
Hybrid Regression Test Selection

Lingming Zhang
The University of Texas at Dallas

lingming.zhang@utdallas.edu

ABSTRACT

Regression testing is crucial but can be extremely costly. Regression

Test Selection (RTS) aims to reduce regression testing cost by only

selecting and running the tests that may be affected by code changes.

To date, various RTS techniques analyzing at different granularities

(e.g., at the basic-block, method, and file levels) have been proposed.

RTS techniques working on finer granularities may be more precise

in selecting tests, while techniques working on coarser granularities

may have lower overhead. According to a recent study, RTS at

the file level (FRTS) can have less overall testing time compared

with a finer grained technique at the method level, and represents

state-of-the-art RTS. In this paper, we present the first hybrid RTS

approach, HyRTS, that analyzes at multiple granularities to combine

the strengths of traditional RTS techniques at different granularities.

We implemented the basic HyRTS technique by combining the

method and file granularity RTS. The experimental results on 2707

revisions of 32 projects, totalling over 124 Million LoC, demonstrate

that HyRTS outperforms state-of-the-art FRTS significantly in terms

of selected test ratio and the offline testing time. We also studied

the impacts of each type of method-level changes, and further

designed two new HyRTS variants based on the study results. Our

additional experiments show that transforming instance method

additions/deletions into file-level changes produces an even more

effective HyRTS variant that can significantly outperform FRTS in

both offline and online testing time.

ACM Reference Format:

Lingming Zhang. 2018. Hybrid Regression Test Selection. In ICSE ’18: ICSE

’18: 40th International Conference on Software Engineering , May 27-June

3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3180155.3180198

1 INTRODUCTION

Regression testing has beenwidely used to ensure that software evo-

lution does not break existing functionalities. However, simply re-

running entire regression test suites can be extremely time consum-

ing, e.g., some real-world test suites take weeks to run [38]. Besides,

regression testing can also consume a lot of computing resources,

e.g., Google has over 100 Million tests running each day, occupying

various machines and clusters [7, 8, 20, 33]. As a result, shown in

a prior survey by Yoo and Harman [47], various approaches have

been proposed to reduce the costs of regression testing, including

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180198

regression test selection [15, 21, 23, 26, 27, 34, 35, 37, 46, 50], regres-

sion test-suite reduction [17, 18, 24, 28, 41, 43, 51, 52], regression

test-case prioritization [19, 25, 32, 38, 40, 48, 49].

Regression Test Selection (RTS) [13, 15, 21, 23, 26, 34, 35, 37, 46,

50] aims to select and run only the tests that are affected by code

changes, since the tests not affected by code changes should have

the same results with prior runs. In this way, RTS can greatly save

the regression testing efforts, and has been widely used in prac-

tice [23, 30, 42]. A typical RTS technique requires two dimensions of

information: (1) the test dependency information (i.e., the program

elements that can be executed during each test execution) on an old

program version, (2) the changed program elements. Then, a safe

RTS technique selects any test whose dependencies overlap with

the changed program elements as the affected tests, since missing

any of those tests may fail to detect some regression bugs.

Depending on how the test dependencies are collected, RTS tech-

niques can be categorized as dynamic [23, 26, 34, 35, 37, 50] and

static [29, 30, 36] techniques; depending on the granularities of pro-

gram elements in test dependencies and program changes, RTS tech-

niques can be categorized as basic-block-level [26, 34, 37], method-

level [35, 50], file-level [23, 30], and even module-level [42, 44]

techniques. Since static RTS uses static analysis to overapproximate

the test dependencies and thus may select more tests than necessary,

dynamic RTS techniques at different granularities have been largely

studied in the literature. According to a recent study [23], RTS at

the file granularity can have less end-to-end time (i.e., including

both RTS overhead and actual testing time) compared with a finer

grained technique at the method level due to its lower overhead,

and represents state-of-the-art RTS. Actually, various open-source

projects have already adopted file-level RTS in their daily develop-

ment, e.g., Apache Camel [9], Math [10], and CXF [11].

Although the file-level RTS has been demonstrated to be cost-

effective, it may select more tests than finer-grained RTS. For ex-

ample, prior study showed that file-level RTS may select twice as

many tests as method-level RTS on five GitHub Java projects [23].

Actually, dynamic RTS techniques at different granularities have

there own strengths – while techniques working on coarser granu-

larities may have lower overhead, RTS techniques working on finer

granularities may be more precise in selecting tests. Our insight is

to combine the strengths of RTS at different granularities to

design a hybrid RTS approach that can be more cost-effective than

any of the existing RTS techniques.

In this paper, we propose the first hybrid RTS approach that

analyzes test dependency and change information at multiple gran-

ularities. We then implement a basic hybrid RTS technique, HyRTS,

that combines method-level and file-level analysis for more cost-

effective RTS formodern Java programs. The basic idea is to perform

the method-level analysis just for the class files with only finer-

grained method-level changes, while performing file-level analysis

for all the other cases, e.g., file-level additions/deletions, or class file

199

2018 ACM/IEEE 40th International Conference on Software Engineering

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3180155.3180198&domain=pdf&date_stamp=2018-05-27

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Lingming Zhang

header changes. To evaluate the proposed technique, we compare

it against state-of-the-art file-level RTS (denoted as FRTS) on 2707

revisions of 32 GitHub Java projects, totalling 124,764,602 LoC. The

experimental results demonstrate that HyRTS significantly outper-

forms state-of-the-art FRTS technique in terms of both selected test

ratio and the offline testing time (when the test dependencies are

collected offline) – HyRTS/FRTS selects 18.35%/27.18% tests (i.e.,

8.83pp more precise) and costs 31.60s/40.06s offline testing time

(i.e., 21.1% faster) on average across all subjects. We also performed

an extensive study on the impacts of each type of method-level

changes on HyRTS, and designed two new HyRTS variants based

on the study results. Additional experimental results show that:

(1) further including the basic-block-level analysis in HyRTS does

not pay off; (2) further transforming instance method addition-

s/deletions into file-level changes actually produces an even more

cost-effective variant that significantly outperforms FRTS in both

the offline and online modes.

The paper makes the following contributions:

• The design and implementation of the first hybrid RTS ap-

proach, HyRTS, that combines method and file level RTS.

• Experimental results demonstrating the effectiveness and

efficiency of the HyRTS technique on 2707 revisions of 32

projects, totalling 124,764,602 LoC.

• An extensive study on the impacts of each type of method-

level changes on RTS during real-world software evolution.

• Two additional HyRTS variants designed based on the study

results, and experimental results demonstrating that further

transforming instance method additions/deletions to file-

level changes can make RTS even more cost-effective.

2 BACKGROUND AND EXAMPLE

Traditional Regression Test Selection (RTS) techniques [23, 26, 34,

35, 37, 50] usually apply at certain level of code granularity. Pioneer

RTS techniques [26, 34, 37] usually apply at the level of program

basic blocks. Such techniques collect dynamic test dependencies for

old program versions at the basic-block level, and compute detailed

program change information by traversing Control-Flow Graphs

(CFGs) using Depth-First Search (DFS). Then, the tests whose de-

pendencies overlap with the computed changes are selected for

execution. Although precise, such techniques need to compute

detailed test dependency and change information, and can incur

non-trivial overhead [23, 34].

To reduce the RTS overhead, researchers also proposed RTS at

the method level. Such techniques (e.g., FaultTracer [50] and Chi-

anti [35]) compute program changes at the method level (denoted

as atomic changes). For example, a CM atomic change denotes a

change to a method body. Besides normal atomic changes, they also

capture changes of instance method overriding hierarchy to detect

dynamic dispatch changes, denoted as LC (i.e., look-up changes).

A LC change is usually formulated as 〈X,Y.m()〉, which denotes

that an invocation to Y.m() with X as the runtime object may be

resolved into a different target method due to software changes.

Such LC changes are additionally generated whenever instance

methods are added (AM) or deleted (DM). Then, the tests whose

method-level dependencies may overlap with the atomic changes

are selected. To illustrate, Figure 1 presents an example program

1 // source code classes

2 class A {

3 A(){...}

4 int m1(){...}

5 static int m2(){...}

6 }

7 class B extends A {

8 B(){...}

9 static int m2(){...}

10 }

1 // test classes

2 class T1 {

3 void t(){A a=new A(); a.m1();}}

4 class T2 {

5 void t(){A.m2();}}

6 class T3 {

7 void t(){A b=new B(); b.m1();}}

8 class T4 {

9 void t(){B.m2();}}

Figure 1: Example

Table 1: Example test dependencies

Test Method dependency File dependency

T1 T1.t(), A.A(), A.m1() T1, A

T2 T2.t(), A.m2() T2, A

T3 T3.t(), A.A(), B.B(), A.m1() T3, A, B

T4 T4.t(), B.m2() T4, B

together with its tests and Table 1 presents the corresponding test

dependencies at both the method and file levels. When A.m2() is

changed in the next revision (denoted as CM: A.m2()), only test

T2 needs to be selected and re-run, since all the other tests cannot

execute the change at all. However, when B.m1() is added, a naive

method-level RTS technique fails to select any test since no test

directly executed the added tests in the prior revision. Therefore, a

safe method-level technique [35, 50] additionally annotates each

instance method dependency element with both runtime and static

receiver object types (Note that such additional information can

incur extra overhead during the dependency collection). For exam-

ple, the method-level dependency A.m1() for T3 will be annotated

with 〈B,A.m1()〉 to indicate that the invocation was to A.m1()with

runtime object type of B. Therefore, the method-level RTS will be

able to match the annotation with the corresponding LC change to

select the truly impacted test T3.

Recently, researchers have also proposed Ekstazi [23], an even

coarser-grained RTS technique at the binary class file level. Such

file-level RTS collects test dependencies and computes program

changes both at the file level. Although the coarse granularity

makes the technique select more tests than the method-level RTS,

operating at the file level offers much lower overhead: (1) collecting

test dependencies at the file level can be faster than the method

level; (2) computing the program changes at the file level can be

directly achieved by computing binary file checksums, which can be

extremely fast; (3) file-level RTS also does not need to track dynamic

dispatch changes [23]. For example, according to the file-level de-

pendency shown in Table 1, when B.m2() is added, file-level RTS

will directly be able to detect that T3 (and also T4 due to the impre-

cision of file-level RTS) is impacted without collecting expensive

runtime type information, since file B is already accessed by the test.

Although file-level RTS selects more tests than method-level RTS,

it has much lower overhead. Overall, the file-level RTS has been

shown to save the end-to-end testing time for real-world projects,

and significantly outperform the method-level RTS. Similar with

recent advances in flaky test detection using hybrid coverage [14],

this work aims to further advance RTS using hybrid RTS analysis.

200

Hybrid Regression Test Selection ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 2: HyRTS design overview

3 TECHNIQUE AND IMPLEMENTATION

In this section, we present our hybrid RTS approach, HyRTS, to

combine the strengths of traditional RTS techniques at different

granularities. We first introduce a basic HyRTS technique that

simply computes detailed method-level changes only when the

corresponding files are modified, while simply computing file-level

changes for file deletions and additions (Section 3.1). Then, we

introduce various HyRTS extensions to further study/improve RTS

cost-effectiveness (Section 3.2). Finally, we summarize the basis of

HyRTS – change transformation, and discuss its safety (Section 3.3).

3.1 Basic HyRTS

The overall design of our basic HyRTS technique is shown in Fig-

ure 2. The technique can be invoked whenever the underlying build

system fires the run test command. The analysis phase of RTS

performs two levels of RTS analysis: (1) file-level analysis takes

the file dependencies and selects all the tests that cover file-level

changes for the execution phase (�), (2) method-level analysis takes

the method dependencies and selects all the tests that overlap with

the detailed method-level changes for actual execution (�). Then,

both sets of selected tests will executed. During the execution phase,

the user can choose to also collect the test dependencies for future

RTS, or collect the dependencies after the execution phase. The

execution phase results will be stored as test results (�), while

the collection phase results will be method-level dependencies (�).

Then for the next software revision, the method-level dependencies

will be directly used for the method-level analysis (�). In addition,

file-level dependencies can also be derived frommethod-level analy-

sis (e.g., a dependency on class A can be derived from a dependency

on method A.m()) for file-level analysis (�).

Note that the HyRTS tool has been implemented as a Maven plu-

gin for testing Java programs with JUnit tests, and is publicly avail-

able on our HyRTS homepage [2]. HyRTS currently supports test-

class level RTS for both single-module and multi-module Maven

projects, JUnit 3 and JUnit 4 tests, as well as unit (via Maven Sure-

fire [6]) and integration (via Maven Failsafe [5]) tests. We next

describe the three key components for HyRTS:

3.1.1 Change Computation. We could have built HyRTS based

on the existing method-level RTS tool, FaultTracer [50], or file-level

RTS tool, Ekstazi [23]. However, Ekstazi is not open-source, while

FaultTracer computes program changes at the source-code level

based on the Eclipse Java Development Tools (JDT) [4], which can

incur large overhead for large projects [23]. Therefore, we build

our hybrid RTS tool from scratch, following the design decisions

of state-of-the-art Ekstazi tool [22]. For example, we also compute

the checksums of bytecode files to efficiently detect file changes.

Furthermore, we also use smart checksums to compute bytecode file

Algorithm 1: HyRTS change computation

Input :V1: Old program revision, V2: New program revision

Output :Δ: The hybrid code changes

/* Read old checksums, and initialize new ones */

1 Map<File, CSUM> oldFileCSUM, Map<File, Map<Meth,CSUM»

oldMethCSUM=deserializeCSUM(V1)

2 Map<File, CSUM> newFileCSUM, Map<File, Map<Meth,CSUM»

newMethCSUM=∅

3 for File f in V2 do

/* Compute new file checksums */

4 newFileCSUM[f]=computeFileCSUM(f)

/* Compute new method checksums when necessary */

5 if newFileCSUM[f]==oldFileCSUM[f] then

6 newMethCSUM[f]=oldMethCSUM[f]

7 else

8 for Meth m in f do

9 newMethCSUM[f][m]=computeMethCSUM(m)

/* Serialize new checksums for next RTS */

10 serializeCSUM(newFileCSUM, newMethCSUM)

/* File-level change computation [23] */

11 AF,DF,CH,CF=FileDiff(oldFileCSUM, newFileCSUM)

12 δf =AF∪ DF∪ CH

/* Meth-level change computation for changed files[35] */

13 δm=
⋃
f ∈CF MethDiff(oldMethCSUM[f],newMethCSUM[f])

14 return {δf , δm }

contents without debugging information (e.g., line number infor-

mation). Different from Ekstazi, we also need to trace method-level

changes. To efficiently store method-level information for the prior

revision and compute method-level changes, we compute the smart

checksum for each method. The detailed HyRTS change computa-

tion is shown in Algorithm 1. Shown in Lines 5-9, for the unchanged

files, all the method-level checksums are directly copied from prior

revision without further detailed analysis. During the actual file-

level change computation (Line 11), HyRTS computes 4 types of

changes shown in the top half of Table 2. Note that we introduce

CH to model the global changes to a file, e.g., interface/super class

changes or recompiled bytecode for a newer JDK version, to avoid

returning all enclosing methods as changed. In case of AF/DF/CH

changes, any test executing the corresponding class files will be

directly selected based on file-level RTS analysis; in case of other

file changes (CF), the basic HyRTS does not keep file-level changes,

and performs method-level detailed change computation (Line 13).

HyRTS supports all the method-level changes supported by prior

method-level RTS [35, 50], as shown in the bottom part Table 2. Fol-

lowing existing safe method-level RTS [35, 50], we also compute LC

changes in case of instance method additions or deletions. Note that

field changes do not need to be traced, since all field changes will

reflect in the corresponding method-level changes (e.g., initializer

changes) at the bytecode level [35]. Also, we split non-initializer

method changes into instance and static method changes (e.g., AM

to ASM and AIM) to study the impact of each detailed type of

changes. In this work, we denote all changes computed by HyRTS

as Δ = {δm ,δf }, where δm denotes the method-level changes, such

as DIM, and CSI, while δf denotes the file-level changes, such as

DF and CH.

201

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Lingming Zhang

3.1.2 Dependency Collection. Our test dependency collection

component is implemented based on the ASM bytecode manipu-

lation framework [12] with the Java Agent [3] support for JVM

load-time code instrumentation. We override ClassVisitor and

MethodVisitor to record the method dependency information to-

gether with the runtime and static object types for each instance

method invocation for safe method-level RTS. Following recent

advances on RTS [23, 30], we focus on test-class level test selection

since test methods can be hard to isolate in practice, e.g., test meth-

ods may be parameterized or depend on other methods within the

test class. We also create another Java Agent to dynamically wrap

the corresponding runner classes (e.g., org.junit.runner.Runner

for JUnit 4) to capture the test class start/end events for both JUnit3

and JUnit4 tests in order to trace the per-test dependency informa-

tion.We also use the same Java Agent to exclude the unselected tests

for test execution. In this work, we denote all the test dependencies

used in HyRTS as TD = {T Dm ,T Df }, where T Dm represents

the method-level test dependencies (e.g., methods invoked as well

as runtime type information for receiver objects during test exe-

cution) while T Df is the file-level dependencies (i.e., the set of

class files accessed during test execution). Note that HyRTS only

collects T Dm during runtime for sake of efficiency, and T Df

can be derived offline from T Dm via skipping detailed method

information, e.g., accessing method A.m() can be converted into

accessing file A.

3.1.3 RTS and Application Modes. With the change information

(Δ) and test dependencies collected from the prior revision (TD),

the selected tests Ts for the current revision can be computed as the

tests whose dependencies on the prior revision have overlap with

the changes, i.e., Ts = Δ � TD = {δm ∩m T Dm } ∪ {δf ∩f T Df },

where ∩m denotes the method-level test selection rules [35], while

∩f denotes the file-level test selection rules [23]. As shown in Fig-

ure 2, the time costs during the RTS process can be categorized

as the Analysis, Execution, and Collection time. In practice, the

users usually can choose two different RTS modes – (1) the offline

mode that collects test dependencies offline (i.e., after running the

selected tests), and (2) the online mode that collects test dependen-

cies online during the RTS process. Note that the offline mode costs

more overall CPU time, but the users can get faster test feedback

and then prepare the test dependencies for the next RTS run after

obtaining the test results, while the online mode returns both the

test results and test dependencies at the same time [23, 30]. Our

HyRTS technique supports both modes – dependency collection

will be triggered only during the online mode, while test selection

will be triggered for both modes. In the experimental study sec-

tion, we evaluate HyRTS under both modes, i.e., measuring the AE

(Analysis and Execution) time for the offline mode and the AEC

(Analysis, Execution, and Collection) time for the online mode.

3.2 HyRTS Extensions

3.2.1 HyRTS Study Variants. Besides the basic HyRTS, we fur-

ther study the impacts of each type of method-level changes by

transforming it into file-level changes to explore the directions for

further improving HyRTS. For example, when studying the impact

of CIM changes, HyRTS treats the entire file as having a CF change

(CF changes are kept and analyzed in the file-level RTS analysis

Table 2: Supported change types

Name Description

DF Delete a class file

AF Add a class file

CH Change file head

CF Change a class file (not kept in basic HyRTS)

DSI Delete a static initializer

ASI Add a static initializer

CSI Change a static initializer

DI Delete an instance initializer

AI Add an instance initializer

CI Change an instance initializer

DSM Delete a static non-initializer method

ASM Add a static non-initializer method

CSM Change a static non-initializer method

DIM Delete an instance non-initializer method

AIM Add an instance non-initializer method

CIM Change an instance non-initializer method

for these variants) whenever there is any CIM change within a file,

while still tracing all the other changes in the same way as the

basic HyRTS. In this way, HyRTS does not need trace CIM changes

anymore, since they are already subsumed by the corresponding file

changes. Clearly, such HyRTS variant may select more unnecessary

tests and be more imprecise, since any test accessing the CF file will

be selected. However, such HyRTS variant can show the impact of

each type of fine-grained method-level changes, and provide guide-

lines for more cost-effective RTS. The detailed experimental results

studying the impact of each fine-grained method-level change type

can be found in Section 5.2.

3.2.2 HyRTSB . According to the study results in Section 5.2,

CIM and CSM changes tends to have the highest impact on HyRTS

effectiveness, i.e., transforming CIM and CSM changes into file-level

changes incurs HyRTS to select many more tests, indicating that

CIM and CSM changes require even finer-grained analysis instead

of coarser-grained analysis. Therefore, we further propose HyRTSB
to extend basic HyRTS to perform finer-grained basic-block level

analysis in the case of CIM and CSM changes to investigate the

cost-effectiveness of more precise HyRTS (while keeping the ba-

sic HyRTS method-level and file-level analyses for other cases).

We strictly follow prior work on basic-block-level RTS [26] in im-

plementing the basic-block-level analysis based on Control-Flow

Graph (CFG) analysis, and also analyze the try-catch constructs to

handle Java Exceptions. Note that HyRTSB requires to also collect

detailed test dependencies at the basic-block level. We implement

both the CFG analysis and the basic-block level dependency collec-

tion using the ASM framework [12].

3.2.3 HyRTSF . The study results in Section 5.2 also demonstrate

that AIM (i.e., instance method addition) and DIM (i.e., instance

method deletion) changes do not have high impacts on HyRTS effec-

tiveness, i.e., transforming either AIM or DIM into file-level changes

do not incur much test selection imprecision. Therefore, we further

propose HyRTSF to extend basic HyRTS by further transforming

both AIM and DIM changes into file-level changes (CF). Although

HyRTSF may select more tests than basic HyRTS, without AIM

and DIM changes, HyRTSF does not need to consider the class

inheritance hierarchy changes (i.e., computing LC changes) or trace

202

Hybrid Regression Test Selection ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

the runtime type information for each instance method invocation,

since the LC changes and runtime type information are both used

to handle safety issues in case of instance method additions or

deletions [23, 35, 50]. For example, when instance method A.m() is

added, test T is affected due to method dynamic dispatch change

although it does not have A.m() in its old dependency. If T does not

execute other changes, T must invoke m() with a receiver object

obj of type A or subtype of A in the old revision (otherwise only

adding A.m() cannot impact T). No matter obj is of type A or sub-

types of A, according to JVM specifications, A’s initializer(s) must be

invoked first to create obj. Therefore, A is accessed by T, and simply

recording file A as changed will be sufficient to select T. Without

tracing LC changes and runtime type information, HyRTSF may

be much faster than the basic HyRTS in end-to-end time.

3.3 Hybrid RTS Safety

Our HyRTS approach transforms code changes into finer/coarser

grained changes to implement different RTS variants. Before talking

about HyRTS safety, we first define two types of transformations.

Definition 3.1 (Basic Transformation). When all fine-grained

elements under a coarse-grained element are changed, a basic trans-

formation can simply mark the coarse-grained element as changed to

lower RTS overheads, i.e., [∀ei ∈ e, δ (ei)]⇒ δ (e), where δ (.) denotes

the corresponding element is treated as changed.

To illustrate, if class B in Figure 1 is completely deleted in the new

revision, traditional method-level techniques still need to dig into

B to detect all the deleted methods, while file-level RTS can directly

return a file deletion change. The actual selection phase for the

file-level RTS can also be faster due to the small number of file-level

test dependencies to analyze. Therefore, we can easily come up with

hybrid RTS techniques that keep changes at the coarse granularity

when all the fine-grained elements under a coarse-grained element

are changed, while keeping changes at the fine granularity at the

other cases. Note that our basic HyRTS and HyRTSB are example

techniques in this category.

Besides the basic change transformations that will not suffer from

accuracy lost, this work also investigates transformations that may

incur accuracy lost, e.g., HyRTS variants shown in Section 3.2.1 and

Section 3.2.3. To illustrate, when only B.m2() in Figure 1 is changed,

we can still mark the entire class B as changed. Although such

aggressive transformation may select more tests than necessary, the

RTS overhead and end-to-end testing time may be further lowered:

Definition 3.2 (Aggressive Transformation). Aggressive trans-

formation marks a coarse-grained element as changed when only

part of its fine-grained children elements get changed, i.e., [∃ei ∈

e, δ (ei)]⇒ δ (e).

Note that when applying hybrid RTS using either basic or ag-

gressive change transformations, the test dependencies should be

traced at the fine granularity (e.g., method level for basic HyRTS,

while basic-block level for HyRTSB) since the coarse-grained de-

pendencies can be derived from the fine-grained ones. Then, the

hybrid changes at different granularities can be matched against

corresponding test dependencies to select tests. Despite the fact

that hybrid RTS via change transformation may incur imprecision,

we next discuss that hybrid RTS will not incur new safety issues.

Theorem 3.1. Hybrid RTS via change transformation cannot in-

troduce new safety issues for dynamic RTS.

Proof. In general, hybrid RTS collects test dependencies at dif-

ferent levels, denoted as TD={T D1, T D2, ..., T Dn }, where T Di

(1 ≤ i ≤ n) denotes the test dependencies at level i . For example, for

HyRTSB , TD={T Db , T Dm , T Df }, which includes basic-block,

method, and file level test dependencies. Furthermore, hybrid RTS

also transforms all the changes into different levels, denoted as

Δ={δ1, δ2, ..., δn }, where δi denote the changes at level i . For ex-

ample, for HyRTSB , Δ={δb , δm , δf }, which includes basic-block,

method, and file level changes. Then, the selected test set Ts can

be computed as Ts = TD � Δ =
⋃

1≤i≤n {T Di ∩i δi }, wherre ∩i
denotes the RTS rules at level i . If hybrid RTS introduces new safety

issues, then the test selection must made some unsafe selection

at some level, e.g., there should exist level i (1 ≤ i ≤ n), such

that {T Di ∩i δi } failed to select some tests that should have been

selected by safe RTS.

Then, we can easily construct a revisionV′2 between the original

old versionV1 and the original new versionV2, with only changes

within δi . Then, applying traditional RTS at level i betweenV1 and

V
′

2 will perform {T Di ∩i δi }, and thus making unsafe selection.

However, our hybrid RTS is built on safe RTS techniques at different

levels, and thus the traditional RTS at level i also cannot make

unsafe test selection. Contradiction. �

4 STUDY

4.1 Research Questions

In this study, we are interested in the following research questions:

• RQ1: How does our basic hybrid RTS technique (HyRTS)

compare with state-of-the-art file-level RTS (FRTS)?

• RQ2:Howdo different types ofmethod-level changes impact

the RTS results?

• RQ3: Can we further transform method-level changes of

HyRTS into finer-grained or coarser-grained changes for

even more cost-effective RTS?

Note that we do not compare HyRTS with the method-level RTS

that compares the detailed contents of all methods regardless of

file-level changes (e.g., FaultTracer [50]), since prior work [23] has

shown that method-level RTS is much slower than FRTS, making it

sufficient to compare HyRTS against state-of-the-art FRTS.

4.2 Subjects

Table 3 presents all the subject systems for this study. For a fair com-

parison with state-of-the-art FRTS, we used all the single-module

Maven projects from recent studies on RTS [23, 30]. Following prior

work [30], for each project, we started from the Head revision, and

selected 100 revisions before it (Note that if fewer than 100 revi-

sions are available, we just use all of them). Then, we use all the

2,707 revisions (of the studied 32 projects) that can pass all the

regression tests in our evaluation. In the table, all the subjects are

sorted in the ascending order of their test execution time. Column

1 presents all the projects used as the subject systems. Note that

following prior RTS work [23], we categorize the subjects into two

subsets, i.e., short-running subjects (with test execution time below

60s) and long-running subjects (with test execution time above 60s).

203

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Lingming Zhang

Subs Head Revs Tests (Head) Size (LoC)

Time (s) Head Total

invokebinder 004d2fd 100 107 2 3,036 214,867

compile-testing e4269a6 73 176 4 6,071 309,745

logstash-logback-encoder 4336fdc 95 208 4 9,435 829,731

commons-cli b486fbd 96 371 4 6,601 611,755

joda-time d7d1620 100 4,203 5 85,847 8,557,599

commons-dbutils 633749d 66 300 5 6,763 367,111

commons-validator e36fc4b 97 527 5 15,635 1,446,859

commons-fileupload f542f18 94 72 6 4,289 405,347

asterisk-java 61ecf80 59 220 7 43,102 2,538,060

commons-functor 3da1a4b 40 1,079 7 18,174 710,725

la4j db20416 99 801 8 13,414 1,411,825

commons-jxpath e48043d 87 411 9 24,910 2,131,230

commons-email 4ad899d 57 138 10 6,756 372,836

commons-compress d5f3062 100 614 10 34,347 3,358,789

commons-codec 1a4d9cc 79 847 11 19,530 1,523,899

jfreechart 54eeb32 100 2,261 12 140,671 14,071,394

commons-collections 3c1867e 46 16,069 23 61,637 2,811,369

commons-lang 0136218 100 3,946 24 73,781 7,292,816

commons-imaging 0aec9fd 100 441 28 38,020 3,784,160

commons-configuration 4239889 99 2,739 31 67,461 6,647,286

commons-net 2b0f338 100 276 61 27,525 2,726,739

closure-compiler e5ca4a7 100 11,309 62 297,130 29,637,121

java-apns a7d1e9f 48 111 73 5,626 253,403

commons-io 593de77 99 1,309 75 29,267 2,887,098

commons-math 79c4719 72 6,008 79 182,030 12,871,938

commons-dbcp 6a65042 100 560 81 20,547 1,995,908

log4j 7be00ee 57 344 95 30,287 1,922,801

stream-lib a13064c 99 147 105 8,492 819,463

HikariCP 980d8dc 92 109 117 10,283 916,531

OpenTripPlanner cc4dc2e 87 388 244 78,696 6,847,618

commons-pool e35320b 96 272 400 13,567 1,264,314

mapdb ad7102c 70 5,168 867 48,239 3,224,265

Total – 2,707 61,531 2,472 1,431,169 124,764,602

Table 3: Subject statistics

Columns 2 and 3 present the short SHA-1 hash for the Head revision

and the number of revisions for each studied project. Columns 4

and 5 present the test size (i.e., number of test methods) and test ex-

ecution time for the first executable revision of each studied project.

Finally, Columns 6 and 7 present the lines of code (LoC) information

(computed by SLOCCount [1], excluding comments and spaces) for

the Head revision and all the revisions for each studied project. In

total, our experimental study involves 2,707 revisions of 32 projects,

totalling over 124 Million LoC, and has a significantly larger scale

than prior studies on RTS [23, 30].

4.3 Experimental Setup

For each studied RTS technique, we compute the following widely

used RTS metrics to measure its effectiveness:

Selected Test Ratio The ratio of selected tests directly reflects

the precision of RTS techniques, and has been widely used in RTS

evaluation since the first proposal of RTS [23, 26, 30, 34, 35, 37,

39, 50]. We also use this metric to study the selection precision of

different studied RTS techniques.

End-to-End Testing TimeAlthough the ratio of selected tests can

tell how precise a RTS technique is, it does not show the overhead

incurred by the RTS technique. Actually, a RTS technique that is

extremely precise but costs even more than re-executing the entire

test suite can be useless in practice. Therefore, recent work on

RTS [23, 30] begins to consider the actual time savings of RTS

techniques. Following recent RTS work [23, 30], we measure the

end-to-end testing time for both modes supported by HyRTS, i.e.,

Figure 3: Comparison between basic HyRTS and FRTS

the AE (Analysis and Execution) time for the offline mode and the

AEC (Analysis, Execution, and Collection) time for the onlinemode.

All our experiments are performed on a 3.70GHz Intel(R) Xeon(R)

E5-1620 V2 machine with 128GB of RAM, running Ubuntu Linux

14.04.5 LTS and Oracle Java 64-Bit Server version 1.8.0_101. We ap-

ply each studied RTS variant on each code revision with actual code

changes (otherwise RTS should not be applied). Our experimental

data and implementation are available online [2].

5 RESULT ANALYSIS

5.1 RQ1: Basic Hybrid RTS vs. File-level RTS

Figure 3 presents the comparison results between our basic HyRTS

and state-of-the-art FRTS. The three sub-figures present the results

in terms of selected test ratio, the offline end-to-end time (i.e., the

AE time), and the online end-to-end time (i.e., the AEC time), respec-

tively. Note that the two time metrics have been normalized into

ratios with respect to the original test execution time for the ease of

presentation. In each sub figure, the x-axis presents all the subjects,

while the y-axis presents the corresponding metric distributions

204

Hybrid Regression Test Selection ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

using boxplots (with median values marked as lines and mean val-

ues marked as hollow diamonds). From the first sub-figure, we can

observe that HyRTS consistently selects fewer tests compared with

FRTS across all the studied subjects. On average, HyRTS and FRTS

select 18.35% and 27.18% of all the tests, respectively (i.e., HyRTS

is 8.83pp more precise). This is expected, since the finer-grained

analysis within HyRTS can select tests more precisely in case of CF

changes. From the second sub-figure, we found that the HyRTS can

outperform FRTS on the majority of subjects in terms of the offline

testing time, demonstrating the effectiveness of the HyRTS tech-

nique. For example, on average, FRTS and HyRTS cost 54.35% and

42.87% of the original test execution time, respectively (i.e., HyRTS

is 21.1% faster). Different from the observations on selected test

ratio, we also found that HyRTS tends to outperform FRTS more

on subjects with long running time, since the overhead incurred by

the method-level analysis may take a larger ratio for short-running

subjects. From the last sub-figure, we find that the performance

difference between HyRTS and FRTS is the least on onlineAEC time.

For example, the average AEC time across all subjects is 58.67% and

53.66% of the original testing time for FRTS and HyRTS, respec-

tively. Actually, HyRTS may even cost more than FRTS for several

subjects with long-running time (e.g., OpenTripPlanner). The main

reason is that the method-level dependency information (including

the runtime type information for each instance method invocation

for safe RTS) required by HyRTS can be more costly to collect than

the file-level dependency information required by FRTS.

5.2 RQ2: Impacts of Fine-grained Changes

In this section, we further study the impacts of each type of method-

level changes (by transforming it into file-level changes shown in

Section 3.2.1) to explore the potential directions for further improv-

ingHyRTS. Tables 4 and 5 present the results in terms of the selected

test ratio and offline AE time, respectively. Note that the impacts

for AEC time are quite similar to those for AE time, therefore, we

skip those results due to the space limitation. In each table, Column

1 presents all the studied subjects. Columns 2 presents the selected

test ratio or AE time by the basic HyRTS technique. Columns 3 to

14 present the increased/decreased selected test ratio or AE time

when transforming each type of method-level changes into file-

level changes. Finally, Column 15 presents the increased/decreased

selected test ratio or AE time by the FRTS technique as a refer-

ence. To further understand the results, we perform the Wilcoxon

Signed-Rank Test [45] (α=0.05) to compare the result difference on

all the revisions of each subject, because it is suitable even for the

case that the sample differences may not be normally distributed.

We highlight the cells with statistical differences in gray, and also

use �, 	, and
 to denote “no statistical difference”, “significantly

better”, and “significantly worse”, respectively. From the table, we

have the following observations:

First, overall, FRTS performs the worst comparing with trans-

forming any type of method-level changes into file-level changes.

For example, the selected test ratio increase for FRTS is 8.83%,

while it is only 3.68% when transforming CIM changes, the type of

method-level changes with the highest impact. The findings on AE

time are also similar. Furthermore, FRTS sometimes selects more

tests than transforming all method-level changes into file-level

changes. For example, when Mapdb evolves from revision 45e7679

to revision 1de4c60, the ordering of two methods is changed in file

org/mapdb/HTreeMap$values$1.class. Although such modifica-

tion does not impact any method bytecode nor dynamic program

behavior, the class file is actually changed. Therefore, based on

this finding, it is possible to design more cost-effective HyRTS vari-

ants by further transforming a subset of method-level changes into

file-level changes.

Second, transforming initializer changes into file-level changes

cannot impact the RTS effectiveness much in terms of both selected

test ratio and testing time. For example, the initializer changes at

most incur 0.41% increase in selected test ratio for CSI, and 0.70s

increase in AE time for CI. We looked into the code and found the

reason to be that whenever a test accesses a class, it usually also has

to invoke the class’s static initializer or instance initializer. There-

fore, transforming the initializer changes into file-level changes

won’t impact the RTS results much. This finding shows that it is

not necessary to build HyRTS specifically considering initializer

changes since they won’t impact the RTS results much.

Third, method-body changes (e.g., CIM and CSM) usually have

the most impacts on the RTS results. For example, among the

changes on instance non-initializer methods, CIM has the high-

est average impacts on both selected test ratio and AE time (e.g.,

significantly worse than HyRTS for 23 and 8 subjects, respectively).

Similarly, CSM also has high impacts among the changes on static

non-initializer methods (e.g., significantly worse than HyRTS for

8 and 3 subjects in terms of selected test ratio and AE time, re-

spectively). This finding shows that method-body changes have

high impact on RTS effectiveness, and may deserve finer-grained

analysis (e.g., at the basic-block level) to further improve RTS.

Fourth, instance method additions and deletions (i.e., AIM and

DIM) have low to moderate impacts on RTS effectiveness. For exam-

ple, transforming AIM and DIM changes into file-level changes only

incurs 1.64s and 0.23s increases in AE time, respectively. We find the

main reason to be that AIM and DIM changes are not as prevalent

as CIM changes, e.g., CIM changes are 1.6X as many as the sum of

AIM and DIM changes on average. We also find that AIM changes

tend to have higher impacts than DIM changes. The reason is that

there is usually a latency to add tests to execute the newly added

methods, thus transforming AIM to file-level changes can cause to

select many tests that do not directly execute the newly added meth-

ods. Therefore, transforming AIM changes into file-level changes

may incur to select more tests than transforming DIM changes.

The low to moderate impacts of AIM and DIM changes indicate

that it may be possible to transform both AIM and DIM changes

into file-level changes to have more powerful RTS. The reason is

that without AIM and DIM changes, it is not necessary to consider

the class-inheritance changes (i.e., computing the LC changes) and

trace runtime type information for each instancemethod invocation

(which can be expensive) for safe RTS [23] (Section 3.2.3).

5.3 RQ3: More Hybrid RTS Variants

Based on the four findings learnt from the above study, we come up

with two newHyRTS variants, HyRTSB (Section 3.2.2) and HyRTSF
(Section 3.2.3), further optimizing HyRTS in the following two di-

rections: (1) even finer-grained analysis in case of method-body

205

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Lingming Zhang

Transformed method-level Changes

Subs HyRTS DSI ASI CSI DI AI CI DSM ASM CSM DIM AIM CIM FRTS

invokebinder 63.11% 0.00% � 0.00% � 0.00% � 0.00% � 1.09% � 0.00% � 0.00% � 2.19% � 0.00% � 1.09% � 9.84%
 3.28% � 13.66%

compile-testing 35.67% 0.00% � 0.00% � 0.00% � 0.27% � 0.27% � 0.00% � 3.87% � 3.87% � 6.91%
 0.00% � 0.00% � 5.07% � 15.25%

logstash-logback-encoder 12.06% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.67% � 0.67% � 0.36% � 1.79%
 1.13%
 3.53%

commons-cli 27.89% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 5.55% � 3.51% � 13.64%

joda-time 12.65% 0.00% � 0.00% � 1.12% � 0.00% � 0.00% � 0.08% � 1.04% � 5.68% � 7.15% � 0.08% � 3.36%
 3.39%
 16.45%

commons-dbutils 14.83% 0.00% � 0.00% � 3.85% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.49% � 0.00% � 1.25% � 5.10%
 11.61%

commons-validator 4.77% 0.00% � 0.00% � 0.66%
 0.00% � 0.00% � 0.41% � 0.00% � 0.11% � 0.74% � 0.00% � 0.41%
 2.20%
 4.09%

commons-fileupload 25.00% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.60% � 0.30% � 0.30% � 6.55%
 8.63%

asterisk-java 1.50% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.06% � 0.69%
 0.87%
 1.00%
 3.56%

commons-functor 9.72% 0.00% � 0.00% � 0.12% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.15% � 1.69%
 2.02%

la4j 42.01% 0.00% � 0.00% � 0.58% � 0.05% � 0.00% � 1.35% � 0.00% � 0.73% � 6.47%
 4.51%
 13.27%
 18.31%
 33.50%

commons-jxpath 32.36% 0.00% � 0.00% � 1.06% � 0.00% � 0.00% � 0.00% � 1.61% � 1.99% � 4.89%
 0.29% � 1.69% � 5.04%
 13.39%

commons-email 22.02% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 5.95% � 1.19% � 7.14% �

commons-compress 8.48% 0.00% � 0.00% � 0.00% � 0.00% � 1.30%
 0.36% � 0.17% � 1.18% � 0.55% � 0.27% � 0.67%
 1.87%
 4.25%

commons-codec 2.17% 0.00% � 0.00% � 0.12% � 0.00% � 0.97% � 2.18%
 1.28% � 1.28%
 0.61% � 0.97%
 0.79% � 0.43% � 4.31%

jfreechart 10.89% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.49% � 1.13% � 0.00% � 0.02% � 0.02% � 1.92%
 2.73%

commons-collections 0.73% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 1.62% � 1.18% � 0.00% � 3.16% �

commons-lang 3.81% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.03% � 0.13% � 2.68%
 5.55%
 0.03% � 0.05% � 0.37%
 7.11%

commons-imaging 13.07% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.05% � 0.00% � 0.03% � 0.09% � 1.75% � 1.78% � 9.22%
 11.72%

commons-configuration 7.25% 0.00% � 0.00% � 0.40% � 0.00% � 0.00% � 0.02% � 0.00% � 0.86% � 1.37% � 0.33% � 4.05%
 3.45%
 9.33%

commons-net 3.72% 0.00% � 0.00% � 0.08% � 0.00% � 0.65% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.15% � 2.30%
 2.99%

closure-compiler 16.80% 0.00% � 0.00% � 1.92% � 0.02% � 0.02% � 0.03% � 0.04% � 1.43%
 4.04%
 1.39%
 2.06%
 10.09%
 16.38%

java-apns 35.89% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 2.32% � 1.05% � 0.00% � 2.36%
 4.12%
 3.44%
 9.41%

commons-io 8.49% 0.00% � 0.00% � 0.90% � 0.00% � 0.00% � 0.00% � 0.00% � 0.49% � 6.84%
 0.00% � 0.00% � 0.03% � 7.88%

commons-math 3.86% 0.00% � 0.00% � 0.02% � 0.07% � 0.08% � 0.04% � 0.00% � 1.11% � 0.53%
 0.00% � 0.18% � 1.56%
 5.00%

commons-dbcp 22.68% 0.00% � 0.00% � 1.48% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 1.46% � 8.99%
 10.47%

log4j 9.23% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 1.23% � 0.00% � 6.46% � 0.00% � 0.00% � 1.23% � 2.77% � 14.46% �

stream-lib 11.89% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.57%
 0.25% � 0.49% � 0.00% � 0.08% � 0.33% � 0.08% � 1.15%

HikariCP 48.46% 0.00% � 0.00% � 0.33% � 0.00% � 0.00% � 0.00% � 0.08% � 0.08% � 0.08% � 0.00% � 0.25% � 2.45%
 3.37%

OpenTripPlanner 18.83% 0.01% � 0.01% � 0.31% � 0.00% � 0.01% � 0.06%
 0.22% � 0.42% � 0.51%
 1.12%
 1.67%
 3.59%
 5.44%

commons-pool 29.26% 0.00% � 0.00% � 0.00% � 0.00% � 0.00% � 0.29% � 0.00% � 0.15% � 0.00% � 0.00% � 3.09%
 4.56%
 9.26%

mapdb 28.06% 0.00% � 0.00% � 0.05% � 0.00% � 0.00% � 0.25% � 0.00% � 0.72% � 0.77% � 0.00% � 1.11% � 3.19%
 7.67%

Avg. 18.35% 0.00% 0.00% 0.41% 0.01% 0.14% 0.22% 0.36% 1.09% 1.53% 0.54% 2.14% 3.68% 8.83%

Table 4: Selection ratio change when transforming different atomic changes into file changes

Transformed method-level Changes

Subs HyRTS DSI ASI CSI DI AI CI DSM ASM CSM DIM AIM CIM FRTS

invokebinder 1.58s 0.00s � 0.00s � 0.01s � 0.00s � 0.03s
 0.00s � -0.01s � 0.00s � -0.01s � -0.02s � 0.03s � -0.01s � -0.03s �

compile-testing 3.14s 0.00s � 0.00s � 0.00s � 0.01s � 0.01s � -0.01s � 0.01s � -0.01s � 0.04s � 0.01s � -0.01s � -0.04s � 0.06s �

logstash-logback-encoder 3.18s 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � -0.01s � -0.02s � 0.01s � 0.00s � -0.01s � -0.01s � -0.02s �

commons-cli 3.62s 0.00s � 0.00s � -0.03s � 0.00s � 0.00s � -0.04s � 0.00s � 0.00s � -0.01s � 0.00s � 0.01s � -0.01s � 0.08s �

joda-time 3.75s 0.00s � 0.00s � 0.01s � 0.00s � 0.00s � 0.00s � 0.03s � 0.16s � 0.12s � 0.02s � 0.09s � 0.25s
 0.33s �

commons-dbutils 3.29s 0.00s � 0.00s � -0.01s � 0.00s � 0.00s � -0.04s � 0.00s � 0.00s � 0.00s � -0.01s � 0.00s � 0.02s � 0.04s �

commons-validator 3.72s 0.00s � 0.00s � 0.04s � 0.00s � 0.00s � 0.02s � 0.00s � 0.01s � 0.05s � 0.00s � 0.02s
 0.04s � 0.23s

commons-fileupload 3.91s 0.00s � -0.01s � 0.00s � 0.00s � -0.21s � -0.21s � 0.00s � 0.00s � 0.22s � 0.03s � -0.07s � 0.68s
 0.13s �

asterisk-java 3.26s 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.03s � 0.04s
 0.04s � 0.16s �

commons-functor 4.02s 0.00s � 0.00s � 0.01s � -0.01s � 0.01s � 0.05s � 0.01s � 0.00s � 0.00s � -0.02s � -0.15s � -0.19s � -0.25s �

la4j 2.49s 0.00s � 0.00s � 0.01s � 0.00s � 0.00s � 0.08s � 0.00s � 0.00s � 0.26s
 0.04s
 0.33s
 0.34s
 0.93s

commons-jxpath 3.54s 0.00s � 0.00s � 0.02s � 0.00s � 0.00s � 0.00s � 0.04s � 0.03s � 0.10s � 0.01s � 0.03s � 0.07s � 0.17s �

commons-email 6.29s 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � -0.02s � 0.13s �

commons-compress 6.09s 0.00s � 0.00s � 0.01s � 0.00s � 0.08s
 0.16s
 0.06s � 0.13s
 0.11s � -0.04s � 0.10s � 0.08s � 0.32s �

commons-codec 4.93s -0.01s � 0.00s � 0.05s � -0.01s � 0.33s � 0.73s
 0.44s � 0.50s
 0.21s � 0.53s
 0.24s � 0.42s � 1.31s

jfreechart 9.80s 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.04s � 0.12s � 0.00s � -0.11s � -0.15s � 0.21s � 0.18s �

commons-collections 8.72s 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � -0.15s � 0.00s � 0.20s � 0.52s � 0.06s � 0.13s �

commons-lang 8.58s 0.00s � 0.00s � -0.01s � 0.01s � -0.01s � 0.03s � 0.05s � 0.60s
 1.35s
 0.02s � 0.04s � 0.18s � 1.31s �

commons-imaging 14.35s 0.00s � 0.00s � 0.06s � 0.02s � 0.05s � 0.27s � 0.00s � 0.02s � -0.04s � 0.46s � 0.50s � 2.10s
 2.48s

commons-configuration 16.12s 0.00s � 0.00s � 0.11s � 0.00s � 0.00s � -0.01s � 0.00s � 0.12s � 0.03s � -0.03s � 2.98s
 2.28s � 5.18s

commons-net 9.37s 0.00s � 0.00s � 0.04s � 0.00s � -0.01s � -0.02s � 0.00s � 0.00s � 0.04s � 0.00s � -0.03s � 1.44s � 1.43s �

closure-compiler 38.41s 0.00s � 0.00s � 0.52s � -0.05s � 0.05s � -0.02s � 0.03s � 0.44s � 1.19s � 0.65s � 1.00s � 5.44s
 7.34s

java-apns 49.16s 0.00s � 0.04s � 0.00s � 0.00s � 0.00s � 0.08s � 0.44s � 1.67s � 0.11s � 2.04s
 3.68s
 3.00s
 4.79s

commons-io 16.59s 0.00s � 0.00s � 2.63s � 0.01s � 0.00s � -0.02s � 0.00s � 1.04s � 14.03s
 0.03s � 0.02s � -0.01s � 15.06s

commons-math 20.71s 0.00s � 0.00s � -0.02s � 0.00s � -0.01s � 0.01s � -0.01s � 0.95s � 0.56s � -0.01s � 0.01s � 1.98s � 4.18s �

commons-dbcp 36.16s 0.01s � 0.00s � 1.73s � 0.00s � -0.37s � -0.37s � 0.00s � 0.04s � 0.00s � 0.03s � 1.31s � 3.88s � 5.35s

log4j 11.59s 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 0.02s � -0.01s � 8.37s � 0.02s � 0.00s � 0.02s � 0.04s � 19.45s �

stream-lib 26.18s 0.00s � 0.00s � 0.00s � 0.01s � 0.01s � 3.49s
 1.62s � 2.97s
 0.03s � 0.09s � 0.94s � 0.59s � 4.91s

HikariCP 45.10s 0.00s � 0.00s � 0.17s � 0.00s � 0.00s � 0.05s � 0.00s � 0.00s � -0.02s � 0.01s � -0.01s � 0.72s � 1.29s �

OpenTripPlanner 121.88s 0.15s � 0.17s � 2.50s � 0.07s � 0.07s � 0.17s � 2.97s � 6.13s � 0.91s � 3.31s � 12.07s
 29.17s � 37.10s

commons-pool 202.10s 0.00s � 0.00s � 0.00s � 0.00s � 0.00s � 5.44s � 0.00s � 6.06s � 0.00s � 0.00s � 15.66s
 37.67s
 61.40s

mapdb 319.59s 0.00s � -0.07s � 0.16s � -0.05s � 0.19s � 12.65s
 0.12s � 5.39s � 5.26s � 0.14s � 13.39s � 41.51s
 95.60s

Avg. 31.60s 0.00s 0.00s 0.25s 0.00s 0.01s 0.70s 0.18s 1.08s 0.77s 0.23s 1.64s 4.12s 8.46s

Table 5: AE time change when transforming different atomic changes into file changes

changes (i.e., CSM and CIM changes), and (2) faster HyRTS analy-

sis via further transforming AIM and DIM changes into file-level

changes. Note that HyRTSB focuses on the selection precision while

HyRTSF focuses on the overall overhead. The main experimental

results for comparing different HyRTS variants (i.e., basic HyRTS,

HyRTSB and HyRTSF) are shown in Table 6. In the table, Column

“Subs” lists all the studied subjects; Column “Selected Tests” presents

the selected test ratios for each HyRTS variant; Columns “AE Time”

and “AEC Time” present the AE and AEC end-to-end testing time

including the ratio to the original testing time in brackets. We also

applied Wilcoxon Signed-Rank Test at the significance level of 0.05

to compare each HyRTS variant against state-of-the-art FRTS. All

the cells with statistical differences are marked in gray, and �, 	,

206

Hybrid Regression Test Selection ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Selected Tests AE Time AEC Time

Subs HyRTS HyRTSB HyRTSF HyRTS HyRTSB HyRTSF HyRTS HyRTSB HyRTSF

invokebinder 63.11% 	 61.47% 	 72.95% � 1.58s � (166.02%) 1.59s � (167.76%) 1.58s � (167.22%) 1.64s � (173.18%) 1.68s � (176.76%) 1.61s � (169.75%)

compile-testing 35.67% 	 33.57% 	 35.67% 	 3.14s � (99.54%) 3.15s � (99.60%) 3.13s � (99.12%) 3.27s � (103.52%) 3.21s � (101.68%) 3.24s � (102.89%)

logstash-logback-encoder 12.06% 	 11.87% 	 13.96% 	 3.18s � (88.60%) 3.13s � (87.35%) 3.21s � (89.28%) 3.17s 	 (88.58%) 3.11s 	 (87.07%) 3.19s � (89.22%)

commons-cli 27.89% 	 27.69% 	 33.44% 	 3.62s � (101.26%) 3.64s � (102.23%) 3.64s � (101.86%) 4.01s
 (112.62%) 3.76s
 (105.30%) 3.73s � (105.12%)

joda-time 12.65% 	 12.05% 	 16.11% 	 3.75s � (70.05%) 3.93s � (73.41%) 3.89s � (72.72%) 5.64s
 (105.80%) 5.86s
 (109.95%) 4.35s � (81.27%)

commons-dbutils 14.83% 	 15.16% 	 16.73% 	 3.29s � (96.76%) 3.42s � (100.82%) 3.24s � (95.67%) 3.30s � (97.78%) 3.40s � (100.69%) 3.36s � (99.20%)

commons-validator 4.77% 	 4.66% 	 5.55% 	 3.72s 	 (76.93%) 3.83s � (79.02%) 3.72s 	 (76.86%) 3.85s � (79.65%) 4.06s � (84.11%) 3.84s � (79.58%)

commons-fileupload 25.00% 	 21.43% 	 25.59% 	 3.91s � (96.53%) 4.09s � (99.34%) 4.26s � (105.99%) 4.60s � (114.69%) 4.49s � (111.37%) 4.11s � (101.20%)

asterisk-java 1.50% 	 1.44% 	 3.12% 	 3.26s � (47.70%) 3.25s 	 (47.54%) 3.31s � (48.44%) 3.42s 	 (49.99%) 3.46s 	 (50.61%) 3.47s � (50.83%)

commons-functor 9.72% 	 9.72% 	 9.87% 	 4.02s � (57.34%) 3.94s
 (56.07%) 3.79s � (54.07%) 3.85s � (55.00%) 3.93s � (55.92%) 3.93s � (56.10%)

la4j 42.01% 	 41.67% 	 56.44% 	 2.49s 	 (85.80%) 2.54s 	 (87.77%) 2.83s � (93.87%) 4.19s � (121.15%) 6.10s
 (178.94%) 3.46s � (112.79%)

commons-jxpath 32.36% 	 28.03% 	 34.22% 	 3.54s � (71.92%) 3.52s � (71.56%) 3.52s � (71.93%) 4.13s � (83.74%) 4.97s � (98.46%) 3.78s � (77.00%)

commons-email 22.02% � 19.64% � 27.97% � 6.29s � (80.23%) 6.44s � (81.63%) 6.31s � (81.18%) 6.69s � (85.45%) 6.70s � (85.26%) 6.91s � (88.09%)

commons-compress 8.48% 	 8.10% 	 9.15% 	 6.09s � (59.87%) 6.53s � (64.17%) 6.19s � (60.96%) 6.74s � (66.28%) 7.34s � (72.32%) 6.46s � (63.55%)

commons-codec 2.17% 	 100.00%
 3.51% 	 4.93s 	 (43.35%) 13.60s
 (119.53%) 5.75s � (50.70%) 5.14s 	 (45.15%) 13.60s
 (119.53%) 5.77s 	 (50.84%)

jfreechart 10.89% 	 10.89% 	 10.91% 	 9.80s � (87.66%) 10.08s � (90.36%) 9.82s � (88.03%) 10.86s � (97.09%) 12.02s
 (107.50%) 10.34s � (92.26%)

commons-collections 0.73% � 0.73% � 3.52% � 8.72s � (41.30%) 8.36s � (39.53%) 9.09s � (43.12%) 8.91s � (42.24%) 9.22s � (43.66%) 9.03s � (42.76%)

commons-lang 3.81% 	 3.71% 	 3.93% 	 8.58s � (35.38%) 8.76s � (36.06%) 8.73s � (35.94%) 8.92s 	 (36.78%) 9.31s � (38.39%) 9.10s 	 (37.48%)

commons-imaging 13.07% 	 13.05% 	 14.97% 	 14.35s 	 (49.50%) 14.54s 	 (50.14%) 14.64s 	 (50.54%) 16.64s � (57.39%) 27.61s
 (94.76%) 15.80s 	 (54.59%)

commons-configuration 7.25% 	 7.19% 	 11.30% 	 16.12s 	 (51.36%) 16.21s 	 (51.63%) 19.02s � (60.93%) 13.29s 	 (42.39%) 13.66s 	 (43.56%) 14.36s 	 (45.93%)

commons-net 3.72% 	 3.23% 	 3.95% 	 9.37s � (15.30%) 9.35s � (15.27%) 10.05s � (16.42%) 9.41s � (15.36%) 9.60s � (15.67%) 10.14s � (16.57%)

closure-compiler 16.80% 	 15.09% 	 19.64% 	 38.41s 	 (61.88%) 38.10s 	 (61.25%) 39.86s 	 (64.25%) 64.45s � (103.88%) 71.72s � (115.65%) 55.44s 	 (89.41%)

java-apns 35.89% 	 34.42% 	 40.85% 	 49.16s 	 (68.18%) 47.10s 	 (65.37%) 52.80s � (73.26%) 49.27s 	 (68.33%) 47.11s 	 (65.38%) 52.85s � (73.32%)

commons-io 8.49% 	 7.62% 	 8.49% 	 16.59s 	 (22.12%) 14.48s 	 (19.31%) 16.68s 	 (22.23%) 16.83s 	 (22.44%) 14.74s 	 (19.66%) 16.77s 	 (22.36%)

commons-math 3.86% 	 3.39% 	 4.03% 	 20.71s � (27.45%) 19.78s � (26.18%) 21.11s � (28.00%) 42.11s
 (56.02%) 70.29s
 (93.23%) 35.94s � (47.82%)

commons-dbcp 22.68% 	 20.70% 	 23.39% 	 36.16s 	 (45.40%) 33.49s 	 (42.02%) 35.40s � (44.38%) 36.57s � (45.92%) 33.76s � (42.37%) 35.46s 	 (44.46%)

log4j 9.23% � 8.92% � 10.15% � 11.59s � (13.36%) 11.62s � (13.39%) 11.67s � (13.45%) 11.80s � (13.57%) 11.87s � (13.66%) 11.67s 	 (13.43%)

stream-lib 11.89% 	 11.89% 	 12.30% 	 26.18s 	 (26.03%) 26.41s 	 (26.26%) 27.23s � (27.11%) 30.87s � (30.70%) 60.26s
 (59.94%) 28.99s � (28.88%)

HikariCP 48.46% 	 45.39% 	 48.71% 	 45.10s � (55.21%) 43.81s � (53.70%) 45.16s � (55.34%) 45.23s � (55.41%) 44.03s � (54.03%) 45.26s � (55.46%)

OpenTripPlanner 18.83% 	 17.42% 	 21.10% 	 121.88s 	 (51.48%) 109.49s 	 (46.37%) 137.34s 	 (57.83%) 194.21s � (82.08%) 243.13s
 (103.08%) 151.80s � (63.92%)

commons-pool 29.26% 	 27.94% 	 32.94% 	 202.10s 	 (51.16%) 202.53s 	 (51.27%) 218.42s 	 (55.30%) 203.81s 	 (51.59%) 200.24s 	 (50.69%) 216.54s 	 (54.83%)

mapdb 28.04% 	 25.84% 	 29.05% 	 319.59s 	 (38.58%) 270.82s 	 (32.89%) 332.87s 	 (40.19%) 438.99s � (52.97%) 530.96s � (64.47%) 357.80s 	 (43.19%)

Avg. 18.35% 20.43% 20.74% 31.60s (42.87%) 29.73s (40.33%) 33.38s (45.28%) 39.56s (53.66%) 46.41s (62.96%) 35.58s (48.26%)

Table 6: Experimental results for HyRTS variants

and
 represent “no statistical difference”, “significantly better”,

and “significantly worse”. According to the results shown in Table 6:

HyRTSB selects similar ratio of tests with basic HyRTS, which

is counter-intuitive. We looked into the data and found two rea-

sons. First, modern system design principles recommend writing

simple method bodies for the ease of maintenance, making the

majority of method body changes directly occur on the first basic

block of the methods. In such cases, the detailed basic-block-level

analysis selects similar number of tests with basic HyRTS. For exam-

ple, when Invokebinder evolves from c35f3ee to 9c59df3, method

SmartBinder.from(), the only changed source method actually

only has one line of code. Second, the basic-block-level dependency

collection failed for one subject, Commons-Codec, which has sev-

eral huge methods (e.g., initSTRINGS and initBYTES) inside class

Base64Codec13Test. After the detailed code instrumentation for

tracing the basic-block-level test dependencies, the code size be-

came larger than the JVM specified maximum size (i.e., 64KB), crash-

ing JVMwith exception “java.lang.RuntimeException: Method

code too large!”. In such cases, our implementation simply re-

runs all the regression tests to ensure safety. That’s actually why

HyRTSB on average selects even slightly more tests than basic

HyRTS. Furthermore, HyRTSB may perform even worse than ba-

sic HyRTS and FRTS in terms of AE or AEC time. Based on the

Wilcoxon test, HyRTSB costs significantly more AE/AEC time than

FRTS on 2/9 subjects due to the additional overhead for analyzing

basic-block changes and tracing basic-block dependencies. On av-

erage HyRTSB costs 46.41s AEC time, which is even higher than

that of FRTS (43.25s). Therefore, including finer-grained analysis

may not be a good direction for more practical RTS.

HyRTSF extends basic HyRTS by further transforming AIM and

DIM changes into file-level changes. Although HyRTSF may se-

lect more tests than basic HyRTS, without AIM and DIM changes,

HyRTSF does not need to consider the class inheritance hierarchy

changes (i.e., computing LC changes) or trace the runtime type

information for each instance method invocation, and thus may be

much faster than the basic HyRTS. According to Table 6, HyRTSF
incurs small increase in selected test ratio (2.39%) and AE time

(1.78s) compared with basic HyRTS due to the more imprecise anal-

ysis. However, in terms of the AEC time, HyRTSF is even much

more efficient than both basic HyRTS and state-of-the-art FRTS.

For example, HyRTSF only costs 48.26% of the original testing time

(35.58s), while FRTS and HyRTS cost 58.67% (43.25s) and 53.66%

(39.56s), respectively. Furthermore, HyRTSF is never statistically

significantly worse than FRTS in terms of all the used metrics while

the basic HyRTS is significantly worse than FRTS on three sub-

jects in terms of AEC time. Overall, HyRTSF is 16.7%/17.7% faster

than state-of-the-art FRTS in AE/AEC time, and can be a more

cost-effective technique than the basic HyRTS in practice.

5.4 Threats to Validity

Threats to Internal Validity. The main threat to internal valid-

ity mainly lies in the implementation of the RTS techniques stud-

ied in the work. To reduce this threat, we built the proposed and

studied techniques on mature frameworks/libraries (e.g., ASM and

JavaAgent), and carefully reviewed our code and experiment scripts

before and during the experimental study. Furthermore, since the

binary version of the FRTS tool Ekstazi is publicly available, we

also compared our FRTS implementation with Ekstazi in terms of

selected test ratio and the end-to-end AEC time on sampled projects.

We found that our FRTS selects the same number of tests with Ek-

stazi, and have competitive end-to-end time. To illustrate, Figure 4

presents the selected test number and AEC time for Ekstazi and our

FRTS on Commons-Math. We can observe that Ekstazi and FRTS

207

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Lingming Zhang

Figure 4: Ekstazi vs. FRTS on Commons-Math revisions

select exactly the same number of tests for all the studied revisions

of Commons-Math with quite close end-to-end testing time.

Threats to External Validity. The main threat to external validity

mainly lies in the subject systems used in this study. To reduce this

threat, we included all the single-module Maven projects used in

recent RTS work [23, 30], and strictly followed prior RTS work

in selecting project revisions. Actually, our study includes all the

projects used on Legunsen et al.’s work [30], and involves much

more code revisions than recent RTS work. However, it is still not

clear whether our findings can generalize to other projects.

Threats to Construct Validity. The main threat to construct va-

lidity lies in the metrics that we used to evaluate the studied RTS

techniques. To reduce this threat, we use all the three widely used

metrics in RTS, i.e., the selected test ratio, the offline testing time

(i.e., AE time), and the online testing time (i.e., AEC time).

6 RELATEDWORK

Dynamic RTS. Rothermel and Harrold [37] firstly investigated dy-

namic RTS for C programs at the basic-block granularity. Harrold

et al. [26] then extended the basic-block-level RTS to Java programs

with Object-Oriented features. Orso et al. [34] further proposed a

two-phase RTS analysis, including a partitioning phase to exclude

the non-affected classes from detailed CFG analysis and a selection

phase that performs CFG analysis only on the remaining classes.

Note that our work is different from their work: (1) their work

simply excludes the non-affected classes and still performs uniform

detailed analysis (i.e., basic-block-level analysis) on the affected

classes, whereas our work performs RTS analysis at multiple levels

in tandem (with only detailed analysis when necessary); (2) our

work demonstrates that combining method-level and file-level anal-

ysis can outperform state-of-the-art file-level RTS, while further

including basic-block-level analysis is not cost-effective.

Since finer-grained analysis may incur larger overheads, besides

the basic-block-level RTS, researchers have also investigated RTS at

coarser-granularities to improve the efficiency of RTS. Ren et al. [35]

and Zhang et al. [50] performed RTS at the method level – they

performed bytecode or source code analysis to detect the changed

methods/fields and then selected any test that executed the changed

methods/fields in the old program version. With the increasing

scales of modern real-world projects, method-level RTS may still

incur large overheads. Therefore, Gligoric et al. [23] proposed file-

level RTS for Java projects, which traces the changed bytecode

class files based on fast checksum computation, and selects any test

accessing the changed files. Although imprecise, the file-level RTS

can have negligible overhead and has been shown to outperform

the method-level RTS in terms of end-to-end testing time. Vasic

et al. also compared file-level RTS with even coarser grained RTS

at the module level for .NET programs [44]. Recently, Celik et

al. [16] designed dynamic file-level RTS across JVM boundaries.

Despite its effectiveness, file-level RTS may still select more tests

due to the coarse-grained analysis. Therefore, in this work, we

propose the first hybrid RTS approach to combine the strengths of

RTS at multiple granularities. Our work differs from all prior RTS

techniques that only work at a fixed granularity and opens a new

dimension for further advancing RTS.

Static RTS.Although dynamic RTS has been widely studied, it may

not be suitable for all types of systems. For example, the dynamic

test dependencies required by dynamic RTS may be challenging to

collect for real-time systems since the code instrumentation may

break the time constraints and interrupt normal test runs. There-

fore, static RTS that uses static analysis to over-approximate test

dependencies has also been proposed to further complement dy-

namic RTS. Kung et al. [29] proposed the first static RTS technique

based on the class firewall analysis, which computes classes that

may be affected by the changes using static class analysis. Since

class firewall analysis may be imprecise, Ryder and Tip [39] further

proposed static RTS at the method level, i.e., using static call graphs

to over-approximate the dependencies for each test. Although the

static RTS techniques have been proposed for decades, their ef-

fectiveness have been largely unknown due to the lack of studies

on modern software systems. Legunsen et al. [30, 31] performed a

timely and extensive study on static RTS recently, and showed that

static file-level RTS can have close end-to-end testing time with

state-of-the-art dynamic file-level RTS, but is sometimes unsafe due

to reflections. In this paper, we propose to combine the strengths

of both fine and coarse grained dynamic RTS analysis. Actually

our idea is general and can also be applied to static RTS and other

levels. We plan to further explore this direction in the future.

7 CONCLUSION

This paper proposes the first hybrid RTS approach that analyzes

at multiple granularities to combine the strengths of traditional

RTS techniques at different granularities. We evaluate the proposed

approach in both the online and offline modes on 2707 revisions of

32 projects, totalling over 124 Million LoC. The study shows that

HyRTS, our first hybrid technique that combines method and file

granularity RTS analysis, can be significantly faster than state-of-

the-art FRTS in the offlinemode, but sometimes slower than FRTS in

the onlinemode due to the collection of method-level dependencies.

We then further studied the impact of each type of method-level

changes on the RTS results, and designed two new HyRTS variants

based on the study results. The additional study shows that further

integrating finer-grained analysis at the basic-block level is not

cost-effective, whereas transforming instance method additions

and deletions into file-level changes can produce a cost-effective

HyRTS variant that consistently outperforms existing FRTS for

both online and offline modes.

8 ACKNOWLEDGMENTS

We thank the anonymous reviewers for the valuable comments.

This work is supported in part by NSF Grant No. CCF-1566589, UT

Dallas start-up fund, Google, Huawei, and Samsung.

208

Hybrid Regression Test Selection ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] SLOCCount. http://www.dwheeler.com/sloccount/.
[2] HyRTS Homepage. http://hyrts.org/.
[3] Java Agent. https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/

package-summary.html.
[4] JDT home page. http://www.eclipse.org/jdt/.
[5] Maven Failsafe Plugin. http://maven.apache.org/surefire/maven-failsafe-plugin/.
[6] Maven Surefire Plugin. http://maven.apache.org/surefire/

maven-surefire-plugin/.
[7] Testing at the speed and scale of Google, Jun 2011. http://goo.gl/2B5cyl.
[8] Tools for continuous integration at Google scale, Jan 2011. https://goo.gl/Gqj7uL.
[9] Apache Camel. http://camel.apache.org/.
[10] Apache Commons Math. https://commons.apache.org/proper/commons-math/.
[11] Apache CXF. https://cxf.apache.org/.
[12] ASM. http://asm.ow2.org/.
[13] T. Ball. On the limit of control flow analysis for regression test selection. ACM

SIGSOFT Software Engineering Notes, 23(2):134–142, 1998.
[14] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov. DeFlaker:

Automatically detecting flaky tests. In International Conference on Software
Engineering, 2018. to appear.

[15] L. C. Briand, Y. Labiche, and G. Soccar. Automating impact analysis and regression
test selection based on uml designs. In International Conference on Software
Maintenance and Evolution, pages 252–261, 2002.

[16] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric. Regression test selection
across jvm boundaries. In Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 809–820, 2017.

[17] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, and B. Xie. How do assertions impact
coverage-based test-suite reduction? In International Conference on Software
Testing, Verification and Validation, pages 418–423, 2017.

[18] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche. Coverage-based regression
test case selection, minimization and prioritization: A case study on an industrial
system. Software Testing, Verification and Reliability, 25(4):371–396, 2015.

[19] H. Do and G. Rothermel. On the use of mutation faults in empirical assessments
of test case prioritization techniques. Transactions on Software Engineering,
32(9):733–752, 2006.

[20] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving regression
testing in continuous integration development environments. In Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 235–245, 2014.

[21] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test
selection based on finite state models. IEEE Transactions on software engineering,
17(6):591–603, 1991.

[22] M. Gligoric, L. Eloussi, and D. Marinov. Ekstazi: Lightweight test selection. In
International Conference on Software Engineering, Tool Demonstration Track, pages
713–716, 2015.

[23] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test selection with
dynamic file dependencies. In International Symposium on Software Testing and
Analysis, pages 211–222, 2015.

[24] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel. On-demand test suite
reduction. In International Conference on Software Engineering, pages 738–748,
2012.

[25] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei. A unified test case
prioritization approach. Transactions on Software Engineering and Methodology,
24(2):10:1–10:31, 2014.

[26] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,M. Pennings, S. Sinha, S. A. Spoon,
and A. Gujarathi. Regression test selection for Java software. In International
Conference on Object-Oriented Programming Systems, Languages, and Applications,
pages 312–326, 2001.

[27] H. Hemmati and L. Briand. An industrial investigation of similarity measures
for model-based test case selection. In International Symposium on Software
Reliability Engineering, pages 141–150, 2010.

[28] J. A. Jones and M. J. Harrold. Test-suite reduction and prioritization for modified
condition/decision coverage. IEEE Transactions on software Engineering, 29(3):195–
209, 2003.

[29] D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima. Class firewall, test order,
and regression testing of object-oriented programs. Journal of Object-Oriented
Programming, 8(2):51–65, 1995.

[30] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An extensive
study of static regression test selection in modern software evolution. In Joint

European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 583–594, 2016.

[31] O. Legunsen, A. Shi, and D. Marinov. Starts: Static regression test selection. In
International Conference on Automated Software Engineering, Tool Demonstration
Track, pages 949–954, 2017.

[32] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang. How does regres-
sion test prioritization perform in real-world software evolution? In International
Conference on Software Engineering, pages 535–546, 2016.

[33] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco.
Taming google-scale continuous testing. In International Conference on Software
Engineering, Software Engineering in Practice Track, pages 233–242, 2017.

[34] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large software
systems. In Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 241–251, 2004.

[35] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: a tool for change
impact analysis of Java programs. In International Conference on Object-oriented
Programming, Systems, Languages, and Applications, pages 432–448, 2004.

[36] X. Ren, F. Shah, F. Tip, B. G. Ryder, O. Chesley, and J. Dolby. Chianti: A prototype
change impact analysis tool for Java. Technical Report DCS-TR-533, Rutgers
University CS Dept., 2003.

[37] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection tech-
nique. Transactions on Software Engineering and Methodology, 6(2):173–210, 1997.

[38] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case prioritization:
An empirical study. In International Conference on Software Maintenance and
Evolution, pages 179–189, 1999.

[39] B. G. Ryder and F. Tip. Change impact analysis for object-oriented programs. In
Workshop on Program Analysis for Software Tools and Engineering, pages 46–53,
2001.

[40] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. An information retrieval
approach for regression test prioritization based on program changes. In Interna-
tional Conference on Software Engineering, volume 1, pages 268–279, 2015.

[41] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, and D. Marinov. Balancing trade-offs
in test-suite reduction. In Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 246–256, 2014.

[42] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjorner, and J. Czerwonka. Optimizing
test placement for module-level regression testing. In Proceedings of the 39th
International Conference on Software Engineering, pages 689–699, 2017.

[43] A. Shi, T. Yung, A. Gyori, and D. Marinov. Comparing and combining test-suite
reduction and regression test selection. In Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
237–247, 2015.

[44] M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric. File-level vs. module-level re-
gression test selection for. net. In Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Industry Track, pages
848–853, 2017.

[45] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin,
1(6):80–83, 1945.

[46] G. Xu and A. Rountev. Regression test selection for aspectj software. In Interna-
tional Conference on Software Engineering, pages 65–74, 2007.

[47] S. Yoo and M. Harman. Regression testing minimization, selection and prior-
itization: a survey. Software Testing, Verification and Reliability, 22(2):67–120,
2012.

[48] K. Zhai, B. Jiang, and W. K. Chan. Prioritizing test cases for regression testing
of location-based services: Metrics, techniques, and case study. Transactions on
Services Computing, 7(1):54–67, 2014.

[49] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei. Bridging the gap be-
tween the total and additional test-case prioritization strategies. In International
Conference on Software Engineering, pages 192–201, 2013.

[50] L. Zhang, M. Kim, and S. Khurshid. Localizing failure-inducing program edits
based on spectrum information. In International Conference on Software Mainte-
nance and Evolution, pages 23–32, 2011.

[51] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid. An empirical study of JUnit test-
suite reduction. In International Symposium on Software Reliability Engineering,
pages 170–179, 2011.

[52] H. Zhong, L. Zhang, and H. Mei. An experimental study of four typical test suite
reduction techniques. Information and Software Technology, 50(6):534–546, 2008.

209

