
SEMANTICS OF CAD OBJECTS FOR GENERALIZED DATABASES

RIEU D. . NGUYEN G.T

IMAG
Universitc de Grenoble

Laboratoire de Gcnic Informatiquc
BP 68

38102 St-MARTLN-D’HERES
France

Abstract : This paper presents some fundamental issues related to
the design and implcmientation of CAD orient4 database sysrcms.
Integrating databases i.n sophisticated CAD environments rcquircs
functionalilies usually not provided by cxihting syQems. c.g relational
or entity-relationship systems. For instance. consistency controls
have to provide richer and more flexible features than the former
“take it or leave it” paradigm.
The basic aspects are ‘cxamincd here with rc\pcct to the nature of

CAD objects, to their con&cncy states and to their dynamicity.
The nature of CAD objects concern3 the complexity of their
structure and of their rclationhhipb. The state of CAD objects
concerns their completenrs\ with considerations to their consistency.
Finally, the dynamicity of CAD objects concern5 the evolving nature
of their structure and of their properry values. i.e their behavior,
with connections to versions and rcprewntations.
These concepts are defined and dctailcd with examplcc drawn from
VLSI circuit design. The functionalitics of a prototype CAD
database system offering new solutions in these areas are presented,
calling upon object-oriented concepts and logic-programming. It is
currently being tested for VLSI circuit design in cooperation with the
CAD Research Dept at CIVET.
Mail : !ntcvar!inria!im!og!rieu or !mcvar!itlriufimo~~!rr~u~en
This work is supported in part by the French Deportmc’ttt of
Telecommunications (CNET contract 843BO61) and the French
Department of Research (contract PRCIBDZ 850222/121 I I).

1. INTRODUCTION

This paper presents some fundamental issues concerning the design
and implementation of CAD oriented dataha.\c \ysrcms. Integrating
databases in sophisticated CAD environments requires
functionalities usually not provided by existing systems. e.g relational
or entity-relationship clatabnscs 17. 9, IO]. For inhtnncc, consistency
controls have to provide richer and more tlcxible features than the
former “take it or leave it” approach [3, 61.
The basic features required for integrated CAD applications are

examined here with respect to the nature of CAD objects, to their
consistency states and to their dynamicity.

The nature of CAD objects concerns the complexity of their
structure and of their semantic relationships.
The state of CAD objects concerns their complctcnc’~~ with
considerations to their consistency.
Finally, the dynamic+/ of CAD objects concern3 the c\c)lving ndturc‘

of their structure and of the property vuluc~. i.c their hchulior. with
connections to versions and representations.

These concept5 are defined and detailed with examples drawn from
VLSI circuit design [1. 51. The functionalities of a prototype CAD
database system that provides new solutions in thece areas arc
presented. calling upon ohjcct-oriented concepts llnd
logic-programming 111. 131. It has been implemented and is
currently king tested for \‘LSI circuit design in cooperation with the
CAD Research Dept at CNET.

2. NATURE OF CAD OBJECTS

The nature of CAD objects concerns their static description. It
includes the structure of their intended properties and their
relationships to other objects. i.e their position with respect to a
given environment.

An object for short is a basic item or a structured collection of related
objects, i.e its component%. Funciamcntally. these components may
be defined indepcndcntly. or intimcltcly tied to the object.
Basically, CAD objects have a complex structure. and may further
include a large number of components. They also hear properties
which are subject to manipulation5 by the uwrb.
The potential actions arc perform4 I+ spcific engineering tools.
They can :
- derive calculated objects from argument objects,
- control the consistency of the object with respect to particular
specifications or with respect to other objects characteristics.
Such specifications email specific tools which require the definition
of :
- functional relationships between the objects involved for the
computation of the derived objects,
- integrity constraints for the definition and control of consistency.

2.1 Object detinition

The main characteristic of CAD oricntcd d;ctabase system% is to
integrate :
- the moclelling of complex btructuws.

- specific engineering toots,
- consistency control and enforcement rules,
- semantic relationships behvccn objccth. In our approach. an ohjcct
is modellcd as a structured set occurence. This set defines objects
having similar properties and compliant with identical constraints.

Paper 3.2
34

23rd Design Automation Conference

0738-100X/86/0000/0034$01.00 01986 IEEE

http://crossmark.crossref.org/dialog/?doi=10.5555%2F318013.318020&domain=pdf&date_stamp=1986-07-02

An object is defined by :

- properties concerning its structure,

- constraints defining the relationships among its properties,

- functional links defining the computation rules to dcnve an object

from others.

The functional links call upon specific functions dcfincd with bpccific

engineering tools. They are implemcntcd with ad-hoc programs.

For example, VLSI circuits arc dcsignrd in several steps, including :

functionlll specifications. logic specifications. electric specifications.

layout design, which yield different representations at increasing

levels of details.

Our approach is to integrate these representations within the same

formalism. lt uses a specific object-oriented approach. It is

implemented in Prolog [131.

ln the following, a cell is a particular representation of a given

circuit.

A cell definition includes a type (functional. logic, clcctric . ..). an

interface and a structure.

- the interface defines the external view of the cell. It includes an

envelope and io-ports (Figure 1) :

i o-par t T x-x-
r I --+ envelope

-x-

Figure 1. Interface of a cell.

- the structure defines the internal view of the cell. It includes

components and nets that connect the components together and with

the cell io-ports (Figure 2).

-x-x-

II II
E&l x ’

L
Cl ----i component

xX
IL

F net

Figure 2. Structure of a ccl I.

the following is a simplified definition of a cell in our system
(Figure 3) :

DEF-E Cei I
type : Tw=-=p --+ functional or logic...

envelope: Polyline -+ interface
io-porta: LIST (Port)

camp : LIST (Component)
equi : LIST (Net)

connect (entsort, ensort.realize.comp, equi)
NOT intersect (camp) --+ C2 Cl t
. . .

F0EF-E

Figure 3. Definition of a cell object.

It is assumed in this example that Typercp, Component, Net and

Polyline are predefined types. The functions connect and intersect

are also supposed predefined.

Cl and C2 are integrity constraints relevant to electric and geometric
design rules.

Constraint Cl states that the nets connecting the io-ports of a cell and

the implementations of the io-ports of its components must be

complete and consistent. The connect function is implemented by a

specific program that controls that every input port of a cell is the

starting point of some net.

C2 is a geometric constraint stating that no components may overlap.

2.2 Constraints and relationships

It is assumed that links and constraints defined for an object as above

hold for every occurencr in the object set. They define general

knowledge about generic objects.

Besides these basic facilities for defining objects and constraints.

specific knowlrdgc about particular object instances can also be

dehncd, c.g how to design some particular cell from specific library

components. what cnginccring tools must then be used.

For instance. if some object “A” is defined by a function f(B.C), each

occurcncc of “A” is specifically related to the occurcnces of objects B

and C in the database. i.e a component C2 may bc dcsigncd as a

sub-component of ccl1 Cl. They are related by an cxiztcntial

relationship.

In our system, there exist functional or existential relationships.

Specific relationships hold as long as the argument object\ are not

modified. In the example above. object “A” is dcsigncd according to

f(B.C). The relationship holds as long as they are not modified.

The properties of structured object sets are defined by their name

(e.g in the example above Figure 3 : camp) and the associated

domain (example : Components). The latter must be previously

detincd in the database. It follows that :

-only one notion is needed to define object sets and object property
domains. A domain references its set definition and its occurences

altogether.

- this puts an emphasis on upward design methodologies. since

object definitions involve only existing definitions.

- it partially solves the probleme of cyclic object definitions.

Particular casts are recursive object definitions and cross-referenced

definitions.

2.3 Cyclic and recursive object definitions

A recursive object definition references the object itself. A

cross-referenced object definition references an object definition

rcfcrencing in turn the original object.

Following the assumptions made so far, an object “A” cannot

refcrcnce itself since it is not already known in the database.

Similarly, an object A cannot refcrcncc object B if it has not yet been

defined.

The following relationship specifies that object Ai+ T has a property

A,: Ai+ 1 - Ai. The cyclic definition below is prohibited (Figure 4) :

Paper 3.2
3.5

Ai - Ai-l 3 Fli-2

T 1
Al +-- R2 Ai-n

(1)

Figure 4. Cyclic definition.

However, usual engineering design applications do nerd cyclic

definitions. Statements such as :

- a cell is composed of other cells.

- cell components implcmcnt particular cell definitions.

are commonly used in VLSI design applications 121.

Our system allows such definitions and provides for their control

through specialized set definitions. They use the usual concept of isa

relationship, augmented Nirh specific constraints and links attached

to the specialized set propertics. These mechanisms arc detailed in

section 3.

The semantics associated with recursive and cross-referenced

definitions is different.

For recursive definitions, the existence of primitive objects is

assumed. e.g to allow a super-object implementation from the

sub-objects. For cross-refcrcnccd dcfinitionh. the cxistcncc of

primitive and completed cells is assumed.

Here. the solution to these definitions is to hrcak the cycle and to

define a lo-cr level ohjcct. The primitive objects and the component

cells of the cell definition all belong to the lower objects occurt’nces.

A recursive ccl1 definition. say “Cell”. thus references a lower Icvel

definition. say “Cellcons”. which inherits its propcrticc through an

isa statement, noted “~2”.

- i Definition of cells
DEF-E Cel I , . . FDEF-E

Cell => Cellcons

- 2 Definition of completed ccl is L-l
DEF-E Cel Icons ISA Cel I

camp : LIST Kel I)

FOG:;

Similarly, cross referenccr between two object definitions. say “Cell”,

and “Component”, arc solved by the introduction of a third set

definition. say “Cellcons”. that inherits from “Cell” all its properties

through an isa statement. It is introduced between the “Cell” and its

“Component”.

- 1 Oefinit ion of ccl Is Fl ISFl
DEF-E Cell . ..ft PDEF-E Cel I => Cel Icons

- 2 Definition of components
lJEF-E Component

implements : Cell

*..
FDEF-E

- 3 Definition of “isa” ccl Is
0EF-E Cellcons ISA Cell

I

camp: LIST (Component)
. . .

FOEFJ

I 1 Component

6

The “Component” references the “Cell”. But now the ‘XXI” is related

to the “Cellcons” by an isa relationship. Further. only the

“Component” now references the “Cell” (Figure 5).

Ri => RIi 3 Ri-1 models the Ai --+ Ai-l -+ Ai

T 1

cycl ic
definition : T 1

Rl cl72 . . . Ai- I71 t R2 . . . Qi-n

Figure 5. ModelJing a cyclic definition.

Generally speaking. the rule is to break a cyclic definition in two

pdrta hy introducing a new isa set definition. that inherits from one of

the objects in the cycle.

3. CONSISTENCY AND COMPLETENESS OF C.\D OBJECTS

The state of a CAD object retlects the evolving design process for

that object. It includes the notion of completeness and the notion of

consistency

During the design process. the object is most of the time modified

and incomplete. Thr designers have to cope with this imperfect

knowledge. Further. the trial and corrccf framework of usual design

mcthodologics impI} the e vistcnce of temporary inconsistencies that

must bc taken into account.

Warning the user of such inconri>tcncics is worth only if they result

from a constraint violation. and not horn an undecidable control.

Indeed, lo$ applied to datalxws tells u\ that incomplctencsx implies

inconG&mcy [111. This is incffcctivl: in CAD enbironmcnts IXC;~U~C

it is of first importance to dctcct the lollowing situations :

- incomplete: and consistent. which means that no dccidablc

constraint control ha> rcsultcd so far in a constraint viulation.

whatever the complctcncss ot’ the object.

- incomplete and inconsi<l-cnt, meaning that come decidlrhlc control

has resulted in a constraint violation.

In our approach. object prop&e\ instantiation can be delajrd. The

identification of the occurcncc is only nceclcd. Further, a?r long JS no

constraint is violated. the system presumes that no incon\istcncy

appears for the object. It is thcrcforc assumctl consistent as long as no

constraint is explicitly violated. othcrbvisc contradicted by the

instantiation or modification ot’ propertics.

Consistency and completeness arc dynamically cxamincd to rcklect

the cxnct state of the object after c\cry modification or update. This

gives a presumably exacl picture of the most rcccnt state of the

design. Hhich can be one of the followin_r :

- incomplete and consistent. meaning that the de\ign is correctly in

progress.

- incomplete and inconsistent . meaning that the design Joe\ not

improve,

- complete and inconsistent, meaning that the tlchign ih wrong.

- complete and consistent. meaning that the design i\ correct.

Consider thr: following example (Figure 6). A net is defined by input

and output ports. Thr: layout is considered as LL list of zegmcnts.

OEF-E Net
/SC define net set s:/
volt : Rea I --, voltage

in : Port --+ in port

out : Port - out port

layout : LIST (Segment)

I

compatible (in, out) + Cl

graphics:= I inkport(in,out) --+ Ll
FOEFJ

Figure 6. Definition of a net object.

Paper 3.2
36

Constraint Cl defines the connection between input and output

ports. Function LI defines the graphic layout of a segment

connecting two ports.

Figure 7 corresponds to the definition of a cell with two components.

Net el connects port pl to port p2. Constraint Cl is decidable and

reflects the consistency of net el. Further, cl is complete because

function Ll produces automatically the associated segment.

PI
x

el

I P2

L7

X

[I n X

X P
e2 ct 3

x-x

Figure 7. An incomplete cell object.

Net e2 includes only one port. i.e p3. Its occurcnce is therefore

incomplete. because one port is unknown and its associated segment

is thus undefined. In this case the combination

“incomplete-consistent” is produced. This will eventually be modified

upon instantiation of the second port p4 for net ~2. yielding the

combination “complctc-consistent” if Cl still holds. yielding

“complete-inconsistent” if not.

4. DYKAMICITY OF CAD OBJECTS

CAD objects are subject to modification that originarc from two

different sources :

- explicit requests issued by the dcsigncrc.

- implicit updates derived from the modification of some related

objects.

We first detail the implicit dynamicit) of CAD objects and further

detail issues concerning the explicit dynamicity (Scition Sj.
CAD oriented databases include objects Linked through intricate

semantic relarionshipr. Functional and existenti; retationahips have

been defined above. Generic relationships are also relevant to sets of

objects, e.g a net is positionned with respect to the coordinates of its

io-pot%. the symbolic representation of a circuit is derived from its

logic reprcscntation. Specific relationships can 31~0 be associated

with particular instances of an object, e.g the layout Ll of a circuit

results from geometric transformation\ applied on bomc other

particular layout L2.

Consistency controls for such relationship< require pow rfut

mechanisms for propagating updates and deriving information.

Indeed, CAD objects mu4 evolve with rchpcct to the modifications

performed on the related objects.

tn our system, updates on object occurcnccs are propagated to ail

objects that use them. This is computed by recatcula& all the

relationship\ involved. Therefore a modification performed on a

circuit Ct will be immcdiatly propagated to its layout Lt and further

to its derived layout L2.

Basically, propagating updates is relative to the context in which the

object involved has been created. Subsequently. they are propagated

into the contexts in which they are used. This prohibits illegal

updates and provides for conbistcnt modifications.

Therefore, implicit dynamicity results from the maintenance of

consistent generic or specific knowledge on the objects. In contrast,

explicit dynamicity results from the non deterministic nature of the

design process.

5. EXPLICIT DYNAMICITY

The evolvin!: nature of CAD objects results from several

considerations. Among these stands fundamentally the

methodologies usually of concern in the design proce\s. In our

aproach. they call for several successive transformation phases

involving three aspects :

- the structural level. concerned with object description.

- the morphologic level. concerned with alternate representations.

- the resolution level, concerned with details of implementation.

These three aspects are tightly connected. A particular design follows

a specific path in the three dimensional space described in Figure 8.

WC describe in the following sections the function&tics

implemented in our system to handle the design process dynamicity

in the three directions : structural (Section 5.1). resolution (Section

5.2) and morphologic (Section 5.3).

logic topolo. geome. technic
Resolution

/ / / I / / / / / / I ’ / /
I ‘I / / / / / / / I 1 I// / / / /

detai led

schelat ic

preliminary

-----+ Morphologic

I / i--/
I

-/ -/ ----/- 1 level: global
/ / / / / /

I

/---/ -/ -/ -/- 2 level: sub-pb
/ / / / /

/ -----I -/ -/ -/- 3 level:...
/ Strut tura I
Figure 8. Three dimensional design space.

5.1 Structural dynamicity

The stuctural dc\i_gn is related with the decomposition of the design

goal into sub-goals. In section 2, focus hab been directed towards

generatiled aggregates. enhanced with consistency constraints and

functional links. Altogether, they provide a good mean for

modelling objects and further decompose it into sub-objects.

Structural design comists in modifying and enhancing a given object

model. in order fo provide a more detailed model.

CAD database systems must therefore provide extensible data

structures on which the dcsignncrs may dcfinc new properties and new

constraints. These data structures must also be able to evolve to

accept the modifications of existing propcrtics and constraints.

Our bystern supports btructural &sign in that its integrated

description and manipulation language allows for object structures

enhancements and modifications.

Paper 3.2
37

l%e designer may @ate an object schema at any time by adding or
deleting properties. constraints or Ii&h.

5.2 Resolution dynamicily

The resolution dynamicity is related to the top-down design
methodology. It can be decomposed in preliminary, schematic and
detailed designs. A model for CAD objects must therefore support
successive improvements of the object models.
Improving an object model usually corresponds to a particular design
attempt. Therefore a specialization mechanism for CAD objects must
be the least compcllin,g possible. For instance, two specialized subsets
of some object are not necessarily disjoined. If object “B” is a
specialization of some object “A”. and “EY’ is not saatisfactory, the
designer must be able to start again from object “A” without worrying
about “B”. He must also be able to eventually backtrack to “B” if he
wishes. Object inheritance in such an environment becomes mostly
complex.
In our system. isa objects having the same ancestor may be designed
independently. From segments. we can thus design horizontal
segments seghori. and unit segments segunit (Figure 9).

Segment
I \

Seghor i Segun i t
/

Seghoricolored
I

Seghorired

Figure 9. Isa segment hierarchy.

Such specializations inherit all of the properties of the ancestor
object. Improving their definitions is made by providing new
properties and new constraints for the specialization sets. For
instance, horizontal segments are defined by specializing segment

into seghori and adding the constraint stating that the y coordinate of
both the origin and the end of the segment must be equal. Similarly,
coloured horizontal scgmcnts are defined by specializing seghori into
seghoricolored and adding a new property “color”.
The specialized object inherits all the ancestor’s occurenccs that
match the specialization constraints. Further. an occurencc created
down in the specialization hierarchy is propagated up to the root to
be acknowledged.

These inheritance and acknowledgment mechanisms require
powerful consistency controls and deductive facilities.

El(Cl,Ll)
/ \

creation + E2 K2,L2) E3 K3,L3)
of occurrence / \ \

E4(C4,L4) ES(CS,LS) E6K6,L6)

If E(C,L) stands far the definition of an object set E with the
associated constraint ,iet C and link set L. The object set El has two
specialized sub-sets : E2 and W. The set E2 has in turn two
specialized subsets El and ES. Finally, E7 has a specialized suhsct
Es.
Suppose we want to create an object occurrence in E2. It is first
inserted in E2, then acknowledged in El, and enventually inherited
by the sets F3. E4. I5 and E6.

Insertion in E2 and acknowlcdgcmcnt in El follows from :
- the links LI and L2 ar,: used as derivation rules. Their evaluation
yield the proper functional charactcriktics.
- the constraints Cl and G! arr: used as weak consistency rules. They
provide the: consistency state of the new occurence within the sets El
and E2. If it does not conform with Cl. it is inconsistent in both Et
and E2. If it confomls tvith Cl, it is acknowledged by El. Its stake in
E2 is given by evaluation of CT’.
Inheritance in ET, 154. E5 and E6 follows from the fact that :
- an object occurence is inherited by a specialization subset if it is
con\istcnt in the ancestor set, i.e acknowledged, and if it complies
with the constraints and links of the specialized sub-set. Their
constraints act therefore as strong consistency rules.
Suppose that the new occurcncc is consistent in both El and E2. The
following Figure describes the case where it does comply with the
constraints in C4 but dots not comply with the constraint3 in C3 and
C5.

El acknouledgment + consistent
/ \ T / \

E2 E3 insertion + consist.
I\ \

inconsistent q

E4 E5 E6 consist

i nher i tance J’. :“i”,:’ ,i:r ~~~~~~ 1

5.3 Morphologic dynamicity

The morphologic dynamicity concerns the management of object
versions and representations. During a particular design, the
successive processes handle different representations, e.g functional,
logic and electric for a VLSI circuit. Further, these representations
may be implemented in different ways, e.g two half adders or
multiple logic gates for a bit-slice adder.
We first d&ail the requirements of the design process in terms of
object versions (section 5.3.1), of project management (5.3.2) and
next detail the implementation of object representations (section
53.3).

5.3.1 Object versions

In a purely linear design process. the design of an object evolves from
some representation to some more detailed ones. For a VLSI circuit.
the successive representations ;Lrc : functional, logic. electric. and
layout representations.

functional -+ logic 3 electric + layout

The design process is however seldom linear. This follows from the
facts that :
- each morphologic step yield new informations.
- each design decision may entail some information losses, due to the
modifications issued by the users.
Each design decision may indeed provide several alternatives for the
next morphologic level.
Since the design proccxs is a trial and error paradigm. backtracking to
previous object vcrsiol:, must bc available. It follows that no previous
object versions must bc deleted or modified.
[n our approach, an object version is the set of all informations
relevant to an object on a particular design path in the three
dimensional design space of Figure 8.

Paper 3.2
38

Each representation of an object is defined with specific tools

corresponding to the p;trticular morphologic level under

consideration. For instance, VLSI circuits may be reprecentcd by

functional languages at the functional level, by logic schemas at the

logic level.

An object version will therefore be defined as the set of all the object

representations on a particular design path (Figure 10).

Usually, several rcprcsentations of an object at the same level arc

equivalent. Howcvcr. representations at different levels arc not

always equivalent. because then can yield some losses of relevant

information which, previously true for a particular Isvel. does not

hold for another. The transformation of a representation level into

another is thcrcfore only partially automatic. Specific programs must

ensure that they are compatible.

PROJECT “Circuit”

/ \
Representations / \

“Ce I I ” <-------X-----)(-----X rep-i
/ I ’

representation-h x-------x-------x rep-j
/ I \

Version1 Version2 . . Versionk

Figure 18. Versions, representations and proj.

5.3.2 Projects

In our system, the object versions are modetled as ocurr’ences of a

particular project object (Figure 10).

The representations of an object are characteristics of thi5 project.

Constraints between representations are modelled as constraints

relating these characteristics. Functions referenced in these

constraints are specific programs controlling the equivalence or

compatibility between representations. Functional links between

representations are implemented by derivation rules. Functions

referenced in these links arc implemented hy specific programs that

derive a particular object representation from other representations

of the object.

Suppose that a VLSI circuit is moddtcd with four different

rcprcscntationb, each of which being an occurcncc of a “Cell” object.

Constraints and derivation of representations are modelted as

constraints and links that call for specific programs. For instance. the

“compfonclog” and “comptogelcc” programs control the compatibility

between the different functional. logic and electric reprcscntations.

The “passlogsym” program derives a symbolic reprcscntation of a

circuit from its logic reprcscntation.

IJEF-F compfonclog (compfonclog) ---f algorithm
/e define function */
FROM Cell x Cell INTO Boo1

F0EF-F

OEF-F passlogsym (passlogsymgrogram)
/+ define function XC/
FROM Cell INTO Cell

F0EF-F

DEF-E C ircui t PROJECT
14 define project set for Cell */
repf : Cel I ----f functional rep.

rep1 : Cel I logic
repe : Cel I electric
reps : Cel I symbolic
compfonclog(repf,repl) --+ compatibility
complogelec(repl,repe) between reps
reps:= passlogsym(repl) --+ link for automat

FOEF-E symbolic rep.

Basicully. the \ystcm provides for :

- clustering the diffcrcnt versions of the same object within the same

set definition, c.g “Circuit” in the example above.

- tying together the multiptc representations of an object by

instantiation of the characteristics of the set,

- control of the conhistency of the representations, i.e if an occurcnce

violates the consistency between representations, it is appropriady

marked.

- derivation of a rcprcscntation from others. It is specified as a rule

that apply on the whole project.

Functionalities specific to the projects are :

- version identification, i.e each occurence has a unique name in the

set it belongs to. This name is provided by the designer of the: object.

Versions are specified by a system identifier, which is read-only.

- version management, i.c a version is created. or data is added to a

version. but it is never modified for itself.

- version completion, which concerns the evolution of object

versions with respect to modifications and update propagation.

Designers arc also allowed to freeze a particular version of an object.

From a updatable version belonging to a specific working

environmcnr. the user can create a frozen version which has no more

links with irk creation environment. Freezing an object version thus

implies breaking all functional and exibtcntiat links that tie the

version to other objects from which it derives.

5.3.3 Representations

Defining a version occurence in a particular project allows for tying

and controlling the consistency of different representations of an

object. Implemention of these representations is the subject of this

section.

In the example above. every representation is an occurence of the

“cell” set. Different implementations can be designed for a particular

represcntarion, each providing the same interface, but having their

own structure or internal characteristics (nets and components

arrangements). Other proposals define implementations as versions

of the same object type, i.c the interface [3j. In contrast, other

proposals allow different interfaces and structure for the same object

151.
In our system, representations are occurences of a representation

set. It is partitionned into sub-sets thar cluster the different

implementations of a particular representation.

The designer dcfincs for each representation the set of common

characteristics and the set of characteristics specific to each

particular object instance.

If the representations of a ccl1 have all the same interface, the

definitions of the representation5 are :

Paper 3.2
39

IIEFJ CE! I I REPRESENTRTION
/+ define representation set */
10: common characterist its a/
type : Typerep --+ same morphologic level
envelope: Polyl ine
io-ports: LIST (Pord same interface

/* specific characteristics se/

F&F-E
+ no specific caracteristic

DEF+E Cellcons IW Cell
/* common characterist its */

+ no new caract. in common
/4c specific characteristics */
;;;p 1 ki:i :k;:;onen t) 3 ; ;p:;;E; :z;;ons d i f fer

FDEF-E

When a “Cell” is designed. the rcprcscntation set must be given. If it

does not exist, the designer must instantiate its common
characteristics. The irnplcmcntntion name and ,pccific characteristics

of the occurence must also be given.

E&h representation set is a unique object. It is uniquely identified

and is complctc if all its characteristics arc instantiated. If common

characteristics are to bc updated, a new object has to be created

together with its representations.

If a representation !set is used as a characteristic for an object,

reference to its sole name means that the implcmcntation is not

chosen yet. Reference to its name together with the name of an

occurcncc means that the implementation is that rcfcrenced by the

occurcnce.

6. CONCLUSION

Taking into account the nature, conJstcncy and dynamicity of CAD

objects in database systems requires dramatic changes in their ability

to model complex objects as well as to control their correctness with
respect to high level specifications. This implies powerful
mechanisms to derive information, propagate updates and handle

incompletenew.

Implcmcnting such features calls for improvements and
enhancements to USU:~ database functionalities. for instance through

an integration with logic-based capabilities.

Several approaches iart: currently being tcstcd for our system. A

prototype that inc:ludes the functionalitics described in thi,
presentation has been implemented in Prolog on a VAX 11/7X0
running Unix 4.2 BSD. All the information is created. updated and
\torcd as a set of Prolog clauses.

Another approach consists in integrating a relational datahasc sy\tcm
with a Prolog inference engine [11, 131. This approach ii
straightforward because our information structurt’x are very similar

to the relational data \[ructurc\.

- A first integration off-loads to Prolog everything the relational
system cannot handle:, i.e lists and deductive information, ;LY well a$

semantic information.

- A second approach1 cons&s in the enhancement of the relational
datahasc system with functionaliticr specific to CAD applications.

The characteristics of both the database and Prolog system arc taken

for what they arc. This implies the management of deductive

informations and conaistcncy controls by Prolog, and the
management of the !,tructurctl data by the database system.

Paper 3.2
40

Experiments arc currently undertaken using a relational datahasc

system simulated in Prolog, a full relational database system called

MICROBE that we have implemented, and an extended version

implcmcntcd at CNET for VLSI circuit de+ [?I.

Acktwwtedgements.
The uutltors are great& indebted to MM. Jacques Lecourvaisier.
Christiun Jullien and Pascnle Winrringerjivm rhe CAD Resetwit Dept
at CNET for m~my expert commenrs concerrJing CADI VLS[
applicutions.

Ill

131

I41

151

161

I71

1x1

191

[lOI NGUYEN G.T . OLIVr\RES J.
Senlurltic datu nrgorJi;tJtiorr o)J tJ ,gr~Jrru/izrd drJtcJ mtJtJ(lgemelJl

sysrem.

Proc. Intcmational Conf. on Foundations of Data Organization.
Kyoto (Japan). May 1985.

1111 NGUYEN G.T
Semuntic Dota E?zginecring fbr Generali:ed Datcdxtses.
Proc. 2nd International Conf. on Data Engineering.
Los Anngele~ (California). February 1986.

1121 NGUYEN G.-l-
Object prolof~pes and durcJhJse sumpks for expert dtJtrJhasr

s~srrm~.

Proc. 1st International Conf. on Expert Data&c Sqstcms.
Charlcaton (South Carolina). April lY66.

1131 RIEU D.
Model unt/ fLltJcJior7!J/iti~~s of t1 C.‘tn-orietltrd d0trrha.w TWJeVJ.

PhD Thesis. Univcnity of Grcnoblc. July 1985.

REFERENCES

ADIBA M.. NGUYEN G.T
InfurmcJtion prucessing for CADI VLSI on LJ generalized dam

manrcgement sysrem.

Proc. 10th Intcmational Conf. on Very Large Data Bases.
Singapore. August 1.984.
ADIBA M.. NGU\‘EN G.T
Knowledge engineering for CADIVLSl on u genrru/irrd dutn
munagenJent system,

Knowledge Engineering in Computer-Aided Dc>ign.
J.S Gero W. North-Holland Publ. Co. lY8S.
BXTORY D.S KIM W.
Modellitq Cot~~.eprr for VLSI CAD Objects.
ACM Transactions on Datahasc Systems.
Vol 10. num 3. September 1985.
BEYLS ct al.

Proc. 19th. Design Automation Conference. Las Vegas. June
1982.
JULLIEN Ch.. LEBLOND A.
A database inrerfhce- for un inrqrated CAD svsrem.
These Proceedings.
KATZ R.H, LEHM,Xv T.J
Datuharr stcpport /& r*crsiorz.v am/ tiI/ernari~~e.r of’ Iargr .x&.
University of California Bcrkclev. Rcscarch report. 1083.
KATZ R.H
Munaging the chip ~de.si,qri d~tt~~hnse.
University of Uisconsin-hladi\ort.
Research Report 506. May 1985.
LECOURVOISIER J.
CASSrOPEE: un sxstcnre inre*yrr pour /a C.40 de VLSI.
Echo dcs Rcchcrchc\. No. 118. Novemhr lY8-l.
LORLE R.. PLOUFFE W.

