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Abstract 

CAMAD is a high level design tool which helps designers to 
model, analyze, and design VLSI systems. This design aid 
system is based on a unified design representation model 
derived from timed petri nets and consisting of separate but 
related models of control and data parts. The present paper 
describes the automatic synthesis package of the CAMAD 
system which takes a high level behavioral description as its 
input and synthesizes it into an implementation structure. 
This implementation structure may then be partitioned into 
several quasi-independent modules with well-defined 
interfaces, which allows potentially asynchronous operation 
of the designed systems as well as physical distribution of the 
modules. 

1. Introduction 

CAMAD (Computer Aided Modelling, Analysis, and Design 
of VLSI Systems), a system level design tool, is currently 
under development at Linkijping University. CAMAD is 
built around a unified design representation model described 
in [9], which consists of separate but related models of control 
structures and data parts. The control part is modelled as a 
timed Petri net with restricted transition firing rules. The 
data part, on the other hand, is represented as a digraph. 
This extended timed Petri net (ETPN) model differs from 
other Petri net models used mainly for descriptive and 
analysis purposes [lo] in that it addresses the issue of design 
directly and allows graphical representation of the behavior as 
well as structure of a system. 

This paper describes the synthesis of VLSI systems specified 
by their high level behavioral descriptions into 
implementation structures with the CAh4AD synthesis 
package. Other DA systems which start with a high level 
behavioral description are CMUDA(2], ADAM[S], and 
MIMOLA[8]. Most of these systems have concentrated on 
the synthesis of centralized processing units. The present 
approach, however, attempts to address the design of 
decentralized systems where it is important to partition a 
system into a set of loosely coupled modules so as to allow 
asynchronous operation of the designed systems as well as 
physical distribution of the modules. 

The synthesis task is accomplished by a series of simple 
ETPN transformations each of which guarantees the 
preservation of the system semantics. One important 
characteristics of the present approach is that the ETPN 
model allows us to view a behavioral description aa a 
prim&e structural description. This structural description 
is, of course, very crude, i.e., if we implement it directly, we 
get a very expensive design. But once we have a structural 

description, we can make improvement on it to produce a 
better one; moreover this improvement can be done step by 
step until a satisfactory result is reached. This improvement 
process is guided by an optimization strategy that decides 
which transformation algorithm to use in each step. The 
basic optimization trade-off here is silicon area vs. time which 
can be made by trading data paths for control structure, or 
vice versa. Unlike most other control/data path allocations 
that only attempted to allocate one dimension of the 
control/data path problem at a time, we integrate them 
together in the synthesis process. Therefore, the advantages 
from compacting the data part, for example, can be compared 
immediately with the possible expansion of the control logic 
to justify the compaction. 

This work is part of the ASAP project (An Architectural 
Strategy for Asynchronous Processing) at Linkijping 
University. We are aiming at developing CAD tools and 
architecture support for a design environment in which 
asynchronous concurrent systems can be fist specified 
without regard to the detailed implementation or packaging of 
their modules and then either allow the designer to explore 
the performance and cost implications of different 
implementations or have the system attempt to automatically 
provide an optimize<1 solution based on a library of functiaal 
implementations (6)) [7], [9]. 

The ETPN model and its basic transformations have been 
discussed in [9]; the present paper will concentrate on the 
problem of how to utilize this model in the synthesis process 
of VLSI system and to partition an ETPN description into 
ASAP based modules. In section 2, we describe briefly the 
major characteristics of the ETPN design representation 
which serves as the intermediate specification of the designed 
systems. The synthesis process based on this model is then 
discussed in section 3 together with a description of the 
CAMAD synthesis lpackage. In section 4, we describe the 
module partitioning problem and its solutions. Finally we 
summarize the discussions in section 5. 

2. The ETPN Design Representation 

The ETPN model consists of a data part represented as a 
digraph where the nodes are used to model data manipulation 
units (arithmetic operators, storages, etc.) and the arcs are 
used to model the communication paths between them. These 
nodes and arcs are abstract models which may have different 
levels of granularity. For example, a node may be used to 
model a register with one input port and one output port. In 
other cases, a node may represent a large VLSI component, 
such as a microprocessor. The combination of such high level 
function modules (other examples are a CPU or a memory 
module) with low level elements like gates in the same 
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specification results in a highly flexible and efficient cell-baaed 
strategy. 

Further, the ETPN model utilizes a hierarchical strategy to 
deal with different levels of details of the designed systems; 
each node of the data part, for example, can be itself another 
very complicated digraph represented in ETPN forms. In 
this way, the ETPN design representation is capable of 
capturing abstract information so as to give designers as well 
as design tools freedom in the implementation phase to make 
trade offs to reach optimal solutions. It also provides, on the 
other hand, possibilities for a designer to predefine lower level 
details when he feels it is necessary to freeze some 
implementation decision in the higher level in order to cut 
down the design search space or to make use of some 
standard components stored in a cell library, for example. 

The ETPN data part is controlled by a control engine that 
produces a sequence of control signals to evoke the data part 
in an order consistent with the behavior of the designed 
system. This control part is modelled as a timed Petri net 
which requests a token to reside in a place for some period of 
time before it can be used to enable a transition [9], [ll]. This 
time interval represents the time required to finish the 
associated operations in the data part. 

The use of Petri nets provides the ability to directly describe 
concurrency and parallelism. Petri nets also allow explicit 
asynchronous description of control (some of them may later 
be converted to synchronous control structures). In the 
ETPN model, no assumption about the existence of a 
centralized clock or a clock hierarchy is made; though a local 
clock mechanism will later provide necessary clock signals to 
synchronize operations within each isochronous region. 

The behavior of a Petri net is also non-deterministic, which 
makes it very difficult to analyze it and to use it as design 
representations. In the present approach, we have excluded 
the non-deterministic aspect of Petri nets by introducing a 
restricted transition firing rule; a transition will fire 
immediately when it is enabled and the guard condition is 
true (condition signals are produced by the data part as the 
result of some operations). This restriction results in the 
reduction of complexity of the “reachability tree” by a 
significant order, thus reducing the complexity of analysis of 
the control Petri nets in our model 191. 

3. The CAMAD Synthesizer 

The overall structure of the CAMAD synthesizer is depicted 
in Fig.1, where a high level behavioral description is first 
transformed into a data flow representation and then into the 
intermediate representation of the ETPN model which 
consists of a data part and a control structure. The ETPN 
representation is then manipulated by a set of 
semantics-preserving transformation algorithms, which 
collapse the possible data elements or control elements to 
reflect the decision to share hardware resources. The module 
partitioner is responsible for dividing the design into 
submodules and designing communication protocols of the 
interfaces between them. Both the transformation and 
partitioning processes are guided by heuristic search 
strategies. In addition to the automatic mode, however, all of 
the algorithms in the CAMAD synthesizer also provide user 
interactions to allow designers to override the decision made 
by the system, or to make their own design decisions. 
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Fig.1 Overview of the CAMAD synthesizer 

CAMAD is driven by a generic menu handling system, which 
allows the reconstruction of the structure of CAMAD as 
implementation proceeds. This menu handling system is used 
to interface the design algorithms and designers in an 
interactive way via a terminal. The structure of the menu is 
separately stored in a form of dimensional flowchart outside 
the system. An interactive tool for creating and 
manipulating dimensional flowcharts, called DIMsystem, 
developed at Linkijping University [4], is used to create such a 
menu structure. If the menu structure is not satisfied or new 
menu item is to be added into the system because of the 
creation of new algorithms, we can use the DIMsystem to 
change the menu structure and run the menu constructor 
program to build a new structure of the whole system. 

In this way, the designers can also reconstruct the menu to 
suit their particular design requirements or personal tastes. 
This is considered as one way to resolve the expert/layman 
conflict in expectation for man-machine interface design. An 
experienced user of the system would like to go directly into 
the appropriate procedure as quickly as possible; a new user, 
on the other hand, would like the system to provide as much 
help information as possible to guide him to the desired place. 

3.1 Construction of the ETPN Representation 

Unlike intermediate design representations such as the ETPN 
model, a product specification, i.e., the input to the design aid 
system, is more desirable to be a high level behavioral 
description language, e.g., ISPS [l]. A high level behavioral 
description specifies only the functions the hardware must be 
able to perform without prescribing the physical structure of 
the implementation. This will free the designers from the 
burden of selecting a good implementation structure and 
allow them to concentrate on the functionality of the system. 
The synthesis algorithm must then be able to transform such 
a high level behavioral description into a set of function 
modules or blocks that as a whole will implement the specified 
semantics. 
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The first step of synthesizing VLSI systems into their 
implementation structures in the CAMAD environment is 
then to transform a behavioral description into its ETPN 
representation. Tlhis transformation is divided into two 
phases, as illustrated in Fig.1. First the high level behavioral 
description is transformed into its equivalent data flow 
representation with. each node representing one instruction 
and an arc from one instruction node to another meaning 
basically that the second instruction may not be executed 
until the first has been completed. 

The second step is to transform this data flow representation 
into the ETPN representation, which is quite straightforward. 
Basically each node of the data flow representation has its 
corresponding place in the control part. An arc which 
represents a data dependency between two nodes is modelled 
as a transition. If the dependency is conditional, the 
corresponding transition is also conditional, i.e., guarded by a 
condition signal coming from the data part (we assume each 
of the condition signals is created by some dedicated 
operation). A node which depends on two or more nodes will 
be mapped into a synchronization transition. 

The image of the data flow representation on the data part 
digraph is formed Iby the convention that each variable will 
have only one place of resource, i.e., each variable is assumed 
at this point to be implemented by one register. All of the 
operations, on the other hand, will have their own copy of the 
resource, i.e., even if 10 instances of the f operation appear in 
the data flow representation and all are going to be 
implemented by a single ADD unit, they will be present as 10 
different operators at this point. 

The arcs that represent the connections of these data 
manipulation units will be used to model the data 
communication between them. If there is some data 
dependency between a set of data units, e.g., A := B + C, 
then there will be arcs connecting the output port of B and of 
C to the input por-ts of the adder, and an arc connecting the 
output port of the adder to the input port of A. These arcs 
will be guarded by the corresponding control signal for this 
data flow graph node in the control net. In this way, it is 
clear that the addition of B and C is performed and the sum 
is fed into A only when the corresponding control signal is on 
(a token residing in a place represents a control signal being 
sent to all of its guarding arcs), as illustrated in Fig.2. 

3 
1 
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Q 

Fig.2 An ETPN ezample 

During the above transformations, it is assumed that a 
potentially unbounded number of abstract function units 
(operators) are available; therefore, the ETPN representation 
at this point is still more or less a data flow representation 
rather than a physical implementation. The important 
property of this ETPN representation, however, provides the 
possibility of applying a set of simple synthesis algorithms to 
reduce the required number of function units as well as data 

paths to a level where each node of the data part can be 
implemented by a physical hardware component and each arc 
by a physical connection. The control part, on the other 
hand, can be implelmented by microprograms, PLAs, or 
dedicated circuits. 

Further the produced ETPN representation has a set of 
important properties which help to avoid some traditional 
difficulties of utilizing Petri net models due to the complexity 
of analysis [lo]. E:xamples of such properties are safeness and 
conflict-freeness. Safeness is an essential property for 
hardware design using Petri net models, because it is 
erroneous to have two operations going on in the same 
operator simultaneously. On the other hand, conflicts are 
excluded from our model due to the way we interpret the 
places of the nets; a token coming into a place in our model 
indicates that some operations have been started in the data 
part. When the token leaves the place, the associated 
operations are supposed to be finished; consequently, new 
operations can be started. If a token in a place can make, for 
example, two transitions firable at the same time, it means 
that the two sets of operations related to these two transitions 
can be performed after the associated operations of this place 
finish. To tire one of the transitions, however, will disable 
the other, resulting in a contradiction. 

To solve the above problem, we can either allow one token to 
fire more than one transition, or exclude the case where one 
token can make more than one transition lirable. The latter 
solution is chosen in the present approach. Therefore, if the 
completion of an operation will enable more than one 
operation in the data flow representation, we will duplicate its 
associated place to form a set of finked places, as illustrated in 
Fig.3 (CSff, . . . . CSjk). All of the linked places of the same 
data flow node will have the same amount of execution time; 
but only the first place, CS~I in the example illustrated in 
Fig.3, is associated with the corresponding data part. The 
other places are used here only as auxiliary places to make 
the produced net conflict free and at the same time keep the 
semantics of the designed system unchanged. 
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Fig.3 The linked places 

3.2 Basic Transformations 

After the input behavioral description which may consist of 
functions at different levels and in different forms is 
transformed into the ETPN representation which consists of 
only well defined functional primitives, it will be analyzed and 
reconstructed until a satisfactory result is produced. The 
reconstruction process is carried out by a set of basic 
transformation algorithms discussed in [9]. The basic 
principle here is to share components as much as possible, 
which can be done by trading performance for resources. The 
major resources to be considered here is the operators 
represented by the nodes and the connections denoted by the 
arcs. 
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One example to share operators is to do an Operator Merger 
ss illustrated in Fig.4, which folds two operator nodes into 
one. It is easy to see that if C’S1 and CSP will not have 
tokens appearing at the same time, such a merger will not 
change the semantics of the designed system. Other 
examples of mergers are Connection Merger to share physical 
bus by logic connections and Constant Merger to collapse the 
data part and possibly control part where the computation 
can be executed in the design time. The later is similar to 
the constant folding technique for code improvement in 
optimizing compiler. 

Fig.4 An example of operator merger 

Other transformations may also involve the control part of 
the designed system. For example, we can stretch those 
control places that are in the form of concurrency into a 
sequence of places in order to facilitate an operator merger or 
to reduce the complexity of the control structure during the 
implementation. 

3.3 Optimization Strategy 

The choice of a sequence of transformation algorithms to 
apply to a ETPN representation affects the final result of the 
design; one transformation may, for example, prevent 
another one with more effective gains. A general design space 
search strategy is needed to achieve an optimal solution. The 
goal of our optimization is the overall system performance and 
the estimated layout area requirement. More specifically, 
optimization is measured by a set of cost matrices, each of 
which represents an aspect of the design. 

Some of these matrices associated to the nodes of the data 
part are used to store the cost of the function of each node in 
terms of implementation (e.g., area requirement); estimated 
time of delay at the nodes; and the frequency of the using of 
this function units. Cost matrices associated with the arcs of 
the data part are used to store the cost of the 
communications in terms of implementation; the estimated 
time of delay at this connection; and the data bandwidth 
required by this connection. 

Given such a set of matrices and a vector of scales each of 
which represents the weight of a matrix (hence an aspect of 
the system), an estimated design complexity measurement can 
be calculated. The optimization algorithm will then try to 
minimize this complexity measurement, thus creating an 
optimal design, by applying a sequence of transformation 
algorithms. The weight vector allows the designers to stress 
some aspects of the design over others so as to suit different 
design tastes. It can also be used to produce a series of 
designs based on the same specification but running at 
different speeds or occupying different areas of silicon space. 

A systematic way to reach the optimal solution is to search 
for all possible sequences and compare the complexity 

measurements of their final results; the best will then be 
selected, which is a NP complete problem. However, the 
present approach provides a basis for heuristic solutions to be 
developed. The general strategy we use is an iterative 
improvement strategy which starts with the system in a 
known configuration and applies an operation to each part of 
the system in turn until a rearranged configuration that 
improves the design is discovered. The criteria used for the 
choice of subparts to be improved are the critical path and 
critical signal. In each synthesis step, a critical path/signal is 
calculated, and the related part is improved by an appropriate 
transformation until a better design is achieved. This 
strategy will not always create an optimal design, but in most 
of the design cases, it assures a near optimal solution. 

In the ETPN model, a set of operations in the data part is 
supposed to finish within the period of time when the 
associated control signal is on. The length of the time for a 
control signal to keep “high” must then be decided by the 
time taken by the most time consuming operation. The 
associated path is the critical path for this control signal. The 
time between two control signals, i.e., two set of operations, is 
also defined by the worst case of paths between this two 
places. For example, a transition may have two input places, 
one associated with a very long operation, the other 
associated with a quick one. The later must then always wait 
for the former to finish before the transition can be fired. The 
former place together with its preceding places if any also 
forms a critical path. Critical signals, on the other hand, are 
the signals whose path lengths and associated delays are 
critical to the overall performance of the designed system. 
The property of critical signal analysis differs from that of 
critical path analysis in that the dynamic feature of the 
system is taken into account in the former case, but not in 
the latter one. 

4. Partitioning of Systems 

In this section, we will discuss the problem of partitioning a 
system, represented in ETPN forms, into a set of ASAP based 
modules which can operate at different rates of speeds. 
Formally a partition of the ETPN representation of a system 
is a set of arcs (in the data part) and transitions (in the 
control part) which separate the data part into a set of data 
sub-parts and the control into a set of control sub-parts. A 
control subpart must match a data subpart, thus forming an 
ASAP module. The major criteria for the partitioning 
algorithm are the communication required between the 
partitioned modules. A partition must, of course, also satisfy 
constraints of size, number of unique assemblies, and pin-out. 

The proposed partitioning algorithm consists of two parts. 
The first part is a stepwise abstraction phase in which the 
ETPN representation is transformed step by step towards a 
representation with a higher level of granularity. That is, in 
each step of the transformation, some possible reconstruction 
of the data part and the control structure is done in order to 
build blocks of control part (data part) such that each block 
can be replaced by a single place (data node). The second 
part utilizes a divide and conquer algorithm for the final 
partitioning. 

4.1 Stepwise Abstraction 

One of the major weakness of using Petri nets as modelling 
tools is that as the number of places and transitions increases, 
the analysis of all possible interactions becomes almost 
impossible. One way to solve this problem is to abstract 
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subnets into places (transitions) before analysis is carried out. 
This will significantly reduce the number of the nodes in the 
net so as to reduc,e the time required for the final partitioning 
where a through a.nalysis of the net is necessary to produce an 
optimal solution. 

Techniques for making abstraction of Petri nets while 
preserving important properties like safeness, conflict-freeness 
and liveness have been discussed in [12], [13]. One technique 
we employ here is to incrementally search the control Petri 
net for subnets that are well-formed blocks [13]. However, 
when deciding whether a well-formed subnet is going to be 
abstracted into a single place in the present approach, we 
must also take into account whether its corresponding data 
sub-parts are tightly connected to each other. The analysis 
of this connectivity is, nevertheless, quite straightforward 
because each time only a small part of the design is 
considered. 

Another factor that should be considered when replacing a 
subnet by a single place is whether the abstraction will result 
in possible abstraction of the data sub-parts. A data 
sub-part is said to be well-formed under a well-formed control 
block if its internal arcs are guarded only by control signals 
corresponding to those places in the control block. If a 
well-formed control block is abstracted into a single place, all 
of its associated well-formed data blocks can be also 
abstracted into data nodes. One of such examples is 
illustrated in Fig& 

Fig.5 An ezample of control and data block abstraction 

4.2 Construction of the Partitioning Graph 

The final partitioning of systems into modules can be 
formulated as a graph partitioning problem where a system is 
formalized as a graph with the components being the vertices 
and the interconnection the edges. Associated with the 
vertices and the edges are some forms of cost. The 
partitioning algorithm decomposes the graph into a set of 
subgraphs so as to minimize the sum of the “cost” on all cut 
edges under a set of constraints. What we are going to 
describe here is :a way to transform the abstracted ETPN 
model into a single graph representation with cost 
measurement on the edges so that some existing effective 
algorithms for graph partitioning, for example, those discussed 
in [5], can be unitized. 

The separation of the data part and the control part makes 
the partitioning problem very difficult because of the 
references between two graphs. One way to solve this 
problem is to take one graph as the basis and reduce the 
references to the other as much as possible. We have chosen 
to take the control Petri net as the basis of the partitioning 
graph, i.e., the partitioning graph is similar to the topological 
structure of the control Petri net. In the partitioning graph, 

however, both places and transitions of the Petri net are 
represented as vertices. Connections between places and 
transitions, on the other hand, are represented as edges that 
are called C-edges. 

To reduce references to the data part digraph during the 
partitioning process., we must have a way to represent the 
structure of the data part in the partitioning graph. For this 
purpose, those vertices representing originally Petri net places 
are connected by D-edges which capture the connectivity 
information of the data part. If the corresponding data 
sub-parts of two Petri net places share the same data 
manipulation units, the “cost” assigned to the D-edge which 
connects their associated vertices in the partitioning graph 
will be equal to wd, a weight indicating the importance of the 
data part in the partitioning algorithm. If their 
corresponding data sub-parts are only connected by data 
paths without sharing data manipulation units, the “cost” on 
the D-edge will be between zero and wd depending on the 
bandwidth of the data paths. In the caSe where the 
corresponding data sub-parts do not have any connections, 
the “cost” of the D-edge equals zero, and this D-edge can 
then be taken away to reduce the complexity of the graph. 

The “costs” of the C-edges, on the other hand, capture the 
effect of partitioning upon system performance and will be 
calculated by an incremental algorithm. Starting from the 
vertices representing the initially marked places, the 
algorithm assigns the “cost” of all their output edges (i.e., the 
edges representing the output arcs of the places) to be We, a 
weight indicating the importance of the control part in the 
partitioning process. The algorithm will then visit and assign 
“cost” to each C-edge of the graph in turn by following the 
C-edges in the direction of the corresponding Petri net arcs. 
The rules for calculating new “costs” based on the previous 
ones are given in Fig.6, where fp is the probability of a token 
in the place being used to fire its pth alternative output 
transition. This dynamic information of the Petri net 
execution can be collected from simulation or by the analysis 
of the application algorithms. Note also that fi + fe + . . . + fk 
should equal 1 for every place (k is the number of output 
transitions of the place). 

j, = f, * (i, + i> + .. + is,), 
p = 1,2...kz 

jp = min {it + in l l i);,}, 

p = 1,2..., k> 

(al forplaces (b) for transitions 

Fig.6 C-edge cost calculation rules 

In the caSe of a loop, an estimation of average number the 
loop body is repeated each time it is entered should be 
provided to the algorithm. This average repeating number 
can be again collected from simulation or by the analysis of 
the application algorithms. 

After the ETPN model of the designed system is transformed 
into a graph with cost measurement on all edges, a graph 
partitioning algorithm can be utilized to do the final 
partitioning. We use a divide and conquer method discussed 
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in PI, where the system graph is first divided into two 
roughly equal size submodules. Each submodule is then 
divided into two sub-submodules. This process is continued 
until sufficiently small modules are achieved. In each step of 
thii process, the algorithm consists of two parts, a 
constructive part for preliminary partitioning, and an 
optimization part for iterative improvement of the solution, 
The designers can change Wd and/or WC to emphasize the 
data part (mainly silicon area concerned) or the control 
structure (mainly performance concerned) in the partitioning 
process to suit particular requirements of a design instance. 

4.3 Introduction of Clocks 

As previously mentioned, the ETPN model makes no 
assumption about the existence of a global clock or a clock 
hierarchy in the designed system. As the design proceeds, 
however, those operations that take too much time will be 
expanded into sequences of primitive activities each of which 
will finish approximately within a prescribed unit of time in 
order to facilitate the implementation. Nevertheless, it is 
only after the system is partitioned into a set of modules that 
a clock mechanism is introduced to each module forming an 
isochronous region. At that moment, we can assume that 
each transition within a module will be synchronized by a 
clock signal and each place will hold a token for normally one 
clock cycle or a number of clock cycles of time (when it waits 
for synchronization, or for some conditions to become true, 
etc.). 

4.4 Interface Protocols 

The partitioning algorithm divides a system into a set of 
modules connected to each other by arcs (in the data part) 
and transitions (in the control part). Note that there are also 
implicit connections formed by the splitting of control signals 
and conditional signals from their guarding arcs and 
transitions respectively. The arcs and transitions between 
two modules together with the possible control signals and 
conditional signals travelling between them form the 
abstraction of their interface. Details of the interface 
protocol, however, must be designed. 

We have chosen to use an embedded approach, namely, a 
three hand shaking protocol to interface different modules of a 
system, which allows message to be sent asynchronously from 
one module to another. The module which initiates the data 
transmission first makes sure that the other side is ready 
before it can start the data exchange process by sending a 
control signal. After the data has been sent, it makes sure 
that the data transmission is successfully accomplished by 
testing a condition signal (acknowledgement) from the other 
side. The cooperating module, on the other hand, must 
contain mechanisms for receiving the control signal and 
producing the condition signals according to the real time 
situation. This mechanism is designed as part of the data 
manipulation unit which participates in the communication. 

5. Conclusions 

We have described a VLSI system level design tool and the 
design methodology it supports. This design environment is 
based on a unified design representation, the ETPN model. 
One of the features of this approach is its ability to design 
asynchronous concurrent systems from high level behavioral 
descriptions which make no assumptions about modules 
structure or clocking strategies of the implementations. 

The ETPN model is designed to be a multi-level design 
representation, which facilitates the implementation of the 
CAMAD design aid svstem built on ton of it. The CAMAD 
synthesizer consists of: a set of algorithms most of which take 
an ETPN representation es their input and produce as output 
another ETPN representation. Consequently, most of the 
algorithms are quite simple but still powerful because they 
can be iteratively utilized until satisfactory results have been 
achieved. This iterative improvement strategy coupled with 
the unified design representation results in an integrated 
design environment. 

Further, the use of Petri net model for the control part and 
digraphs for the data part allows a direct mapping of the 
ETPN model into graphs. Therefore, it is possible to utilize 
graphic means to interface the designers and the CAMAD 
design aid. Graphic representations are also particularly 
useful for the display of dynamic behavior of the designed 
systems, which is considered very important for helping the 
designers to grasp the dynamic aspects of the implementation. 
A graphic simulator for vividly displaying the flowing of data 
and control signals in the designed systems is very desirable 
for this purpose. This part of the work, however, has not 
been implemented yet. 
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