposed Army Warfighter

Information Network-Tactical (WIN-T) network, the theory of operation for which is contained

in [33]. WIN-T comprises interdependent wireless and wired components that are organized into

layers; the WIN-T multi-tiered architecture is organized as follows: (1) the space layer, utilizing

military satellite communications (MILSATCOM) and commercial satellite bands, (2) the airborne

layer, consisting of unmanned aerial vehicles (UAVs), (3) the ground layer, which contains many

different kinds of nodes. The nodes in these layers communicate to each other in a variety of ways

including wired LANs, wireless wide-area networks, and satellite communications.

To ensure QoS in WIN-T, traffic is only admitted to the network when the network infrastructure

and congestion state offer a high probability that the traffic can be deliveredwithinQoS requirements

specified in WIN-T Baseline Requirements Document. Thus, communication failure between a pair

s, t of nodes in the network may occur despite the existence of a routing path between s and t in
the network, if any of the QoS metrics are greater than a threshold T .

Therefore, the LB MULTICUT problem would identify the most critical edges for communication

between a given set of node pairs. For example, a commanding node s which communicates with

multiple infantry units {ti }. If communication between s and {ti } is a high priority, critical edges

identified would be especially important to protect against an adversarial attack.

2.2 Inapproximability result
In this section, we show that the performance ratio of T0 of TAG and the primal-dual algorithm are

optimal up to a constant factor unless NP ⊆ BPP . The results in this section hold for the special

case of LB MULTICUT whenT is a fixed parameter rather than part of the input; for clarity, we write

T-LB MULTICUT to emphasize that T is a fixed constant in this section.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

4:8 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

Theorem 2.2. LetT ≥ 16. Unless NP ⊆ BPP , there is no polynomial-time algorithm to approximate
T-LB MULTICUT within a factor of

⌊T
6

⌋
− 1 − ϵ,

for any ϵ > 0.

Proof. Fix r ≥ 6, and let digraph G be an instance of Edge (≤ r)-Cycle Transversal (≤ r-ECT),
the problem to find a minimum set of edgesC intersecting every cycle of length at most r in digraph

G. For this problem, Guruswami et al. [35] proved there is no polynomial-time approximation

within factor of

⌊
r
2

⌋
− 1 − ϵ unless NP ⊆ BPP .

Then let T = 3r − 2; we reduce instance G to an instance G ′ of T-LB MULTICUT as follows. For
eachv ∈ G , we add pair of verticesvin ,vout toG

′
, andm =m(G) verticesv1, . . . ,vm toG ′; next add

edges (vin ,vi), (vi ,vout) for all i = 1, . . . ,m. Next, for every edge (u,w) in G , add edge (uout ,win)
to G ′. Finally, create target set S = {(vout ,vin) : v ∈ V (G)}. Thus, G ′ is a valid instance of T-LB
MULTICUT. LetCopt be an optimal solution onG to ≤ r-ECT andC ′opt be an optimal solution for the

instance G ′ of T-LB MULTICUT.
If the removal of edge setC fromG breaks every cycle of length at most r inG , then removing set

C ′ = {(uout ,win) : (u,w) ∈ C} breaks every path inP (G ′). To see this, letp ∈ P (G ′); thenp ∈ Pvin
vout

for some v ∈ V (G). Hence p = voutw
1

inw
1

i1w
1

outw
2

in . . .w
l
outvin for some w1, . . . ,w l ∈ V (G), and

d (p) ≤ T . Also, d (p) = 3l + 1 implies l ≤ T−1
3
, so l + 1 ≤ r . Furthermore, by definition of

G ′, v = w0,w1, . . . ,w l
is an cycle of length l + 1 in G, so (w i ,w i+1) ∈ C for some i , and so

(w i
out ,w

i+1
in) ∈ C ′ and also lies on p. As a result, |C ′opt | ≤ |Copt |.

Let C ′ be a collection of edges in G ′, the removal of which breaks every path in P (G ′). We will

construct a set C = ϕ (C ′) from C ′ that intersects every (≤ r)-cycle of G, such that |C | ≤ |C ′ |. First,
notice that by the choice of S, including edge (vin ,vi) is equivalent to including (vi ,vout) and
there is nothing to be gained by including both edges. Therefore, if an edge inC ′ is incident with vi
for any i,v , let such edge have form (vin ,vi). Second, we argue that ifC

′
contains any edge of form

(vin ,vi), it may be removed to create a smaller set of edges that still intersect every path in P. For

the first case, suppose ej = (vin ,vj) ∈ C
′
for all j = 1, . . . ,m. Then, a smaller set C ′ can be created

by removing set {ej } from C ′ and replacing with {(wout ,vin) : wout ∈ V
′}. For the second case,

suppose there exists i, j such that ei ∈ C
′
and ej < C

′
. For every path pi ∈ P containing ei there

exists an analogous path pj containing ej , in which pi and pj differ only by the nodes vi ,vj . Since
an edge of pj not equal to ej must be contained in C ′, that edge also lies upon pi and is contained

in C ′. Hence, ei may be removed from C ′ while maintaining P (G ′\(C ′\{ei })) = ∅. Therefore, a
feasible solution C ′′ can be constructed from C ′ in which each edge is of the form (uout ,win) for
some u,w ∈ V (G); then, define ϕ (C ′) = {(u,w) : (uout ,win) ∈ C

′′}. By a similar argument as above

(except in reverse), ϕ (C ′) must intersect every cycle of length at most r inG , and |ϕ (C ′) | ≤ |C ′ |. As
a result, |Copt | ≤ |C

′
opt |.

So we have shown |Copt | = |C
′
opt |. Now, letA be an approximation algorithm forT-LB MULTICUT

with ratio

⌊
T
6

⌋
− 1 − ϵ , for some ϵ > 0. Let C ′

A
be the result of running A on G ′. Then

|ϕ (C ′
A
) |

|Copt |
≤
|C ′
A
|

|C ′opt |
≤

⌊T
6

⌋
− 1 − ϵ ≤

⌊ r
2

⌋
− 1 − ϵ .

Therefore, the constuction of G ′ from G, algorithm A, and transformation ϕ would result in a

polynomial time algorithm for ≤ r-ECT with ratio at most

⌊
r
2

⌋
− 1 − ϵ , contradicting Guruswami et

al. [35] unless NP ⊆ BPP . Finally, notice that this argument (with the same r) works forT1 = T + 1,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:9

T2 = T + 2 as well, since no new paths in P (G ′) are created by these increases in T . Hence, the
result holds for all T ≥ 16. □

3 ALGORITHMS FOR LB MULTICUT

3.1 Probabilistic, O (T0 logn) FPT Approximation
In this section, we present SAP (Alg. 1), an FPT-approximation algorithm for LB MULTICUT with
ratioO (T0 logn) with probability at least 1− 1/m. SAP runs in polynomial time when the parameter

T0 is fixed.

3.1.1 Overview. In essence, SAP is a greedy algorithm that attempts, in each iteration, to select an

edge e that hits the largest number of paths in P. Rather than an expensive listing of P to determine

e , an estimator is employed by a path sampling procedure to select the best edge. This process is

repeated iteratively until a feasible solution S is obtained; feasibility is checked by shortest-path

computations.

The estimator employed by SAP is adapted from the estimator of GEST in Kuhnle et al. [7]; in
contrast to GEST, the probability distribution and path sampling procedure are biased towards

shorter paths by the parameter γ , which addresses the issue GEST has in obtaining useful path

samples. Also, our performance guarantee for SAP is much stronger than the bicriteria ratio of

GEST, as discussed in Section 1 (Related Work).

In Section 3.1.2, we define the estimator ŷ (e) employed in each iteration, and in Section 3.1.3, we

describe the process for sampling of paths. In Section 3.1.4, we present the algorithm and we prove

its performance guarantee in Section 3.1.5.

3.1.2 Estimator. Let an instance of LB MULTICUT be given. For each edge e ∈ G, we define y (e)
to be the number of paths in P upon which e lies; i.e., y (e) = ��{p : e ∈ p and p ∈ P}��. To estimate

y (e), we define estimator ŷ (e) in the following way. Let f be any probability distribution on a set

of paths Q containing P, such that for any p ∈ P, f (p) > 0. Let p1, . . . ,pL be L paths sampled from

f . Then we define the estimator ŷ as follows:

ŷ (e) =
1

L

L∑
i=1

I (e ∈ pi and pi ∈ P)
f (pi)

, (4)

in which I (·) is the indicator function returning 1 if its argument is true and 0 otherwise.

Lemma 3.1. ŷ (e) is an unbiased estimator of y (e); that is, E [ŷ (e)] = y (e).

Proof.

E [ŷ (e)] = E

[
I (e ∈ q and q ∈ P)

f (q)

]
=

∑
q∈P

I (e ∈ q) = y (e). □

3.1.3 Path-sampling procedure. We employ biased, self-avoiding randomwalks in this procedure.

First, we select a source-target pair (s, t) uniformly randomly from S. We perform a biased, self-

avoiding randomwalk from s as follows. Let a shortest-path tree directed towards t be given. For each
nodev ∈ V , let a(v) be the parent ofv in this tree. Given a simple path q from s ending at node c , we
choose the next step with the following probability distribution. Let N (c) = {v : (c,v) ∈ E,v < q}.
If N (c) = {v}, thenv is chosen with probability 1. Otherwise, if a(c) ∈ N (c), we assign it probability

γ and probability (1 − γ)/(|N (c) | − 1) to the remaining nodes. If a(c) < N (c), we assign uniform

probability to each node in N (c). If the length of the path exceeds T , the path has no valid next

steps, or it reaches the target t , we stop the walk and return the path.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

4:10 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

With the path-sampling procedure defined, we next define the probability distribution f (q) on
all paths in G . For any path q, define the probability f (q) to be the probability that q is sampled by

the above procedure. Next, define Q = {q : f (q) > 0}; the following lemma guarantees that P ⊆ Q .

Lemma 3.2. Let P (G,d,T) be the set of all T -bounded paths in G between pairs in S. Then P ⊆
Q = {q : q is a path in G and f (q) > 0}.

Proof. Let p ∈ P. Then p is a T -bounded path from si to ti for some (si , ti) ∈ S. There is a
nonzero probability that (si , ti) is selected by the sampling procedure. Since p is a simple path with

d (p) ≤ T , the next node of p has a nonzero probability of being selected at each step of the walk,

given that any initial segment of p has been selected. Hence, f (p) > 0. □

ALGORITHM 1: Sampling APproximation (SAP), with ratio O (T0 logn) with probability 1 − 1/m

Input : Instance (G,d,S,T) of LB MULTICUT,γ ∈ (0, 1)
Output :Solution S ⊆ E to LB MULTICUT

1 S = {(s, t) ∈ S : d (s, t) ≤ T }, S = ∅;

2 while S , ∅ do
3 Let Γ = max{out-deg(s), in-deg(t) : (s, t) ∈ S};

4 Let L = 2|S|2Γ2 log(2m3)n2T0 ;

5 Sample L paths p1, . . . ,pL according to Section 3.1.3. Compute ŷ (e) according to the sampled paths for

each e ∈ E by Eq. 4;

6 Choose e ′ = argmax ŷ (e) into S ;

7 G = G\{e ′}, S = {(s, t) ∈ S : d (s, t) ≤ T };

8 end
9 return S ;

3.1.4 Algorithm. Having defined the estimator ŷ (e), the path sampling procedure, and the

probability distribution f (p), we are ready to define the greedy approximation algorithm SAP.
Let Γ = max{out-deg(s), in-deg(t) : (s, t) ∈ S}, and let L = 2|S|2Γ2 log(2m3)n2T0 . At each

iteration, L determines the number of paths to be sampled by the path-sampling procedure with

bias parameter γ . Once L paths have been sampled, ŷ (e) is computed for every edge in G and the

edge e ′ with maximum ŷ (e) value is selected to be included in the solution. The edge e ′ is removed

from G, S is updated to remove pairs that are already more than T apart, and the process repeats

until all pairs (s, t) ∈ S satisfy d (s, t) > T .

3.1.5 Performance Guarantee.

Theorem (Hoeffding’s ineqality [36]). Suppose Y1, . . . ,YL are independent random variables
in [0,K]. Let Y = 1

L
∑L

i=1 Yi . Given t ≥ 0, the probability P (|Y − E [Y]| ≥ t) ≤ 2 exp

(
−2Lt 2
K 2

)
.

Theorem 3.3. With probability 1−1/m, the solution S returned by SAP satisfiesO (T0 logn) ·OPT ≥
|S |.

Proof. In each iteration i of the loop in line 2, let Pi be the paths in P still unbroken at this

iteration, and let Si , Γi have their assigned values during iteration i . Let e ∈ E. When ŷ (e) is
computed on line 5 of iteration i ,

��ŷ (e) − y (e)�� ≥
|Pi |

2|Si |Γi
(5)

with probability at most
1

m3
; this holds by an application of Hoeffding’s inequality since the path

samples within each iteration of the while loop on line 2 are pairwise independent and the choice

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:11

of L = 2|Si |
2Γ2 log(2m3)n2T0 , and by the facts that the probability of any path in Q is at least 1/nT0

(so K ≤ nT0 in Hoeffding’s inequality) and |Pi | ≤ nT0 . Hence the probability that (5) holds for any

edge e in any iteration is at most 1/m by the union bound. For the rest of the proof, we assume the

negation of (5) for all edges and iterations (which happens with probability at least 1 − 1/m).

Let oi ≤ OPT be the minimum number of edges to break all paths in Pi . In each iteration, there

exists an edge e ∈ E that lies upon at least
|Pi |
oi

paths by the pigeon hole principle. Then, with e ′ as

chosen on line 6 of iteration i , y (e ′) ≥ |Pi |
oi
−

|Pi |
2 |Si |Γi

≥
|Pi |
2oi

, since |Si |Γi ≥ oi by the choice of Γi .
Hence,

|Pi+1 | ≤

(
1 −

1

2oi

)
|Pi | ≤

(
1 −

1

2OPT

)
|Pi | ≤

(
1 −

1

2OPT

) i+1
|P |. (6)

By (6), we can determine an iteration д such that |Pд | ≤ 1. Using the facts that |P | ≤ nT0 and

log(1 + x) ≥ x − x 2

2
for x ≥ 0, we have

д ≤
log |P |

log

(
1 + 1

2OPT−1

) ≤ T0 logn(2OPT − 1)

1 − 1

2(2OPT−1)

= O (T0 logn)OPT .

□

3.1.6 Tight examples. Notice that the proof of Theorem 3.3 proves a tighter ratio of O (log |P |),
on which O (T0 logn) is an upper bound. Next, we construct a series of examples wherein SAP
does pick a solution S with |S |/OPT ≥ Ω(log |P |), demonstrating that this analysis is tight up

to a constant factor. At the beginning of the construction, G contains two isolated nodes, s, t .
Add nodes д1, . . . ,дk and edges (s,дi) for each дi . Next, add nodes o1,o2 to the graph, along with

edges (o1, t), (o2, t). Then, for each дi , add vertices and edges to create 2
i−1

edge-disjoint paths

of length 2 between дi and o1, and similarly create paths between дi and o2. Let d (u,v) = 1 for

all edges in G. Then SAP may during its sampling correctly estimate which edge lies on the most

paths and would then select edges (s,дk), . . . , (s,д1) in that order, while the optimal solution is

{(o1, t), (o2, t)}. So SAP picks k edges when the optimal size is 2; since the number of paths is 2
k+1

,

|S |/OPT ≥ Ω (log |P |).

3.1.7 Time complexity. Each iteration of SAP conducts L samples, runs Dijkstra’s algorithm

for each remaining pair, and adds a single edge to the solution S ; we have a time complexity of

O (k (m + n logn)) per iteration for these computations. Since there are |S | iterations, the overall

complexity is O
((
n2T0k2Γ2 logm + k (m + n logn)

)
|S |

)
. Furthermore, we remark that the quantity

kΓ may be replaced with any upper bound on OPT. Hence, if such a bound U is obtained, the time

complexity becomes O
((
n2T0U 2

logm + k (m + n logn)
)
|S |

)
. In our implementation, we improve

this further by sampling an equal number of paths L∗ per pair and parallelizing the sampling process

by pair; for an upper boundU , we use the primal-dual solution. By returning the minimum ofU
and the solution of SAP, our implementation therefore has an approximation ratio of T0. Finally, in
our implementation we set L = U logm, which resulted in good empirical performance. Whenever

possible, we speed up Dijkstra computations by using the A∗ algorithm [37], utilizing previous

Dijkstra computations as an admissible heuristic.

3.2 Multicut Iterative Approach
In this section, we present another algorithm MIA (Alg. 2) to approximate LB MULTICUT with ratio

O (Mn11/23). In contrast to SAP, MIA is deterministic, and it is our only algorithm with a performance

ratio that does not directly depend on T0. In the worst case, MIA may require superpolynomial time

(Section 3.2.4), but we found our implementation to be highly scalable in practice.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

4:12 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

s1 v1v2

s4 v3 v4 t5 s3s2

t1 t2 t4t3

Fig. 1. S = {(t1, s1), (s1, t2), (t3, s2), (s3, t4), (s4, t5)}; Every edge of G lies upon a shortest path of length 3
between one of these pairs.

3.2.1 Overview. The general idea of MIA is as follows: until a feasible solution to the problem is

produced, perform an approximatemulticut on a subgraph ofG , wherein the subgraph is constructed
in order to ensure that the optimal multicut of S on this subgraph is a lower bound on the optimal

solution. The solution produced is the union of these successive multicuts, and since each optimal

multicut is a lower bound on OPT, the performance ratio is the numberM of multicuts performed

multiplied by the performance ratio of the approximation algorithm used for multicut.

When k > 1, there are a number of difficulties in the application of the algorithm of Baier et al.
[15], which is a T /2-approximation to the single-pair LB CUT problem. The algorithm of Baier et al.
relies upon a minimum cut on the subgraph of shortest paths between (s, t), and they show this cut

lower bounds the optimal solution. First, the subproblem of computing a min cut becomes a multicut,

which is already NP-hard [1]. More significantly, a multicut on the subgraph of shortest paths is

no longer a lower bound on the optimal solution, as discussed below. Therefore, we introduce

the notion of path compatibility, which ensures that a multicut of compatible paths maintains a

lower bound on the optimal size of the length-bounded multicut. In addition, compatible paths are

not required to be the same length, so it is possible that more paths are taken care of by a single

multicut than if only shortest paths are considered.

Counterexample. Next, we show that a multicut on the graph induced by shortest paths does

not lower bound the optimal solution. Consider the example shown in Fig. 1, with T = 3. Notice

that G is the subgraph formed by shortest paths (of length 3) between every pair in S. However a

min. multicut has size 4, while the min LB MULTICUT with T = 3 has size 3; the reason is that a

longer path, which the bounded multicut does not have to cut, is created from s4 to t5 from pieces

of shortest paths, namely the path s4v2s1v1t5 of length 4, a situation that cannot occur in the case

|S| = 1, as shown in Baier et al. [15]. In order to obtain minimum multicuts that do lower bound

the optimal solution, we introduce the notion of path compatibility. Sets of compatible paths do

not allow the possibility of the creation of longer paths between pairs in S.

3.2.2 Path Compatibility in Directed Graphs. Intuitively, for two paths to be compatible, we

desire that no longer path between a pair in S can be created from the union of pieces of these two

paths, as occured in Fig. 1 from the two shortest paths from t1 to s1 and from s1 to t2. To ensure

longer paths are not created, if two paths p and q intersect, we require them to do so at the same

distance along each path. Since the paths are directed, we cannot travel along part of p and part of

q to obtain a longer path.

Definition 1 (Compatible paths). Let p = p0 . . .pl , q = q0 . . .qs be simple paths in directed graph

G. Then, p and q are compatible if for all v ∈ q ∩ p, v = pi = qj implies

∑i
w=1 d (pw−1,pw) =∑j

w=1 d (qw−1,qw).

In the following, we refer to the distance along a path p to a node v ∈ p as the sum of the edge

weights on p untilv is reached. Next, we formalize the intuition that longer paths cannot be created

from a set of compatible paths in the following Lemma.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:13

Lemma 3.4. Let Q ⊆ P (G,d,T) be a set of pairwise compatible paths. There does not exist a path r
in G ′ = (V ,E (Q)) between a terminal pair in S such that d (r) > T .

Proof. Let r be a path in G ′ between a pair (s, t) ∈ S. Since r ∈ G ′, there must exist paths

p1, . . . ,pk ∈ Q, such that r is composed of successive segments ri ⊆ pi . The last node in segment ri
is the first node in ri+1, label this nodevi . Thenv1 ∈ p1∩p2 and since these paths are compatible,v1
is the same distance d1 along p1 and p2 and hence is also distance at most d1 along r . Furthermore,

path p2 is traversed from v1 to v2 and hence v2 is at distance d2 > d1 along paths p2,p3, and at

most this distance along r . Thus, the distance of vk−1 along path pk is at most the distance of vk−1
along r . Since the remainder of r follows path pk , the length of r is at most the length of pk , so
d (r) ≤ d (pk) ≤ T . □

Finally, we prove that the size of a multicut of a set of compatible paths, each of length at most

T , is a lower bound on the optimal solution.

Lemma 3.5. Let Q ⊆ P be a set of pairwise compatible paths. Let G ′ = (V ,E (Q)) be the subgraph
of G formed by the edges of all paths in Q. Then a minimum directed multicut of S on G ′ is a lower
bound on OPT, the minimum length-bounded multicut of S.

Proof. Since G ′ is a subgraph of G, we have that OPT (G ′,S,T) ≤ OPT (G,d,S,T). By Lemma

3.4, every path r in G ′ between any pair in S has d (r) ≤ T . Hence, to ensure each pair (s, t) ∈ S
satisfies d (s, t) > T , it is necessary to cut all paths between (s, t) in G ′; so d (s, t) = ∞. Therefore, a
minimum multicut of S on G ′ has size OPT (G ′,S,T). □

ALGORITHM 2: MIA:Multicut Iterative Approach
Input : Instance (G,d,S,T) of LB MULTICUT
Output :Solution S ⊆ E to LB MULTICUT

1 S = ∅;

2 while min(s,t)∈S dG\S (s, t) = t ≤ T do
3 Pshor t = {p ∈ P (G\S) : p is a shortest path between its endpoints };

4 while Pshor t , ∅ do
5 Q = ∅;

6 for p ∈ Pshor t do
7 if p is compatible with every q ∈ Q then
8 Q = Q ∪ {p};

9 end
10 end
11 G ′ = (V ,E (Q));

12 S = S∪ MIN. MULTICUT(G ′,S);

13 Pshor t = Pshor t \Q;

14 end
15 end
16 return S ;

3.2.3 Algorithm. The MIA algorithm (Alg. 2) proceeds as follows. First, we obtain all of the

shortest paths in P; these paths may not all have the same length since different terminals may

be different distances apart. Next, a maximal set Q of pairwise compatible paths is constructed.

Notice that Q depends on the order in which paths in P are considered. Finally, once Q is maximal,

we construct G ′ = (V ,E (Q)) and perform a multicut on (G ′, S); these edges are added to S . Since

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

4:14 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

ALGORITHM 3: TAG: Fully dynamic T0-competitive algorithm

Input : Instance (G,d,S,T) of LB MULTICUT
Output :Solution S ⊆ E to LB MULTICUT

1 Let S,W , P ⊆ E,U ⊆ P function h : (S ∪W) →U ;

2 S ← ∅, h ← ∅, P ← ∅,W ← ∅,U ← ∅;

3 Run augment procedure (Section 3.3.1);

4 Run prune procedure (Section 3.3.2);

5 while change c to G arrives do
6 Ignore c if it is addition or removal of isolated vertex v ;

7 if c is addition of edge e then
8 TAG-ADD(e);

9 end
10 if c is removal of edge e then
11 TAG-REMOVE(e);

12 end
13 end

multicut is NP-hard, we must apply an approximation algorithm for this problem – the best known

algorithm has approximation factor O (n11/23) [25]. These edges break all paths in Q; finally, this

process is repeated until all paths in P are broken.

Theorem 3.6. Let (G,d,S,T) be an instance of LB MULTICUT. Then, MIA returns a feasible solution
S within a factor O (Mn11/23) of OPT (G,d,S,T), in whichM is the number of multicuts required on
line 12.

Proof. Since every path in P must be present in some Q, it is clear that S is a feasible solution.

Write S as the disjoint union of approximate multicuts on line 12: S = S1∪̇S2∪̇ . . . ∪̇SM . Let Oi be

an optimal multicut corresponding to the multicut Si . By Lemma 3.5, |Oi | ≤ OPT (G,d,S,T) for
each i . Furthermore, |Si | ≤ O (n11/23) |Oi | by [25]. The result follows since S is the disjoint union of

the Si ’s. □

3.2.4 Time complexity. MIA requiresM multicuts; denote the approximation ratio of the multicut

algorithm chosen as rMC and its running time as tMC . In the unweighted case, compatibility of

paths can be tested by using disjoint sets of vertices V0, . . . ,VT−1 corresponding to the paths in

Q in the following way. For all q = q0 . . .qi ∈ Q , place qj ∈ Vj for j ∈ {0, . . . , i}. Then to check

whether a new path p = p0 . . .pk is compatible with all paths in Q, one may simply check if pi ∈ Vj
for some i , j. If not, p is compatible with all paths in Q and pi is added to Vi for each i . In the

worst case, this check requires O (Tn) time. Hence, the time complexity of MIA on unweighted

graphs is O (M (max{|Pshor t |} ·Tn + tMC)), where max{|Pshor t |} is the maximum size of the sets

of shortest paths between pairs in S considered in MIA. We implemented this unweighted version of

the algorithm, using the approximation algorithm of Gupta et al. [24] for the multicut subproblems,

which has a ratio ofO (
√
n), leading to a performance ratio ofO (M

√
n) for our implementation. Since

listing all shortest paths inPshor t may take superpolynomial time, MIAmay require superpolynomial

time; in practice, our implementation is shown to be highly scalable in Section 4.

3.3 Fully Dynamic T0-Competitive Algorithm
In this section, we present our T0-competitive AlGorithm TAG that is capable of dynamically

updating its solution to LB MULTICUT upon incremental changes to the network. After each change

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:15

ALGORITHM 4: TAG-ADD(e)
Data: Graph G = (V ,E), sets S,W , P ⊆ E,U ⊆ P, function h : (S ∪W) →U
Input :An edge e to be added to G

1 E ← E ∪ {e} ;

2 Run augment procedure (Section 3.3.1);

3 Run prune procedure (Section 3.3.2);

ALGORITHM 5: TAG-REMOVE(e)
Data: Graph G = (V ,E), sets S,W , P ⊆ E,U ⊆ P, function h : (S ∪W) →U
Input :An edge e ∈ E to be deleted

1 E ← E\{e};

2 if e ∈ S ∪W then
3 p ← h(e);

4 h ← h\{(f ,p)}, ∀f ∈ E (p);

5 S ← S\E (p);

6 W ←W \E (p);

7 U ← U\{p};

8 end
9 Run augment procedure (Section 3.3.1);

10 Run prune procedure (Section 3.3.2);

to the graph, TAG ensures that its solution maintains a worst-case, performance ratio of T0 to the

optimal solution on the updated problem instance; that is, TAG has a competitive ratio of T0.
In overview, TAG ensures that its solution S lies within the unionU of the edges of a pairwise

edge-disjoint collection of pathsU ⊆ P; since these paths are pairwise edge-disjoint, a worst-case

guarantee of T0 is enforced on U and therefore S since S ⊆ U . Internally, TAG monitors a set

W = U \S of pruned edges that is disjoint from S . To enable its solution to be efficiently updated,

TAG maintains a function h : S∪̇W →U that maps edges to the pairwise edge-disjoint set of paths

U .

Once a solution as described above is obtained, TAG maintains it by running TAG-ADD whenever

an edge is added, and TAG-REMOVE whenever an edge is removed. To delete a vertex, all of its edges

may be deleted one by one and then the vertex may be deleted from the graph. Vertex addition

may be handled similarly, so we restrict our attention to edge insertion and removal in the rest of

this section.

In order to maintain its solution S with performance guarantee, TAG preserves four properties at

all times.

h : S ∪W →U is a well-defined function (T .1)

P (G\S) = ∅ (T .2)

U is a pairwise disjoint subset of P (T .3)

S ∪W =
⋃
p∈U

E (p) (T .4)

Collectively, we refer to these four properties as the TAG properties. Property (T .1) is important for

TAG-REMOVE to be able to update the solution, while properties (T .2) – (T .4) ensure the feasibility
and performance guarantee for the solution S to LB MULTICUT, as we show in the following lemma.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

4:16 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

Lemma 3.7. LetG = (V ,E), S,W ,h,U satisfy the TAG properties. LetO ⊆ E be an optimal solution
to LB MULTICUT on G. Then S is a feasible solution for LB MULTICUT and |S | ≤ T0 |O |.

Proof. First, we show |U | ≤ |O |. Since O is a feasible solution to LB MULTICUT, there must be

an element of O in each path inU . SinceU is pairwise disjoint by (T .3), |U | ≤ |O |. Therefore, by
properties (T .3) and (T .4,) |S | ≤ |S ∪W | ≤ T0 |U | ≤ T0 |O |, since each path p ∈ U has at most T0
edges. Finally, (T .2) implies S is a feasible solution to LB MULTICUT. □

All of the TAG algorithms (Algs. 3, 4, 5) rely upon two procedures important for the maintaince

of the TAG properties, which we describe in the next two sections.

3.3.1 Augment procedure. This procedure ensures that the solution S is feasible to the current

problem instance; it works by first attempting to break a path p ∈ P (G\S) by moving an edge from

W to S if possible; if not, it adds all edges on p to S and P , and sets h(f) = p for each edge f ∈ E (p).
This process repeats until the solution S is feasible. The set P ⊆ S comprises edges that could be

potentially pruned from S (i.e. moved from S toW).

Next, we prove an important lemma for the augment procedure, namely that TAG properties (T .1),
(T .3), and (T .4) are preserved and (T .2) is satisfied after the termination of the augment procedure.

Lemma 3.8. Suppose the augment procedure begins with S,W ,h,U initially satisfying properties
(T .1), (T .3), and (T .4). Then, these three properties remain satisfied at the termination of augment,
and (T .2) is satisfied as well.

Proof. Moving an edge fromW to S has no effect on any of the properties. If the definition of h
is extended, it had not been previously defined on any of these elements since they were not in

S ∪W , so property (T .1) is preserved. Also, by property (T .4), when h is extended, p is disjoint from

any triangles already inU , ensuring property (T .3); furthermore, E (p) is added to S , maintaining

property (T .4). Finally, augment terminates only when min(s,t)∈S dG\S (s, t) > T , which implies

P (G\S) = ∅, which is (T .2). □

3.3.2 Prune procedure. This procedure examines each edge e in P in an arbitrary order and

prunes it (moves e from S toW) if doing so does not cause S to become infeasible, which requires a

Dijkstra distance computation for each pair. After attempting to prune e , it removes e from P , so at

termination, P = ∅.

Lemma 3.9. If the four TAG properties hold when the prune procedure is called, they continue to
hold after it terminates.

Proof. The prune procedure only moves edges from S toW , so properties (T .1), (T .3), and (T .4)
remain unaffected. Furthermore, it explicitly checks to make sure (T .2) is unaffected by the pruning
of each edge. □

3.3.3 The competitive ratio for TAG. In this section, we prove the fully adaptive competitive ratio.

First, we prove that TAG-ADD and TAG-REMOVE preserve the TAG properties.

Lemma 3.10. Suppose S,W ,h,U satisfy the TAG properties on G = (V ,E). Suppose an edge e is
added or removed fromG . Then all four TAG properties are maintained after termination of TAG-ADD(e)
or TAG-REMOVE(e), respectively.

Proof. For the case an edge e is added to E, the only property potentially violated by this change
is feasibility (T .2); by Lemmas 3.8 and 3.9, the call to the augment procedure thus ensures all four

properties are satisfied and remain so after pruning.

Suppose an edge e is removed from E. If e ∈ S ∪W , then p = h(e) is defined, and h is defined on

all edges E (p). TAG-REMOVE removes all of these edges from the domain of h, and it updates the set

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:17

U and the definition of h to maintain properties (T .1), (T .3), and (T .4). However, feasibility may be

violated when E (p) is removed from S . If feasibility is violated, it is restored by calling the augment

procedure on line 9 by Lemma 3.8. Thus, all four properties hold when the prune procedure begins,

so the result follows from Lemma 3.9. □

Finally, we are ready to prove the fully adaptive performance ratio of TAG:

Theorem 3.11. Suppose we have graphG and a sequence of collections of edge additions or deletions
c1, c2, . . . , cl , which produces a sequence of graphs G = G0,G1, . . . ,Gl . Then running TAG results in
feasible solution Si to LB MULTICUT on each Gi . If Oi is an optimal solution to LB MULTICUT on Gi ,
then |Si | ≤ T0 |Oi |.

Proof. First, let i = 0. Before the call to the augment procedure from TAG, every TAG-property is

satisfied with S =W = h = U = ∅ except for possibly feasibility (property T .2). By Lemma 3.8 all

four properties become satisfied. Hence, by Lemma 3.9, all four properties hold after the call to

PRUNE. Thus, the hypotheses of Lemma 3.7 are satisfied on G0.

Inductively assume the statement is true for i−1. Then by employing Lemma 3.10, the hypotheses

of Lemma 3.7 remain satisfied for Si and Gi , which implies the result. □

3.3.4 Time complexity. The running time of TAG depends on the number of Dijkstra computa-

tions required. In our implementation of TAG, we first run Dijkstra on each pair in parallel. The

augment procedure then proceeds sequentially to update this distance between each pair using

the A∗ algorithm [37], with each update resulting in the removal of all edges on a shortest path

between a pair. Hence, the number K of edge-disjoint paths of length at mostT between every pair

in S is an upper bound on the number of shortest-path computations required during augment.

Finally, the prune procedure attempts to re-insert each edge in P (of size at most T0OPT) which
requires a shortest-path computation for each pair – these computations again are sped up in

practice with A∗ and are parallelized. Hence, the running time before any changes to the graph of

TAG is O (k (1 + K +T0OPT) (m + n logn)), where U is any upper bound on the optimal size of a

solution; the factor of k can be removed if k threads are available to parallelize theA∗ computations.

Next, we consider the time complexity of TAG-ADD. Suppose an edge e is added to the graph;

augment must recompute the distance between each pair in S; if e is chosen into S , augment will

terminate. However, if e is not added to S , it will require k shortest path computations. If e is added,
then the prune procedure must attempt to prune each edge on a path with at mostT0 edges. Thus, the
running time of TAG-ADD after a single edge addition is bounded byO (k +min{m,T0}(m + n logn)).
In addition, we speed up the k shortest-path computations of augment by only running Dijkstra

from the tail of the inserted edge e and terminating once there is no change in previously computed

distances.

For TAG-REMOVE, consider the case a single edge e is removed from the graph. If e < S ∪W ,

the time required is O (1). Otherwise, TAG-REMOVE may add at most T0 − 1 edges from S back into

the graph; in the worst-case, the augment procedure requires at most β = max{|U |,k,T0 − 1}

shortest-path computations which may add at most T0 · β edges to P . For each of these edges, the

prune procedure requires the time of a single shortest-path computation, yielding a time complexity

of O (min{m,T0β } (m + n logn)) .

3.4 Discussion of proposed algorithms
In Table 2, we collect the results from the previous sections on the performance ratio and time

complexity of each algorithm.

Recall that U ≤ m is an upper bound on OPT, K ≤ m is the number of edge-disjoint paths of

length at mostT between every pair in S, rMC and tMC are the ratio and time required, respectively,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

4:18 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

Table 2. Algorithm comparison

Algorithm Performance Ratio Time Complexity

SAP O (T0 logn) O
((
n2T0U 2

logm + k (m + n logn)
)
|S |

)
MIA O (MrMC) O (M (max{|Pshor t |} ·Tn + tMC))
TAG T0 O (k (1 + K +T0OPT) (m + n logn))

for the chosen algorithm for a directed multicut of k pairs, and max |Pshor t | is the maximum size

of the sets of shortest paths between pairs in S considered in MIA.

Performance ratios. The worst-case performance ratio of TAG is strictly better than that of SAP;
for a given problem instance and ordering of compatible paths chosen by MIA, the ratio of MIA
may be better or worse than that of TAG. However, across all instances, the ratio of TAG is within a

constant factor of the optimal performance ratio unless NP ⊆ BPP as shown in Section 2.2.

Running time. If OPT is large, the number of samples required by SAP becomes large and its

sampling procedure dominates its running time; this is ameliorated by trivially parallelizing the

sampling process, which is possible since each sample is independent. In practice, the bias parameter

γ greatly reduces the number of samples required for a good solution; with γ = 0.75, we found that
O (U logm) samples were sufficient to give good solutions in our experimental evaluations, where

U is an upper bound on OPT computed from a primal-dual solution. However, SAP must repeat

the entire sampling process for each element chosen and hence scales linearly with the size of its

solution.

Next, consider MIA. The multicuts performed by MIA are on subgraphs composed of edges

from shortest paths in Pshor t , and in our experimental evaluation these graphs were very sparse.

Therefore, the multicuts proceeded quickly, despite the fact that the approximation algorithm of

Gupta [24] requires a potentially expensive LP solution. In fact, we were even able to replace this LP

with an exact IP solution of the multicut subproblems without changing the experimental running

time very much; this substitution improves the performance ratio of MIA to simplyM , the number

of multicuts. However, since our implementation of MIA operates by listing all shortest paths in S

and since there could be superpolynomial many of these paths, MIA may require superpolynomial

time. In our evaluation, the memory requirement of listing all shortest paths was more restrictive

than the time requirement on the networks we tested.

Finally, consider the non-incremental portion of TAG. The pruning procedure must compute the

distance between each pair for each edge in its initial solution (at most T0OPT edges). In practice,

this pruning procedure dominates the running time of TAG, despite parallelization of the Dijkstra

calculations by pair and speeding up the Dijkstra algorithm by using the A∗ algorithm.

4 EXPERIMENTAL EVALUATION
In this section, we evaluate all of our approximation algorithms and demonstrate that in practice

they return nearly optimal solutions and scale to networks with billions of nodes and edges. In

Section 4.2, we compare the algorithms on static instances of LB MULTICUT, while in Section 4.3

we evaluate the dynamic components of TAG. Finally, we summarize the key observations from the

experimental results in Section 4.4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:19

4.1 Methodology
We evaluated the following algorithms; the source code of all of our implementations is available

[14].

• SAP (Alg. 1): we set γ = 0.75 unless otherwise noted and used number of samples L = U logm,

whereU is an upper bound on OPT obtained from the primal-dual algorithm; we found this

value of γ and number of samples to be sufficient to quickly return a good solution in most

cases. By returning the minimum of the primal-dual solution U and the solution found by

SAP, the worst-case performance ratio of our implementation is improved to T0. The number

of samples L is evenly divided among pairs in S and the sampling is parallelized by pair;

further runtime improvement could be obtained by parallelizing the sampling process for a

single pair. Finally, we re-use the Dijkstra hints from previous iterations until the number

of valid paths in P sampled falls below a threshold; when this happens, we recompute the

Dijkstra hints.

• MIA (Alg. 2): to solve the multicut subproblems, we used our implementation of Gupta’s [24]

O
(√

n
)
-approximation algorithm; to solve the directed multicut LPs therein, we used neither

the ellipsoid method nor the equivalent polynomial-sized LPs [25], but rather a method that

performs well in practice but may take exponential time: rather than using all paths between

each pair in S as constraints, we iteratively add shortest LP-weighted paths as constraints

until the length of the shortest such path between each pair exceeds 1.

• TAG (Alg. 3): all Dijkstra computations are sped up with A∗ method [37] and parallelized by

pair in S.

• PRIM: the primal-dual algorithm described in Section 2.

• GEN: the FPT-approximation algorithm from Kuhnle et al. [7] adapted to the edge version of

the problem.

• OPT: the optimal solution obtained from an exact solution to IP 1 constructed by listing P

and solved using IBM CPLEX Optimization Studio version 12.71.

GEN requires a listing of all T -bounded paths between each pair in S and hence was only able to

run on small datasets. For SAP, We evaluated all algorithms in terms of the number of edges in

the solution S and the running time. To obtain target sets S, we sampled uniformly random sets

of pairs from each network, following Kuhnle et al. [7]. Unless otherwise stated, all results are
averaged over 5 independent repetitions of each experiment.

The algorithms were evaluated on both synthesized networks and traces of real networks. The

synthesized networks we considered were small Erdos-Renyi (ER) graphs (with n = 100), in which

each potential edge has probability p of appearing in the graph. On these small networks, we

compare all algorithms with the optimal solution OPT. For real-world traces, we considered both

weighted and unweighted topologies drawn from a variety of application domains. The real-world

traces are listed in Table 3; with the exception of RoadSF, all of these networks were collected by

the Stanford Network Analysis Project [8]. Gnutella is a peer-to-peer network; Enron is an e-mail

communication network, Google is a world-wide-web graph, Skitter is an autonomous-system

graph obtained from the internet, and Friendster is a social network. All of these networks are

unweighted except for Skitter, which we weighted with a uniformly chosen weight in the interval

[1, 10] to simulate a QoS metric, following [38, 39]. Finally, RoadSF is the weighted, road network

of San Francisco [40], which is normalized so that all distances lie in [0, 10000]. In addition, Table 3

lists an estimate
ˆd (x ,y) of the average shortest-path distance in each network, obtained by sampling

10000 random, connected pairs and averaging their shortest-path distances. All of these topologies

are undirected and were input to the algorithms in an adjacency-list format.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

4:20 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

0.2 0.4 0.6 0.8 1.0
Edge frequency

1.0

1.5

2.0

2.5

3.0

S
iz

e
 /

 O
P

T

TAG

SAP

MIA

PRIM

GEN

(a) Solution size, Static

0.2 0.4 0.6 0.8 1.0
Edge frequency

10-4

10-3

10-2

10-1

100

101

102

T
im

e
 (

s
)

(b) Time (s), Static

0.2 0.4 0.6 0.8
Edge density

1.0

1.5

2.0

2.5

3.0

S
iz

e
 /

 O
P

T

TAG-ADD

TAG-REMOVE

TAG-BASE

(c) Solution Size, Dynamic

0.2 0.4 0.6 0.8
Edge density

10-1

100

101

102

103

T
im

e
 (

m
s
)

TAG-ADD

TAG-REMOVE

TAG-BASE

(d) Time (ms), Dynamic

Fig. 2. Results on small ER network (n = 100), with T = 3,k = 10

All experiments on datasets other than Friendster were run on a server with two Intel(R) Xeon(R)

CPU E5-2667 @ 2.90GHz (12 cores) and with 256 GB RAM. The Friendster experiments were run on

a server with Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30 GHz and 384 GB RAM. All algorithms were

compiled with the GNU C++ compiler with optimization flag −O3 and allowed to use a maximum

of 12 threads, and running time is reported as elapsed real-world time rather than CPU time.

Table 3. Real-world traces

Network |V | |E | ˆd (x ,y) Weighted

Gnutella 6.301 × 103 2.078 × 104 4.63 No

Enron 3.669 × 104 1.838 × 105 4.04 No

RoadSF 1.748 × 105 2.218 × 105 3635.29 Yes

Google 8.757 × 105 4.322 × 106 6.33 No

Skitter 1.696 × 106 1.109 × 107 13.00 Yes

Friendster 1.248 × 108 1.806 × 109 4.99 No

4.2 Static evaluation
In this section, we evaluate our algorithms on static graphs. TAG is terminated before it begins

waiting for changes to the graph; we refer to running TAG this way as static TAG.

4.2.1 Comparison to OPT. In this set of experiments, we compare all algorithms to the optimal

solution on unweighted ER networks with n = 100 and various edges densities. The threshold T
was set to 3, and the size of S was 10 pairs.

The solution size normalized by the size of OPT is shown in Fig. 2(a). First, notice that all

algorithms besides PRIM remain under 1.5 · OPT at all edge densities. For most edge densities

(p = 0.2 to 0.7), the ranking from best to worst is GEN, TAG, MIA, SAP and PRIM. All algorithms

except PRIM, MIA performed their individual best at the smallest edge density p = 0.1, which is

promising since many real-world networks are sparse. At this edge density, SAP and TAG are within
1.1 · OPT while MIA is within a factor of 1.20 from optimal. AlthoughT = 3 is a favorable setting for

PRIM, it performs worse than a factor of 2 from optimal in all cases, justifying the need for scalable,

approximation algorithms for LB MULTICUT that perform well in practice.

In Fig. 2(b), we plot the average running time of each algorithm versus the edge density. In this

experiment, we see how each algorithm scales with edge density when n is fixed. PRIM is the fastest,
and PRIM, MIA, and TAG each increase by roughly a factor of 10 as the edge density goes to 1.0,
while GEN increases by a factor of roughly 1000. Surprisingly, SAP is the slowest algorithm in this

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:21

50 100 150 200 250 300
k

101

102

103

104

S
iz
e

TAG

SAP

PRIM

(a) RoadSF, T = 2000 (Size)

0 50 100 150 200 250
k

101

102

103

104

S
iz
e

TAG

SAP

PRIM

(b) Skitter, T = 11 (Size)

50 100 150 200 250 300 350 400
k

101

102

103

104

S
iz
e

TAG

SAP

MIA

PRIM

(c) Google, T = 6 (Size)

5 10 15 20 25
k

100

101

102

103

S
iz
e

TAG

SAP

MIA

PRIM

(d) Friendster, T = 4 (Size)

50 100 150 200 250 300
k

10-1

100

101

102

103

104

T
IM

E
 (

s
)

TAG

SAP

PRIM

(e) RoadSF, T = 2000 (Time)

0 50 100 150 200 250
k

100

101

102

103

104

T
IM

E
 (

s
)

TAG

SAP

PRIM

(f) Skitter, T = 11 (Time)

50 100 150 200 250 300 350 400
k

100

101

102

103

104

T
IM

E
 (

s
)

TAG

SAP

MIA

PRIM

(g) Google, T = 6 (Time)

5 10 15 20 25
k

102

103

104

T
IM

E
 (

s
)

TAG

SAP

MIA

PRIM

(h) Friendster, T = 4 (Time)

Fig. 3. Average results over 5 choices of S versus the number of pairs k in S. Top row : Size of solution versus
k on each dataset. Bottom row : Running time versus k on each dataset.

set of experiments and scales poorly with edge density. This results from it using the relatively

large PRIM solution to compute its number of samples L as discussed in Section 3.1.7. Despite this

result, we will demonstrate in Section 4.2.2 that SAP scales to networks with billions of edges, while

the FPT-approximation algorithm GEN is unable to run on our real-world traces.

4.2.2 Results on large-scale, real networks. In this section, we evaluate our algorithms on the

large-scale, real-world traces. In Section 4.2.2, we present the results as the size of the target set

increases and examine the effect of varying the threshold T on the weighted networks RoadSF and

Skitter. The FPT-approximation algorithm GEN was unable to run on any of these networks as the

path listing procedure exceeded our memory limit for these networks and threshold values.

Scalability with size of target set. In this set of experiments, we evaluated the algorithms on our

largest networks RoadSF, Google, Skitter, and Friendster, with threshold T = 2000, 6, 11, and 4,

respectively. The results are shown in Fig. 3.

First, we discuss the results on our largest network, Friendster, in which k was varied from 5 to

25. The size of the solution of each algorithm is shown in Fig. 3(d), while the running time is shown

in Fig. 3(h). TAG and MIA return the best solution sizes; indeed, these algorithms were virtually

indistinguishable in solution quality. Larger values of k only tripled the running time of MIA, while
the running time of TAG increased by a factor of 20; for the lower values of k , TAG was faster than

MIA, but this flipped at k = 15. The next best algorithm in terms of solution quality was SAP, which
stayed within a factor of 1.5 from MIA, TAG. Of these three, SAP was the fastest after k = 10 and

always finished in under an hour. Finally, PRIM was consistently roughly a factor of 4 worse than

the other algorithms in terms of solution quality, although it was by far the fastest.

On the Google network, we varied k from 50 to 400; the algorithm evaluation is similar to that

of the Friendster network. Notably, MIA exceeded 256 GB of RAM and so was unable to run after

k = 300; this resulted from MIA needing to store all of the shortest paths between each pair, while

the other algorithms only store one such path per pair. Also, in contrast to Friendster on which SAP
was the fastest of the three, MIA was the fastest of the three when it could run, due to the larger

values of k . Again, PRIM was the fastest overall but had by far the worst quality of solution.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

4:22 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

1500 2000 2500 3000 3500
T

101

102

103

104

S
iz
e TAG

SAP

PRIM

(a) RoadSF, k = 50 (Size)

6 8 10 12 14 16 18 20
T

100

101

102

103

104

S
iz
e

TAG

SAP

PRIM

(b) Skitter, k = 50 (Size)

2 3 4 5 6 7
T

0

100

200

300

400

500

600

700

800

S
iz
e

TAG

SAP

MIA

PRIM

OPT

(c) Gnutella, k = 50 (Size)

2 3 4 5 6 7
T

0

2

4

6

8

10

12

14

16

18

M

MIA

(d) Gnutella, k = 50 (Num-

ber of multicuts M)

Fig. 4. Average results over 5 choices of S versus the threshold T .

Table 4. Dynamic evaluation, real-world traces

Parameters STATIC ADD/REMOVE DYNAMIC ADD/REMOVE

Dataset m k T Nseq Time (s) Size Time (ms) SpeedUp ·103 Loss

Gnutella 2.078 · 104 100 4 5.0 · 103 0.61 / 0.18 125.4 / 30.0 1.0 / 1.0 0.6 / 0.2 6.7% / 0.0%

Enron 1.838 · 105 100 4 5.0 · 104 21.6 / 3.9 269.8 / 76.2 3.5 / 0.7 6.1 / 5.5 7.0% / 15.5%

Google 4.322 · 106 100 6 1.0 · 106 3765.9 / 696.4 617.0 / 155.4 110 / 12 33.7 / 57.2 20.3% / 13.3%

Friendster 1.806 · 109 10 5 1.0 · 108 38127 / 32465 94.0 / 49.6 1100 / 0.2 40 / 1.5 ·105 0.0% / 2.8%

Since our implementation of MIA is only for unweighted networks, on Skitter and RoadSF we

dropped it from the evaluations. On the autonomous system graph Skitter with the simulated, QoS

metric, the comparison is similar to the previous cases, with SAP slightly worse than TAG but SAP
is almost a factor of 10 faster than TAG. With the larger threshold, PRIM has gotten worse with a

solution quality of almost a factor of 5 higher than the other two.

Finally, we consider the road network RoadSF, on which the results deviate from those on the

other networks in a couple of signficant ways. First, notice that PRIM is now almost a factor of

1000 worse than TAG. Next, RoadSF was the only network in which SAP struggled to obtain valid

path samples (i.e. path samples in P), since the number of hops on valid paths were so high. For

this network, we set the γ parameter of SAP to 0.99, whereas on other networks there were no

problems with γ = 0.75. Recall that γ controls how biased the sampling is with respect to shortest

paths. With this compensation, SAP was able to obtain valid samples, but its solution quality is

up to a factor of 5 worse than TAG, in sharp contrast to its performance on the other networks.

Furthermore, its running time was close to that of TAG on this network.

Scalability with threshold T . In this section, we evaluated the performance of each algorithm as

the threshold T varies; we used the weighted networks RoadSF and Skitter for this evaluation, as

well as the unweighted Gnutella network; since MIA is only implemented on unweighted networks,

it is evaluted only on Gnutella. On all networks, we used target sets with k = 50.

Results are shown in Fig. 4 (running time not shown). On the RoadSF network, we varied T
from 1500 to 3500. As discussed in the previous section, SAP used γ = 0.99 here, and its solution

quality is significantly worse than TAG, which performed the best. PRIM returned solutions roughly

1000 times larger than the corresponding solution of TAG; however, PRIM continued to run by far

the fastest. The running time of TAG is the slowest and increases by a factor of more than 10 as T
varied.

On the Skitter network, we varied T from 6 to 20. The solution qualities of TAG, SAP are much

closer than on RoadSF, with TAG only slightly better; however SAP runs up to 10 times faster than

TAG. PRIM maintained a solution quality of roughly 5 times worse than TAG as T varied.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:23

On the Gnutella network, the solution size for all four algorithms is shown in Fig. 4(c); we also

plot the optimal solution size OPT until the path listing procedure ran out of memory. In Fig. 4(d), we

plot the numberM of directed multicuts in MIA versusT ; interestingly, the worst-case performance

ratioO (Mn11/23) of MIA increases rapidly withT as the number of multicuts increases to more than

16; however, the performance ratio in practice of MIA to OPT does worsen withT but stays within 2

on this network. This behavior is also exhibited for the other algorithms, except for PRIM, whose
worst-case ratio is T ; PRIM performs close to this worst case.

4.3 Dynamic evaluation
In this section, we evaluate the dynamic portion of TAG as compared with rerunning static TAG
after all changes to the graph and the static optimal solution on small graphs.

4.3.1 Comparison to OPT. First, we compared TAG to the optimal solution on small ER graphs,

with n = 100. To evaluate TAG under edge addition, we started from an ER graph with p = 0.1, then
we added a sequence of Nseq random edges to the graph to obtain a random graph with a new

edge density. The original solution of static TAG at p = 0.1 is updated with TAG-ADD after each edge

addition. To evaluate under edge removal, a similar procedure is employed, except that we start at

an ER graph with p = 0.9 and remove a sequence of Nseq edges, running TAG-REMOVE after each
removal.

In Fig 2(c), we show the solution size versus edge density for each algorithm after using the above

procedures for different values of Nseq . We observe that although static TAG is clearly superior, both
TAG-ADD and TAG-REMOVE remain within a factor of 2 from optimal even after drastic changes in

density. Furthermore, in Fig. 2(d), we plot the average running time for TAG-ADD and TAG-REMOVE
over each sequence of Nseq changes to the graph, and we compare with the running time of static

TAG at that edge density. Notice that even on these small ER graphs TAG-ADD and TAG-REMOVE enjoy
a factor 100 to 1000 speedup over static TAG .

4.3.2 On large real-world traces. Next, we evaluated the dynamic performance on the real-world

traces. A similar procedure to the one on ER networks was employed; starting from the original

network and static TAG solution, we added or removed a sequence of Nseq edges from the network,

running TAG-ADD or TAG-REMOVE to update the solution after change. For each network, Nseq was

chosen large enough to cause significant changes to the solution; except on the Friendster network,

we used the same value of Nseq for the addition and removal experiments.

The results are shown in Table 4. In the columns for STATIC ADD/REMOVE we show the average

running times and sizes of static TAG after adding / removing a sequence of Nseq edges from the

graph. In the DYNAMIC ADD/REMOVE columns, we show that average running time over each change

in each sequence for TAG-ADD / TAG-REMOVE, the average, final size of the solution after running

TAG-ADD or TAG-REMOVE on all changes, the average factor of speedup over static TAG, and the

percentage of solution quality lost as compared with static TAG after all changes.

Notice that for the smallest network, Gnutella, TAG-ADD and TAG-REMOVE resulted in speedups

of 600 and 200, respectively, while only incurring a small loss from the static TAG solutions. On

the larger Enron network, the speedups for TAG-ADD and TAG-REMOVE were an order of magnitude

higher, at 6100 and 5500, respectively, while maintaining small loss percentages. On the Friendster

network, we set Nseq = 10
6
for edge addition and Nseq = 10

8
for the removal experiment, since the

average time for an edge addition exceeded a second, while the average time for an edge removal

was less than a millisecond. We observed average speedups of 40,000 and 1.5 × 108 for addition
and removal, respectively. The reason that TAG-REMOVE outperforms TAG-ADD on larger networks

is TAG-ADD must run Dijkstra after every edge addition to see if the solution has become infeasible

(see Section 3.3.4), while TAG-REMOVE safely ignores any edges removed that are not within S ∪W .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

4:24 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

4.4 Summary of results
In this section, we summarize the experimental results.

• Of our three algorithms, the solution qualities of MIA and TAG on our real-world traces were

very similar; in terms of running time, MIA scales better with k , but in terms of memory

usage, TAG scales better with k . The solution quality of SAP was worse than the other two,

but usually by only a small factor. In addition, SAP usually ran the fastest, although for high

k values it was occasionally beaten by MIA .

• As compared with static TAG, dynamic TAG demonstrated massive improvements in average

running time of up to 10
8
for edge removal and 10

4
for edge addition and only lost small

percentages of solution quality over millions of edge insertions and removals.

• The primal-dual algorithm PRIM consistently ran much faster than SAP, MIA, and static TAG,
often by a factor of more than 10. However, its solution quality was usually worse by a factor

of at least 5; on RoadSF, PRIM returned solutions nearly 1000 times larger than TAG.
• The FPT-approximation algorithm GEN performed well on the small ER networks with n = 100

but was unable to scale to larger networks due to both time andmemory constraints stemming

from the listing of all bounded paths required.

• On networks with very long path distances, SAP requires the parameter γ to be set higher

than 0.75 to obtain valid path samples. We observed this effect only on RoadSF, which had

large distances corresponding to thousands of hops required for the sampling procedure.

5 CONCLUSIONS
In this work, we have presented three algorithms SAP, TAG, and MIA for the LB MULTICUT problem,

each of which scales to networks with billions of edges and nodes in under a few hours and has a

proven performance guarantee. In addition, our fully dynamic TAG enables large speedups over the

static solution of TAG. Finally, we have shown that unless NP ⊆ BPP , there is no polynomial-time

algorithm with ratio better than ⌊T /6⌋ − 1 − ϵ .
Future work would include lowering the number of samples required by SAP, thereby making

it even more scalable. In addition, our definition of path compatibility only works for directed

graphs. Extending this definition to undirected graphs would allow a version of MIA to employ

an undirected multicut approximation, which have better worst-case guarantees. Finally, it is an

interesting open question whether a polynomial-time algorithm for LB MULTICUT could have a

better performance ratio thanT , even in the special case whenT is a fixed parameter. We conjecture

our inapproximability result could be improved to T − ϵ .

6 ACKNOWLEDGEMENTS
The anonymous reviewers and Thang N. Dinh provided many helpful comments which improved

the manuscript. This work was supported in part by NSF grants CNS-1443905 and EFRI 1441231,

and DTRA grant HDTRA1-14-1-0055.

REFERENCES
[1] Vijay V Vazirani. Approximation Algorithms. Springer-Verlag Berlin Heidelberg, first edition, 2003.

[2] Tony H Grubesic, Timothy C Matisziw, Alan T Murray, and Diane Snediker. Comparative Approaches for Assessing

Network Vulnerability. International Regional Science Review, 31(1):88–112, 2008.
[3] Arunabha Sen, Sudheendra Murthy, and Sujogya Banerjee. Region-based connectivity - A new paradigm for design of

fault-tolerant networks. In 2009 International Conference on High Performance Switching and Routing, HPSR 2009, 2009.
[4] Li Da Xu,WuHe, and Shancang Li. Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics,

10(4):2233–2243, 2014.

[5] Linus Thrybom and Gunnar Prytz. QoS in Switched Industrial Ethernet. IEEE Conference on Emerging Technologies
and Factory Automation, 2009.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Scalable Algorithms for Length-Bounded Multicut 4:25

[6] Amazon.com. Amazon.com Help: Guaranteed Delivery Terms and Conditions. https://www.amazon.com/gp/help/

customer/display.html?ie=UTF8&nodeId=201910260. Accessed: 2017-10-01.

[7] A. Kuhnle, T. Pan, V.G. Crawford, M.A. Alim, andM.T. Thai. Pseudo-separation for assessment of structural vulnerability

of a network. In SIGMETRICS 2017 Abstracts - Proceedings of the 2017 ACM SIGMETRICS / International Conference on
Measurement and Modeling of Computer Systems, 2017.

[8] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/

data. Accessed: 2017-10-01.

[9] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over Time: Densification Laws, Shrinking Diameters

and Possible Explanations. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pages 177–187, 2005.

[10] Chunsheng Zhu, Lei Shu, Takahiro Hara, Lei Wang, Shojiro Nishio, and Laurence T. Yang. A survey on communication

and data management issues in mobile sensor networks. Wireless Communications and Mobile Computing, 14:19–36,
2014.

[11] Qingchen Zhang, Chunsheng Zhu, Laurence T Yang, Zhikui Chen, Liang Zhao, and Peng Li. An Incremental CFS

Algorithm for Clustering Large Data in Industrial Internet of Things. IEEE Transactions on Industrial Informatics,
13(3):1193–1201, 2017.

[12] Euiwoong Lee. Improved Hardness for Cut, Interdiction, and Firefighter Problems. Arxiv preprint arxiv:1607.05133v1,
2016.

[13] Michael Sipser. Introduction to the Theory of Computation. Thomson Course Technology, second edition, 2006.

[14] Alan Kuhnle. Source code link. https://gitlab.com/kuhnle/multi-pcut.

[15] Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Koehler, Petr Kolman, Ondrej Pangrac, Heiko Schilling, and

Martin Skutella. Length-Bounded Cuts and Flows. ACM Transactions on Algorithms, 7(1):1–27, 2010.
[16] Petr A. Golovach and Dimitrios M. Thilikos. Paths of bounded length and their cuts: Parameterized complexity and

algorithms. Discrete Optimization, 8(1):72–86, 2011.
[17] Pavel Dvorak and Dusan Knop. Parameterized Complexity of Length-Bounded Cuts and Multi-cuts. In Theory and

Applications of Models of Computation: 12th Annual Conference, pages 441—-452. Springer International Publishing,
2015.

[18] Dániel Marx. Parameterized complexity and approximation algorithms. The Computer Journal, 51(1):60–78, 2008.
[19] K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest path problem. Operations Research Letters,

8(4):223–227, 1989.

[20] Eitan Israeli and R. Kevin Wood. Shortest-Path Network Interdiction. Networks, 40(2):97–111, 2002.
[21] Gerald Brown, Matthew Carlyle, Javier Salmerón, and Kevin Wood. Defending critical infrastructure. Interfaces,

36(6):530–544, 2006.

[22] Justin Yates and Irene Casas. Role of Spatial Data in the Protection of Critical Infrastructure and Homeland Defense.

Applied Spatial Analysis and Policy, 5(1):1–23, 2012.
[23] Naveen Garg, Vijay V Vaziranit, and Mihalis Yannakakis. Approximate max-flow min-(multi)cut theorems and their

applications. In Proceedings of the twenty-fifth annual ACM Symposium on Theory of Computing., pages 698–707, 1993.
[24] A Gupta. Improved results for directed multicut. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 454–455, 2003.
[25] Amit Agarwal, Noga Alon, and Moses S Charikar. Improved approximation for directed cut problems. In Proceedings

of the thirty-ninth annual ACM symposium on Theory of Computing, pages 671–680, New York, NY USA, 2007. ACM.

[26] Ben Roberts and Dirk P. Kroese. Estimating the Number of s-t Paths in a Graph. Journal of Graph Algorithms and
Applications, 11(1):195–214, 2007.

[27] Peng Jun Wan, Ding Zhu Du, Panos Pardalos, and Weili Wu. Greedy approximations for minimum submodular cover

with submodular cost. Computational Optimization and Applications, 45(2):463–474, 2010.
[28] T Soma and Y Yoshida. A Generalization of Submodular Cover via the Diminishing Return Property on the Integer

Lattice. Advances in Neural Information Processing . . . , pages 1–9, 2015.
[29] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey. Computer Networks, 54(15):2787–

2805, 2010.

[30] Ahmad-Reza Sadeghi, Christian Wachsmann, and Michael Waidner. Security and Privacy Challenges in Industrial

Internet of Things. Proceedings of the 52nd Annual Design Automation Conference on - DAC ’15, 17:1–6, 2015.
[31] Inc. Institute of Electrical and Electronics Engineers. IEEE 802.1 Time-Sensitive Networking Task Group.

[32] Kaixin Xu Kaixin Xu, Xiaoyan Hong Xiaoyan Hong, Mario Gerla Mario Gerla, Henry Ly, D.L. Daniel Lihui Gu,

and Los Angeles. Landmark routing in large wireless battlefield networks using UAVs. 2001 MILCOM Proceedings
Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277), 1(c):230–234,
2001.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

https://www.amazon.com/gp/help/customer/display.html?ie=UTF8&nodeId=201910260
https://www.amazon.com/gp/help/customer/display.html?ie=UTF8&nodeId=201910260
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://gitlab.com/kuhnle/multi-pcut

4:26 Alan Kuhnle, Victoria G. Crawford, and My T. Thai

[33] Syed R Ali and Richard S Wexler. Army Warfighter Information Network-Tactical (Win-T) Theory of Operation. In

IEEE Military Communications Conference (MILCOM). IEEE, 2013.
[34] Juan C. Juarez, Anurag Dwivedi, a. Roger Hammons, Steven D. Jones, Vijitha Weerackody, and Robert a. Nichols.

Free-space optical communications for next-generation military networks. IEEE Communications Magazine,
44(November):46–51, 2006.

[35] Venkatesan Guruswami and Euiwoong Lee. Inapproximability of Feedback Vertex Set for Bounded Length Cycles. In

Electronic Colloquium on Computation Complexity (ECCC), volume 21, page 2, 2014.

[36] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical
Association, 58(301):13–30, 1963.

[37] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. Formal Basis for the Heuristic Determination of Minimum Cost

Paths. Systems Science and Cybernetics, 4(2):100–107, 1968.
[38] Guoliang Xue, Arunabha Sen, Weiyi Zhang, Jian Tang, and Krishnaiya Thulasiraman. Finding a path subject to many

additive QoS constraints. IEEE/ACM Transactions on Networking, 15(1):201–211, 2007.
[39] Ying Xuan, Yilin Shen, Nam P. Nguyen, and My T. Thai. A graph-theoretic QoS-aware vulnerability assessment for

network topologies. GLOBECOM - IEEE Global Telecommunications Conference, 2010.
[40] Thomas Brinkhoff. Generating Network-Based Moving Objects. In IEEE 12th International Conference on Scientific and

Statistical Database Management, pages 8–10, 2000.

Received October 2017; revised January 2018; accepted January 2018

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 4. Publication date: March 2018.

Received November 2017, revised January 2018, accepted March 2018.

	Abstract
	1 Introduction
	2 Definitions and inapproximability
	2.1 Motivation and applications
	2.2 Inapproximability result

	3 Algorithms for LB MULTICUT
	3.1 Probabilistic, O(T0 logn) FPT Approximation
	3.2 Multicut Iterative Approach
	3.3 Fully Dynamic T0-Competitive Algorithm
	3.4 Discussion of proposed algorithms

	4 Experimental Evaluation
	4.1 Methodology
	4.2 Static evaluation
	4.3 Dynamic evaluation
	4.4 Summary of results

	5 Conclusions
	6 Acknowledgements
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 26 to page 26
 Mask co-ordinates: Horizontal, vertical offset 34.95, 432.52 Width 270.87 Height 22.72 points
 Origin: bottom left

 1
 0
 BL

 26
 SubDoc
 26

 CurrentAVDoc

 34.9516 432.5231 270.8749 22.7185

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 25
 26
 25
 1

 1

 HistoryList_V1
 qi2base

