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ABSTRACT
Reactive Programming is a style of programming that provides
developers with a set of abstractions that facilitate event handling
and stream processing. Traditional debug tools lack support for
Reactive Programming, leading developers to fallback to the most
rudimentary debug tool available: logging to the console.

In this paper, we present the design and implementation of
RxFiddle, a visualization and debugging tool targeted to Rx, the
most popular form of Reactive Programming. RxFiddle visualizes
the dependencies and structure of the data �ow, as well as the data
inside the �ow. We evaluate RxFiddle with an experiment involving
111 developers. �e results show that RxFiddle can help developers
�nish debugging tasks faster than with traditional debugging tools.
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1 INTRODUCTION
So�ware o�en needs to respond to external events and express
computations as data �ows. Traditionally, handling asynchronous
events was done using the Observer design pa�ern [23] (in object-
oriented environmets) or callback functions [22] (when the host
language supports higher-order functions). Using these pa�erns,
the system consuming the data does not have to block waiting for
new data to arrive, but instead it yields control until new data is
available. While these pa�erns decouple the data producer from
the consumers, they typically lead to dynamic registration, side
e�ects on the consumer side, and inversion of control [17, 46].
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Reactive Programming (RP) is an alternative to these pa�erns
for event driven computation. RP de�nes event streams as lazy col-
lections and provides operators that allow developers to deal with
the complications of asynchronous event handling. RP started in
academia in the form of Functional Reactive Programming (FRP) [15,
18, 19, 35, 39], but in recent years the use of RP has exploded. Lan-
guages such as Elm [14] and libraries such as Reactor [27], Akka [9]
and Rx [38] are being used by companies like Net�ix, Microso�
and Google, to build highly responsive and scalable systems. Front-
end libraries like Angular1, that use RP in their foundations, are
used by many large sites (9.1% of �antcast Top 10k websites2).
A group of developers and companies has standardized “Reactive
Programming” in the form of the Reactive Manifesto [8].

While reactive programs o�er more declarative and concise syn-
tax for composing streams, RP does not work well with traditional
interactive debuggers, shipped with most IDEs [48]. RP borrows
from Functional Programming (FP) for its abstractions, its laziness
and its use of “pure” functions. �ose features contribute to a con-
trol �ow that is hidden inside the RP implementation library and
lead to non-linear execution of user code. �is results in non-useful
stack traces, while breakpoints do not help either, as relevant vari-
ables are frequently out of scope. Furthermore, using a low level
debugger makes it harder to interact with the high level abstrac-
tions that RP provides. Compared to imperative programming,
there is limited knowledge on how to e�ciently debug reactive
programs. Traditional imperative program debugging practices [5]
do not apply to RP [48].

In this work, we address the issue of RP debugging by design-
ing and implementing a high level debugger called RxFiddle for a
popular version of RP, namely Reactive Extensions (Rx). RxFiddle
(1) provides an overview of the dependencies in the data �ow, (2)
enables introspection of both the data �ow and the timing of in-
dividual events, and (3) enables developers to trace values back
through the data �ow. To guide our design, we conducted inter-
views among professional developers. A�er building RxFiddle, we
validated it with a user experiment involving over 100 developers.
We found that RxFiddle can help developers comprehend and debug
RP data �ows faster.

To steer the research, we formulate the following research ques-
tions:
RQ1 How do developers debug RP?

Before designing tools it is important to understand the
practices they must support along with the problems in
the current state of the art [50]. For this, we performed
an extensive analysis of the literature (both scienti�c and
practitioner-oriented) and conducted interviews with RP
practitioners.

1h�ps://angular.io/
2h�ps://trends.builtwith.com/, accessed 2017-06-20
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RQ2 How can we design a tool that helps developers debug RP?
By examining the results of RQ1, the limitations of tradi-
tional debuggers and the opportunities that RP programs
o�er in terms of structure and explicit dependencies be-
tween data �ows, we design a novel RP debugger. We
validate the design’s feasibility by providing an implemen-
tation for the popular JavaScript RP library RxJS.

RQ3 Can our specialized RP debugger speed up comprehension &
debugging?
To validate our design and examine whether specialized
tooling can improve the debugging experience, we measure
the speed and correctness of comprehension with an open
experiment.

2 BACKGROUND: REACTIVE
PROGRAMMING AND RX

RP is a declarative programming paradigm for working with streams
of input data. According to a de�nition of reactivity3 a reactive
program must interact with the environment “at a speed which is
determined by the environment”. Conceptually, when a reactive
program is run, it sets up a data processing pipeline and waits until
input arrives, i.e., when the environment changes. Reactive Pro-
gramming languages and libraries provide developers with a set of
abstractions and methods to create such programs.

Many RP implementations share a notion of a collection that ab-
stracts over time, in contrast to space like standard collections. �is
collection comes in di�erent �avors, such as Observable (Rx [38]),
Signal (Elm [14]), Signal/Event (REScala [47]) or Behavior/Event
(FRP [18]). �e implementations di�er in the precise semantics of
their collections, their execution model (push/pull), and the set of
available operators. In this paper, we focus on the Rx formulation,
but our work is applicable to other RP implementations to some
extent.

Understanding how we derive our visualization requires a mini-
mal understanding of the internals of Rx. Rx introduces two basic
types, Observable and Observer. Observables de�ne the data �ow
and produce the data while Observers receive the data, possibly
moving the data further down the stream. Figure 1a shows a very
basic example of an “in situ” data �ow in Rx. Initially, an Observ-
able is created, here using the static of() method, then dependent
Observables are created using the map() and filter() methods on
the Observable instance. Finally we subscribe() to start the data
�ow and send the data to the console.

Assembly. It is important to note that Observables are lazy; ini-
tially they only specify a blueprint of the desired data �ow. Creating
this speci�cation is called the assembly phase. In Figure 1a, the
assembly phase consists of the calls to of(), map() and filter(),
creating respectively Observables o1, o2 and o3 (Figure 1b).

Subscription. When the subscribe() method of an Observable
is called, the data �ow is prepared by recursively subscribing “up”
the stream: every subscribe call creates an Observer, that is passed
to the input Observable, which again subscribes an Observer to its
input Observable, until �nally the root Observables are subscribed

3“Reactive programs [..] maintain a continuous interaction with their environment, at
a speed which is determined by the environment, not the program itself.” [6]

to. We call this the subscription phase. In Figure 1a, inside the single
subscribe() call, the Observer object s1 is created, and passed to o3,
which in turn will recursively subscribe to o2 with a new Observer
s2 with destination s1, until the full chain is subscribed (Figure 1b).

Runtime. A�er the root Observables are subscribed to, they can
start emi�ing data. �is is the runtime phase. Depending on the
nature of the Observable, this might a�ach event listeners to UI
elements, open network connections or start iterating over in mem-
ory data. Events are pushed to s3, to s2 and �nally to s1 which calls
console.log() in Figure 1a.

Rx identi�es three types of events that can occur during the
runtime phase: next, error and complete events. next events contain
the next value in the �ow, an error event signi�es an unsuccessful
termination to a stream, while a complete event denotes the suc-
cessful termination of the stream. �ere are restrictions on their
order: an Observable may �rst emit an unlimited amount of next
events, and then either an error or a complete event. Observables
do not need to emit any next events, and do not need to terminate.

More complex programs feature operators that merge Observ-
ables4, split Observables5 or handle higher-order Observables6,
resulting in more complex graphs. An example of a higher-order
Observable operation (flatMap()) is shown in Figure 1d. While
merging and spli�ing happens on an Observable level (the source
property still points to one or more dependencies), higher-order
Observable �a�ening only manifests within Observer structures
(there is no reference between the Observables). Figure 1e shows
this with an inner Observable that is subscribed twice (for both
values 2 and 3, value 1 is skipped), resulting in two identical data
�ows over o1. �e data �ow through s4,n and s4m is pushed into s1,
�a�ening the data �ow.

Marble Diagram. �e term Marble Diagram comes from the
shape of the glyphs in the images used to explain Rx in the o�cial
documentation. An example is shown in Figure 1c. �e diagrams
contain one or more timelines containing the events that enter and
leave Observables. Next events are typically represented with a
circle, error events with a cross and complete event with a vertical
line. From the diagram developers can understand how operators
work by inspecting the di�erence between the timelines, where
events might be skipped, added, transformed or delayed. Mapping
time on the x-axis provides insight that is missing when inspecting
only a single time slice.

3 RESEARCH DESIGN
To answer our research questions, we employ a three-phase Se-
quential Exploratory Strategy, one of the mixed methods research
approaches [13, 28]. First, we interview professional developers
and review available documentation (RQ1) to form a understanding
about current debugging practices. Second, we apply this under-
standing to design a debugger and implement it to test its feasibility
(RQ2). Finally, we validate the debugger using an experiment (RQ3).

4 concat(), merge(), combineLatest(), and zip()
5 partition(), or through multicasting with share() or publish()
6 flatMap(), mergeMap(), and concatMap()
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Observable.of(1, 2, 3)
.map(x => x * 2)
.filter(x => x < 3)
.subscribe(console.log)

(a) Rx code example

o1 o2 o3

s3 s2 s1

source source

map( * 2) �lter ( ¡ 3)

destination destination

subscribesubscribesubscribe

of(1,2,3)

(b) Rx graph example

(c) Marble Diagram

let inner = Rx.Observable.of("A", "B")
let outer = Rx.Observable.of(1, 2, 3)

.skip(1)

.flatMap(() => inner)

.subscribe()

(d) Higher-order �atMap operation

o2 o3 o4

s3 s2 s1

o1

s4,n

s4,m

source source

skip(1) �atMap(()⇒ inner)

destination destination

subscribesubscribesubscribe

subscribe de
sti

na
tio

n

subscribe

de
sti

na
tio

n

inner

of(1,2,3)

· · ·

· · ·

· · ·

(e) Higher-order Rx graph example

Figure 1: Samples of Rx Observables

4 RQ1: RP DEBUGGING PRACTICES
To validate the need for be�er tools we must �rst understand how
existing tools are used (RQ1). For this, we interview developers, as
we want to explore and understand how they use existing tools and
techniques to debug Rx code. �e questions are semi-structured.
We �rst establish a general understanding of the experience of the
subjects. We then ask several open questions regarding their use of
RP, how subjects debug RP and test RP. Table 1 lists the questions
used as a guideline for the interviews.

Five developers with professional programming experience rang-
ing from 4 to 12 years were interviewed. �e �rst four developers
(D1-D4) work in Company A, which builds reactive systems [8]
using various RP solutions. Developer experience with Rx ranges
from a month to over a year. �e ��h developer (D5) works in
Company B, and is concerned with building and maintaining a
large scale distributed server application, that uses Rx to handle
asynchronous events.

4.1 Interviews
In the following paragraphs we discuss the results of Q6-Q10 in
detail. Not every subject answered each question in the same detail,
so we discuss the answers that provide meaningful insights in the
current practice.

Testing. Of the 4 subjects of Company A, none performed tests
speci�cally for Rx logic. “Just running the application”, is enough
according to D3, saying that they only test the business logic in their
application and consider the Rx code as “glue”’ which either works
or not. In contrast, D5 and his team at Company B extensively test
their application using the Rx library’s built-in test facilities like

“marble tests” and the TestScheduler [44]. Using tests, the subject
con�rms his beliefs about the behavior of the chain of operators,
while tests are also helpful when refactoring code.

Debugging. All subjects independently mention using tempo-
rary printf() debugging statements (printing messages to the sys-
tem output, e.g. with console.log() in JavaScript). Subjects use
printf() debugging to “add more context” (D1) to their debug ses-
sions. Printing which values �ow through the �ow allows them to
“quickly reason what happens” (D3). Breakpoints are only used when
the cost of recompilation is high, for example when TypeScript is
used instead of Javascript: developers prefer to a�ach their debug-
ger to a running program session rather than inserting printf()
statements and restarting the session.

O�en, it is di�cult to use existing debuggers to inspect the life
cycle of Observables (subscribe() and dispose()), as the corre-
sponding code lives within the Rx library. Debugging inside the Rx
library was described as “painful” by D2, when using the Node.js
debugger to step through the inners of Rx. Alternative solutions
used by our subjects are (1) creating a custom debug() operator
which prints these life cycle events (D5), and (2) creating custom
Observables (with Observable.create()) that override the default
lifecycle methods with facilities to print life cycle events (D2, D5).
While printf() debugging and breakpoints are useful in various
degrees when executing a single Observable chain, these methods
both become considerably more di�cult and “overview is easily lost”
when executing multiple chains concurrently (D3, D5).

Documentation. Subjects give di�erent reasons to consult the
documentation, but the most common reason is to “�nd an operator
for what I need” (D1). �ey feel that there might be an operator
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�estion

Undestanding the subjects
Q1 Explain your (professional) experience.
Q2 Assess your experience on a scale from beginner to expert.
Q3 Explain your (professional) reactive programming experience.
Q4 Assess your RP experience on a scale from beginner to expert.
Q5 Have you ever refactored or reworked RP code?

Content questions
Q6 How do you test or verify the workings of Rx code?
Q7 How do you debug Rx code?
Q8 How do you use documentation on Rx?
Q9 What di�culties do you experience with RP?
Q10 What is your general approach to understand a piece of Rx?

Table 1: Interview questions

that precisely matches their needs, however knowing all opera-
tors by heart is not common (the JavaScript Rx Observable API
has 28 static methods and 114 instance methods), therefore sub-
jects sometimes end up doing an extensive search for some speci�c
operator. Another reason to visit the documentation is to com-
prehend how operators in existing code work. For this, subjects use
the Marble Diagrams at RxMarbles.com [36] (D2, D5), the RxJS 4
documentation on GitHub (D2, D5), the RxJS 5 documentation at Re-
activeX.io [44] (D1, D4, D5) and the online book IntroToRx.com [10]
(D4). D1 speci�cally mentions the need for more examples in the
documentation.

Di�culties experienced. �e IDE does not help with developing
Rx (D2, D4); according to D4 “Rx is more about timing than about
types”, and “. . . you miss some sort of indication that the output is
what you expect”. It is not always clear what happens when you
execute a piece of code, “mostly due to Observables sometimes being
lazy” (D2). Flows are clear and comprehensible in the scope of a
single class or function, but for application-wide �ows it becomes
unclear (D3, D4 and D5). D3 mostly used RxScala and mentions
that creating micro services helps in this regard. D1 mentions that
“you need to know a lot as a starting [RxJS] developer”, giving the
example of the many ways to cleanup. D1 used both logging while
analyzing existing code and learning to overcome inexperience.

Understanding. Subjects �rst look at which operators are used,
then they reason about what types and values might �ow through the
stream (D2, D3, D4 and D5), using various methods. By analyzing
the variable names D2 forms an expectation of the resulting value
types, then reasoning backwards, to see how this data is derived.
Running the code, is used when possible by D5, to observe the
outcome of the stream, as this “shows the intentions of the original
developer”. If it remains unclear how the data is transformed, the
subject injects a debug() operator or looks up operators in the
documentation.

4.2 Analysis of Literature
Developers can learn Rx through several sources, such as the of-
�cial documentation at ReactiveX.io, books, online courses, and
blog posts. We gathered resources to be analyzed by selecting 4
popular books about Rx, and complement this with the o�cial

documentations and an article by a core contributor of RxJS. All
reviewed resources either mention debugging brie�y and suggest
using the do() operator for printf() debugging, or teach the devel-
oper printf() debugging via code samples.

�e RxJS 4 documentation [3] and two books [20, 42] propose
the use of the do() operator for debugging. Esposito and Ciceri [20]
further explain how to best format the log statements and introduce
ways to limit the logging by modifying the Observable through
means of thro�ling and sampling. �e RxJava book [42] also con-
tains tips to use the various do-operators to integrate with existing
metric tools. To our knowledge the only article [37] addressing
issues of debugging Rx is by Staltz, one of the contributors of RxJS,
noting that conventional debuggers are not suitable for the higher
level of abstraction of Observables. Staltz proposes three ways
to debug Rx: (1) tracing to the console, (2) manually drawing the
dependency graph, and (3) manually drawing Marble Diagrams.

We analyzed a set of 13 books about RxJS, which was created
by selecting 69 books matching “RxJS” from the O’Reilly Safari
catalogue [2], and further reducing the set by �ltering on the terms
“debug” and “debugger”. While, none of the remaining books had
a chapter about debugging, many of these books use printf() de-
bugging in their code samples. Notably, Blackheath suggests [7], in
a “Future Directions” chapter, that special debuggers could provide
a graphical representation of FRP state over time and would allow
debugging without stepping into the FRP engine.

4.3 Overview of practices
�e available literature matches the results of the interviews: printf()
debugging is both commonly advised and used. While the conven-
tional debugger works in some cases, this is mostly the case for the
procedural logic that interleaves Rx logic. Rx-speci�c debuggers
are suggested, but not implemented. We found that developers use
printf() debugging to learn the behavior of Observables, behavior
meaning both their values �owing through and their (one or many)
subscriptions.

Overall, we identi�ed four overarching practices when debug-
ging Rx code:

(1) Gaining high-level overview of the reactive structure.
(2) Understanding dependencies between Observables.
(3) Finding bugs and issues in reactive behavior.
(4) Comprehending behavior of operators in existing code.

5 RQ2: DEBUGGER DESIGN
In this section, we describe the design of a visualizer for the Reac-
tiveX (Rx) family of RP libraries to answer RQ2. Given the �ndings
of RQ1, the requirements for our visualizer are:
REQ1 Provide an overview of Observable �ows. �is overview

should support practices 1 and 2, by graphically repre-
senting the relations between all Observables and their
interactions.

REQ2 Provide detailed view inside the data �ow. �is view should
support practices 3 and 4 by giving access to both data
�ow and life-cycle events and should be able to show the
behavior of an operator visually.

To meet those requirements, we propose a visualizer consisting
of two parts: (1) a Data Flow Graph and (2) a Dynamic Marble
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of(1,2,3)

map(x⇒ x * 2)

�lter(x⇒ x ≤ 3)

(a) DFG of Figure 1b

of(1,2,3)

skip(1)

�atMap(()⇒ inner)

of(‘A’, ‘B’)

(b) DFG of Figure 1e

Figure 2: Simpli�ed DFGs corresponding to examples in Fig-
ure 1

Diagram. �e data �ow graph satis�es REQ1 by providing a high-
level overview and by showing how di�erent �ows are created,
combined and used. �e dynamic marble diagram o�ers a more
in-depth look into a single data �ow, by showing the contents (in
terms of values and subscriptions) of the �ows. Developers can use
it to learn the behaviors and the interplay of operators.

5.1 Data Flow Graph
Simpli�ed graphs. When running an RP program, Observables

are created that depend on other Observables (their source) and Ob-
servers are created to send their values to a de�ned set of Observers
(their destination). Figure 1b shows these relations in a graph. For
the simplest of programs, the relations between the Observables
(O = o1,o2,o3) and those between Observers (S = s1, s2, s3) share
an equally shaped sub-graph a�er a reversal of the Observer edges.
To provide more overview, we process the graph to merge the two
Observable and Observer sequences together, simplifying it in the
process, resulting in a Data Flow Graph (DFG) as in Figure 2a. To
do so, we retain only the Observer subgraph nodes, complementing
them with the metadata of the corresponding Observable nodes.
Higher-order relations are retained, as shown in Figure 2. Figure 3B
shows the DFG in practice.

Layout. Layout is used to add an extra layer of information to
the graph. If multiple subscriptions on the same Observable are
created, multiple �ows are kept in the graph and they are bundled
together in the resulting layout. Using it, developers can �nd related
�ows. �ey can also identify possible performance optimizations;
for example, when they see Observables to be reused o�en, they
can introduce the share() operator to optimize subscriptions.

Our layout engine is based on StoryFlow [33]. StoryFlow was ini-
tially introduced to visually describe complex storylines involving
multiple characters and interactions between them in a way that
minimizes storyline crossings.7 Whereas StoryFlow clusters on
physical character location, we cluster �ows per Observable. Fur-
thermore, StoryFlow supports interactivity in various layout stages
of which we use the algorithms for straightening and dragging. A
selected �ow is thus highlighted, straightened and positioned at
the right in order to align with the Marble Diagram.

Color. Observables can be reused, so coloring the nodes can be
used to identify the same Observable in multiple places in the graph.
For example, in Figure 1e the inner Observable is reused twice,

7An example visualization of the Lord of the Rings character storylines can be found
here: h�p://www.shixialiu.com/publications/story�ow/index.html

which we denote visually by applying the same color to its two
occurrences in the DFG.

5.2 Dynamic Marble Diagrams
We extend the original notion of the Marble Diagram by introducing
animation; our dynamic marble diagrams update live when new
events occur and are stacked to show the data in the complete �ow.
�is allows developers to trace a value back through a �ow, an
operation which is impossible using a classic debugger. Handcra�ed
marble diagrams can use custom shapes and colors to represent
events, but for the generic debugger we use only three shapes: next-
events are a green dot, errors are a black cross and completes are
a vertical line, as shown in Figure 3C. For our generic debugger,
it is unfeasible to automatically decide which properties (content,
shape and color) to apply to events, as the amount of events and
distinguishing features might be unbounded. Instead the event
values are shown upon hovering the mouse cursor on the marble.

5.3 Architecture
To support the visualization, we design a debugger architecture
consisting of two components: a host instrumentation and a visu-
alizer. By spli�ing the instrumentation from the visualization, the
debugger can be used for the complete Rx family of libraries by
only reimplementing the �rst component.

�e Host instrumentation instruments the Rx library to emit
useful execution events. Depending on the language and platform,
speci�c instrumentation is required. What the instrumentation
does is wrap calls to functions that i) create or modify the DFG,
and ii) introduce events to Observers. �e instrumentation uses an
operational protocol consisting of 4 functions to drive the debugger
interface.

�e Visualizer takes the output of the host instrumentation, the
initial graph, and simpli�es it into a Data Flow Graph. �en it lays
out the Data Flow Graph and creates the debugger’s User Inter-
face. By separating the visualizer, we can export generated graphs
and visualize them post mortem, for example for documentation
purposes.

�e components can run in their own environment. �e instru-
mentation must run inside the host language, while the Visualizer
can use a di�erent language and platform.

5.4 Implementation
To validate our design and to provide an implementation to the de-
veloper community, we created RxFiddle.net. �e RxFiddle project
is a reference implementation of our reactive debugger design. Be-
sides the visualizer, the website also contains a code editor for
JavaScript code with sharing functionality, for developers to share
snippets with their peers, as shown in Figure 3A. In this section we
will explain di�erent parts of the implementation. For RxFiddle, we
initially focused on RxJS (JavaScript).

Instrumentation. With JavaScript being a dynamic language, we
use a combination of prototype patching and Proxies [1] to instru-
ment the RxJS library: the Observable and Observer prototypes
are patched to return Proxies wrapping the API method calls. �e
instrumentation passes every method entry and method exit to the
Linking step.
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A
B

C

Figure 3: Screenshot of RxFiddle.net, showing the Code Editor (A), the DFG (B) and the Dynamic Marble Diagram (C)

Linking. We distinguish between method calls from the di�er-
ent phases (Section 2). From the assembly phase, we detect when
Observables are used as target or arguments of a call or as return
value, and create a graph node for each detected Observable. We
add an edge between the call target and call arguments and re-
turned Observables, denoting the source relation. Also, we tag the
returned Observable with the call frame information (time, method
name, arguments). In the subscription phase, we detect calls to
subscribe(): the destination Observers are passed as arguments,
so we create the graph nodes and save the relation as an edge. In
the runtime phase, we detect next, error and complete calls on
Observers and add these as meta data to the Observer nodes.

Graph Loggers. From the Linking step the graph mutations are
streamed to the environment of the visualizer, where the graph
is rebuilt. Depending on the host language, a di�erent protocol
is used: RxFiddle’s code editor executes the code in a Worker [1]
and transmits events over the postMessage [1] protocol, while
RxFiddle for Node.js transmits over WebSockets. Being able to
support multiple protocols, extends the possible use cases; our
prototype implements a code editor for trivial programs, a Node.js
plugin for server applications, and Chrome DevTool extensions8

for web applications.

Visualizer. �e visualizer receives the current state in the form
of a graph from the Logger. It then uses the Observers in the graph
to create the DFG. To layout the DFG using StoryFlow, we �rst rank
the graph using depth �rst search, remove slack [24] and reverse
edges, in order to create a directed acyclic graph. We then add
dummy nodes to replace long edges with edges spanning a single
rank. Finally, we order and align the nodes in the ranks assigning
coordinates for the visualization. It is important that layouting is
fast, as it runs every time the DFG is changed. To render the Marble

8h�ps://developer.chrome.com/extensions/devtools

Diagrams, the �ow to and from the selected Observer is gathered,
by recursively traversing the graph in the direction of the edges.

6 RQ3: EVALUATION
In this section, we evaluate our debugger to assess the e�cacy
of our approach. To do so, we use an experiment, in which we
control for the debugger facilities that subjects use. �e “control”
group is provided a classic web development environment, while
the “treatment” group uses RxFiddle.

Ko et al. [31] describes two commonly used measures for exper-
iments regarding tools in So�ware Engineering: success on task,
and time on task. �e goal of our experiment is to measure the time
required to solve programming problems correctly. If our reasoning
for RQ2 is right and our debugger design lends itself for RP, we
expect to see that the group using RxFiddle can more quickly reason
about the reactive code at hand and can trace bugs faster. We do
not use success or correctness as a measure for the experiment, as
we expect both groups to be able to complete the tasks correctly:
while the current debugging situation is non-optimal, it is still used
in practice, indicating that it works at least to some extend. �e
construct of time also matches debugging be�er; developers need
to continue debugging until they �nd an explanation or a solution
to their problem, while assumptions can be tested and corrected.

We measure the time from the moment the participant received
the question until the correct answer is given. Participants use
either the built-in Chrome Browser debugger (group Console) or
the RxFiddle debugger (group RxFiddle). �is single alternative
Console debugger together with the experiment UI (which acts as
a small IDE) o�ers all the debugging capabilities subjects of our
preliminary interviews (RQ1) reported to use.

�e experiment consists of a questionnaire, a warm-up task and
four programming tasks, all available in a single in-browser applica-
tion, of which the source code is available at [4]. �e questionnaire
contains questions regarding age, experience in several program-
ming languages and several reactive programming frameworks.
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We use this self estimation as a measurement of skill instead of
a pretest, since it is a faster and be�er estimator [21, 30, 49]. �e
warm-up program is placed in the same environment as the pro-
gramming problems and contains several tasks designed to let the
participants use every control of this test environment. �e �rst
two programming problems requires the participants to obtain an
understanding about the behavior of the program and report the
�ndings. �e last two programming problems contain a program
with a bug. �e participants are asked to �nd the event that leads to
the bug in the third problem and to identify and textually propose a
solution in the fourth problem. �e �rst two problems are synthetic
examples of two simple data �ows, taken and adapted from the
Rx documentation, while the la�er two are carefully constructed
to match the documented use of Rx operators and contain some
mocked (otherwise remote) service which behaves like a real world
example. In T3, an error in an external service propagates through
the Rx stream. In T4, concurrent requests lead to out-of-order
processing of responses.

We use a between-subjects design for our setup. While this
complicates the results — subjects have di�erent experience and
skills — we can not use a within-subjects design as it would be
impossible to control for the learning e�ect incurred when asking
subjects to perform survey questions with and without the tool.
�is also allows us to restrict the amount of tasks to incorporate
in the experiment, requiring less time from our busy subjects. In
the experiment environment, subjects can answer the question and
then hit “Submit”; alternatively they can “Pass” if they do not know
the answer.

6.1 Context
�e experiment was run both in a o�ine and in an online se�ing.
�e o�ine experiment was conducted at a Dutch so�ware engi-
neering company. Subjects are developers with several years of
programming experience, ranging from li�le to several years of
experience with RP. As we did not try to measure the e�ect of
learning a new tool, we explained RxFiddle in the introductory
talk and added the warm-up question to get every participant to a
minimum amount of knowledge about the debugger at hand.

�e online experiment was announced by the authors on Twit-
ter, and consequently retweeted by several core contributors to
RP libraries, and via various other communication channels, such
as Rx-related Slack and Gi�er topics. Subjects to the online ex-
periment took the test at their own preferred location and have
possibly very di�erent backgrounds. We created several short video
tutorials and included these in the online experiment to introduce
the participants to the debug tool available to them and the tasks
they needed to ful�ll. �e introductory talk given to the o�ine
subjects was used as the script for the videos, in an a�empt to get
all participants to the same minimum level of understanding.

6.2 Results
�e online experiment was performed outside of our control, and
some participants quit the experiment prematurely. In total we had
111 subjects (13 o�ine, 98 online) starting the survey, of those 98
completed the preliminary questionnaire, and 89, 74, 67, and 58
subjects started respectively T1, T2, T3 and T4. All of the subjects

in the o�ine se�ing started all tasks. Figure 4b shows the outcome
of the tasks; in the remainder of this section we consider only the
outcomes marked as “Correct”.

Overall. Figure 4b shows the time until the correct answer was
given per task. Here, we consider the combined results from the
o�ine experiment and the online experiment. We make no as-
sumptions about the underlying distribution, so we perform a non-
parametric Wilcoxon Mann-Whitney U test (H0: times for the Con-
sole group and RxFiddle group are drawn from the same population)
to see if the di�erences are signi�cant, and a Cli�’s delta test for
ordinal data to determine the e�ect size. �e results are shown in
Figure 4a.

For task T3, we can reject H0 with high signi�cance (p < 0.05),
the RxFiddle group is faster. For the tasks T1, T2 and T4 we can not
reject H0 (p > 0.05), meaning the RxFiddle group and Console group
perform or could perform equally.

Control for experience. To investigate this further, we split the
results for di�erent groups of subjects. When we control for the self-
assessed Rx experience, we see bigger di�erences for all tasks for
groups with more experience, as shown in Figure 4c and Figure 4d
(we split at the median; exp rx > “Beginner”-level). Still, for tasks
T1, T2, and T4 we can not reject H0, but the results are more
signi�cant comparing only experienced subjects.

7 DISCUSSION
We now discuss our main �ndings, how RxFiddle resolves the de-
bugging problem of Rx, and contrast our design to other design
choices and possibilities of future work.

7.1 Main results
�ick and dirty debugging. �rough interviews and literature

we establish that current debugging practices for RP consist mostly
of printf() debugging. �e shortcomings of this method were
evident from the interviews: it works reliably only for synchronous
execution or when small amounts of events being logged, otherwise
the overview is lost. Furthermore, the time-context of events and
dependency-context of �ows are not available using this method.
We a�ribute the prevalence of printf() debugging to this “quick
and dirty” method being available in every language and on every
platform, without a viable alternative.

Improved context: being complete, disposing doubts. With our de-
sign and complementary implementation, we show that our abstract
model of RP is suitable for visualization on two levels: overview
and detail. At the overview level, we complement the dependen-
cies visible in source code with a graph of the resulting structure,
showing the run-time e�ect of certain operators on the reactive
structure. At the detail level, we add the time context, by showing
previous values on a horizontal time line, and the dependency con-
text, by showing input and output �ows above and below the �ow
of interest. While the results of our evaluation could be observed
as a negative, RxFiddle is a new tool, where subjects have only just
been exposed to the tool and received only a short training. We
expect that by designing a debugger model so close to the actual
abstractions, our debugger works especially well for users with
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console rx�ddle W p-value Cli�’s δ

T1 34 36 559 0.540 0.0866
T2 32 31 517 0.780 -0.0424
T3 23 28 96 6.19e−6 0.702
T4 13 12 60 0.347 0.231

(a) Results comparing the Console and RxFiddle groups (b) Time until correct answer per task, overall

console rx�ddle W p-value Cli�’s δ

T1 16 17 105 0.276 0.228
T2 14 13 99 0.720 -0.0879
T3 10 11 10 7.88e−4 0.818
T4 8 7 13 9.34e−2 0.536

(c) Results comparing the Console and RxFiddle groups, with Rx ex-
perience above “Beginner”-level.

(d) Time until correct answer per task, for subjects with more than
“Beginner”-level of experience with Rx.

Figure 4: Experiment results, overall (top row) and experienced developers only (bottom row).

some knowledge of these abstractions; while only T3 shows bet-
ter performance with high signi�cancy, we observe slightly be�er
results when controlling for experience. Future research might
investigate the e�ect of experience in more detail, including the
use of more complicated tasks, with larger samples.

In the presented research, we did not perform tests with sub-
jects using their own code. However, during piloting and a�er the
release of RxFiddle, we received positive feedback regarding the
completeness of the visualization. As one user put it, “by using
RxFiddle when learning and understanding what RxJS does in our
project, I have a feeling of improved control over our Observables,
Subscriptions and the reactive parts of our app”. Speci�cally the
life-cycle events, which are generally hard to debug using printf()
debugging, are more clear: “Initially we were reluctant to manually
subscribe, but a�er seeing that ‘complete’ o�en triggers a ‘dispose’, the
team became more con�dent to sometimes use subscribe() directly”.
Future research might address this evaluation aspect by designing
experiments speci�cally using code owned by the users.

7.2 Implications
�e developers using Rx in practice now have an alternative to
printf() debugging. Developers can try RxFiddle on their code-
base to be�er understand the reactive behavior of their application,
and potentially detect and verify (performance) bugs they are not
aware of. At least one example of this has already occurred in prac-
tice: one of our interview subjects reported a bug9 in the groupBy()
implementation of RxJS, which resulted in retention of subscrip-
tions, increased memory usage and �nally led to an out-of-memory
exception. �e subject detected the bug in practice and required
extensive amount of debugging involving the Node.js debugger to
trace down; the same bug is immediately obvious in RxFiddle when
examining the life-cycle events using the visualization.

Contributors of RP libraries could use tools like the RxFiddle
visualizer in documentation to provide executable samples, which
would allow for a be�er learning experience, and at the same time

9h�ps://github.com/ReactiveX/rxjs/issues/2661

would introduce novice developers to other ways of debugging
than printf() debugging.

7.3 Limitations and Future Work
Multiple inputs and outputs. If we compare our debugger visual-

ization to the visualization of learning tools, like RxMarbles [36] or
RxViz [41], the main di�erence is that those tools show all input
and output Observables of a single operator concurrently, while
RxFiddle shows one input and output Observable per Marble Di-
agram, part of a single full �ow (a path through the graph). �e
choice to show a full �ow allows developers to trace events from
the start until the end of the �ow, but restricts us in showing only a
single ancestor �ow per node at each vertical position, as adding a
third dimension would clu�er the (currently 2D) visualization. For
future research, it would be interesting to compare (1) the di�erent
ways Observable streams can be combined in Marble Diagrams and
(2) which visualization elements can be added to explicitly show
causality and lineage for events and show durations for subscrip-
tions.

Edge visualization. In our graph visualization, the edges repre-
sent the dependencies and the path of the events. Nodes with mul-
tiple incoming edges merge the events, however users could falsely
think that all event data ends up in the outgoing path: besides data
�ows, Rx also uses Observables for timing, as durations (window()),
as stop conditions (takeUntil()), or as toggles (pausable()). Dif-
ferent visual representations for joining paths could be explored to
distinguish between using Observables for data or for timing.

Graph scalability. Debugging large reactive systems over longer
periods of time can result in signi�cantly larger Observable graphs
and Marble Diagrams than currently evaluated. During tests of
RxFiddle with larger applications like RxFiddle itself and an existing
Angular application, the graph became too large to render in real
time. Besides rendering performance, a potentially even bigger
issue is with communicating large graphs to the developer. We
propose several extensions to RxFiddle to remedy this issue: (1)
pruning the graph of old �ows to show only the active �ows, (2)
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bundling �ows that have the same structure and only rendering
a single instance o�ering a picker into the �ow of interest, (3)
collapsing certain parts of the graph that are local to one source
�le or function, (4) adding search functionality to quickly identify
�ows by operator or data values, (5) support navigation between
code & graph.

Marble Diagram scalability. Our experience shows that while
Marble Diagrams are useful for small to medium amount of events
(< 20), both be�er performance and be�er functionality could be
achieved by providing a di�erent interface for high volume �ows.
Above a certain threshold of events, this high volume interface
could be the default, o�ering features like (1) �ltering, (2) watch
expressions (to look deeper into the event’s value), and advanced
features like (3) histograms & (4) Fast Fourier Transform (FFT) views.
Moreover, manually examining these distinct events could take a
long time; a debugger could leverage the run-time information
about the events that actually occur, to provide a UI. Advanced
features like histograms could help the �ltering process, while FFT
could o�er new ways to optimize the application by doing smarter
windowing, bu�ering and sampling later on in the chain.

Breakpoints. Placing traditional breakpoints in a reactive pro-
gram stops the system from being reactive, and therefore can
change the behavior of the system. Breakpoints can be used by
developers in two ways: i) to modify the application state by in-
teracting with the variables in scope, and ii) to notify them of an
event occurrence. While the �rst is arguably not desirable for re-
active systems, the noti�cation property might be a good addition
to RxFiddle. BIGDEBUG [26], a debugging solution for systems
like Spark [52], introduces simulated breakpoints for this purpose.
When a simulated breakpoint is reached, the execution resumes
immediately and the required lineage information of the breakpoint
is collected in a new independent process. Implementing this for
RxFiddle is a ma�er of creating the right UI as the required lineage
data is already available.

Other RP implementations. RxFiddle is speci�c to Rx, but the
debugger design is applicable to other RP implementations. �e
visualization should work for every RP collection abstracting over
time, and would be directly applicable to languages such as REScala,
and various JavaScript RP implementations. Future work could in-
vestigate whether the debugger protocol can be generalized such
that other RP semantics can be captured too, for example by pro-
viding extension points for the language speci�c features.

8 THREATS TO VALIDITY
External validity. For the interviews we selected 5 professional

developers that were both available and worked on projects involv-
ing RxJS. �e online experiment was open to anyone who wanted to
participate, and shared publicly. �ese recruitment channels pose a
threat to generalizability: di�erent practices might exist in di�erent
companies, di�erent developer communities and for di�erent RP
implementations & languages. Future work is needed on validating
the debugger in these di�erent contexts.

Our code samples for the tasks are based on documentation
samples and common use cases for Rx; RxFiddle might perform
di�erently on real-world code, especially when the developer is

familiar with the project or domain. �e experiment consists of 2
small and 2 medium tasks; for larger tasks the e�ect of using the
debugger could be bigger and therefore be be�er measurable. Still,
we chose for these smaller tasks: in the limited time of the subjects
they could answer only so many questions.

Construct validity. We measure the time between the moment
a question is displayed and the moment its correct answer is sub-
mi�ed. Even though our questions and code samples are short
and were designed to be read quickly, still some variation is in-
troduced by di�erent reading speeds of subjects. A setup where
the question and code can be read before the time is started can
remedy this threat; but introduces the problem of planning when
given unlimited time [31]: subjects can start planning their solution
before the time starts. Furthermore, subjects might have di�erent
strategies to validate their (potentially correct) assumptions before
submi�ing, ranging from going over the answer once more, to im-
mediately testing the answer by submi�ing it. However, explicitly
stating that invalid answers do not lead to penalty might introduce
more guessing behavior. Future studies could use longer tasks,
with preparation time to read the sample so�ware at hand, with a
wizard-like experiment interface presenting one short question at
a time.

Internal validity. As a result of the recruitment method of the
experiment, a mixed group of developers took part, a�racting even
those without Rx experience. To reduce the variation in experience
that this introduces, we separately examined the results of more
experienced developers.

At the time of the experiment RxFiddle was already available
online for use, and furthermore some of the experiment subjects
had already used RxFiddle during piloting. We mitigate this issue
partially by providing a instruction video at the start of the experi-
ment, however subjects with extensive experience with RxFiddle
might bias the results.

�e subject-expectancy e�ect [31] poses a validity concern, since
subjects who expect a certain outcome, may behave in a way that
ensures it. Our subjects had the opportunity to learn the context of
the experiment and thus could be more motivated to use RxFiddle
than using the traditional debugger. Our online experiment cap-
tures motivation to some extend as drop-out (de�ned as quiting,
before having started all tasks) happens; the approximately equal
drop-out in both groups (RxFiddle 56.3%, Console 63.4%), suggests
no signi�cant motivational di�erences. Future studies could o�er
subjects external motivation (e.g. by ranking contenders and gami-
�cation [16] of the experiment, or organizing a ra�e among top
contenders), to limit the threats introduced by motivation.

9 RELATEDWORK
RP Debugging. REScala [47] is an RP library for Scala, based on

Scala.React. Recently a debugger model was created for REScala,
called “RP Debugging” [48], featuring a dependency graph visual-
ization, breakpoints, a query language and performance monitoring.
�e debugger fully integrates with the Eclipse IDE and the Scala
debugger facilities, creating a (Scala) developer experience and a
feature RxFiddle currently does not o�er: reactive breakpoints. Our
debugger design supports multiple languages, and works outside
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of the IDE, in the browser environment and/or connecting to a pro-
duction system. Rx has di�erent reactive semantics and arguably
a more powerful, but also more extensive API, which includes op-
erators acting in the time domain (delay(), etc.). �erefore, we
argue that seeing values in a �ow over time is very valuable; RP
Debugging shows the latest values at the selected time.

RP Visualization. RxMarbles [36] visualizes single Rx operators,
for the purpose of learning and comprehension. Users can drag to
modify (only) the timing of events and instantly see the changes re-
�ected in the output. By using speci�c precoded inputs and timings
the essence of the operator is made clear. In RxViz [41], Moroshko
takes a similar approach, but provides a code editor instead of pre-
pared inputs, and visualizes the output of the stream. RxMarbles
does not support higher-order streams, while RxViz subscribes to
the one outer and multiple inner streams when it detects a higher-
order stream, showing them concurrently. In contrast to our work,
these tools are not debuggers: focus is on teaching the behavior of
single operators or stream outputs, instead of full programs.

Omniscient Debugging. Omniscient debuggers [43] trace, store
and query all events in a program execution. When storing vasts
amount of program execution information, performance and e�-
ciency becomes a problem and research in omniscient debuggers
focuses on this speci�cally. We also trace events of the entire exe-
cution, however in contrast to omniscient debuggers we only store
trace events regarding RP data �ows. �e RP semantics allow us to
create future optimizations, for example retaining only the active
�ow structure, while the �ow’s data is kept in a rolling bu�er.

Dynamic Analysis. �e study of program execution is called “dy-
namic analysis” [12]. In many cases, dynamic analysis involves
a post mortem analysis, where �rst the program is run, collecting
an execution trace, and then the trace data is analyzed to create a
visualization. Derived visualizations, like class and instance inter-
action graphs, function invocation histories [32], invocation views
and sequence diagrams [11] show the possibility to use trace infor-
mation for debugging. Arguably, on-line analysis is more useful
for debugging than the standard post mortem analysis. Reiss, in
reference [45], mentions the compromises that have to be made to
make an on-line analysis: reduced tracing is required to not slow
down the system (known as the observer e�ect) and fast analysis
is required to lower the cost of ge�ing to the visualization, to not
discourage the users. In our design, we handle the same compro-
mises as they are relevant for RP debugging too, and our JavaScript
trace implementation bears resemblance to that of Program Visu-
aliser [32].

Understanding Debugging. Debugging for general purpose lan-
guages revolves around a�aching a debugger, stepping through
the code, a�aching code or data breakpoints, navigating along dif-
ferent calls in the call stack and examining variables and results
of expressions [51]. However, existing research, measuring how
these di�erent tasks are part of the developers work day, found that
while developers spend much time on comprehending code, they
do not spend much time inside the IDE’s debugger [40]. Beller et
al. [5] found that only 23% of their subjects actively use the IDE’s
debugger, with the most common action being adding breakpoints,
followed by stepping through code. �e automated tooling of these

studies did not measure di�erent kinds of debugging other than
using the IDE provided tools, however Beller’s survey indicates that
71% also uses printf() statements for debugging. No indication
was given of any RP language and libraries used by the subjects in
the study, but the observation that printf() debugging is common,
matches our experience with debugging reactive programs.

Debugging for Program Comprehension. Developers need to both
comprehend and debug code almost daily. Initially, comprehen-
sion was seen as a distinct step programmers had to make prior
to being able to debug programs [29]. �is distinction is criticized
by Gilmore: “debugging [is] a design activity” [25], part of creat-
ing and comprehending programs. Maalej et al. [34] interviewed
professional developers and found that developers require runtime
information to understand a program, and that debugging is fre-
quently used to gather this runtime information. �is supports our
view that debugging is not only used for fault localization, but also
for comprehension.

10 CONCLUSIONS
�rough analysing the current RP debugging practices, this work
shows the prevalent method for RP debugging is printf() debug-
ging. To provide a be�er alternative, we present an RP debugger
design and its implementation for the RxJS libray (RxFiddle), which
enables developers to: (1) gain a high-level overview of the reactive
data �ow structure and dependencies, and (2) investigate the values
and life-cycle of a speci�c data �ow, at run-time.

�rough an experiment, we show that RxFiddle is an viable al-
ternative for traditional debugging and in some cases outperforms
traditional debugging in terms of time spent. �ere are several
promising directions for improving our design. Speci�cally scal-
ability could be improved and di�erent edge visualizations could
be explored, to improve the usability of the tool. Furthermore,
by leveraging already captured meta data about timing of events,
even more insight could be provided. At the implementation level,
we plan to extend RxFiddle to other members of the Rx-family of
libraries.

In this paper, we make the following concrete contributions:
(1) A design of a generic RP debugger, initally tuned for the

Rx RP variant
(2) �e implementation of the debugger for RxJS, and the

service RxFiddle.net
In the month a�er the release of RxFiddle.net the site was visited

by 784 people from 57 di�erent countries. �e debugger was already
used by 53 developers, excluding the use inside of the experiment.
During that same period 42846 interactions with the visualizations
of the debugger have been recorded, such as selecting Observables
or inspecting values by hovering the mouse over the event.

�e debugger and the platform are open source and are available
online at [4].
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