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Abstract : This paper presents some fundamental issues related to 
the design and implcmientation of CAD orient4 database sysrcms. 
Integrating databases i.n sophisticated CAD environments rcquircs 
functionalilies usually not provided by cxihting syQems. c.g relational 
or entity-relationship systems. For instance. consistency controls 
have to provide richer and more flexible features than the former 
“take it or leave it” paradigm. 
The basic aspects are ‘cxamincd here with rc\pcct to the nature of 

CAD objects, to their con&cncy states and to their dynamicity. 
The nature of CAD objects concern3 the complexity of their 
structure and of their rclationhhipb. The state of CAD objects 
concerns their completenrs\ with considerations to their consistency. 
Finally, the dynamicity of CAD objects concern5 the evolving nature 
of their structure and of their properry values. i.e their behavior, 
with connections to versions and rcprewntations. 
These concepts are defined and dctailcd with examplcc drawn from 
VLSI circuit design. The functionalitics of a prototype CAD 
database system offering new solutions in these areas are presented, 
calling upon object-oriented concepts and logic-programming. It is 
currently being tested for VLSI circuit design in cooperation with the 
CAD Research Dept at CIVET. 
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1. INTRODUCTION 

This paper presents some fundamental issues concerning the design 
and implementation of CAD oriented dataha.\c \ysrcms. Integrating 
databases in sophisticated CAD environments requires 
functionalities usually not provided by existing systems. e.g relational 
or entity-relationship clatabnscs 17. 9, IO]. For inhtnncc, consistency 
controls have to provide richer and more tlcxible features than the 
former “take it or leave it” approach [3, 61. 
The basic features required for integrated CAD applications are 

examined here with respect to the nature of CAD objects, to their 
consistency states and to their dynamicity. 

The nature of CAD objects concerns the complexity of their 
structure and of their semantic relationships. 
The state of CAD objects concerns their complctcnc’~~ with 
considerations to their consistency. 
Finally, the dynamic+/ of CAD objects concern3 the c\c)lving ndturc‘ 

of their structure and of the property vuluc~. i.c their hchulior. with 
connections to versions and representations. 

These concept5 are defined and detailed with examples drawn from 
VLSI circuit design [ 1. 51. The functionalities of a prototype CAD 
database system that provides new solutions in thece areas arc 
presented. calling upon ohjcct-oriented concepts llnd 
logic-programming 111. 131. It has been implemented and is 
currently king tested for \‘LSI circuit design in cooperation with the 
CAD Research Dept at CNET. 

2. NATURE OF CAD OBJECTS 

The nature of CAD objects concerns their static description. It 
includes the structure of their intended properties and their 
relationships to other objects. i.e their position with respect to a 
given environment. 

An object for short is a basic item or a structured collection of related 
objects, i.e its component%. Funciamcntally. these components may 
be defined indepcndcntly. or intimcltcly tied to the object. 
Basically, CAD objects have a complex structure. and may further 
include a large number of components. They also hear properties 
which are subject to manipulation5 by the uwrb. 
The potential actions arc perform4 I+ spcific engineering tools. 
They can : 
- derive calculated objects from argument objects, 
- control the consistency of the object with respect to particular 
specifications or with respect to other objects characteristics. 
Such specifications email specific tools which require the definition 
of : 
- functional relationships between the objects involved for the 
computation of the derived objects, 
- integrity constraints for the definition and control of consistency. 

2.1 Object detinition 

The main characteristic of CAD oricntcd d;ctabase system% is to 
integrate : 
- the moclelling of complex btructuws. 

- specific engineering toots, 
- consistency control and enforcement rules, 
- semantic relationships behvccn objccth. In our approach. an ohjcct 
is modellcd as a structured set occurence. This set defines objects 
having similar properties and compliant with identical constraints. 
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An object is defined by : 

- properties concerning its structure, 

- constraints defining the relationships among its properties, 

- functional links defining the computation rules to dcnve an object 

from others. 

The functional links call upon specific functions dcfincd with bpccific 

engineering tools. They are implemcntcd with ad-hoc programs. 

For example, VLSI circuits arc dcsignrd in several steps, including : 

functionlll specifications. logic specifications. electric specifications. 

layout design, which yield different representations at increasing 

levels of details. 

Our approach is to integrate these representations within the same 

formalism. lt uses a specific object-oriented approach. It is 

implemented in Prolog [ 131. 

ln the following, a cell is a particular representation of a given 

circuit. 

A cell definition includes a type (functional. logic, clcctric . ..). an 

interface and a structure. 

- the interface defines the external view of the cell. It includes an 

envelope and io-ports (Figure 1) : 

i o-par t T x-x- 
r I --+ envelope 

-x- 

Figure 1. Interface of a cell. 

- the structure defines the internal view of the cell. It includes 

components and nets that connect the components together and with 

the cell io-ports (Figure 2). 

-x-x- 
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Cl ----i component 

xX 
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F net 

Figure 2. Structure of a ccl I. 

the following is a simplified definition of a cell in our system 
(Figure 3) : 

DEF-E Cei I 
type : Tw=-=p --+ functional or logic... 

envelope: Polyline -+ interface 
io-porta: LIST (Port) 

camp : LIST (Component) 
equi : LIST (Net) 

connect (entsort, ensort.realize.comp, equi) 
NOT intersect (camp) --+ C2 Cl t 
. . . 

F0EF-E 

Figure 3. Definition of a cell object. 

It is assumed in this example that Typercp, Component, Net and 

Polyline are predefined types. The functions connect and intersect 

are also supposed predefined. 

Cl and C2 are integrity constraints relevant to electric and geometric 
design rules. 

Constraint Cl states that the nets connecting the io-ports of a cell and 

the implementations of the io-ports of its components must be 

complete and consistent. The connect function is implemented by a 

specific program that controls that every input port of a cell is the 

starting point of some net. 

C2 is a geometric constraint stating that no components may overlap. 

2.2 Constraints and relationships 

It is assumed that links and constraints defined for an object as above 

hold for every occurencr in the object set. They define general 

knowledge about generic objects. 

Besides these basic facilities for defining objects and constraints. 

specific knowlrdgc about particular object instances can also be 

dehncd, c.g how to design some particular cell from specific library 

components. what cnginccring tools must then be used. 

For instance. if some object “A” is defined by a function f(B.C), each 

occurcncc of “A” is specifically related to the occurcnces of objects B 

and C in the database. i.e a component C2 may bc dcsigncd as a 

sub-component of ccl1 Cl. They are related by an cxiztcntial 

relationship. 

In our system, there exist functional or existential relationships. 

Specific relationships hold as long as the argument object\ are not 

modified. In the example above. object “A” is dcsigncd according to 

f(B.C). The relationship holds as long as they are not modified. 

The properties of structured object sets are defined by their name 

(e.g in the example above Figure 3 : camp) and the associated 

domain (example : Components). The latter must be previously 

detincd in the database. It follows that : 

-only one notion is needed to define object sets and object property 
domains. A domain references its set definition and its occurences 

altogether. 

- this puts an emphasis on upward design methodologies. since 

object definitions involve only existing definitions. 

- it partially solves the probleme of cyclic object definitions. 

Particular casts are recursive object definitions and cross-referenced 

definitions. 

2.3 Cyclic and recursive object definitions 

A recursive object definition references the object itself. A 

cross-referenced object definition references an object definition 

rcfcrencing in turn the original object. 

Following the assumptions made so far, an object “A” cannot 

refcrcnce itself since it is not already known in the database. 

Similarly, an object A cannot refcrcncc object B if it has not yet been 

defined. 

The following relationship specifies that object Ai+ T has a property 

A,: Ai+ 1 - Ai. The cyclic definition below is prohibited (Figure 4) : 
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Ai - Ai-l 3 Fli-2 

T 1 
Al +-- R2 . . . . Ai-n 

(1) 

Figure 4. Cyclic definition. 

However, usual engineering design applications do nerd cyclic 

definitions. Statements such as : 

- a cell is composed of other cells. 

- cell components implcmcnt particular cell definitions. 

are commonly used in VLSI design applications 121. 

Our system allows such definitions and provides for their control 

through specialized set definitions. They use the usual concept of isa 

relationship, augmented Nirh specific constraints and links attached 

to the specialized set propertics. These mechanisms arc detailed in 

section 3. 

The semantics associated with recursive and cross-referenced 

definitions is different. 

For recursive definitions, the existence of primitive objects is 

assumed. e.g to allow a super-object implementation from the 

sub-objects. For cross-refcrcnccd dcfinitionh. the cxistcncc of 

primitive and completed cells is assumed. 

Here. the solution to these definitions is to hrcak the cycle and to 

define a lo-cr level ohjcct. The primitive objects and the component 

cells of the cell definition all belong to the lower objects occurt’nces. 

A recursive ccl1 definition. say “Cell”. thus references a lower Icvel 

definition. say “Cellcons”. which inherits its propcrticc through an 

isa statement, noted “~2”. 

- i Definition of cells 
DEF-E Cel I , . . FDEF-E 

Cell => Cellcons 

- 2 Definition of completed ccl is L-l 
DEF-E Cel Icons ISA Cel I 

camp : LIST Kel I) 

FOG:; 

Similarly, cross referenccr between two object definitions. say “Cell”, 

and “Component”, arc solved by the introduction of a third set 

definition. say “Cellcons”. that inherits from “Cell” all its properties 

through an isa statement. It is introduced between the “Cell” and its 

“Component”. 

- 1 Oefinit ion of ccl Is Fl ISFl 
DEF-E Cell . ..ft PDEF-E Cel I => Cel Icons 

- 2 Definition of components 
lJEF-E Component 

implements : Cell 

*.. 
FDEF-E 

- 3 Definition of “isa” ccl Is 
0EF-E Cellcons ISA Cell 

I 

camp: LIST (Component) 
. . . 

FOEFJ 

I 1 Component 

6 

The “Component” references the “Cell”. But now the ‘XXI” is related 

to the “Cellcons” by an isa relationship. Further. only the 

“Component” now references the “Cell” (Figure 5). 

Ri => RIi 3 Ri-1 models the Ai --+ Ai-l -+ Ai 

T 1 

cycl ic 
definition : T 1 

Rl cl72 . . . Ai- I71 t R2 . . . Qi-n 

Figure 5. ModelJing a cyclic definition. 

Generally speaking. the rule is to break a cyclic definition in two 

pdrta hy introducing a new isa set definition. that inherits from one of 

the objects in the cycle. 

3. CONSISTENCY AND COMPLETENESS OF C.\D OBJECTS 

The state of a CAD object retlects the evolving design process for 

that object. It includes the notion of completeness and the notion of 

consistency 

During the design process. the object is most of the time modified 

and incomplete. Thr designers have to cope with this imperfect 

knowledge. Further. the trial and corrccf framework of usual design 

mcthodologics impI} the e vistcnce of temporary inconsistencies that 

must bc taken into account. 

Warning the user of such inconri>tcncics is worth only if they result 

from a constraint violation. and not horn an undecidable control. 

Indeed, lo$ applied to datalxws tells u\ that incomplctencsx implies 

inconG&mcy [ 111. This is incffcctivl: in CAD enbironmcnts IXC;~U~C 

it is of first importance to dctcct the lollowing situations : 

- incomplete: and consistent. which means that no dccidablc 

constraint control ha> rcsultcd so far in a constraint viulation. 

whatever the complctcncss ot’ the object. 

- incomplete and inconsi<l-cnt, meaning that come decidlrhlc control 

has resulted in a constraint violation. 

In our approach. object prop&e\ instantiation can be delajrd. The 

identification of the occurcncc is only nceclcd. Further, a?r long JS no 

constraint is violated. the system presumes that no incon\istcncy 

appears for the object. It is thcrcforc assumctl consistent as long as no 

constraint is explicitly violated. othcrbvisc contradicted by the 

instantiation or modification ot’ propertics. 

Consistency and completeness arc dynamically cxamincd to rcklect 

the cxnct state of the object after c\cry modification or update. This 

gives a presumably exacl picture of the most rcccnt state of the 

design. Hhich can be one of the followin_r : 

- incomplete and consistent. meaning that the de\ign is correctly in 

progress. 

- incomplete and inconsistent . meaning that the design Joe\ not 

improve, 

- complete and inconsistent, meaning that the tlchign ih wrong. 

- complete and consistent. meaning that the design i\ correct. 

Consider thr: following example (Figure 6). A net is defined by input 

and output ports. Thr: layout is considered as LL list of zegmcnts. 

OEF-E Net 
/SC define net set s:/ 
volt : Rea I --, voltage 

in : Port --+ in port 

out : Port - out port 

layout : LIST (Segment) 

I 

compatible (in, out) + Cl 

graphics:= I inkport(in,out) --+ Ll 
FOEFJ 

Figure 6. Definition of a net object. 
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Constraint Cl defines the connection between input and output 

ports. Function LI defines the graphic layout of a segment 

connecting two ports. 

Figure 7 corresponds to the definition of a cell with two components. 

Net el connects port pl to port p2. Constraint Cl is decidable and 

reflects the consistency of net el. Further, cl is complete because 

function Ll produces automatically the associated segment. 

PI 
x 

el 

I P2 

L7 

X 

[I n X 

X P 
e2 ct 3 

x-x 

Figure 7. An incomplete cell object. 

Net e2 includes only one port. i.e p3. Its occurcnce is therefore 

incomplete. because one port is unknown and its associated segment 

is thus undefined. In this case the combination 

“incomplete-consistent” is produced. This will eventually be modified 

upon instantiation of the second port p4 for net ~2. yielding the 

combination “complctc-consistent” if Cl still holds. yielding 

“complete-inconsistent” if not. 

4. DYKAMICITY OF CAD OBJECTS 

CAD objects are subject to modification that originarc from two 

different sources : 

- explicit requests issued by the dcsigncrc. 

- implicit updates derived from the modification of some related 

objects. 

We first detail the implicit dynamicit) of CAD objects and further 

detail issues concerning the explicit dynamicity (Scition Sj. 
CAD oriented databases include objects Linked through intricate 

semantic relarionshipr. Functional and existenti; retationahips have 

been defined above. Generic relationships are also relevant to sets of 

objects, e.g a net is positionned with respect to the coordinates of its 

io-pot%. the symbolic representation of a circuit is derived from its 

logic reprcscntation. Specific relationships can 31~0 be associated 

with particular instances of an object, e.g the layout Ll of a circuit 

results from geometric transformation\ applied on bomc other 

particular layout L2. 

Consistency controls for such relationship< require pow rfut 

mechanisms for propagating updates and deriving information. 

Indeed, CAD objects mu4 evolve with rchpcct to the modifications 

performed on the related objects. 

tn our system, updates on object occurcnccs are propagated to ail 

objects that use them. This is computed by recatcula& all the 

relationship\ involved. Therefore a modification performed on a 

circuit Ct will be immcdiatly propagated to its layout Lt and further 

to its derived layout L2. 

Basically, propagating updates is relative to the context in which the 

object involved has been created. Subsequently. they are propagated 

into the contexts in which they are used. This prohibits illegal 

updates and provides for conbistcnt modifications. 

Therefore, implicit dynamicity results from the maintenance of 

consistent generic or specific knowledge on the objects. In contrast, 

explicit dynamicity results from the non deterministic nature of the 

design process. 

5. EXPLICIT DYNAMICITY 

The evolvin!: nature of CAD objects results from several 

considerations. Among these stands fundamentally the 

methodologies usually of concern in the design proce\s. In our 

aproach. they call for several successive transformation phases 

involving three aspects : 

- the structural level. concerned with object description. 

- the morphologic level. concerned with alternate representations. 

- the resolution level, concerned with details of implementation. 

These three aspects are tightly connected. A particular design follows 

a specific path in the three dimensional space described in Figure 8. 

WC describe in the following sections the function&tics 

implemented in our system to handle the design process dynamicity 

in the three directions : structural (Section 5.1). resolution (Section 

5.2) and morphologic (Section 5.3). 

logic topolo. geome. technic 
Resolution 

/ / / I / / / / / / I ’ / / 
I ‘I / / / / / / / I 1 I// / / / / 

detai led 

schelat ic 

preliminary 

-----+ Morphologic 

I / i--/ 
I 

-/ -/ ----/- 1 level: global 
/ / / / / / 

I 

/---/ -/ -/ -/- 2 level: sub-pb 
/ / / / / 

/ -----I -/ -/ -/- 3 level:... 
/ Strut tura I 
Figure 8. Three dimensional design space. 

5.1 Structural dynamicity 

The stuctural dc\i_gn is related with the decomposition of the design 

goal into sub-goals. In section 2, focus hab been directed towards 

generatiled aggregates. enhanced with consistency constraints and 

functional links. Altogether, they provide a good mean for 

modelling objects and further decompose it into sub-objects. 

Structural design comists in modifying and enhancing a given object 

model. in order fo provide a more detailed model. 

CAD database systems must therefore provide extensible data 

structures on which the dcsignncrs may dcfinc new properties and new 

constraints. These data structures must also be able to evolve to 

accept the modifications of existing propcrtics and constraints. 

Our bystern supports btructural &sign in that its integrated 

description and manipulation language allows for object structures 

enhancements and modifications. 
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l%e designer may @ate an object schema at any time by adding or 
deleting properties. constraints or Ii&h. 

5.2 Resolution dynamicily 

The resolution dynamicity is related to the top-down design 
methodology. It can be decomposed in preliminary, schematic and 
detailed designs. A model for CAD objects must therefore support 
successive improvements of the object models. 
Improving an object model usually corresponds to a particular design 
attempt. Therefore a specialization mechanism for CAD objects must 
be the least compcllin,g possible. For instance, two specialized subsets 
of some object are not necessarily disjoined. If object “B” is a 
specialization of some object “A”. and “EY’ is not saatisfactory, the 
designer must be able to start again from object “A” without worrying 
about “B”. He must also be able to eventually backtrack to “B” if he 
wishes. Object inheritance in such an environment becomes mostly 
complex. 
In our system. isa objects having the same ancestor may be designed 
independently. From segments. we can thus design horizontal 
segments seghori. and unit segments segunit (Figure 9). 

Segment 
I \ 

Seghor i Segun i t 
/ 

Seghoricolored 
I 

Seghorired 

Figure 9. Isa segment hierarchy. 

Such specializations inherit all of the properties of the ancestor 
object. Improving their definitions is made by providing new 
properties and new constraints for the specialization sets. For 
instance, horizontal segments are defined by specializing segment 

into seghori and adding the constraint stating that the y coordinate of 
both the origin and the end of the segment must be equal. Similarly, 
coloured horizontal scgmcnts are defined by specializing seghori into 
seghoricolored and adding a new property “color”. 
The specialized object inherits all the ancestor’s occurenccs that 
match the specialization constraints. Further. an occurencc created 
down in the specialization hierarchy is propagated up to the root to 
be acknowledged. 

These inheritance and acknowledgment mechanisms require 
powerful consistency controls and deductive facilities. 

El(Cl,Ll) 
/ \ 

creation + E2 K2,L2) E3 K3,L3) 
of occurrence / \ \ 

E4(C4,L4) ES(CS,LS) E6K6,L6) 

If E(C,L) stands far the definition of an object set E with the 
associated constraint ,iet C and link set L. The object set El has two 
specialized sub-sets : E2 and W. The set E2 has in turn two 
specialized subsets El and ES. Finally, E7 has a specialized suhsct 
Es. 
Suppose we want to create an object occurrence in E2. It is first 
inserted in E2, then acknowledged in El, and enventually inherited 
by the sets F3. E4. I5 and E6. 

Insertion in E2 and acknowlcdgcmcnt in El follows from : 
- the links LI and L2 ar,: used as derivation rules. Their evaluation 
yield the proper functional charactcriktics. 
- the constraints Cl and G! arr: used as weak consistency rules. They 
provide the: consistency state of the new occurence within the sets El 
and E2. If it does not conform with Cl. it is inconsistent in both Et 
and E2. If it confomls tvith Cl, it is acknowledged by El. Its stake in 
E2 is given by evaluation of CT’. 
Inheritance in ET, 154. E5 and E6 follows from the fact that : 
- an object occurence is inherited by a specialization subset if it is 
con\istcnt in the ancestor set, i.e acknowledged, and if it complies 
with the constraints and links of the specialized sub-set. Their 
constraints act therefore as strong consistency rules. 
Suppose that the new occurcncc is consistent in both El and E2. The 
following Figure describes the case where it does comply with the 
constraints in C4 but dots not comply with the constraint3 in C3 and 
C5. 

El acknouledgment + consistent 
/ \ T / \ 

E2 E3 insertion + consist. 
I\ \ 

inconsistent q 

E4 E5 E6 consist 

i nher i tance J’. :“i”,:’ ,i:r ~~~~~~ 1 

5.3 Morphologic dynamicity 

The morphologic dynamicity concerns the management of object 
versions and representations. During a particular design, the 
successive processes handle different representations, e.g functional, 
logic and electric for a VLSI circuit. Further, these representations 
may be implemented in different ways, e.g two half adders or 
multiple logic gates for a bit-slice adder. 
We first d&ail the requirements of the design process in terms of 
object versions (section 5.3.1), of project management (5.3.2) and 
next detail the implementation of object representations (section 
53.3). 

5.3.1 Object versions 

In a purely linear design process. the design of an object evolves from 
some representation to some more detailed ones. For a VLSI circuit. 
the successive representations ;Lrc : functional, logic. electric. and 
layout representations. 

functional -+ logic 3 electric + layout 

The design process is however seldom linear. This follows from the 
facts that : 
- each morphologic step yield new informations. 
- each design decision may entail some information losses, due to the 
modifications issued by the users. 
Each design decision may indeed provide several alternatives for the 
next morphologic level. 
Since the design proccxs is a trial and error paradigm. backtracking to 
previous object vcrsiol:, must bc available. It follows that no previous 
object versions must bc deleted or modified. 
[n our approach, an object version is the set of all informations 
relevant to an object on a particular design path in the three 
dimensional design space of Figure 8. 
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Each representation of an object is defined with specific tools 

corresponding to the p;trticular morphologic level under 

consideration. For instance, VLSI circuits may be reprecentcd by 

functional languages at the functional level, by logic schemas at the 

logic level. 

An object version will therefore be defined as the set of all the object 

representations on a particular design path (Figure 10). 

Usually, several rcprcsentations of an object at the same level arc 

equivalent. Howcvcr. representations at different levels arc not 

always equivalent. because then can yield some losses of relevant 

information which, previously true for a particular Isvel. does not 

hold for another. The transformation of a representation level into 

another is thcrcfore only partially automatic. Specific programs must 

ensure that they are compatible. 

PROJECT “Circuit” 

/ \ 
Representations / \ 

“Ce I I ” <-------X-----)(-----X rep-i 
/ I ’ 

representation-h x-------x-------x rep-j 
/ I \ 

Version1 Version2 . . Versionk 

Figure 18. Versions, representations and proj. 

5.3.2 Projects 

In our system, the object versions are modetled as ocurr’ences of a 

particular project object (Figure 10). 

The representations of an object are characteristics of thi5 project. 

Constraints between representations are modelled as constraints 

relating these characteristics. Functions referenced in these 

constraints are specific programs controlling the equivalence or 

compatibility between representations. Functional links between 

representations are implemented by derivation rules. Functions 

referenced in these links arc implemented hy specific programs that 

derive a particular object representation from other representations 

of the object. 

Suppose that a VLSI circuit is moddtcd with four different 

rcprcscntationb, each of which being an occurcncc of a “Cell” object. 

Constraints and derivation of representations are modelted as 

constraints and links that call for specific programs. For instance. the 

“compfonclog” and “comptogelcc” programs control the compatibility 

between the different functional. logic and electric reprcscntations. 

The “passlogsym” program derives a symbolic reprcscntation of a 

circuit from its logic reprcscntation. 

IJEF-F compfonclog (compfonclog) ---f algorithm 
/e define function */ 
FROM Cell x Cell INTO Boo1 

F0EF-F 

OEF-F passlogsym (passlogsymgrogram) 
/+ define function XC/ 
FROM Cell INTO Cell 

F0EF-F 

DEF-E C ircui t PROJECT 
14 define project set for Cell */ 
repf : Cel I ----f functional rep. 

rep1 : Cel I logic 
repe : Cel I electric 
reps : Cel I symbolic 
compfonclog(repf,repl) --+ compatibility 
complogelec(repl,repe) between reps 
reps:= passlogsym(repl) --+ link for automat 

FOEF-E symbolic rep. 

Basicully. the \ystcm provides for : 

- clustering the diffcrcnt versions of the same object within the same 

set definition, c.g “Circuit” in the example above. 

- tying together the multiptc representations of an object by 

instantiation of the characteristics of the set, 

- control of the conhistency of the representations, i.e if an occurcnce 

violates the consistency between representations, it is appropriady 

marked. 

- derivation of a rcprcscntation from others. It is specified as a rule 

that apply on the whole project. 

Functionalities specific to the projects are : 

- version identification, i.e each occurence has a unique name in the 

set it belongs to. This name is provided by the designer of the: object. 

Versions are specified by a system identifier, which is read-only. 

- version management, i.c a version is created. or data is added to a 

version. but it is never modified for itself. 

- version completion, which concerns the evolution of object 

versions with respect to modifications and update propagation. 

Designers arc also allowed to freeze a particular version of an object. 

From a updatable version belonging to a specific working 

environmcnr. the user can create a frozen version which has no more 

links with irk creation environment. Freezing an object version thus 

implies breaking all functional and exibtcntiat links that tie the 

version to other objects from which it derives. 

5.3.3 Representations 

Defining a version occurence in a particular project allows for tying 

and controlling the consistency of different representations of an 

object. Implemention of these representations is the subject of this 

section. 

In the example above. every representation is an occurence of the 

“cell” set. Different implementations can be designed for a particular 

represcntarion, each providing the same interface, but having their 

own structure or internal characteristics (nets and components 

arrangements). Other proposals define implementations as versions 

of the same object type, i.c the interface [3j. In contrast, other 

proposals allow different interfaces and structure for the same object 

151. 
In our system, representations are occurences of a representation 

set. It is partitionned into sub-sets thar cluster the different 

implementations of a particular representation. 

The designer dcfincs for each representation the set of common 

characteristics and the set of characteristics specific to each 

particular object instance. 

If the representations of a ccl1 have all the same interface, the 

definitions of the representation5 are : 
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IIEFJ CE! I I REPRESENTRTION 
/+ define representation set */ 
10: common characterist its a/ 
type : Typerep --+ same morphologic level 
envelope: Polyl ine 
io-ports: LIST (Pord same interface 

/* specific characteristics se/ 

F&F-E 
+ no specific caracteristic 

DEF+E Cellcons IW Cell 
/* common characterist its */ 

+ no new caract. in common 
/4c specific characteristics */ 
;;;p 1 ki:i :k;:;onen t ) 3 ; ;p:;;E; :z;;ons d i f fer 

FDEF-E 

When a “Cell” is designed. the rcprcscntation set must be given. If it 

does not exist, the designer must instantiate its common 
characteristics. The irnplcmcntntion name and ,pccific characteristics 

of the occurence must also be given. 

E&h representation set is a unique object. It is uniquely identified 

and is complctc if all its characteristics arc instantiated. If common 

characteristics are to bc updated, a new object has to be created 

together with its representations. 

If a representation !set is used as a characteristic for an object, 

reference to its sole name means that the implcmcntation is not 

chosen yet. Reference to its name together with the name of an 

occurcncc means that the implementation is that rcfcrenced by the 

occurcnce. 

6. CONCLUSION 

Taking into account the nature, conJstcncy and dynamicity of CAD 

objects in database systems requires dramatic changes in their ability 

to model complex objects as well as to control their correctness with 
respect to high level specifications. This implies powerful 
mechanisms to derive information, propagate updates and handle 

incompletenew. 

Implcmcnting such features calls for improvements and 
enhancements to USU:~ database functionalities. for instance through 

an integration with logic-based capabilities. 

Several approaches iart: currently being tcstcd for our system. A 

prototype that inc:ludes the functionalitics described in thi, 
presentation has been implemented in Prolog on a VAX 11/7X0 
running Unix 4.2 BSD. All the information is created. updated and 
\torcd as a set of Prolog clauses. 

Another approach consists in integrating a relational datahasc sy\tcm 
with a Prolog inference engine [ 11, 131. This approach ii 
straightforward because our information structurt’x are very similar 

to the relational data \[ructurc\. 

- A first integration off-loads to Prolog everything the relational 
system cannot handle:, i.e lists and deductive information, ;LY well a$ 

semantic information. 

- A second approach1 cons&s in the enhancement of the relational 
datahasc system with functionaliticr specific to CAD applications. 

The characteristics of both the database and Prolog system arc taken 

for what they arc. This implies the management of deductive 

informations and conaistcncy controls by Prolog, and the 
management of the !,tructurctl data by the database system. 
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Experiments arc currently undertaken using a relational datahasc 

system simulated in Prolog, a full relational database system called 

MICROBE that we have implemented, and an extended version 

implcmcntcd at CNET for VLSI circuit de+ [?I. 
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