
Do Programmers Work at Night or During the Weekend?
Maëlick Claes

M3S, ITEE, University of Oulu, Finland
maelick.claes@oulu.fi

Mika V. Mäntylä
M3S, ITEE, University of Oulu, Finland

mika.mantyla@oulu.fi

Miikka Kuutila
M3S, ITEE, University of Oulu, Finland

miikka.kuutila@oulu.fi

Bram Adams
MCIS, Polytechnique Montreal, Canada

bram.adams@polymtl.ca

ABSTRACT
Abnormal working hours can reduce work health, general well-
being, and productivity, independent from a profession. To inform
future approaches for automatic stress and overload detection, this
paper establishes empirically collected measures of the work pat-
terns of software engineers. To this aim, we perform the first large-
scale study of software engineers’ working hours by investigating
the time stamps of commit activities of 86 large open source soft-
ware projects, both containing hired and volunteer developers. We
find that two thirds of software engineers mainly follow typical
office hours, empirically established to be from 10h to 18h, and do
not usually work during nights and weekends. Large variations
between projects and individuals exist. Surprisingly, we found no
support that project maturation would decrease abnormal working
hours. In the Firefox case study, we found that hired developers
work more during office hours while seniority, either in terms of
number of commits or job status, did not impact working hours.
We conclude that the use of working hours or timestamps of work
products for stress detection requires establishing baselines at the
level of individuals.
ACM Reference Format:
Maëlick Claes, Mika V. Mäntylä, Miikka Kuutila, and Bram Adams. 2018.
Do Programmers Work at Night or During the Weekend?. In Proceedings of
ICSE ’18: 40th International Conference on Software Engineering , Gothenburg,
Sweden, May 27-June 3, 2018 (ICSE ’18), 11 pages.
https://doi.org/10.1145/3180155.3180193

1 INTRODUCTION
Poor working patterns can reduce individual health, well-being and
productivity. Long working hours have been associated with depres-
sion, anxiety, sleep deprivation, and coronary heart disease [1]. A
survey study of 35,000 people showed that atypical working hours
increased health complaints and poor work life balance even after
controlling for the effect of night and shift work [2]. Similar results
are found in other papers that highlight health problems related to
food digestion and sleeping [3] as well as social impairment with
respect to family life [4].

Health problems of poor working patterns are perhaps caused by
violation of our natural 24-hour (circadian) rhythm, which has seen

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
ICSE ’18: 40th International Conference on Software Engineering , May 27-June 3, 2018,
https://doi.org/10.1145/3180155.3180193.

a surge of research interest in medicine. Most notably, the research
establishing the genetic origins of circadian rhythm was awarded
the 2017 Nobel prize in medicine [5]. Recent findings suggest that
disturbances in circadian rhythm are the cause (not the effect) of
depression and anxiety [6], and that artificial light at night increases
the risk of obesity and cancer [7].

Fortunately, weekend recovery has been shown to improveweekly
job performance, personal initiative, organizational citizenship be-
havior, and to lead to a lower perceived effort [8]. Psychological
detachment during off-work time reduces emotional exhaustion
caused by high job demands and helps to maintain work engage-
ment [9]. Although worker autonomy seems to reduce the negative
health and well-being effects of atypical working hours, it does not
completely balance them [10]. Other studies of flexible working
hours show that they provide affective and work-life benefits [11],
which is compatible with the widely accepted results that worker
autonomy increases worker well-being stemming (cf. Karasek’s
job demands control model) [12]. Finally, extensive use of flexible
working time is linked with reduced worker productivity [11].

In the software engineering domain, it has been observed that
the bugginess of commits, i.e., negative effects on overall devel-
oper productivity, is related to the hour of the day (the so-called
“circadian work pattern”) and to day of the week those commits
have been made [13]. However, the results between projects seem
to vary. Eyolfson et al. [14, 15] propose, based on three well known
open source projects (Linux kernel, PostgreSQL, and Xorg), that
commits made between 00:00 and 04:00 contain more bugs, while
commits made between 07:00 and 12:00 (noon) contain the least.
Prechelt and Pepper [16] demonstrate, using data from a closed
source industry project, that the most defect-prone hour was 20:00.
A hypothesis that unifies these two findings could be that all of
those buggy hours might in fact demonstrate the end of a working
stint where a developer just wants to be done with the task, leading
to prematurely committing the code. Finally, industrial software
developers have also developed an interest to night work:

• Quora question with over 100 answers and over 500,000
views on why developers love night work [17]
• entire book with 2,500 paid readers on the topic, written by
an industrial programmer [18]
• Stackoverflow analysis with 3,800 Facebook shares and 91
comments of day-night differences [19]

As abnormal working hours can affect occupational health, well-
being, productivity and staff turnover among software engineers,
this paper aims to investigate the work patterns of software de-
velopers in large open source projects, either projects with many

https://doi.org/10.1145/3180155.3180193
https://doi.org/10.1145/3180155.3180193

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Maëlick Claes, Mika V. Mäntylä, Miikka Kuutila, and Bram Adams

hired resources (Mozilla) and those without (Apache Foundation),
as well as in a (local) Finnish IT company. We are particularly in-
terested in the degree to which work is performed outside of the
commonly expected working hours, since, based on the literature
discussed above, such irregular working hours may act as a proxy
for job-related stress and time pressure conditions and suggest
non-sufficient detachment from work.

The Mozilla Foundation is known for Firefox, which makes an
interesting case study as the core software engineers are paid to
develop it. In addition, Mozilla also hosts projects that have been
gradually abandoned and left to the community, such as Thunder-
bird and SeaMonkey. The Apache Foundation is an organization
supporting open source projects and their communities of devel-
opers, but does not pay its developers. Some of its projects are
business-critical to companies, who pay developers to work on
them, while others consist of hobbyist developers. Finally, the lo-
cal company provides a reference to compare the groups of open
source projects to, since a closed source company follows a more
traditional work schedule and larger financial concerns are at stake.

First, we investigate the following research questions for all
considered projects:

RQ1 What are the circadian and weekly work patterns of
software developers?

RQ2 How does the usual work pattern vary across different
projects?

RQ3 Are office hour commits different in terms of size?
RQ4 Is there a difference in the developers’ work patterns

over time?

Then, because results of RQ5 can considerably vary due to differ-
ences in terminology between projects, we focus solely on Mozilla
Firefox. Moreover, the identification of developers background
needed for RQ6 involves a lot of manual work and is too laborious
to be performed for all projects. Furthermore, Firefox is the largest
project of our data set as it contains 228,697 commits, which repre-
sents roughly one third of all of the commits of our data set. Finally,
Firefox includes both paid work and voluntary contributions.

RQ5 Are office hour commits different in terms of content?
RQ6 Can demographics explain office hour activity?

This paper is structured as follows. We discuss related work
in Section 2. In Section 3, we give details on our data extraction
process, then we address our research questions in Section 4 and
Section 5. We then present the threats to validity that can impact
our results in Section 6 and conclude in Section 7.

2 RELATEDWORK
Sall et al. [20] studied weekend work activity patterns in the San
Francisco Bay Area using surveys. Their results indicate that a host
of variables affect the likeliness of working during the weekend, in
particular, gender, race, type of work and income. Individuals are
more likely to work out of home during weekends in the winter
season than in other seasons.

Wang et al. [21] examined work patterns of scientists by looking
at the amount of scientific papers being downloaded on different
days. Scientists work 60-70% as much of their time during the
weekend as during the week. Time worked during weekends differs

by country: scientists work proportionally more during weekends
in China than in the USA and Germany.

Binnewies et al. [8] investigated the importance of recovery
during weekends and its implications on work performance. Data
from surveys indicate that experiencing psychological detachment,
relaxation and mastery during weekends was positively correlated
with being recovered at the beginning of the working week, which
in turn was positively related to self-reported work performance.

McKee [22] investigated the reasons for increased mortality rate
in hospitals during the weekend, with explanations ranging from
more seriously ill patients to less experienced staff. In extreme
cases, the weekend effect to lead to 44% higher odds of mortality
on Friday compared to Monday [23]. However, multiple sources
state conflicting evidence on the source of this effect [22–24].

Some relevant studies also exist in software engineering. Indus-
trial blogs on GitHub [25] and StackOverflow [19] report that less
main stream languages such as Haskell are more commonly used
during the night than languages adopted in the industry such as
Java. Multiple studies [26–28] proposed multi-objective techniques
to support project planning avoiding overtime.

Khomh et al. [29] studied the impact of Firefox’s fast release
cycle on post-release bugs and found that not only did the new
release cycle not increase the number of bugs, bugs were also fixed
faster. Although most of the studies thus far on the switch of re-
lease cycle have focused on its quality assurance implications, the
repercussions for developers in terms of work quality have largely
been ignored.

Our previous work [30] studied abnormal working hours on two
projects only, while this paper performs a large-scale study on 86
open source and 1 industrial project. Furthermore, we use more
advanced methods: k-means clustering and a dynamic search of
office hours instead of a static heuristic.

To summarize, although some initial evidence has been found
regarding the interplay between work and well-being in software
engineering, a structured analysis of (un)healthy work patterns is
missing. This paper starts to fill this gap by studying and comparing
the periods during which developers are actively working in a
software project.

3 DATA EXTRACTION
Wemined development data from the Git andMercurial repositories
of Mozilla1 and Apache2 and of a local company’s product. The local
company’s product contained more than 20,000 commits from nine
developers. We have visited the company several times to ensure
the validity and usefulness of our work. We then wrote custom
scripts to extract the list of commits (code changes), associated
timestamps and authors from all code repositories.

For Mozilla, we needed to do extra processing in order to find
out which commit belongs to which project. First, we used the Gri-
moireLab tools3 to extract issue comments from Mozilla’s Bugzilla
repository4 (i.e., the database containing reported issues, such as
bug reports or feature requests). Second, we linked commit mes-
sages to the corresponding issue report by looking for an issue
1https://hg.mozilla.org
2https://git.apache.org/
3https://grimoirelab.github.io/
4http://bugzilla.mozilla.com

https://hg.mozilla.org
https://grimoirelab.github.io/
http://bugzilla.mozilla.com

Do Programmers Work at Night or During the Weekend? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

identifier in a given message. Out of the 396,180 extracted commits,
330,078 were successfully linked to a bug issue. After linking, we
then filtered the commits to only keep the ones related to the fol-
lowing major products: Firefox, Core, Firefox OS, Firefox for Android,
Thunderbird and SeaMonkey.

While the history of each Apache project is stored in an indi-
vidual git repository, we realized that many of these old commits
were missing the time zone information. These commits might have
been imported from another version control system that did not
store such information. Thus, for each project, we only considered
commits starting from the first commit with a timezone different
than UTC (i.e., the first commit that is clearly made after the im-
port from the old system). Moreover, we only considered Apache
projects with at least 2,000 commits after filtering, which reduced
the number of Apache projects from 822 to 81. This left us with a
total of 451,116 commits.

In order to study the work patterns of individual developers,
we performed a basic merging of the different authors’ identities.
We first cleaned the name and email used in the version control
system’s author field. Thenwe grouped together identities using the
same name or email addresses. Finally, two of the authors manually
checked the result in order to avoid any false positive.

4 EMPIRICAL ANALYSIS OF THEWORK
PATTERNS OF ALL PROJECTS

RQ1. What are the circadian and weekly work
patterns of software developers?
Motivation. Given the well-being and health risks related to ab-
normal working hours, we wish to establish empirical baselines
that later may be turned into normative guidelines to ensure the
well-being and health of software developers.

Commits follow a weekly rhythm. Fig. 1a, 1c and 1e show
the number of commits made on each day of the week within the
Mozilla (319,139 considered commits), Apache (574,563 commits)
and the local company projects (22,193 commits), respectively. We
can clearly see that fewer commits are being posted during the
weekend, while there is a slight variation in activity during the
week, with Monday and Friday being the least active days in all
cases. Tuesday is the most active day for the Mozilla and Apache
projects, while in the local company it is Thursday.

Commits follow a circadian (24-hour) rhythm. The circa-
dian rhythm is present in Apache, Mozilla and in the local company
projects, see Fig. 1b, 1d and 1f. The lowest activity for all projects
happens during the night, with the number of commits starting to
increase in the morning until a dip in activity happens during lunch
hour. In the Mozilla and Apache projects, lunch mostly happens
at 12 o’clock, while in the local company it happens at 11 o’clock
(something which we confirmed through face-to-face discussions
with the company).

After lunch hour, the number of commits increases again until a
decreasing trend in commits starts setting in from 4pm in all three
data sets. For the local company, we can also see an unexpected dip
in commits at 2pm, yet the company was not able to explain this
phenomenon to us. The decreasing trend in the number of commits
plateaus at 7pm for the Apache and Mozilla projects, while for the

local company, we can see that work during the evenings is very
limited compared with the Mozilla and Apache projects.

Working hours of software developers are typically from
10-18. If we consider a 40 hour work week, which is still the norm
for most professions, each week day should correspond to about
8 working hours. Hence, in order to determine the working pe-
riod for each of our projects, we searched the week days for the
eight-hour stint that covers the largest share of commits in a day.
First, for a given project, we computed all the (HH ,mm) tuples
representing a timestamp (in 24 hours format) for which at least
one commit was made during a weekday. For each (HH ,mm) tuple,
we computed the number of commits made during the 8-hour inter-
val [(HH ,mm), (HH+8,mm)[. We then selected the interval with
the highest number of commits as the 8-hour office period of the
considered project.

The results of this search are shown in Table 1. For 34% (30/87) of
the projects, this search results in working hours starting between
09:00 and 09:59, and for 45% (39/87) of the projects, the working
hours start between 10:00 and 10:59. The median start time of work
across all projects is at 10:03.

66% of developers follow office hours. We were interested
in seeing if we can find different work patterns across the weekly
cycle and the daily circadian rhythm of different developers within
our data set of 87 software projects, and how those patterns look
like. While past work has considered the core contributors to be
the top 20% of the committers [31], in our data set it only takes
22 commits total to be in the top , which we think is not enough
for establishing weekly working patterns. Thus we only consider
the top 10% of developers, leaving us with 1,108 developers (out of
11,059), each with 95 or more commits. This top 10% of developers
has made 88% out of all commits of our data set.

For clustering purposes, we computed the relative share of com-
mits made by each hour of the week by each developer. Thus, for
each developer, we end up with a feature vector of 168 elements,
one for each hour of the week. Similar to previous work on weekly
patterns of mobile phone usage behavior [32], we then used k-
means clustering on the vectors. We tested values of k (i.e., the
number of clusters) from 2 to 7. We observed that going beyond
three clusters did not bring new information, instead clusters with
very few individuals and high noise started to appear. Fig. 2 shows
the weekly work patterns (the feature vectors of centroids) of each
of the three clusters.

The figure shows that two clusters (green and black lines) follow
typical office hours where commits are concentrated on day time
hours during the work week, with clear dips during lunch hour. The
green cluster starts and stops working a bit earlier than the black
cluster. In fact, when we shift the green cluster by one hour, we can
see in Figure 2 that both clusters have highly similar work patterns.
These two clusters contain 66% of all developers, and they roughly
correspond to the projects starting at 9am vs. 10am in Table 1.

However, Fig. 2 also shows a third cluster (blue) that does not
follow the regular office hour pattern. Developers in this blue cluster
commit mostly from noon until midnight during the weekdays and
weekends. The difference between the blue cluster and the other
two clusters is that this group works more during evenings and
weekends than the other two clusters.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Maëlick Claes, Mika V. Mäntylä, Miikka Kuutila, and Bram Adams

0

10000

20000

30000

40000

50000

M
on

da
y

Tu
es

da
y

W
ed

ne
sd

ay

T
hu

rs
da

y

F
rid

ay

S
at

ur
da

y

S
un

da
y

co

m
m

its

(a) Daily for all Mozilla projects

0

5000

10000

15000

20000

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

co

m
m

its

(b) Hourly for all Mozilla projects

0

20000

40000

60000

80000

M
on

da
y

Tu
es

da
y

W
ed

ne
sd

ay

T
hu

rs
da

y

F
rid

ay

S
at

ur
da

y

S
un

da
y

co

m
m

its

(c) Daily for all Apache projects

0

10000

20000

30000

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

co

m
m

its

(d) Hourly for all Apache projects

0

1000

2000

3000

4000

5000

M
on

da
y

Tu
es

da
y

W
ed

ne
sd

ay

T
hu

rs
da

y

F
rid

ay

S
at

ur
da

y

S
un

da
y

co

m
m

its

(e) Daily for the local company

0

1000

2000

3000

00 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

co

m
m

its

(f) Hourly for the local company

Figure 1: Distribution of the number of commits across the days in a week and the different hours in a weekday.

Table 1: Start of working hours for projects in our data set.

Start time 08:00-59 09:00-59 10:00-59 11:00-59 12:00-59 14:00-59 16:00-59 17:00-59
Projects 4 30 39 8 2 1 2 1

Discussion: Up until now, we have established that a weekly
and circadian rhythm is followed in the projects of Apache and
Mozilla foundation, as well in the local company product that was
used as a comparison. We have also established a way to determine
the eight-hour work day start and end times for each project, then
presented measurements of how much work gets done during the
typical working hours. Establishing the normal working hours
is important (especially in a distributed context) if we wish to
determine whether the developers of a particular project are, for
example, under time pressure and forced to work overtime.

Committing 70% of work during typical working hours might
be a stress signal for a project that has previously had a share of
90%, but not for another project that constantly commits 70% work
during typical working hours. We also found that two thirds of
the developers are clustered to groups that follow office hours. In
the two office hour groups, we saw a phase shift of a bit more
than one hour. We think that this phase shift is due to both project
culture and individual preferences, as some individuals are known
as morning persons while others are not [33]. This suggests that
clustering of individual developers may allow personalized stress

Do Programmers Work at Night or During the Weekend? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

0.
00

0
0.

01
0

0.
02

0

Hour of week

Sh
ar

e
of

 c
om

m
its

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

12
6

13
2

13
8

14
4

15
0

15
6

16
2

16
8

Figure 2: Weekly work patterns for the three k-means cen-
troids corresponding to the 1,108 top software developers.

0.
3

0.
5

0.
7

0.
9

8 hour work day 10 hour work day

●

●

Total number of commits

Sh
ar

e
of

 c
om

m
its

Figure 3: Distribution of percentage of commits across
projects in an eight-hour typical work day and ten-hour ex-
tended work day (eight-hour day plus/minus one) in our
data set of 87 projects.

●

●

●●●

●

●

●

● ●●●●●●

●●●

●

●

●●

●

●●

●

●● ●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●● ●●●●● ●

●

●

●●●●

●

●●●●●●●●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●●●●●●●●●●●● ●

●

●●

●●

●

●●●●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●●●●

●
●

●

0

25

50

75

100

ac
cu

m
ul

o

al
lu

ra

am
ba

ri

be
am

br
oo

kl
yn

−
se

rv
er

ca
m

el

ca
ss

an
dr

a

F
ire

fo
x

F
ire

fo
x

fo
r

A
nd

ro
id

F
ire

fo
x

O
S

fli
nk

gr
oo

vy

ha
do

op

ig
ni

te

in
cu

ba
to

r−
br

oo
kl

yn

in
fr

as
tr

uc
tu

re
−

pu
pp

et

jc
lo

ud
s

Lo
ca

l c
om

pa
ny

m
es

os

S
ea

M
on

ke
y

sp
ar

k

st
or

m

st
ra

to
s

T
hu

nd
er

bi
rd

tin
ke

rp
op

us
er

gr
id

%
 a

ct
iv

ity
 o

ut
si

de
 o

ffi
ce

 h
ou

rs

Figure 4: Variation within the local company project (green),
the Mozilla projects (blue) and the top-20 Apache projects
(red) of the distribution across commits done outside typical
working hours per week.

or overtime detection, for at least two thirds of the developers that
follow regular rhythm.

RQ2. How does the usual work pattern vary
across different projects?
Motivation: Here, we investigate variations in working hours be-
tween projects. After all, work patterns are shaped by both individ-
ual preferences and project culture and norms.

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Hour of week

Sh
ar

e
of

 c
om

m
its

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

12
6

13
2

13
8

14
4

15
0

15
6

16
2

16
8

Figure 5: Two extreme clusters with respect to working
hours with five (Black) and six (Blue) projects respectively.

90% of the projects have similar typical working hours.
This can be observed from Table 1, which shows how 78 out of
87 projects work from 10-18 plus/minus one hour. Variations in
work patterns between projects are still considerable as the
amount of commits done in eight-hour work days is 60% on average
with a standard deviation of 12.0% (min-max 31-91%). Moreover,
the extended typical hours (8 hours plus/minus one hour) has an
average of 68% with a standard deviation of 12.6% (mix-max: 36-
96%). On average, only 60% of work gets done during typical
working hours. The violin plot in Fig. 3 shows the distribution
across projects of the percentage of commits performed during
working hours.

Figure 4 shows the weekly variation within the most active
projects. The differences between projects in terms of relative activ-
ity happening during 8-hour work days can partially be explained
by the presence of paid developers. In particular, the three projects
with the most activity outside office hours (SeaMonkey, Thunder-
bird and Groovy) are projects that are now community projects.

The amount of activity outside office hours during the
week and during the weekend are correlated. The percentage
of activity in a project outside office hours during weekdays, and
the activity during weekends yield a correlation coefficient of 0.77
(pearson), with a p-value of < 0.001. When considering develop-
ers (with at least 100 commits) instead of projects, we obtain a
correlation coefficient of 0.62. This means that both projects and
developers that work a lot outside office hours are also likely to
work a lot during the weekend.

Clustering allows the separation of projects based onwork
patterns. We again used k-means clustering (with k = 7) by
the hour of the week. The difference is that here we cluster by
project (n=87) while previously we clustered the top 10% individu-
als (n=1,108). Fig. 5 shows the two most extreme clusters: the black
one follows office hours rigorously, while the blue one has a commit
peak right before midnight. In the rigorous office hour group (5
projects) we have our local company but also open source projects
like Apache Cordova for Android and Apache Geode. The other
group (6 projects) contains projects like SeaMonkey and Thun-
derbird, which are community projects (i.e., very little paid work
from the Mozilla foundation) and also the logging library Log4j2.
The other clusters, not shown in the figure, fall between these two
extreme clusters.

Discussion: Important differences between projects can be ob-
served in terms of activity outside regular office hours. Although no
open source project follows office hours as well as the local Finnish

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Maëlick Claes, Mika V. Mäntylä, Miikka Kuutila, and Bram Adams

company, some open source projects follow them more closely
than others. In particular, community projects such as SeaMonkey,
Thunderbird and Groovy tend to contain a lot of activity outside
office hours.

RQ3. Are office hour commits different in terms
of size?
Motivation: Given that developers are more active during office
hours than during the other hours of the week, we wanted to check
whether the commits made during office hours are different in terms
of size and content in comparison to outside-office hour comments.
Previous work has shown that different programming languages
are used during the night [19, 25] and that night work is more
technical [30]. In this paper, we approximate the dichotomy of
office hours versus non-office hours using our dynamic office hour
detection approach, which ensures that, for each project, only the
most active weekday hours are taken into account as office time.

We found no significant difference in terms of added lines
of code, with a Mann–Whitney U test p-value of 0.076, Cliff’s delta
< 0.00. Since our projects are of different sizes, and since a large
project like Firefox may mask effects present in smaller projects,
we checked each project individually and found that for 16% of
them, there is no difference in the median commit size. For 33%
(29/87), the office hour commits are larger but only for 11% (10/87)
this difference is statistically significant with Mann–Whitney U test
alpha level 0.05. On the other hand, for 51% (44/87) of the projects,
the office hour commits are smaller, while only for 26% (23/87) of
the projects a statistically significant difference was obtained. We
checked the Cliffs’ Delta effect sizes for all projects and they ranged
from 0.10 to -0.11, meaning a negligible effect in all cases [34].

For lines of code removed, we found a significant differ-
ence (Mann–Whitney U test p-value < 0.001), but the effect
size is negligible (Cliff’s delta < 0.00). Checking each project
individually shows that for 26% (23/87) the office hour removals
are larger (8% (7/87) significant), for 44% (38/87) they are smaller
(21% (18/87) significant), and for 30% (26/87) of the projects there is
no difference in the median number of lines removed. The effect
sizes were again negligible ranging from 0.08 to -0.10.

Discussion: In terms of commit size, we conclude that there is
no difference in practice between office hours and outside office
hours.

RQ4. Is there a difference in the developers’
work patterns over time?
Motivation: While a software project could start off on schedule,
with most of the work happening during office hours, deadlines and
delays are notorious for introducing outside office work or even
death marches. On the other hand, we could hypothesize that a
project may initially have a start-up culture with highly flexible
working hours, while later, as the project matures, more work
would start to happen during office hours. We are interested which
of these conflicting ideas, i.e., 1) starting on time with eventual
delays ending up in death march versus 2) starting with a start-
up culture and maturing as time passes, is more prevalent in our
projects.

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0

20

40

60

20 40 60

% of activity outside office hours (before)

%
 o

f a
ct

iv
ity

 o
ut

si
de

 o
ffi

ce
 h

ou
rs

 (
af

te
r)

●

●

●

Apache

Local Finnish Company

Mozilla

Figure 6: Percentage of activity outside office hours during
the first and second half of each project’s analyzed time pe-
riod. Projects in the gray area did not experience an increase
or decrease of activity of more than 5% outside office hours.

For 18 projects, the activity outside office hours increased
by at least 5%, while for 27 projects it decreased by at least
5%. For each project, we split the activity history in two equal
parts (in terms of number of commits) in order to find whether the
work pattern changed over time or not. Fig. 6 shows that for 46
projects the activity outside office hours activity neither increased
or decreased by more than 5%.

Examples of Apache projects where activity outside office hours
increased the most are Allura, from 26.5% to 34.7%, Groovy from
48.8 to 58.2%, and Wicket from 29.8 to 50.1%. Apache projects that
saw their activity drop include Drill from 37 to 24.4%, AsterixDB
from 57% to 47.4%, Spark from 54.9 to 46.4% and Cassandra from
43.1 to 31.7%. For Mozilla, SeaMonkey experienced a significantly
increased activity outside office hours, from 56.2% to 64.6% and
Thunderbird from 58.2% to 62%. For Mozilla, only Firefox experi-
enced a significant decrease from 47.4% to 42.7%.

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

−0.2

0.0

0.2

−
5 0 5

Shift of office hours

D
iff

er
en

ce
 o

f o
ut

si
de

 o
ffi

ce
 h

ou
r

ra
tio

●

●

●

Apache

Local Finnish Company

Mozilla

Figure 7: Differences of relative activity outside office hours
over time (Y axis), as observed in Fig. 6, and shifts of office
hour period over time (X axis).

Do Programmers Work at Night or During the Weekend? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

0

100

200

300

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

co

m
m

its

Figure 8: Distribution of the number of hourly weekday
commits for Thunderbird.

In Fig. 6, we identified separate office hours for each half of
the projects’ history, since the eight-hour office hour time interval
can change over time. As shown in Fig. 7, most projects do not
encounter a major shift of their time interval. Indeed, most projects
(75/91) experienced a shift of less than one hour (X axis). Only 5
projects experienced a positive shift (towards the evening) of more
than one hour, and 11 a negative shift (towards the morning) of
more than one hour.

A significant negative shift usually means that the identified 8-
hour period shifts shift towards common office hours. For example,
Apache Log4j shifted from an 8-hour period starting at 17:15 to one
starting at 09:45. On the other hand, a positive shift usually means
that the 8-hour period moves away from common office hours. For
example, Mozilla Thunderbird experienced a shift from 08:45 to
14:30. However, in both of these cases the amount of work done
outside these 8-hour periods didn’t change a lot and is relatively
high (from 0.58 to 0.62 for Thunderbird and from 0.69 to 0.68 for
Log4j).

Overall, we did not find any correlation between the amount
of office hour work and shift of office hours period. Most of
the projects that experience large shifts have a rather high amount
of activity outside the identified office hour period. One possible
explanation is that commit activity is more spread throughout the
day for these projects, making the identification of an 8-hour stint
more sensitive to small variations. For example, as seen in Fig. 8,
Thunderbird has a high level of activity from 8 am to 1 am with
activity peaks around 10 am, 3 pm and 8 pm.

Discussion: In summary, most projects do not experience large
changes over time in their work pattern. Important changes in the
identified 8-hour office hour period are often found in projects with
commits being more spread throughout the day.

5 DEEPER ANALYSIS OF THEWORK
PATTERNS OF MOZILLA FIREFOX

RQ5. Are office hour commits different in terms
of content?
Motivation: This question is similar to RQ3, which looked for
differences between the size of commits within and outside office
hours, however here we investigate the content of the commits, by
comparing word clouds. Figure 9 shows a comparison word cloud
of commit messages for Mozilla Firefox, which has roughly 230,000
commits. As the visualization of a comparison cloud tends to make

Table 2: Commit message differences (in %) during vs. out-
side office hours.

Words, bi- or tri-
grams

Office hours Outside
office
hours

Difference

“backed out change-
set”

3.65% 2.63% 138.7%

“back out” 0.57% 1.24 % 46.0%
“closed tree” 2.42% 2.01% 119.8%
add, adds, added 9.97% 9.27% 107.5%
remove, removes,
removed

7.43% 8.16% 91.1%

fix, fixed, fixes 10.96% 11.28% 97.1%

office

outside

backedremove
changeset

backfixport

closed

pa
tc

h

tree

javascript
frame

check

add

failures

tests

test

ba
ck

ou
t

wimplicitfallthrough sw
itc

htext

default

fallthroughbar

unannotated

labels

changes

su
pp

or
t

make

browser

need

implement

data
added

build

handle

nu
ll

895274
display

m
ov

e case

infer

annotations

dont

warnings style
commcentral

tab

regression seamonkey

plugin
ensure

followup

animations

re
fte

st

dontbuild
outputevents

re
pl

ac
e

changesets

b2g

audio

menu

imagemulet
crashtest

as
se

rt

view

rename

osx
crashes

bustage

version

cl
ea

nu
p

svg

attribute

cs
p

logic

load
oom

Figure 9: Comparison of the clouds ofwords used during and
outside office hours.

the differences appear larger than they actually are, Table 2 also
shows percentage differences for the selected terms.

Developers back out more code themselves outside office
hours. During office hours, there are more commit messages con-
taining the “Backed out changeset” statement, which is part of
the official terminology of the version control system used to in-
dicate that a commit (change set) has been reverted (after being
merged). Furthermore, “Backed out changeset <change set id>” is
often followed by the explanation such as “because of a possible
Talos regression”5. For outside office hours there are more commit
messages with “Back out” (instead of “Backed out changeset”), this
informally seems to indicate that, after office hours, a developer is
backing out changes herself rather than being backed out by some
authority.

A “Closed tree” message in a commit is used to indicate that a
commit also closes a version control tree. together with a “Backed
out changeset” message. In fact, the “closed tree” message is propor-
tionally more common outside office hours when we remove the
commits where it appears together with the “Backed out changeset”
message (1.30% vs 1.41%). Table 2 also shows that work involv-
ing adding something is more common during office hours while
removals and fixes are more common outside office hours.
5Talos is the performance testing framework used by Mozilla.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Maëlick Claes, Mika V. Mäntylä, Miikka Kuutila, and Bram Adams

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10−49
(n=400)

50−99
(n=124)

100−249
(n=123)

250−499
(n=88)

500−999
(n=59)

1000−1499
(n=31)

1500−>
(n=32)

●
●

● ●
● ● ●

Share of office hours commits per individual − Firefox

Total number of commits (number of individuals)

Sh
ar

e
of

 c
om

m
its

Figure 10: Share of office hour commits for individuals, for
various numbers of total commits.

Discussion:We found small differences between office hour and
outside-office hour commit messages. The most notable difference
was that during office hours there are more formal reverts made to
version control. Outside office hours, informal reverts made by the
developer herself are more common.

RQ6. Can demographics explain office hour
activity?
Motivation: First, we hypothesize that more senior developers will
likely work more during office hours, as they are more likely to
be paid for their efforts. For this purpose, we investigated whether
there was a correlation between the number of commits made by a
developer and the amount of abnormal work. We only considered
individuals with 10 or more commits, which reduces the number
of analyzed individuals in Firefox significantly from 2,755 to 857,
but still retains 98% of the commits.

Second, one explanation for work outside-office hours in open
source projects is the amount of paid and non-paid contributors. If
developers are hired by a company to work on a project, they are
more likely to work during regular office hours. On the contrary,
if they are not paid, they are more likely to work during their free
time. Hence, we ran a manual background check for the top 10% of
developers to determine whether they are paid or non-paid, leaving
uswith 278 developers (out of 2,755), eachwith 147 ormore commits.
This top 10% of developers has made 87% out of all the Firefox
commits. Our background check considered information available
online on websites such as LinkedIn or the developers’ personal
websites (e.g., publicly available CVs). In addition to their job status,
we also gathered information about their location, experience in
the software industry and position at Mozilla.

We did not find a statistically significant correlation be-
tween developer seniority and amount of office hour work.
Fig. 10 divides the contributors into buckets based on their number
of commits. The violin plots show that the amount of office hour
work varies between groups. We can see an increase in the amount
of commits during office hours as the number of commits increase
in the first three groups. However, this increase plateaus at the 4th
cluster of developers (between 250-499 commits). Then, for the top
contributor group with 1,500 or more commits, the share of abnor-
mal commits increases again. Overall, it seems that the number of
commits is not a very good predictor of office hours work.

0.
00

0.
10

Sh
ar

e
of

 c
om

m
its

M
on

 a
bn

or
m

al

M
on

 o
ffi

ce

Tu
e

ab
no

rm
al

Tu
e

of
fic

e

W
ed

 a
bn

or
m

al

W
ed

 o
ffi

ce

Th
u

ab
no

rm
al

Th
u

of
fic

e

Fr
i a

bn
or

m
al

Fr
i o

ffi
ce

Sa
t a

bn
or

m
al

Su
n

ab
no

rm
al

Figure 11: Clusters of work patterns for the top 10% Firefox
developers.

Projectswere clusteredwithin 3workpattern clusters, two
of which mostly used office hours Fig. 11 shows the clustering
of three different work patterns that were identified using k-means
clustering. Since we are interested in the differences between of-
fice hour commits and outside-office hour commits within a single
project, we used our dynamic office hour setting data for Mozilla
Firefox and divided each week into 12 time units. From Monday
through Friday, a commit can happen either during office hours
(normal) or outside-office hours (abnormal), yielding 10 time units.
For weekends, we consider both Saturday and Sunday as abnormal,
which gives two more time units. Reducing the time units in a week
(X-axis) from 168 hours to 12 periods also makes the data less noisy
and gives a visualization that is easier to comprehend. Similar to
Fig. 2, Fig. 3, and Fig. 5, the Y-axis in Fig. 11 represents the share of
commits done in a particular time unit.

In Fig. 11, we can see one group in cluster (n=101) that mostly
commits during office hours. This office hour cluster has the highest
share of commits (15.9%) on Tuesday during office hours and the
lowest on Sunday (1.7%). On the other hand, the extreme (black)
cluster (n=46) works more during abnormal times, and has the
highest share of commits on Saturday (11.4%) and the lowest on
Monday during office hours (5.7%). The third cluster in blue (n=131)
lies between these two extreme clusters and obtains the highest
share of commits on Wednesday during office hours (11.2%) and
the lowest on Sunday (3.9%). This group substantially works out-
side office hours during the week, but less during weekends. For
weekends, one needs to consider that a single data point represents
all the commits for the day, while for a weekday the commits are
divided into office hours and abnormal commits.

For the three clusters in Fig. 11, we ran the dynamic office hour
heuristic and found that the green and blue clusters both have
office hours from 10:00-18:00. During those hours they perform 72
and 53% of their weekly commits, respectively. The third cluster
commits 34% during their office hours, which are from 15:15 to
23:15, indicating a very irregular and abnormal working pattern.
Office hours for the entire Firefox project were 10:00-18:00, and
during that time the entire project completed 55% of their commits.
Thus, the middle group represents the project average while the
other two groups show extreme variations.

Outside office hour work is mostly performed by unpaid
developers. We compared the clusters identified in Fig. 11 with
our manually extracted information about Mozilla paid developers.
Table 3 shows the absolute number and relative percentage of paid
developers in each cluster (first two numbers in each cell). While
90% of the developers in the cluster with the largest amount of

Do Programmers Work at Night or During the Weekend? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 3: Clustering of (un)paid top 10% developers of Firefox.
The first number and first percentage respectively indicate
the number and percentage of developers in a given cluster
that is (un)paid, while the second percentage indicates the
percentage of (un)paid developers that are within a cluster.

Paid Outside office
hours cluster

Average cluster Office hours clus-
ter

No 23 (50% / 47.9%) 15 (11.6% / 31.3%) 10 (10% / 20.8%)
Yes 23 (50% / 10.1%) 114 (88.4% /

50.2%)
90 (90% / 39.7%)

Table 4: Median percentage of office hour commits depend-
ing on location, experience in the software industry and po-
sition at Mozilla.

Characteristic # dev. # commits office
hours
commits

beginning
of office
hours
period

Based in Eu-
rope

65 41,962 54.4% 9:45

Based in Amer-
ica

118 78,070 60.9% 10:00

Senior posi-
tion

78 47,483 57.6% 10:00

Non senior po-
sition

197 130,468 59.5% 10:00

Manager po-
sition

19 7,957 63.1% 10:00

Non manager
position

256 169,994 58.6% 9:30

office hour commits (last column), and 88% of the developers in the
average cluster (second-to-last column) were paid, only 50% of the
cluster with most outside office hours (second column) were paid
by Mozilla. This corresponds to only 10.1% of all paid developers.
In other words, paid developers work less outside office hours than
unpaid ones. Yet most paid Firefox developers still work signifi-
cantly more outside office hours than developers from the local
company

There are no major differences in office hour work be-
tween developer profiles. Table 4 shows that the developers
based in Europe work less during office hours. It seems that career
moves on the technical ladder, i.e., having a title with the word
“senior” or “principle”, decreases the median office hour work by
1.9%. However, career moves on the managerial ladder, i.e., having
a title with the word “manager”, decrease the outside office hour
commits by 4.5%. We suspect that management positions require
less technical work and more communication and coordination,
which might explain this difference. In other words, for managers,
using commits as working hour indicators could be misleading.
However, when running a Mann–Whitney U test, only the dif-
ference between Europe-based and America-based developers is
statistically significant with a p-value < 0.01.

Discussion: We did not find any differences between the se-
niority of developers when measured in terms of commits. On the
other hand, developers following office hours more closely
are usually developers paid by Mozilla, even though most paid
developers still work a lot outside regular office hours. We did not
observe any strong characteristics of paid developers that could
explain these differences. The only statistically significant differ-
ence is observed between European and American developers, with
the former following office hours less than the latter. A potential
explanation is the difference in time zone and the fact that Mozilla
is based in North America. Finally, the office hour work seems to be
impacted by job title, but again the differences are not statistically
significant.

6 THREATS TO VALIDITY
Regarding construct validity, commit authoring times used in ver-
sion control systems might not be representative of the actual time
period when the code change was written: a timestamp cannot
provide information about the time actually spent working for that
commit. However, as we investigate weekly and daily rhythms,
which are accumulated over months and years, this should not
significantly affect the results. For example, if a developer works
at a regular rhythm from nine to five, then, over time, all commits
would occur between these regular working hours, with perhaps
a small lag from the start of working until the first commit. Fur-
thermore, the fact that in most figures we observed dips in commit
count during typical lunch hours strengthens the idea that commit
time stamps are reliable when used for daily and weekly working
hour discovery.

However, for the local company, we investigated the developers’
chat log activity and commit activity. We found that not only are
these strongly correlated (r=0.74), but the “start of the day lag”
between the 8-hour office period based on the chat log timestamps
and the one based on the commit timestamps is only 15 minutes.
This offers further support that commit time stamps can be used to
study what are the typical working hours in daily and weekly level.

Another threat to construct valididty is that our analysis depends
on data extracted from repositories available from online sources.
Although we found somemissing time zone information for Apache
projects and filtered them out, other errors or incompleteness in
these data sources may impact the result of our analysis. In partic-
ular, we relied on time zone information available from Mozilla’s
Mercurial source code repository and Apache source code reposi-
tories. The time zone from this repository might not be accurate
enough to pinpoint the developer’s actual position.

In order to identify developers hired by Mozilla, we manually
looked for information about them online. Although this allows us
to identify a large amount of the most active developers as hired
by Mozilla, we might have missed developers who do not share
their CV online. We also merged developers’ identities using a
very basic identity merging technique. We manually checked for
false positives in order to avoid merging the work pattern of two
developers as a single one and thus overestimating their amount of
activity. However, there might be false negatives remaining, which
could be particularly problematic in the case of developers using

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Maëlick Claes, Mika V. Mäntylä, Miikka Kuutila, and Bram Adams

their work e-mail during office hours and personal emails outside
office hours.

Regarding threats to external validity, our study only includes
open source projects from Mozilla and Apache, and one project
from a local company. The results obtained are specific to those or-
ganizations’ culture and to the habits of their developers. Although
the results reveal important differences between the projects, as
illustrated in Figure 5, we cannot guarantee that our data set would
be representative of the entire industry in particular, as we would
need more closed source projects.

7 CONCLUSION AND FUTUREWORK
In this paper, we have performed a first large-scale study of software
developers’ work patterns by investigating over 700,000 version
control commits coming from 87 software projects, each having a
minimum of 2,000 commits. We were motivated to investigate work
patterns as according to medical and occupation well-being litera-
ture they might be possible indicators of overload, time pressure,
and unhealthy working patterns.

We found that developers follow a typical circadian rhythm
where most of the work is performed during day time and less
work is performed during evenings and at night. Dips in activity
during typical lunch hours can also be seen. The weekly rhythm
shows that during weekends there is radically less activity. We
then established a search method that finds, for each project or
individual, the period, of a given length, with the highest number
of commits. In this paper, we fixed the length of time series to eight
hours to make comparisons between projects. Our method can also
be used in reverse to find a continuous time series that results in a
certain percentage of commits.

We used our search method to find that the median 8-hour work-
ing day for software engineering projects in our data runs from
10:00 to 18:00 instead of the typical 09:00-17:00 (nine-to-five). Thus,
the often quoted idea of programmers as night owls that has even
made it to a book titled “Why programmers work at night” [18]
holds only partially. Perhaps the plus one hour shift compared to
regular nine-to-five professions gives the impression of a highly
elevated night activity. Another possibility for the birth of that
myth could be in extreme projects as the ones shown in Figure 5,
with a blue line showing that a peak hour of commits occurs daily
very close to midnight.

In fact, a previous comparison of the work rhythms of software
engineers and scientists [21] shows that scientists seem to work
more during the night than software engineers. The activity of US
and German scientists at night (measured by paper downloads)
is roughly 42% and 25% of their day time peak activity. On the
other hand, for software developers in the Mozilla and Apache
projects, the corresponding percentages (based on commit count)
are roughly 29% and 25% (see Fig. 1d and Fig. 1b).

Of course, individuals have different working patterns and, in-
deed, clustering of developers revealed that one third of software
developers do not seem to follow a typical office hour rhythm at all
as they perform a lot of activities during evenings and weekends
(see Figure 2). On the other hand, two thirds of individuals mostly
follow office hours. This information is important if one wishes to
build a stress detector that would use among other things commit

hours, since such a detector would only work for the two thirds of
software engineers who have regular working rhythms.

A manual background check of the top 10% (over 250 individ-
uals) of Mozilla Firefox developers revealed that only half of the
developers that did not follow office hours were paid by Mozilla
(black line in Figure 11) as opposed to roughly 90% for the two
groups that did follow office hours. This suggests that existence
of hobby developers can partially explain the outside office hour
activity. Still, for the middle group (blue curve in Figure 11), only
55% of commits are performed during office hours, although 90%
of the individuals are paid employees, which could be a marker of
overload for that group.

With respect to seniority we found no differences in working
hours by using two different measures the number of commits
and job title. This is rather surprising but perhaps developers that
make very few commits are hobbyist and commit outside office
hours while for the most senior developers the outside office hour
commits would be explained by overwork.

A comparison of commit messages between office and outside
office hours revealed that in our largest project, Firefox, formal code
review reverts are made more often during office hours. Moreover,
informal developer-initiated reverts are more often made outside
office hours. Furthermore, office hour time seems to focus especially
on adding new code while clean-ups are more frequent outside
office hours. We found no difference in commit size, and we did not
find support to the idea that as projects mature they move away
from night and weekend work to more typical office hour rhythm.

In future work, we will perform a detailed qualitative analysis
of both individual histories and individual developer histories to
better explain the differences in working patterns, involving in-
terviews and daily surveys to monitor project members. We will
use additional data sources, such as chat logs, in order to make
our set of timestamp activity more complete. Measuring the level
of detachment from work, which is critical to recovery, should be
studied and, similarly, normative recommendation from empiri-
cal data should be drawn. We also intend to study the impact of
policies and guidelines put in place by project managers, such as
a fast release cycle, on developers’ activity and health. Finally, we
also want to investigate further the causes of outside office hour
work by focusing on periods with unusually high activity during
the night or weekends.

ACKNOWLEDGMENTS
The first three authors have been supported by Academy of Fin-
land grant 298020. The third author has been supported by Kaute
foundation.

REFERENCES
[1] A. Bannai and A. Tamakoshi, “The association between long working hours and

health: a systematic review of epidemiological evidence,” Scandinavian journal of
work, environment & health, vol. 40, no. 1, pp. 5–18, 2014.

[2] J. Greubel, A. Arlinghaus, F. Nachreiner, and D. A. Lombardi, “Higher risks
when working unusual times? a cross-validation of the effects on safety,
health, and work–life balance,” International Archives of Occupational and
Environmental Health, vol. 89, no. 8, pp. 1205–1214, Nov 2016. [Online]. Available:
https://doi.org/10.1007/s00420-016-1157-z

[3] A. Wirtz, O. Giebel, C. Schomann, and F. Nachreiner, “The interference of flex-
ible working times with the utility of time: A predictor of social impairment?”
Chronobiology International, vol. 25, no. 2-3, pp. 249–261, 2008.

https://doi.org/10.1007/s00420-016-1157-z

Do Programmers Work at Night or During the Weekend? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

[4] O. Giebel, A. Wirtz, and F. Nachreiner, “The interference of flexible working times
with the circadian temperature rhythm—a predictor of impairment to health and
well being?” Chronobiology International, vol. 25, no. 2-3, pp. 263–270, 2008.

[5] J. C. Hall, M. Rosbash, and M. W. Young, “The 2017 nobel prize in physiology
or medicine,” https://blog.sourced.tech/post/activity_hours/, 2017. [Online].
Available: https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/
press.html

[6] J. W. Timothy, N. Klas, H. R. Sanghani, T. Al-Mansouri, A. T. Hughes, G. S.
Kirshenbaum, V. Brienza, M. D. Belle, M. R. Ralph, S. J. Clapcote et al., “Circadian
disruptions in the myshkin mouse model of mania are independent of deficits in
suprachiasmatic molecular clock function,” Biological psychiatry, 2017.

[7] A. E. Zubidat andA. Haim, “Artificial light-at-night–a novel lifestyle risk factor for
metabolic disorder and cancer morbidity,” Journal of basic and clinical physiology
and pharmacology, vol. 28, no. 4, pp. 295–313, 2017.

[8] C. Binnewies, S. Sonnentag, and E. J. Mojza, “Recovery during the weekend and
fluctuations in weekly job performance: a week-level study examining intra-
individual relationships,” Journal of Occupational and Organizational Psychology,
vol. 83, no. 2, pp. 419–441, 2010.

[9] S. Sonnentag, C. Binnewies, and E. J. Mojza, “Staying well and engaged when
demands are high: the role of psychological detachment.” Journal of Applied
Psychology, vol. 95, no. 5, p. 965, 2010.

[10] A. Arlinghaus and F. Nachreiner, Unusual and Unsocial? Effects of Shift
Work and Other Unusual Working Times on Social Participation. Cham:
Springer International Publishing, 2016, pp. 39–57. [Online]. Available:
https://doi.org/10.1007/978-3-319-42286-2_3

[11] I. Spieler, S. Scheibe, C. Stamov-Roßnagel, and A. Kappas, “Help or hindrance?
day-level relationships between flextime use, work–nonwork boundaries, and
affective well-being.” Journal of Applied Psychology, vol. 102, no. 1, pp. 67–87,
2017.

[12] R. A. Karasek Jr, “Job demands, job decision latitude, and mental strain: Implica-
tions for job redesign,” Administrative science quarterly, pp. 285–308, 1979.

[13] S. Kim, E. J. W. Jr., and Y. Zhang, “Classifying software changes: Clean or buggy?”
IEEE Transactions on Software Engineering, vol. 34, no. 2, pp. 181–196, March 2008.

[14] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer experience
affect commit bugginess?” in Proceedings of the 8th Working Conference on
Mining Software Repositories, ser. MSR ’11. New York, NY, USA: ACM, 2011, pp.
153–162. [Online]. Available: http://doi.acm.org/10.1145/1985441.1985464

[15] ——, “Correlations between bugginess and time-based commit characteristics,”
Empirical Software Engineering, vol. 19, no. 4, pp. 1009–1039, Aug 2014. [Online].
Available: https://doi.org/10.1007/s10664-013-9245-0

[16] L. Prechelt and A. Pepper, “Why software repositories are not used for
defect-insertion circumstance analysis more often: A case study,” Information and
Software Technology, vol. 56, no. 10, pp. 1377 – 1389, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584914001049

[17] R. D’souza, “Why do programmers love working at night?” https://blog.sourced.
tech/post/activity_hours/, 2014.

[18] S. Teller, Why programmers work at night. Leanpub, 2013.
[19] D. Robinson, “What programming languages are used late at night?” https://

stackoverflow.blog/2017/04/19/programming-languages-used-late-night/, 2017.

[20] E. A. Sall and C. R. Bhat, “An analysis of weekend work activity patterns in the
san francisco bay area,” Transportation, vol. 34, no. 2, pp. 161–175, 2007. [Online].
Available: http://dx.doi.org/10.1007/s11116-006-0008-2

[21] X. Wang, S. Xu, L. Peng, Z. Wang, C. Wang, C. Zhang, and X. Wang, “Exploring
scientists’ working timetable: Do scientists often work overtime?” CoRR, vol.
abs/1208.2686, 2012. [Online]. Available: http://arxiv.org/abs/1208.2686

[22] M. McKee, “The weekend effect: now you see it, now you don’t,” BMJ, vol. 353,
2016. [Online]. Available: http://www.bmj.com/content/353/bmj.i2750

[23] P. Aylin, “Making sense of the evidence for the “weekend effect”,” BMJ, vol. 351,
2015. [Online]. Available: http://www.bmj.com/content/351/bmj.h4652

[24] B. Alexander, M. Dijst, and D. Ettema, “Working from 9 to 6? an analysis of
in-home and out-of-home working schedules,” Transportation, vol. 37, no. 3, pp.
505–523, 2010. [Online]. Available: http://dx.doi.org/10.1007/s11116-009-9257-1

[25] V. Markovtsev, “Daily commit activity on github,” https://blog.sourced.tech/post/
activity_hours/, 2017.

[26] F. Ferrucci, M. Harman, J. Ren, and F. Sarro, “Not going to take this anymore:
Multi-objective overtime planning for software engineering projects,” in
Proceedings of the 2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 462–471. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486849

[27] M. d. O. Barros and L. A. O. d. Araujo, Jr., “Learning overtime dynamics through
multiobjective optimization,” in Proceedings of the Genetic and Evolutionary
Computation Conference 2016, ser. GECCO ’16. New York, NY, USA: ACM, 2016,
pp. 1061–1068. [Online]. Available: http://doi.acm.org/10.1145/2908812.2908824

[28] F. Sarro, F. Ferrucci, M. Harman, A. Manna, and J. Ren, “Adaptive multi-objective
evolutionary algorithms for overtime planning in software projects,” IEEE
Trans. Software Eng., vol. 43, no. 10, pp. 898–917, 2017. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2650914

[29] F. Khomh, B. Adams, T. Dhaliwal, and Y. Zou, “Understanding the impact of rapid
releases on software quality,” Empirical Softw. Engg., vol. 20, no. 2, pp. 336–373,
Apr. 2015. [Online]. Available: http://dx.doi.org/10.1007/s10664-014-9308-x

[30] M. Claes, M. Mäntylä, M. Kuutila, and B. Adams, “Abnormal working hours:
effect of rapid releases and implications to work content,” in Proceedings of the
14th International Conference on Mining Software Repositories. IEEE Press, 2017,
pp. 243–247.

[31] G. Robles and J. M. Gonzalez-Barahona, “Contributor turnover in libre software
projects,” in IFIP International Conference on Open Source Systems. Springer,
2006, pp. 273–286.

[32] B. C. Csáji, A. Browet, V. A. Traag, J.-C. Delvenne, E. Huens, P. Van Dooren,
Z. Smoreda, and V. D. Blondel, “Exploring the mobility of mobile phone users,”
Physica A: statistical mechanics and its applications, vol. 392, no. 6, pp. 1459–1473,
2013.

[33] Y. Hu, A. Shmygelska, D. Tran, N. Eriksson, J. Y. Tung, and D. A. Hinds, “Gwas
of 89,283 individuals identifies genetic variants associated with self-reporting of
being a morning person,” Nature communications, vol. 7, p. 10448, 2016.

[34] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate statistics
for ordinal level data: Should we really be using t-test and cohen’sd for evaluating
group differences on the nsse and other surveys,” in annual meeting of the Florida
Association of Institutional Research, 2006, pp. 1–33.

https://blog.sourced.tech/post/activity_hours/
https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/press.html
https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/press.html
https://doi.org/10.1007/978-3-319-42286-2_3
http://doi.acm.org/10.1145/1985441.1985464
https://doi.org/10.1007/s10664-013-9245-0
http://www.sciencedirect.com/science/article/pii/S0950584914001049
https://blog.sourced.tech/post/activity_hours/
https://blog.sourced.tech/post/activity_hours/
https://stackoverflow.blog/2017/04/19/programming-languages-used-late-night/
https://stackoverflow.blog/2017/04/19/programming-languages-used-late-night/
http://dx.doi.org/10.1007/s11116-006-0008-2
http://arxiv.org/abs/1208.2686
http://www.bmj.com/content/353/bmj.i2750
http://www.bmj.com/content/351/bmj.h4652
http://dx.doi.org/10.1007/s11116-009-9257-1
https://blog.sourced.tech/post/activity_hours/
https://blog.sourced.tech/post/activity_hours/
http://dl.acm.org/citation.cfm?id=2486788.2486849
http://doi.acm.org/10.1145/2908812.2908824
https://doi.org/10.1109/TSE.2017.2650914
http://dx.doi.org/10.1007/s10664-014-9308-x

	Abstract
	1 Introduction
	2 Related Work
	3 Data extraction
	4 Empirical analysis of the work patterns of all projects
	5 Deeper analysis of the work patterns of Mozilla Firefox
	6 Threats to Validity
	7 Conclusion and future work
	References

