
Synthesis of VLSI Systems with the CAMAD Design Aid

Zebo Peng

Department of Computer and Information Science
Linkiiping University

S-581 83 Linkiiping, Sweden

Abstract

CAMAD is a high level design tool which helps designers to
model, analyze, and design VLSI systems. This design aid
system is based on a unified design representation model
derived from timed petri nets and consisting of separate but
related models of control and data parts. The present paper
describes the automatic synthesis package of the CAMAD
system which takes a high level behavioral description as its
input and synthesizes it into an implementation structure.
This implementation structure may then be partitioned into
several quasi-independent modules with well-defined
interfaces, which allows potentially asynchronous operation
of the designed systems as well as physical distribution of the
modules.

1. Introduction

CAMAD (Computer Aided Modelling, Analysis, and Design
of VLSI Systems), a system level design tool, is currently
under development at Linkijping University. CAMAD is
built around a unified design representation model described
in [9], which consists of separate but related models of control
structures and data parts. The control part is modelled as a
timed Petri net with restricted transition firing rules. The
data part, on the other hand, is represented as a digraph.
This extended timed Petri net (ETPN) model differs from
other Petri net models used mainly for descriptive and
analysis purposes [lo] in that it addresses the issue of design
directly and allows graphical representation of the behavior as
well as structure of a system.

This paper describes the synthesis of VLSI systems specified
by their high level behavioral descriptions into
implementation structures with the CAh4AD synthesis
package. Other DA systems which start with a high level
behavioral description are CMUDA(2], ADAM[S], and
MIMOLA[8]. Most of these systems have concentrated on
the synthesis of centralized processing units. The present
approach, however, attempts to address the design of
decentralized systems where it is important to partition a
system into a set of loosely coupled modules so as to allow
asynchronous operation of the designed systems as well as
physical distribution of the modules.

The synthesis task is accomplished by a series of simple
ETPN transformations each of which guarantees the
preservation of the system semantics. One important
characteristics of the present approach is that the ETPN
model allows us to view a behavioral description aa a
prim&e structural description. This structural description
is, of course, very crude, i.e., if we implement it directly, we
get a very expensive design. But once we have a structural

description, we can make improvement on it to produce a
better one; moreover this improvement can be done step by
step until a satisfactory result is reached. This improvement
process is guided by an optimization strategy that decides
which transformation algorithm to use in each step. The
basic optimization trade-off here is silicon area vs. time which
can be made by trading data paths for control structure, or
vice versa. Unlike most other control/data path allocations
that only attempted to allocate one dimension of the
control/data path problem at a time, we integrate them
together in the synthesis process. Therefore, the advantages
from compacting the data part, for example, can be compared
immediately with the possible expansion of the control logic
to justify the compaction.

This work is part of the ASAP project (An Architectural
Strategy for Asynchronous Processing) at Linkijping
University. We are aiming at developing CAD tools and
architecture support for a design environment in which
asynchronous concurrent systems can be fist specified
without regard to the detailed implementation or packaging of
their modules and then either allow the designer to explore
the performance and cost implications of different
implementations or have the system attempt to automatically
provide an optimize<1 solution based on a library of functiaal
implementations (6)) [7], [9].

The ETPN model and its basic transformations have been
discussed in [9]; the present paper will concentrate on the
problem of how to utilize this model in the synthesis process
of VLSI system and to partition an ETPN description into
ASAP based modules. In section 2, we describe briefly the
major characteristics of the ETPN design representation
which serves as the intermediate specification of the designed
systems. The synthesis process based on this model is then
discussed in section 3 together with a description of the
CAMAD synthesis lpackage. In section 4, we describe the
module partitioning problem and its solutions. Finally we
summarize the discussions in section 5.

2. The ETPN Design Representation

The ETPN model consists of a data part represented as a
digraph where the nodes are used to model data manipulation
units (arithmetic operators, storages, etc.) and the arcs are
used to model the communication paths between them. These
nodes and arcs are abstract models which may have different
levels of granularity. For example, a node may be used to
model a register with one input port and one output port. In
other cases, a node may represent a large VLSI component,
such as a microprocessor. The combination of such high level
function modules (other examples are a CPU or a memory
module) with low level elements like gates in the same

Paper 15.3
278

23rd Design Automation Conference

0736-100X/86/0000/027~$03.00 01986 IEEE

http://crossmark.crossref.org/dialog/?doi=10.5555%2F318013.318057&domain=pdf&date_stamp=1986-07-02

specification results in a highly flexible and efficient cell-baaed
strategy.

Further, the ETPN model utilizes a hierarchical strategy to
deal with different levels of details of the designed systems;
each node of the data part, for example, can be itself another
very complicated digraph represented in ETPN forms. In
this way, the ETPN design representation is capable of
capturing abstract information so as to give designers as well
as design tools freedom in the implementation phase to make
trade offs to reach optimal solutions. It also provides, on the
other hand, possibilities for a designer to predefine lower level
details when he feels it is necessary to freeze some
implementation decision in the higher level in order to cut
down the design search space or to make use of some
standard components stored in a cell library, for example.

The ETPN data part is controlled by a control engine that
produces a sequence of control signals to evoke the data part
in an order consistent with the behavior of the designed
system. This control part is modelled as a timed Petri net
which requests a token to reside in a place for some period of
time before it can be used to enable a transition [9], [ll]. This
time interval represents the time required to finish the
associated operations in the data part.

The use of Petri nets provides the ability to directly describe
concurrency and parallelism. Petri nets also allow explicit
asynchronous description of control (some of them may later
be converted to synchronous control structures). In the
ETPN model, no assumption about the existence of a
centralized clock or a clock hierarchy is made; though a local
clock mechanism will later provide necessary clock signals to
synchronize operations within each isochronous region.

The behavior of a Petri net is also non-deterministic, which
makes it very difficult to analyze it and to use it as design
representations. In the present approach, we have excluded
the non-deterministic aspect of Petri nets by introducing a
restricted transition firing rule; a transition will fire
immediately when it is enabled and the guard condition is
true (condition signals are produced by the data part as the
result of some operations). This restriction results in the
reduction of complexity of the “reachability tree” by a
significant order, thus reducing the complexity of analysis of
the control Petri nets in our model 191.

3. The CAMAD Synthesizer

The overall structure of the CAMAD synthesizer is depicted
in Fig.1, where a high level behavioral description is first
transformed into a data flow representation and then into the
intermediate representation of the ETPN model which
consists of a data part and a control structure. The ETPN
representation is then manipulated by a set of
semantics-preserving transformation algorithms, which
collapse the possible data elements or control elements to
reflect the decision to share hardware resources. The module
partitioner is responsible for dividing the design into
submodules and designing communication protocols of the
interfaces between them. Both the transformation and
partitioning processes are guided by heuristic search
strategies. In addition to the automatic mode, however, all of
the algorithms in the CAMAD synthesizer also provide user
interactions to allow designers to override the decision made
by the system, or to make their own design decisions.

_ Behavioral ;
Descriptions .:

I

L d
Semantics-Pres.
Transformation

3
Module >

Partitioning

Back .End :
Synthesis

Fig.1 Overview of the CAMAD synthesizer

CAMAD is driven by a generic menu handling system, which
allows the reconstruction of the structure of CAMAD as
implementation proceeds. This menu handling system is used
to interface the design algorithms and designers in an
interactive way via a terminal. The structure of the menu is
separately stored in a form of dimensional flowchart outside
the system. An interactive tool for creating and
manipulating dimensional flowcharts, called DIMsystem,
developed at Linkijping University [4], is used to create such a
menu structure. If the menu structure is not satisfied or new
menu item is to be added into the system because of the
creation of new algorithms, we can use the DIMsystem to
change the menu structure and run the menu constructor
program to build a new structure of the whole system.

In this way, the designers can also reconstruct the menu to
suit their particular design requirements or personal tastes.
This is considered as one way to resolve the expert/layman
conflict in expectation for man-machine interface design. An
experienced user of the system would like to go directly into
the appropriate procedure as quickly as possible; a new user,
on the other hand, would like the system to provide as much
help information as possible to guide him to the desired place.

3.1 Construction of the ETPN Representation

Unlike intermediate design representations such as the ETPN
model, a product specification, i.e., the input to the design aid
system, is more desirable to be a high level behavioral
description language, e.g., ISPS [l]. A high level behavioral
description specifies only the functions the hardware must be
able to perform without prescribing the physical structure of
the implementation. This will free the designers from the
burden of selecting a good implementation structure and
allow them to concentrate on the functionality of the system.
The synthesis algorithm must then be able to transform such
a high level behavioral description into a set of function
modules or blocks that as a whole will implement the specified
semantics.

Paper 15.3
279

The first step of synthesizing VLSI systems into their
implementation structures in the CAMAD environment is
then to transform a behavioral description into its ETPN
representation. Tlhis transformation is divided into two
phases, as illustrated in Fig.1. First the high level behavioral
description is transformed into its equivalent data flow
representation with. each node representing one instruction
and an arc from one instruction node to another meaning
basically that the second instruction may not be executed
until the first has been completed.

The second step is to transform this data flow representation
into the ETPN representation, which is quite straightforward.
Basically each node of the data flow representation has its
corresponding place in the control part. An arc which
represents a data dependency between two nodes is modelled
as a transition. If the dependency is conditional, the
corresponding transition is also conditional, i.e., guarded by a
condition signal coming from the data part (we assume each
of the condition signals is created by some dedicated
operation). A node which depends on two or more nodes will
be mapped into a synchronization transition.

The image of the data flow representation on the data part
digraph is formed Iby the convention that each variable will
have only one place of resource, i.e., each variable is assumed
at this point to be implemented by one register. All of the
operations, on the other hand, will have their own copy of the
resource, i.e., even if 10 instances of the f operation appear in
the data flow representation and all are going to be
implemented by a single ADD unit, they will be present as 10
different operators at this point.

The arcs that represent the connections of these data
manipulation units will be used to model the data
communication between them. If there is some data
dependency between a set of data units, e.g., A := B + C,
then there will be arcs connecting the output port of B and of
C to the input por-ts of the adder, and an arc connecting the
output port of the adder to the input port of A. These arcs
will be guarded by the corresponding control signal for this
data flow graph node in the control net. In this way, it is
clear that the addition of B and C is performed and the sum
is fed into A only when the corresponding control signal is on
(a token residing in a place represents a control signal being
sent to all of its guarding arcs), as illustrated in Fig.2.

3
1

CS,

9
cs,
Q

Fig.2 An ETPN ezample

During the above transformations, it is assumed that a
potentially unbounded number of abstract function units
(operators) are available; therefore, the ETPN representation
at this point is still more or less a data flow representation
rather than a physical implementation. The important
property of this ETPN representation, however, provides the
possibility of applying a set of simple synthesis algorithms to
reduce the required number of function units as well as data

paths to a level where each node of the data part can be
implemented by a physical hardware component and each arc
by a physical connection. The control part, on the other
hand, can be implelmented by microprograms, PLAs, or
dedicated circuits.

Further the produced ETPN representation has a set of
important properties which help to avoid some traditional
difficulties of utilizing Petri net models due to the complexity
of analysis [lo]. E:xamples of such properties are safeness and
conflict-freeness. Safeness is an essential property for
hardware design using Petri net models, because it is
erroneous to have two operations going on in the same
operator simultaneously. On the other hand, conflicts are
excluded from our model due to the way we interpret the
places of the nets; a token coming into a place in our model
indicates that some operations have been started in the data
part. When the token leaves the place, the associated
operations are supposed to be finished; consequently, new
operations can be started. If a token in a place can make, for
example, two transitions firable at the same time, it means
that the two sets of operations related to these two transitions
can be performed after the associated operations of this place
finish. To tire one of the transitions, however, will disable
the other, resulting in a contradiction.

To solve the above problem, we can either allow one token to
fire more than one transition, or exclude the case where one
token can make more than one transition lirable. The latter
solution is chosen in the present approach. Therefore, if the
completion of an operation will enable more than one
operation in the data flow representation, we will duplicate its
associated place to form a set of finked places, as illustrated in
Fig.3 (CSff, CSjk). All of the linked places of the same
data flow node will have the same amount of execution time;
but only the first place, CS~I in the example illustrated in
Fig.3, is associated with the corresponding data part. The
other places are used here only as auxiliary places to make
the produced net conflict free and at the same time keep the
semantics of the designed system unchanged.

Qa

T
cs,, s, cs,

P

@ 6

1 1

Fig.3 The linked places

3.2 Basic Transformations

After the input behavioral description which may consist of
functions at different levels and in different forms is
transformed into the ETPN representation which consists of
only well defined functional primitives, it will be analyzed and
reconstructed until a satisfactory result is produced. The
reconstruction process is carried out by a set of basic
transformation algorithms discussed in [9]. The basic
principle here is to share components as much as possible,
which can be done by trading performance for resources. The
major resources to be considered here is the operators
represented by the nodes and the connections denoted by the
arcs.

Paper 15.3
280

One example to share operators is to do an Operator Merger
ss illustrated in Fig.4, which folds two operator nodes into
one. It is easy to see that if C’S1 and CSP will not have
tokens appearing at the same time, such a merger will not
change the semantics of the designed system. Other
examples of mergers are Connection Merger to share physical
bus by logic connections and Constant Merger to collapse the
data part and possibly control part where the computation
can be executed in the design time. The later is similar to
the constant folding technique for code improvement in
optimizing compiler.

Fig.4 An example of operator merger

Other transformations may also involve the control part of
the designed system. For example, we can stretch those
control places that are in the form of concurrency into a
sequence of places in order to facilitate an operator merger or
to reduce the complexity of the control structure during the
implementation.

3.3 Optimization Strategy

The choice of a sequence of transformation algorithms to
apply to a ETPN representation affects the final result of the
design; one transformation may, for example, prevent
another one with more effective gains. A general design space
search strategy is needed to achieve an optimal solution. The
goal of our optimization is the overall system performance and
the estimated layout area requirement. More specifically,
optimization is measured by a set of cost matrices, each of
which represents an aspect of the design.

Some of these matrices associated to the nodes of the data
part are used to store the cost of the function of each node in
terms of implementation (e.g., area requirement); estimated
time of delay at the nodes; and the frequency of the using of
this function units. Cost matrices associated with the arcs of
the data part are used to store the cost of the
communications in terms of implementation; the estimated
time of delay at this connection; and the data bandwidth
required by this connection.

Given such a set of matrices and a vector of scales each of
which represents the weight of a matrix (hence an aspect of
the system), an estimated design complexity measurement can
be calculated. The optimization algorithm will then try to
minimize this complexity measurement, thus creating an
optimal design, by applying a sequence of transformation
algorithms. The weight vector allows the designers to stress
some aspects of the design over others so as to suit different
design tastes. It can also be used to produce a series of
designs based on the same specification but running at
different speeds or occupying different areas of silicon space.

A systematic way to reach the optimal solution is to search
for all possible sequences and compare the complexity

measurements of their final results; the best will then be
selected, which is a NP complete problem. However, the
present approach provides a basis for heuristic solutions to be
developed. The general strategy we use is an iterative
improvement strategy which starts with the system in a
known configuration and applies an operation to each part of
the system in turn until a rearranged configuration that
improves the design is discovered. The criteria used for the
choice of subparts to be improved are the critical path and
critical signal. In each synthesis step, a critical path/signal is
calculated, and the related part is improved by an appropriate
transformation until a better design is achieved. This
strategy will not always create an optimal design, but in most
of the design cases, it assures a near optimal solution.

In the ETPN model, a set of operations in the data part is
supposed to finish within the period of time when the
associated control signal is on. The length of the time for a
control signal to keep “high” must then be decided by the
time taken by the most time consuming operation. The
associated path is the critical path for this control signal. The
time between two control signals, i.e., two set of operations, is
also defined by the worst case of paths between this two
places. For example, a transition may have two input places,
one associated with a very long operation, the other
associated with a quick one. The later must then always wait
for the former to finish before the transition can be fired. The
former place together with its preceding places if any also
forms a critical path. Critical signals, on the other hand, are
the signals whose path lengths and associated delays are
critical to the overall performance of the designed system.
The property of critical signal analysis differs from that of
critical path analysis in that the dynamic feature of the
system is taken into account in the former case, but not in
the latter one.

4. Partitioning of Systems

In this section, we will discuss the problem of partitioning a
system, represented in ETPN forms, into a set of ASAP based
modules which can operate at different rates of speeds.
Formally a partition of the ETPN representation of a system
is a set of arcs (in the data part) and transitions (in the
control part) which separate the data part into a set of data
sub-parts and the control into a set of control sub-parts. A
control subpart must match a data subpart, thus forming an
ASAP module. The major criteria for the partitioning
algorithm are the communication required between the
partitioned modules. A partition must, of course, also satisfy
constraints of size, number of unique assemblies, and pin-out.

The proposed partitioning algorithm consists of two parts.
The first part is a stepwise abstraction phase in which the
ETPN representation is transformed step by step towards a
representation with a higher level of granularity. That is, in
each step of the transformation, some possible reconstruction
of the data part and the control structure is done in order to
build blocks of control part (data part) such that each block
can be replaced by a single place (data node). The second
part utilizes a divide and conquer algorithm for the final
partitioning.

4.1 Stepwise Abstraction

One of the major weakness of using Petri nets as modelling
tools is that as the number of places and transitions increases,
the analysis of all possible interactions becomes almost
impossible. One way to solve this problem is to abstract

Paper 15.3
281

subnets into places (transitions) before analysis is carried out.
This will significantly reduce the number of the nodes in the
net so as to reduc,e the time required for the final partitioning
where a through a.nalysis of the net is necessary to produce an
optimal solution.

Techniques for making abstraction of Petri nets while
preserving important properties like safeness, conflict-freeness
and liveness have been discussed in [12], [13]. One technique
we employ here is to incrementally search the control Petri
net for subnets that are well-formed blocks [13]. However,
when deciding whether a well-formed subnet is going to be
abstracted into a single place in the present approach, we
must also take into account whether its corresponding data
sub-parts are tightly connected to each other. The analysis
of this connectivity is, nevertheless, quite straightforward
because each time only a small part of the design is
considered.

Another factor that should be considered when replacing a
subnet by a single place is whether the abstraction will result
in possible abstraction of the data sub-parts. A data
sub-part is said to be well-formed under a well-formed control
block if its internal arcs are guarded only by control signals
corresponding to those places in the control block. If a
well-formed control block is abstracted into a single place, all
of its associated well-formed data blocks can be also
abstracted into data nodes. One of such examples is
illustrated in Fig&

Fig.5 An ezample of control and data block abstraction

4.2 Construction of the Partitioning Graph

The final partitioning of systems into modules can be
formulated as a graph partitioning problem where a system is
formalized as a graph with the components being the vertices
and the interconnection the edges. Associated with the
vertices and the edges are some forms of cost. The
partitioning algorithm decomposes the graph into a set of
subgraphs so as to minimize the sum of the “cost” on all cut
edges under a set of constraints. What we are going to
describe here is :a way to transform the abstracted ETPN
model into a single graph representation with cost
measurement on the edges so that some existing effective
algorithms for graph partitioning, for example, those discussed
in [5], can be unitized.

The separation of the data part and the control part makes
the partitioning problem very difficult because of the
references between two graphs. One way to solve this
problem is to take one graph as the basis and reduce the
references to the other as much as possible. We have chosen
to take the control Petri net as the basis of the partitioning
graph, i.e., the partitioning graph is similar to the topological
structure of the control Petri net. In the partitioning graph,

however, both places and transitions of the Petri net are
represented as vertices. Connections between places and
transitions, on the other hand, are represented as edges that
are called C-edges.

To reduce references to the data part digraph during the
partitioning process., we must have a way to represent the
structure of the data part in the partitioning graph. For this
purpose, those vertices representing originally Petri net places
are connected by D-edges which capture the connectivity
information of the data part. If the corresponding data
sub-parts of two Petri net places share the same data
manipulation units, the “cost” assigned to the D-edge which
connects their associated vertices in the partitioning graph
will be equal to wd, a weight indicating the importance of the
data part in the partitioning algorithm. If their
corresponding data sub-parts are only connected by data
paths without sharing data manipulation units, the “cost” on
the D-edge will be between zero and wd depending on the
bandwidth of the data paths. In the caSe where the
corresponding data sub-parts do not have any connections,
the “cost” of the D-edge equals zero, and this D-edge can
then be taken away to reduce the complexity of the graph.

The “costs” of the C-edges, on the other hand, capture the
effect of partitioning upon system performance and will be
calculated by an incremental algorithm. Starting from the
vertices representing the initially marked places, the
algorithm assigns the “cost” of all their output edges (i.e., the
edges representing the output arcs of the places) to be We, a
weight indicating the importance of the control part in the
partitioning process. The algorithm will then visit and assign
“cost” to each C-edge of the graph in turn by following the
C-edges in the direction of the corresponding Petri net arcs.
The rules for calculating new “costs” based on the previous
ones are given in Fig.6, where fp is the probability of a token
in the place being used to fire its pth alternative output
transition. This dynamic information of the Petri net
execution can be collected from simulation or by the analysis
of the application algorithms. Note also that fi + fe + . . . + fk
should equal 1 for every place (k is the number of output
transitions of the place).

j, = f, * (i, + i> + .. + is,),
p = 1,2...kz

jp = min {it + in l l i);,},

p = 1,2..., k>

(al forplaces (b) for transitions

Fig.6 C-edge cost calculation rules

In the caSe of a loop, an estimation of average number the
loop body is repeated each time it is entered should be
provided to the algorithm. This average repeating number
can be again collected from simulation or by the analysis of
the application algorithms.

After the ETPN model of the designed system is transformed
into a graph with cost measurement on all edges, a graph
partitioning algorithm can be utilized to do the final
partitioning. We use a divide and conquer method discussed

Paper 15.3
282

in PI, where the system graph is first divided into two
roughly equal size submodules. Each submodule is then
divided into two sub-submodules. This process is continued
until sufficiently small modules are achieved. In each step of
thii process, the algorithm consists of two parts, a
constructive part for preliminary partitioning, and an
optimization part for iterative improvement of the solution,
The designers can change Wd and/or WC to emphasize the
data part (mainly silicon area concerned) or the control
structure (mainly performance concerned) in the partitioning
process to suit particular requirements of a design instance.

4.3 Introduction of Clocks

As previously mentioned, the ETPN model makes no
assumption about the existence of a global clock or a clock
hierarchy in the designed system. As the design proceeds,
however, those operations that take too much time will be
expanded into sequences of primitive activities each of which
will finish approximately within a prescribed unit of time in
order to facilitate the implementation. Nevertheless, it is
only after the system is partitioned into a set of modules that
a clock mechanism is introduced to each module forming an
isochronous region. At that moment, we can assume that
each transition within a module will be synchronized by a
clock signal and each place will hold a token for normally one
clock cycle or a number of clock cycles of time (when it waits
for synchronization, or for some conditions to become true,
etc.).

4.4 Interface Protocols

The partitioning algorithm divides a system into a set of
modules connected to each other by arcs (in the data part)
and transitions (in the control part). Note that there are also
implicit connections formed by the splitting of control signals
and conditional signals from their guarding arcs and
transitions respectively. The arcs and transitions between
two modules together with the possible control signals and
conditional signals travelling between them form the
abstraction of their interface. Details of the interface
protocol, however, must be designed.

We have chosen to use an embedded approach, namely, a
three hand shaking protocol to interface different modules of a
system, which allows message to be sent asynchronously from
one module to another. The module which initiates the data
transmission first makes sure that the other side is ready
before it can start the data exchange process by sending a
control signal. After the data has been sent, it makes sure
that the data transmission is successfully accomplished by
testing a condition signal (acknowledgement) from the other
side. The cooperating module, on the other hand, must
contain mechanisms for receiving the control signal and
producing the condition signals according to the real time
situation. This mechanism is designed as part of the data
manipulation unit which participates in the communication.

5. Conclusions

We have described a VLSI system level design tool and the
design methodology it supports. This design environment is
based on a unified design representation, the ETPN model.
One of the features of this approach is its ability to design
asynchronous concurrent systems from high level behavioral
descriptions which make no assumptions about modules
structure or clocking strategies of the implementations.

The ETPN model is designed to be a multi-level design
representation, which facilitates the implementation of the
CAMAD design aid svstem built on ton of it. The CAMAD
synthesizer consists of: a set of algorithms most of which take
an ETPN representation es their input and produce as output
another ETPN representation. Consequently, most of the
algorithms are quite simple but still powerful because they
can be iteratively utilized until satisfactory results have been
achieved. This iterative improvement strategy coupled with
the unified design representation results in an integrated
design environment.

Further, the use of Petri net model for the control part and
digraphs for the data part allows a direct mapping of the
ETPN model into graphs. Therefore, it is possible to utilize
graphic means to interface the designers and the CAMAD
design aid. Graphic representations are also particularly
useful for the display of dynamic behavior of the designed
systems, which is considered very important for helping the
designers to grasp the dynamic aspects of the implementation.
A graphic simulator for vividly displaying the flowing of data
and control signals in the designed systems is very desirable
for this purpose. This part of the work, however, has not
been implemented yet.

6. Acknowledgements

I am very grateful to Dr. Bryan Lyles and Prof. Harold W.
Lawson Jr. for their helpful guidance and suggestions in the
present work. I would also like to thank Tony Larsson,
Mikael Patel, Johan Fagerstrom, and Krzysztof Kuchcinski
for their comments on parts of this paper. This research
project is partially supported by grants from STU - the
Swedish Board for Technical Development.

PI

PI

PI

L41

151

161

PI

PI

7. References

Barbacci, M.R., Barnes, G.E., Cattell, R.G., and
Siewiorek, D.P., The ISPS Computer Description
Language, Tech. Report, Dept. of Computer Science,
Carnegie-Mellon Univ., 1977

Director, S.W., Parker, A.C., Siemiorek, D.P., and
Thomas, D.E. Jr., A Design Methodology and Computer
Aids for Digital VLSI Systems, IEEE Trans. Circuits and
Systems, Vol.28, No.7, July 1981

Granacki, J., Knapp, D., and Parker, A., The ADAM
Advanced Design AutoMation System: Overtiew,
Planner, and Natural Language Interface, Proc. 22nd
Design Automation Conf., 1985

Jonsson, A., and Patel, M., An Interactive Flowcharting
Technique for Communicating and Realizing Algorithms,
Proc. 19th Hawaii Int. Conf. on System Sciences, Jan.
1986

Kerninghan, B. W., and Lin, S., An Efficient Heuristic
Procedure for Partitioning Graphs, Bell System Tech. J.,
VolA9, Feb. 1970

Lawson, H.W. Jr., and Lyles, J.B., An Architectural
Strategy for Asynchronous Processing, Prcc. IFIP 10.3
Workshop on Hardware Supported Implementation of
Concurrent Languages in Distributed Systems, IFIP 1984

Lyles, J.B., CAD Approaches for an Asynchronous
Architecture, Proc. Nordic Symp. VLSI in Computers and
Communications, Tampere, Finland, 1984

Manvedel, P., The MIMOLA Design System: Tools for

Paper 15.3
283

the Des+ of Digital Processors, l?roc. Zlst Design
Automation Conf., 1984

[9] Peng, Z., A Formal Approach to the Synthesis of VLSI
Systems From Their Behavioral Descriptions, Proc. 19th
Hawaii Int. Camnf. on System Sciences, Jan. 1986

[lo] Peterson, J.L., Petri Net Theory and the Modeling of
Systems, Reading, Prentice-hall, 1981

[ll] Sifakis, J., Petri Nets for Performance Evaluation, in
Mereuring, Modelling, and Evaluating Computer Systems,

Proc. 3rd Int. Symp. IFIF’ Working Group 7.3, H. Beilner
and E. Gelenbe, Eds., 1977

[12] Suzuki, I., and Murata, T., A Method for Stepwise
Refinement and Abstraction of Petri Net, J. of Computer
and System Sciences, Vo1.27, 1983

113) Valette, R., Analysis of Petri Nets by Stepwise
Refinements, J. of Computer and System Sciences,
Vo1.18, 1979

Paper 15.3
284

