Identifying Design Problems in the Source Code
A Grounded Theory

Leonardo Sousa, Anderson

Oliveira
PUC-RIo, Rio de Janeiro - R]
{Isousa,aoliveira}@inf.puc-rio.br

Marcos Kalinowski, Rafael de

Mello
PUC-RIo, Rio de Janeiro - R]
{kalinowski,rmaiani}@inf.puc-rio.br

ABSTRACT

The prevalence of design problems may cause re-engineering or
even discontinuation of the system. Due to missing, informal or
outdated design documentation, developers often have to rely on
the source code to identify design problems. Therefore, developers
have to analyze different symptoms that manifest in several code
elements, which may quickly turn into a complex task. Although
researchers have been investigating techniques to help developers
in identifying design problems, there is little knowledge on how
developers actually proceed to identify design problems. In order
to tackle this problem, we conducted a multi-trial industrial ex-
periment with professionals from 5 software companies to build a
grounded theory. The resulting theory offers explanations on how
developers identify design problems in practice. For instance, it
reveals the characteristics of symptoms that developers consider
helpful. Moreover, developers often combine different types of
symptoms to identify a single design problem. This knowledge
serves as a basis to further understand the phenomena and advance
towards more effective identification techniques.

CCS CONCEPTS

« Software and its engineering — Software design engineer-
ing;

KEYWORDS

design problem, grounded theory, software design, symptoms

ACM Reference Format:

Leonardo Sousa, Anderson Oliveira, Willian Oizumi, Simone Barbosa, Alessan-
dro Garcia, Jaejoon Lee, Marcos Kalinowski, Rafael de Mello, Baldoino
Neto, and Roberto Oliveira, Carlos Lucena, Rodrigo Paes. 2018. Identify-
ing Design Problems in the Source Code: A Grounded Theory. In ICSE

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5638-1/18/05...$15.00
https://doi.org/10.1145/3180155.3180239

Willian Oizumi, Simone

Barbosa, Alessandro Garcia
PUC-RIo, Rio de Janeiro - R]

{woizumi,simone,afgarcia}@inf.puc-rio.br

Baldoino Neto
UFAL, Maceio - AL
baldoino@ic.ufal.br

Jaejoon Lee
Lancaster University
Lancaster, Lancashire
jlee3@lancaster.ac.uk

Roberto Oliveira, Carlos

Lucena, Rodrigo Paes
PUC-RIo, Rio de Janeiro - R]
{roliveira,lucena}@inf.puc-rio.br
rodrigo@ic.ufal.br

’18: ICSE ’18: 40th International Conference on Software Engineering , May
27-FJune 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3180155.3180239

1 INTRODUCTION

The development and maintenance of long-lived software systems
require special attention to non-functional requirements, such as
maintainability, extensibility, availability and performance. Each
non-functional requirement may be affected, either positively or
negatively, by design decisions [35], such as (mis-)prioritizing an
objected-oriented principle over another or (mis)using certain de-
sign patterns [11]. A design problem [2, 6, 48] is the result of one or
more inappropriate design decisions, i.e., decisions that negatively
impact non-functional requirements. An example of design prob-
lem is Fat Interface [25], which occurs when a developer decides to
aggregate multiple non-cohesive functionalities in a single system
interface; as a result, this interface becomes highly coupled to other
modules. The occurrence of a Fat Interface negatively impacts the
maintainability and extensibility of the software system [25].
Design problems are often harmful in several software systems.
For instance, an industrial study [7] with 745 software systems,
from 160 different organizations, showed that technical debts —
primarily associated with design problems — were directly related
with a significant increase in software project costs [7]. Another
study [39] showed that design problems are one of the most com-
mon categories of technical debt that leads to the rejection of
code contributions. Thus, the prevalence of design problems may
cause the redesign or even the discontinuation of software sys-
tems [14, 19, 37, 49]. Given the harmfulness of design problems,
developers should identify them as early as possible [12, 37, 54].
However, identifying a single design problem can itself quickly
turn into a very complex task [6, 47]. One of the main reasons is
that design documentation is often unavailable or outdated [18, 48].
Then, developers are forced to analyze several elements in the
source code to identify each design problem. Each single design
problem often manifests as multiple symptoms scattered in several
program elements. For instance, identifying a Fat Interface requires
the search for symptoms affecting not only suspicious interfaces,
but also classes that either implement or depend on those interfaces.
Unfortunately, there is limited understanding about how develo-
pers identify design problems in practice, in particular when the

https://doi.org/10.1145/3180155.3180239
https://doi.org/10.1145/3180155.3180239

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

source code is the only artifact available in a project. Existing stud-
ies tend to focus on proposing solutions for assisting developers
in identifying design problems [6, 20-22, 28, 32, 47, 50, 52, 53].
However, such proposed solutions may be misaligned with how
developers identify design problems in practice. For instance, most
of these studies make oversimplified assumptions about the pro-
cess of identifying design problems. They consider that developers
would rely on a single type of symptom (e.g., either code smells
[20, 28, 32] or design principle violations [52, 53]) to infer the oc-
currence of a design problem. However, this assumption might
not hold in real project settings. In fact, we know little about how
developers identify, in practice, design problems in the source code.

To provide such necessary understanding, in this paper we ad-
dress the following research question: how do developers identify
design problems in the source code? To do so, we conducted a multi-
trial industrial experiment with professional software developers
from five different companies, where they had to identify design
problems in their systems under development. In the experiment,
we captured data on their behaviour by filming the environment,
recording audio and capturing their computer screens on video.
These data allowed us to conduct an in-depth qualitative analysis
based on Grounded Theory procedures [44]. As a result, we have
built a theory of design problem identification.

According to Stol and Fitzgerald [42], nascent research areas
typically take the research-then-theory approach, whereas more
mature areas rely on (and refine) theories to further advance the
field. Aligned with this statement, the theory presented here offers
insightful propositions and explanations on how design problems
are identified, which can serve as a basis to improve the state-of-art.
For example, while most studies address only one type of design
problem symptom, the theory reveals that, in practice, developers
rely on a heterogeneous set of symptoms. Thus, previous studies are
misaligned not only for assuming that developers will use a single,
dominant type of symptom, but also for not considering how they
use these symptoms. Based on the theory, researchers can build
solutions most suitable to help developers. For instance, we noticed
when developers consider a symptom useful to identify design
problems. Thus, researchers can use this knowledge to build tools
that prioritize symptoms that are likely to be helpful for developers.

The remainder of this paper is organized as follows. Section 2
presents basic concepts and an example of design problem diagnosis.
Section 3 presents our research design. Section 4 summarizes the
results in which our theory is grounded. Section 5 complements
the theory with additional propositions concerning the developer.
Section 6 presents how the theory can be used to drive research on
identifying design problems. Sections 7 and 8 presents related work
and threats to validity, respectively. Section 9 concludes the paper.

2 CONCEPTS AND MOTIVATION

This section presents basic concepts about design problems (Sec-
tion 2.1); an example of how developers may identify them (Sec-
tion 2.2); and concepts related to Grounded Theory (Section 2.3).

2.1 Design Problems

Software design results from a series of decisions made during the
software development [45, 46]. Those decisions directly influence

L. Sousa et al.

software quality attributes, such as maintainability, robustness,
performance, and the like. However, along the way, software design
may decay due to the introduction of design problems. A design
problem arises from one or more design decisions which, when
implemented in source code, negatively affect software quality
requirements [2, 6, 48]. Although some of them are self-admitted,
most are introduced by unintended decisions, which makes them
harder to identify in source code. Developers often have only the
source code as a resource to identify design problems, because of
missing, informal, or outdated design documentation [18, 48].

A design problem may affect a single or multiple elements in
the program. For instance, the Delegating Abstraction [5] problem
happens when one class exists only for passing messages from one
element to another, while a Fat Interface is a design problem that
forces some elements - i.e., the interface itself and related classes —
to deal with many functionalities [25]. Moreover, design problems
also impact different non-functional requirements. For instance,
the Misplaced Concern can impact the understandability, since it
happens when an element implements functionality that is not
the predominant one in the element [12]. Conversely, the Cyclic
Dependency can impact the system performance and availability
due to dependency cycles that can lead to deadlocks [34].

2.2 Design Problems Identification

As design problems have negative consequences for software sys-
tems, they are often targets of significant maintenance effort [12,
37, 54], increasing the cost related to maintaining the software sys-
tems. Unfortunately, identifying design problems is challenging,
for a number of reasons [6, 47]. Firstly, software systems tend to be
increasingly large in size and complexity, thereby expanding the
search space for problems. Secondly, each design problem usually
pervades the implementation of several elements [12, 28]. Thus,
developers need to analyze several elements to identify a single
design problem [47]. Thirdly, design documentation is often un-
available or outdated, making the source code the only artifact
available for developers to identify design problems in most cases.

To illustrate the design problem identification, let us consider
the example in Figure 1, which uses a UML-like notation to show a
partial view of a real university management system we used in our
experiments (Section 3.1). During design problem identification,
one of the developers started looking for design problem symptoms
in the classes that extended the AbstractService class. A symptom
is a partial sign or indication of the presence of a design problem.
The first one noticed by him was the incidence of Feature Envy [10]
in methods of the InstitutionalEnrollmentService class. A method
affected by Feature Envy is more interested in other classes rather
than in its own class [10]. Based on the analysis of Feature Envies,
the developer noticed that the class was implementing two distinct
responsibilities: query enrollment and manage enrollment. He also
noticed that the class had a high dependency with UserService and
IncidentService classes. He then concluded that the class had a
design problem because it presented the following symptoms: (i) im-
plementation of two unrelated responsibilities, (ii) strong coupling
with other classes, and (iii) methods that are overly complex.

In this example, the most helpful symptoms to identify a de-
sign problem were located in the InstitutionalEnrollmentService.

Identifying Design Problems in the Source Code

AbstractService

—
JAN

I 1
IncidentService UserService
K= - I

-=>
1
IE vice

+ calcGradePointAverage(InstitutionalEnroliment): Decimal
: + completeCourse(Long): void

Responsibilities |

+ createSpareEnrollment(Student): void
+ isLikelyGraduating(InstitutionalEnroliment): boolean
,,,,,,,,,,,,,,,, ||+ checkForEnroliment(InstitutionalEnroliment, Long): void

Symptoms

|Violation of Single Responsibility Principle Multiple Feature Envies

High Coupling Low Cohesion

High Cyclomatic Complexity Long and Complex Code (God Class)

Legend

= = =Strong Coupling: = >

v Dispersed [E] Feature @ God
Inheritance——>

Coupling Envy Class

Figure 1: Design problem occurring in the UniM system

However, developers had to analyze at least three other classes
to identify a design problem known as Concern Overload [12]:
elements overloaded with multiple unrelated responsibilities (i.e.,
concerns) tend to be harder to understand and to change, result-
ing in low maintainability and understandability [12]. Also, the
developer needed to rely on three types of symptoms (code smells
affecting the class, high coupling, and high complexity) to identify
the design problem. Unfortunately, a system may contain hundreds
of symptoms, where not all are related to design problems. Conse-
quently, the design problem identification becomes even harder.

To alleviate the identification task, several industrial and aca-
demic tools have been proposed to support the identification of
design problems [9, 28, 29, 31, 51]. Despite the variety of available
tools, they assume that developers rely on only a single predefined
type of symptom (e.g., code smells, design principle violation, or the
like). Thus, they return a single, predefined type of symptom. Con-
sequently, developers need to run several tools in case they need
to consider different types of symptoms. Also, these tools still can
return a disjoint output, which forces developers to manually com-
bine the symptoms indicated by these tools. Hence, developers still
have to analyze the code elements to confirm or reject the presence
of a design problem. In summary, even with tools, the identification
of design problems remains challenging for developers [12].

2.3 Grounded Theory

The provided example only illustrates a scenario where the devel-
oper analyzed some symptoms without explaining how he found the
symptoms that helped him to identify the problem. Understanding
a phenomenon like the identification of design problems requires
more explanation than a couple of examples. Such understanding
can be provided by a theory with explanations and understanding
of concepts and factors that go beyond of the mere observation of
a phenomena [15-17, 40].

We applied the principles of Grounded Theory (GT) to further
understand and explain how developers identify design problems
in source code. GT is a qualitative research method that uses a
systematic set of procedures to inductively develop a theory about

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

a phenomenon [44]. It is used to understand the action in a sub-
stantive area from the point of view of the actors involved in a
phenomenon [13]. There are different versions of GT [43], and we
adopted Strauss’s and Corbin’s GT [44], since it allows us to ask
questions about conditions upon which a phenomenon occurs [43].

GT contains three coding procedures: open coding, axial cod-
ing, and selective coding. Coding refers to the task of data analysis
[43, 44]. Open coding involves the breakdown, analysis, compari-
son, conceptualization, and categorization of the data. Axial coding
consists in examining the identified categories to establish concep-
tual relations between them. Finally, in selective coding, we aim
to reach the theoretical saturation, at which we further refine the
categories and relations, and identify the core category to which
all others are related. More details about the use of GT to derive
the theory in this study are presented in Section 3.4.

3 RESEARCH DESIGN

Several researchers have proposed solutions to help developers
identify design problems [6, 20-22, 28, 32, 47, 50, 53]. However,
they do not focus on explaining how developers identify those
design problems. Despite their contribution, they do not clarify “the
mechanisms through which and the conditions under which [the
cause-effect relationship] holds” [38, p. 8]. Therefore, the support
they provide for developers to identify design problems may be
somewhat misaligned with developers’ current practice.

To determine and understand the activities and factors that in-
fluence how developers identify design problems, we conducted a
multi-trial controlled experiment in different software companies.
We then analyzed the collected data and derived a theory using GT.
Such theory provides an overview, explanation and understanding
on how developers identify design problems in the source code.

3.1 Software Systems and Developers’ Selection

We searched for software companies that could provide us with
software systems and developers to conduct the experiments. We
defined the following criteria to select the companies: experience of
their developers, size in terms of number of developers in a project,
application domain of their projects, and development process. We
defined these criteria in order to achieve some heterogeneity while
selecting companies from our industrial collaboration network,
thereby balancing contextual diversity and convenience [36]. Based
on these criteria, we chose five software companies from the North
and Northeast of Brazil. After selecting the companies, we asked
their managers, some of whom were software designers, to suggest
specific systems that met the following characteristics:

1. Systems in different stages of design degradation;

2. Systems from different domains and with different sizes with
respect to the number of modules and developers;

3. Systems that were not in their initial versions;

4. Systems developed in Java.

Details about the companies and the systems are presented in
the online material [26]. After the companies’ managers provided
us with the systems, we asked them to indicate developers familiar
with each one and who could act as subjects in the study. For
conducting our study the subjects were divided into teams. Table 1
presents the subject characterization and the corresponding teams.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Characterization of the Developers

Team | ID EX(l;eeI::Sl;CC System | Company
T1 g; 2 S1 1
IR
T3 gz 164 S1 1
T4 g; ; S2 2
T5]])3 190 j S2 2
Té gi; 180 S3 3
BHEERE
w (D0 s |
SR
D19
T10 | D20 7 S7 5
D21
T11 g;i 192 S8 5

All teams are composed of two developers, except for T10, whose
company asked us to involve three developers.

3.2 Experimental Tasks

The experiment comprises the following four activities:

Activity 1: Subjects characterization. We asked the develo-
pers to fill out a questionnaire to gather their information, including
educational level, professional experience with software develop-
ment, Java programming, and knowledge about design problems.

Activity 2: Training. We conducted a training session for all
the developers about software design and design problems, with ex-
amples of problems pertaining to different categories. The following
design problems were included in the training session: Ambigu-
ous Interface, Unwanted Dependency, Component Overload, Cyclic
Dependency, Scattered Concern, Fat Interface, and Unused Abstrac-
tion. We selected these design problems together with the project
managers, who suspected that these represented common cases
of design problems in the selected projects. However, we made
it clear to the developers that they were also allowed to identify
other types of design problems with which they were already fa-
miliar. The 40-minute training session was organized in two parts:
a Powerpoint-based presentation; and discussions and questions.

Activity 3: Problem identification. We asked developers to
identify design problems in their software systems. They had 90
minutes to analyze the source code to identify all the design prob-
lems they could find. At the beginning of this activity, we asked
them to explain aloud what they were doing while we recorded

L. Sousa et al.

the task on video. Thus, we could triangulate the results from the
questionnaire and the video recording to improve the data analysis.
In total, the problem identification sessions lasted over 13 hours.
Activity 4: Follow-up. Developers filled out a questionnaire
about their perception of the task. We also asked them to indicate
whether each symptom was useful to identify a design problem.

3.3 Provided Data

Most design problems manifest themselves in source code through
different symptoms, which many developers use tools to help them
identify these symptoms. Thus, to make Activity 3 more realistic,
we provided our subjects with a set of symptoms we had detected
in the code of the analyzed systems after running and manually
combining the output of some tools [4, 28, 31]; simulating the use of
tools, but not limiting the developers to the output of a specific one.
For each module, we provided the following types of symptoms:

1. Violation of Non-functional Requirements: Information
of non-functional requirements (e.g., readability, testability,
robustness, security), which were possibly being violated,;

2. Code Smells: We provided the list of code smells because
previous studies suggest that code smells can be used as
indicators of design problems [20-22, 32]. We used well-
known metrics-based strategies to identify 15 types of code
smells from Fowler’s Catalog [10];

3. Visual Representation of Modules: A visual representa-
tion of the module and relationships between modules;

4. Design Pattern Violation: Information on the use of archi-
tectural and design patterns [11], to help identify misused
patterns;

5. Quality Requirements: Information about quality require-
ments (e.g. cohesion, coupling, complexity)

6. Violation of Object-Oriented Principles: Information a-
bout object-oriented principles [24] that were possibly being
violated, which may indicate a problem. These principles
have been pointed out as guides to avoid design problems.

We summarized and presented these symptoms to developers
through a web page based on SonarQube [4]. We provided a visual-
ization similar to SonarQube because it is a well-known platform
for inspection of software systems, and which was familiar to most
subjects. Thus, we could reduce the learning curve or aversion re-
lated to how the symptoms are presented. The main difference of
our mechanism is that it presents all symptoms in a single page. It is
noteworthy that, while SonarQube provides several pieces of infor-
mation unrelated to design problems, our mechanism provides only
symptoms that may help developers to identify design problems.

3.4 Data Collection and Analysis

We used different instruments to collect data. Developers had to an-
swer characterization and follow-up questionnaires. They also had
to write any observation in a specific field at the web page in which
we presented the symptoms. Developers could write anything in
the observation field, such as: the name of a design problem affect-
ing the elements; whether he agreed with the suggested symptoms;
or even comments about the code. They used either the Eclipse or
Intelli] IDEs to analyze the source code, and they used the browser
to access the web page with the symptoms. We used the think-aloud

Identifying Design Problems in the Source Code

method [8], asking the developers to verbalize their thoughts dur-
ing the experiment. All their procedures were recorded on audio
and video. We used Techsmith’s Camtasia' to record audio and
screenshots of their computer. In addition, a video camera was
installed in the room to record the developers during the study.

After the data collection, we employed GT procedures to analyze
the data. We first transcribed all the video and audio recordings.
We then performed open coding to associate codes with quotations
of developers’ utterances, as shown in the example below:

Raw Transcript. “D6: The readability here is awful, but there is no way to

escape from this (implementation). That is the standard (implementation).

(-..) indeed, it (the class) is not easy to ready”

Code 1. developer mentions that the class readability is awful

Code 2. developer mentions that there is no way to escape from the

analyzed implementation

Code 3. developer mentions that the analyzed implementation is the

standard implementation

Code 4. developer accepts that the class is hard to read

We related the codes through axial coding. In this procedure, the
codes were merged and grouped into more abstract categories, and
the type of relation [44] was established. For instance, the previous
codes were grouped into the following two categories:

Category 1. analysis of a non-functional requirement

Category 2. explanation for the existence of the symptom

For each transcript, the codes, memos, and networks showing
the relations in the categories and codes were peer reviewed and
changed upon agreement with some of the paper’s authors. Then,
we used selective coding to identify core categories that best ex-
plain how developers identify design problems. Next, we used the
Sjeberg’s framework [40] to represent and describe the theory con-
structs, propositions, explanations and scope. A construct is a basic
particle that composes a theory; thus, the categories identified in the
axial and selective coding are candidate constructs for the theory. A
proposition is an interaction among constructs, which comprise the
relations established among the categories. An explanation com-
prises the factors behind the propositions. The explanations are
grounded in the categories, codes, relations, and in the transcripts.
The scope is the universe to which the theory is applicable.

4 A THEORY ON HOW DEVELOPERS
IDENTIFY DESIGN PROBLEMS

As aforementioned, we used Sjoberg’s framework [40] to describe
the theory, which is summarized in Figure 2. According to his frame-
work, our theory fits in the Explanation type since it describes and
explains how the identification of design problems is conducted
(Section 4.1), the symptoms and their characteristics (Section 4.2),
and how the symptoms are used to diagnose design problems (Sec-
tion 4.3). In his framework, Sjeberg also describes criteria to evalu-
ate theories. Testability is one criterion, which indicates “the degree
to which a theory is constructed such that empirical refutation is
possible” Regarding such criterion, our theory has high testability
since empirical refutation of its propositions is possible by replicat-
ing the study. In fact, the replication is practicable as we first ran
the experiment in three companies and then we replicated it with
more companies until reaching theoretical saturation (Section 2.3).

!Camtasia is available at www.techsmith.com/camtasia.html

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Helpfulness according to developers

Symptom Applied No. of Percentage
times | contributions | of success
Design Pattern Violation 43 34 79.07%
Quality Requirements 43 31 72.09%
Violation of
62 46 74.19%

Non-functional Requirements
Code Smells 37 17 45.95%
Violation of

Object-oriented Principles

38 20 52.63%

When describing the theory, we introduce the constructs and
propositions, identifying them in the text with C and P, respectively.
We discuss the propositions and their constructs next. We also
present explanations for propositions that are aligned with findings
of previous studies and explanations that comprise findings that
have not been presented elsewhere. Complete description of the
constructs and propositions is available in the online material [26].

4.1 Identification of Design Problems

A design problem (C1) arises in code elements due to one or more
design decisions (C2), made intentionally or not. In fact, a design
problem may affect one or more elements in such a way that these
elements manifest symptoms of its presence. A symptom (C3) is an
indication of the presence of a design problem.

Three Steps to Identify Design Problems Using Symptoms.
A code element may contain several design problem symptoms.
Thus, we define a syndrome (C4) as a set of symptoms affecting the
same code element. In this context, we refer to diagnosis (C5) as
the process of identifying a design problem through the analysis
of symptoms that manifest themselves in the source code (P1).
From the data collected during the subjects’ diagnostic activities,
we noticed that the identification of design problems was often
divided into three steps: (i) locating code elements, (ii) analyzing
the elements, and (iii) confirming or rejecting the presence of a
design problem. In all these three steps, developers rely on design
problem symptoms in the source code (P2).

4.2 Design Problem Symptoms

Symptom Helpfulness. We noticed that developers do not always
consider all the symptoms of a syndrome when identifying design
problems. Instead, they only consider those symptom instances
that they judge helpful during the identification. We could identify
when developers judge a symptom helpful because we asked them
to evaluate the symptom based on how helpful it was to identify the
problem (Section 3.2). Table 2 presents the percentage of helpfulness
of each type of symptom. The first column indicates the name of the
symptom, while the second column shows the number of times that
the symptom was used by developers. The third column shows the
number of occasions that the developers mentioned the symptoms
were helpful to identify a design problem. Finally, the last column
indicates the percentage of helpfulness, i.e., the percentage that
developers used the symptom and evaluated it as helpful.
Symptom attributes that drive developers to select what
to analyze. Based on the helpfulness mentioned by developers,
we performed a qualitative analysis to investigate which symptom

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Software System

L. Sousa et al.

Activity

Software Developer

Conscientiousness

P13
P12
P14

P18

- Confidence (in the
presence of a
design problem)

P

P15 P11

JAN JAN
Software Project Identification of Design
P Problems
- Locating Code Elements
1 - Analyzing Code
W —— Density P5 Elements
Accuracy P4 Confirming a Design
Pa. Problem
Symptom TypeAﬁﬁj__,6 ¥

Technology

JAN

Di

P1

Diversity

Relation

Element

Role —P9

Symptom Analysis

Epidemic Analysis

Design Problem

Affected

Al

Elements

Design decisions

>

Figure 2: Theory representation of how developers identify design problems through the analysis of symptoms

attributes i.e., characteristics of the symptom (such as its accuracy
or type), developers take into consideration when they choose the
symptoms most likely to help them. We observed that the follow-
ing symptom attributes are most helpful for developers to identify
design problems: symptom type, accuracy, density, relation (among
the symptoms), and diversity. Symptom type (C6) indicates a cate-
gory to which a set of symptoms with common characteristics
belongs (e.g., code smell). Accuracy (C7) is the degree to which a
symptom is correct in indicating a design problem, while density
(C8) is the number of symptom instances in a syndrome. Regard-
ing these attributes, we were already expecting that accuracy and
density would be attributes that developers take into account to
consider a symptom helpful. However, we had not expected that
they would take into consideration the relation among symptoms
and the diversity of symptoms in the syndrome.

Diversity of a syndrome. Relation (C9) is how two or more
symptoms are connected. For instance, both Intensive Coupling
smell and violation of the layered pattern [3] measure the degree
to which elements are undesirably coupled with others. Since they
measure similar (albeit complementary) properties of an element,
they are related to each other. We noticed that developers use the
relation among the symptoms to discover other types of symptoms
that can indicate a design problem (Section 4.3.1). We also noticed
that developers frequently located elements that manifested several
different types of symptoms (P3). In fact, we observed that diversity
(C10) is another attribute that developers consider. Diversity is
the degree to which a syndrome contains a variety of symptom
types. Upon data analysis, we found that the more different types
of symptoms a syndrome has, the greater the chance the developer
will identify at least one design problem in the element (Section 5.2).

Indeed, we noticed that the diversity of a syndrome has a strong
influence on the diagnosis. As this finding had not been observed
before, studies that assume that developers rely on only one type of
symptom [27, 32, 52, 53] may be misaligned with how diagnosis is
conducted in practice, in two ways: (i) they may assume that develo-
pers will use a predefined, dominant type of symptom; and (ii) they

may not consider that diversity of symptoms is other indicator that
developers use when identifying a design problem. We will discuss
later how the diversity influences human aspects (Section 5.2).
Considering the attributes that influence the developers.
As mentioned before, developers do not consider all symptom in-
stances to identify a design problem. They take into account only
those symptoms that they consider helpful to identify a problem.
We showed the attributes developers consider to assume that a
symptom is helpful. For instance, if a syndrome has several types
of symptoms, developers consider the density and diversity to se-
lect the symptom. That is, developers select a symptom when they
are satisfied with these attributes. Conversely, when attributes do
not satisfy the developers (e.g., the syndrome does not contain di-
verse types of symptoms), the symptom would be ignored and not
considered helpful, possibly leading to missing a design problem.
Knowing about how developers consider a symptom helpful is
useful for researchers since they can propose solutions that empha-
size symptoms helpful for the developers. For instance, some studies
propose solutions to prioritize smells that can help developers to
identify design problems [1, 32, 50]. As code smells are a type of
symptom, they also present some of the attributes discussed above.
However, some studies on code smells may not consider attributes
as the density of smells or diversity. Therefore, developers may
neglect some code smells for not considering them helpful for the
identification. These studies could use the attributes that developers
take into account as a mechanism to prioritize smells (Section 6).

4.3 Design Problem Diagnosis

As aforementioned, diagnosis is the process of identifying a design
problem through the analysis of symptoms. We noticed that develo-
pers diagnose a design problem based on two types of analyses: a
symptom analysis (C11), and an epidemic analysis (C12).

4.3.1 Symptom Analysis. In symptom analysis, developers choose
and analyze a set of symptoms affecting a single element, i.e., they

Identifying Design Problems in the Source Code

Table 3: Combining Symptoms

Symptoms | Instances Pi):bsllf;s Teams
1 16 11 T7, T8, T9
2 13 10 T1, T3, T7,T8, T9
3 14 11 T3, T4, T5, Te6, T7, T8, T9
4 10 6 T2, T3, T5, T8, T9
5 3 1 T4

do not analyze multiple elements. This happens because they usu-
ally rely on the aforementioned symptom attributes: type, accuracy,
density, relation (among symptoms), and diversity. In this analysis,
developers verify, based on these attributes, whether the symptoms
affecting the analyzed element indicate a design problem. If so, then
they do not proceed to analyze other elements.

Incorrectly ignoring symptoms. Someone can expect that the
accuracy (P4), the density (P5), and the type (P6) of the symptoms
influence the problem identification. For instance, let us consider
code smells. Palomba et al. [33] investigated to what extent code
smells are perceived as design problems. They noticed that develo-
pers take into account the type of the code smell to decide whether
it is a problem. Surprisingly, developers tend to incorrectly associate
the type of symptom with its accuracy or density, and that does not
happen only with code smells. Thus, if they rely on the accuracy
or density to disagree that a symptom indicates a design problem,
they tend to not consider the same type of symptom in the other
elements, even when they indicate a design problem. For instance,
if a developer analyzes the violation of a design pattern such as
Data Access Object and concludes that this type of symptom is
irrelevant for identifying a design problem, then he is less likely to
consider a violation of a design pattern in the elements he analyzes
next. This happened, for instance, with the T3 developers.

Combining multiple related symptoms. Someone can argue
that analyzing a single element is not enough to identify a design
problem. Nevertheless, we noticed that they combine symptoms in a
single element in order to confirm the presence of a design problem.
Table 3 shows the frequency with which developers either used
only one symptom or combined multiple symptoms. Its first column
indicates the number of symptoms that developers combined to
identify design problems. Its second column indicates how many
times the symptom or combination of symptoms happened. Its third
column indicates the number of design problems found when the
subject used a symptom or a combination of symptoms. Its last
column indicates the teams that used or combined the symptoms.
We obtained these data after applying the GT. The online material
[26] has a full version of the table containing (i) which symptoms
were combined and (ii) which design problems the team found.

We can see in Table 3 that most developers tend to combine symp-
toms to identify a design problem. Also, we noticed that develo-
pers identify more design problems when they combine symptoms.
Based on this result, we investigated how the combination takes
place. We noticed that developers use symptom relations to identify
the symptoms to combine. Thereby, the relation helps developers
to identify other helpful symptoms in the syndrome. We observed,

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

therefore, that the more related to others a symptom is, the greater
the likelihood of a developer selecting it for combination (P7).

As an example of how developers use the symptom relation to
find other helpful symptoms, let us consider the developers of the
T2 team. They were analyzing the code smells, and they noticed
that the class had the Dispersed Coupling smell. Due to the pre-
sence of this smell, they analyzed the coupling quality requirement.
When analyzing this type of symptom, they noticed it was indi-
cating a high coupling with other classes. This finding increased
their confidence that the class contained a design problem. These
developers also noticed that the coupling was related to a third type
of symptom: violation of non-functional requirements. When they
analyzed this symptom, they noticed that the high coupling was
making the class harder to read. In this example, the developers
used the relation among the three symptoms (code smells, quality
requirements, and violation of non-functional requirements). Then
they combined these symptoms to identify that the element was
involved in the Concern Overload design problem [12].

Sousa et al. have shown that developers often combine mul-
tiple symptoms to identify design problems [41]. However, they
did not observe how that combination took place. In our case, we
noticed that the relation among the symptoms is what drives the
combination, by helping to identify other related symptoms. The
combination of the symptoms is another evidence that previous
studies [27, 32, 52, 53] may have proposed solutions for the prob-
lem identification that do not fit the developers’ needs. In other
words, developers consider multiple symptoms (Section 4.2) and
they also combine these symptoms to increase their confidence in
the presence of a design problem. Therefore, forcing the developers
to use only a reduced set of symptoms is likely to go against the
way in which developers identify design problems in practice.

4.3.2 Epidemic Analysis. When developers analyze an element,
they do not consider only the symptoms affecting that element;
sometimes they also consider whether other elements are affected
by the same set of symptoms. We name this process epidemic
analysis. Analogously to the way in which attributes influence
the selection of symptoms in a single element, there are attributes
that developers consider before choosing elements for an epidemic
analysis. In addition to considering the types of symptoms (P8),
developers also take into account the element role (C13) to choose
the epidemic elements most likely to help them to identify a design
problem (P9). Element role is the function that an element plays in
the software system, e.g., the role of Service.

Complementary analysis. The reason why developers use the
element role to identify epidemic elements is that each design prob-
lem may be scattered over several elements. Since those elements
share the same symptoms, developers assume that they may help
them to identify the design problem, which justifies the epidemic
analysis. However, what is surprising is that developers analyzed
epidemic elements only when they had used the symptom analysis
but had not succeeded in identifying a design problem. We noticed
that, since they are not confident about the presence of a design
problem during the symptom analysis, they proceed to an epidemic
analysis of other elements in order to decide whether there is a
design problem in the elements under analysis.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Prioritization of key elements. We noticed that developers
tend to prioritize epidemic elements that provide a central func-
tionality in the system. Such behavior happens because they as-
sociate the role played by the element with the probability of the
element containing a design problem (P10). As an example, the T2
developers were analyzing the symptoms of an element. During
the analysis, they noticed that the element was playing the Service
role in the system. At this point, the developers included other
Service classes in the analysis. When they focused the analysis on
all the classes that play a service role, this change of focus led them
to identify a design problem. They mentioned that all the service
classes in the systems are affected by the Scattered Concern design
problem [12]. Curiously, these developers had already analyzed
other Service classes before, without identifying any design prob-
lem. In that case, the T2 developers were not applying the epidemic
analysis; thus, they did not take into account the element role to
select elements with similar set of symptoms.

Although developers are more likely to accept that elements
playing an important role have a design problem, we found cases
that subjective factors influenced their decision, as discussed next.

5 PROPOSITIONS CONCERNING THE
DEVELOPER

In this section, we provide some additional propositions concerning
the developer, observed through the think-aloud method [8] with
the support of video and audio recordings.

5.1 Confidence in the Presence of a Design
Problem

The confirmation or rejection of a design problem in a group of
elements is mainly influenced by the developers’ confidence (C14),
which is the degree to which they are convinced about the presence
of a design problem. The most confident the developer is, the greater
the likelihood of confirming a design problem.

Attributes that increase developers’ confidence. The attribu-
tes that influence a design problem diagnosis also affect the develo-
pers’ confidence (P11). According to our study, the attributes that
influence the developers’ confidence the most are: accuracy, den-
sity, element role, and diversity. It is not a surprise that the more
accurate (P12) and denser (P13) the developer believes that the
symptom is, the more confident he will be in the presence of a de-
sign problem. Nevertheless, we noticed that the element role plays
an even greater influence on the developers’ confidence (P14).

Developers’ divergence regarding element role. At first glan-
ce, we noticed that when most developers analyze an element that
plays an important role in the system, they tend to assume that the
element contains a design problem. Examining further, we observed
two behaviors. When developers analyzed element role together
with other attributes, they tended to confirm the corresponding de-
sign problem. Conversely, whey they only considered the element
role (ignoring other attributes), they tended to reject the design
problem, arguing it is acceptable to have design problem symptoms
in elements that play an important role in the system.

These two behaviors happened with T2 and T4, respectively.
Developers of the T2 team confirmed the design problem in the
element because, among other attributes, the element played an

L. Sousa et al.

important role in the system. On the other hand, T4 developers
said that, due to the element role, it is acceptable that the element
contains the design problems symptoms. According to them, if the
element were not an important class for the system, it would not be
acceptable to have a design problem or its symptoms in the class.
Pondering about the number of symptoms. When a devel-
oper analyzes individual symptoms, the number of symptoms with
which he agrees or disagrees influences his confidence in the design
problem identification. When analyzing each symptom, the devel-
oper decides whether it indicates a design problem. In the end, he
counts the number of symptoms he judged as indicating a problem
and the number of symptoms he judged as irrelevant. If the former
is greater than the latter, then he confirms that the element has a
design problem. T3 developers used this strategy to increase their
confidence in the presence of a design problem in some elements.

5.2 Conscientiousness

Conscientiousness (C15) is a personality trait related to being care-
ful, responsible, and persevering [30]. The more conscientious the
developer is, the greater the likelihood of identifying a design prob-
lem. Likewise, when developers diagnose more design problems,
they become more conscientious. As these attributes have a circular
effect between them (P15), it would be interesting to find ways to
increase the developers’ conscientiousness.

Diversity as an attribute to increase conscientiousness. The
diversity of symptoms is the attribute that most influences the con-
scientiousness of the developers (P16). The higher the diversity of
a syndrome, the greater the chance the developer will identify a
design problem in the element. That happens because the diversity
not only increases the confidence of the developers, but it can also
help the developers to decide whether the element contains a design
problem. In fact, we noticed that the diversity had a great influ-
ence on developers of the T7, T9, T10 and T11 teams, because they
tended to assume diversity as a strong indicator of a design problem
(Section 4.2). Therefore, this finding is another evidence that studies
that assume that developers rely on only one type of symptom may
be misaligned with the developers’ practice [27, 32, 52, 53]. Even
worse, these studies are not taking advantage of the impact that
the diversity attribute has on developers’ conscientiousness.

Side effect of only considering the diversity attribute. We
noticed a side effect when developers overestimate the importance
of the diversity of a syndrome without further analyzing other
attributes. For instance, after the T4 developers had analyzed a set
of elements with diverse symptoms, they later judged an element as
free of a design problem because it did not have the same diversity of
symptoms as the ones analyzed previously. Although this behavior
was not very frequent, it brings out another issue that studies that
rely on only one type of symptom do not take into account.

5.3 Incapability of Providing an Alternative

Justifying the presence of a design problem with design de-
cisions. Sometimes the developers are convinced that an element
contains several symptoms that indicate a design problem, even
though they do not confirm the presence of a design problem. Al-
though such behavior seems contradictory, they argue that they do
not consider the element as containing a design problem because

Identifying Design Problems in the Source Code

they see no other way to implement the element. In these cases,
developers use the concept of design decision to justify why they do
not consider the presence of a design problem (P17). Consequently,
the decision design that developers use as an argument influences
their confidence in the presence of a design problem (P18).
Developers justified the presence of a design problem mostly
when they could not provide an alternative implementation. This
behavior is aligned with the theory discussed by March and Si-
mon [23], who theorized that developers typically do not choose
an optimal solution because such solution would require that all
alternatives to a problem be perceived. However, they argue that in
practice it is unlikely for developers to know all alternatives. Hence,
the known alternatives represent the boundaries that developers
face before making a decision. Therefore, developers stop searching
for further solutions when one that satisfies their needs is found.
Justifying the presence of a design problem with the lack
of an alternative implementation. March and Simon’s [23] the-
ory also manifests in the context of identifying design problems, as
we observed in our study. The developers used the limited known al-
ternatives to justify why a specific implementation does not present
a design problem. In these cases, they mentioned that they could
not find any other alternative solution (optimal or not) to imple-
ment the element. According to them, the element should not be
considered as an element involved in a design problem. That is, the
known alternatives are not only boundaries that developers face,
but also used to justify the presence or absence of a design problem.

6 TOWARDS IMPROVING DESIGN PROBLEM
DIAGNOSIS

Researchers can use the discussions presented in this paper as an
underlying mechanism to drive solutions for supporting developers
during design problem identification. For instance, in this section,
we present some of these solutions that emerged from the theory.

6.1 Supporting Multiple Symptoms

Providing multiple design problem symptoms. Most studies
rely on a single, predefined, dominant type of symptom [27, 32,
52, 53], which may be limiting how developers identify design
problems in practice. Thus, there is a need for solutions that provide
developers with multiple symptoms, and then help them to navigate
among these symptoms and to combine them. In fact, we noticed
that developers would benefit from mechanisms to automatically
provide symptoms for combination. For instance, a solution in this
sense is to provide other symptoms that are complementary to the
one being analyzed. Such tool, for instance, could have helped the
T2 developers to identify a design problem (Section 4.3.1). They used
the Dispersed Coupling to choose the coupling attribute to analyze
next. Later, they chose the readability non-functional requirement
to complement their analysis. In this example, a tool could provide
the coupling attribute and the readability requirement as soon as the
developers indicate the Dispersed Coupling code smell as helpful.

Filtering relevant symptoms. Developers take into consider-
ation the diversity of symptoms. However, if an element manifests
several symptoms, the developers could have a hard time to choose
the most helpful one. For instance, D16 (T8 team) mentioned the
difficulty that he had to choose helpful symptoms:

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

D16: “Since I was not familiar with each type of symptom and design
problem, it was hard for me to match them. Even with the provided symptoms,
I could not figure out which one was actually related to the design problems.”

To address this issue, an automatic tool could help them to filter
those symptoms that are most likely to indicate a design problem. In
the same way that a tool could propose complementary symptoms
to the one being analyzed, it could hide symptoms that are least
similar to the one under analysis. Such tool could make the analysis
of multiple symptoms less cumbersome.

Visualization support. Another solution to help developers to
deal with multiple symptoms is to provide visualization mecha-
nisms to help them to analyze the symptoms. For instance, the Scat-
tered Concern [12] problem occurs when multiple code elements
implement a functionality that should have been implemented by
only a few elements. In this case, developers have to analyze mul-
tiple elements that may have the scattered functionality. These
elements are likely to share some symptoms. Perhaps if developers
could visualize how the multiple symptoms interact in the system,
they could identify these elements more easily. In fact, D14 (T7
team) mentioned in the follow-up questionnaire that a visualization
mechanism would help him to identify some design problems:

D14: “For some design problems e.g. Cyclic Dependency, Scattered Concern,
it’s hard to find by looking at the source code manually, which is too low
level when we don’t have a higher level architecture view.”

6.2 Prioritization of Similar Elements

Prioritizing epidemic elements. We noticed that developers tend
to prioritize elements that play an important role in the system. In
addition, if these elements have diverse symptoms, then they should
be the first elements to be analyzed by the developers. Researchers
could therefore use the attributes presented here to build tools that
prioritize elements. For instance, developers of the T2 team used
the element role during the epidemic analysis (Section 4.3.2). In two
cases they relied on the element role to select epidemic elements.
However, in one case they could identify a design problem, whereas
in the other case, they could not. The difference between these two
cases was related to the number of epidemic elements playing the
same role. While in the first case all the epidemic elements played
the Service role, in the second case only few epidemic elements
played the Controller role. The following quotation illustrates this.

D4: ‘Tthink that all the service classes will have (the design problem)”
D3: “Indeed, the service (classes)”

D4: ‘T guess that (they) are similar to each other. In fact, I believe that the
next service (class) will be similar”

6.3 Additional Support for the Developer

Based on the propositions concerning the developers (Section 5)
we suggest providing the following additional support.

Providing an alternative implementation. It is often difficult
for developers to provide an alternative implementation for an
element that may contain a design problem (Section 5.3). In this
context, a tool could indicate an alternative implementation that
could remove the design problem symptoms. Hence, a developer
would not be able to use the lack of an alternative implementation
as justification for not confirming a design problem.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Personalizing the detection of symptoms. The accuracy of
the symptom is also influenced by the developers’ subjectivity.
Developers mentioned that a certain type of symptom was accurate
in indicating a design problem in some elements, but not in others.
Thus, most developers mentioned that they need tools that allow
them to personalize the detection of symptoms according to their
software systems. Allowing developers to adjust thresholds and
detection rules would minimize how the (low) accuracy influences
their confidence in the presence of a design problem. D11 (T6 team)
mentioned in the follow-up questionnaire the need for such feature:

D11: “The symptoms suggest a possible design problem. However, none of
them should be rigid rules. Often, it makes sense to have long methods,
message chains or many parameters (in the method). In some cases, we
could replace a long string of conditional (statements), but it would make it
difficult to understand. A method was considered long, but its readability
was very clear, which did not justify a refactoring.”

7 RELATED WORK

Along the paper, we presented some studies about the identification
of design problems. We have not found studies that present the
diagnosis of design problems as a theory. Instead, we found studies
that focus on presenting the phenomenon rather than explaining
it [6, 20-22, 27, 28, 32, 47, 50, 53]. For instance, several researchers
proposed techniques to identify design problems [20-22, 32, 53].
Although these studies had encouraging results, they did not con-
duct experiments with software developers or they have not taken
into account the attributes that affect design problem identification.

As far as we are concerned, Sousa et al. is the only study that has
proposed to explain how developers identify design problems [41].
However, they fell short of framing their results as a theory. Similar
to the other studies, they only present the phenomenon, rather than
explain it. For instance, the authors only provide the symptoms
that developers take into account, but they could neither explain
how developers find these symptoms nor describe the attributes
that developers take into account during the diagnosis. Conversely,
we highlight that our goal was not to provide the most preeminent
symptoms nor the symptoms that lead to the identification of de-
sign problems. Instead, we focused on revealing the attributes that
contribute to diagnosing a design problem the most, which allows
us to explain how developers identify design problems in practice.

8 THREATS TO VALIDITY

This section presents and discusses threats to validity.

Construct Validity. We provided some symptoms for develo-
pers to use during design problems diagnosis. These data could
have biased the experiments. However, we provided these data
considering the literature [11, 20-22, 24, 32] and considering the
companies’ managers. They mentioned that some of the developers
not only were familiar with some symptoms but also had the culture
of using them. Furthermore, our goal was to explain the diagnosis
of design problems, and not delve too deeply into the symptoms.
The time allocated for the tasks could be considered another threat
to validity. However, we conducted a pilot study to adjust the time
required to perform the tasks and thus reduce the threat.

Internal Validity. The difference between the developers’ back-
ground knowledge can be a threat. However, in the context of apply-
ing an analysis through GT, we saw this diversity as an opportunity

L. Sousa et al.

to strengthen the evidence supporting the depicted propositions.
Moreover, we provided training to mitigate this threat.

External Validity. The number of subject represents a threat.
All of them worked for companies located in Brazil. However, it is
important to note that this is a multi-company study involving five
different working environments and eight different systems. Finally,
the presented study covered only systems developed in Java. Using
other programming languages with different core characteristics
may influence developers in identifying design problems.

Conclusion Validity. The participation of the author who fol-
lowed the GT procedures poses another threat. His beliefs might
have caused some distortions when interpreting the data. To miti-
gate this threat, the GT coding activities were shared with other
researchers. Moreover, the identification of the constructs and the
depicting of propositions were performed separately by the first
author and other researchers. In fact, three authors conducted the
Grounded Theory procedures independently; then we merged their
results to shape the theory. Thus, the contents were compared and
discussed by the researchers until reaching a consensus.

9 CONCLUDING REMARKS

A design problem is the result of one or more inappropriate deci-
sions that negatively impact non-functional requirements. Despite
their harmfulness, the identification of each design problem is not
trivial. One of the main reasons is that design documentation is
often unavailable or outdated. Thus, developers often have to rely
on the source code to identify design problems, which may quickly
turn into a complex task. Although researchers have investigated
techniques to help developers, there is little knowledge on how
developers actually proceed to identify design problems in practice.
In order to address this limitation, we conducted a multi-trial
industrial experiment with developers from different companies,
where they had to identify design problems in their systems. As
a result, we derived a theory describing the activities and factors
that influence on how developers identify design problems, which
can serve to further understand the identification of design prob-
lems. For example, the theory reveals that developers rely on a
heterogeneous set of symptoms, and they tend to combine symp-
toms. The theory also presents the characteristics of symptoms that
developers consider helpful. Then, we discussed how the knowledge
revealed by our theory can be used to advance the state-of-art.
Future steps in this work involve the execution of new empirical
studies to assess in more depth the theory’s propositions and expla-
nations. For instance, we intend to address some findings described
at Section 6 and verify if they have positive effects on design prob-
lem identification. The goal of these studies is to use the theory to
implement a novel family of solutions that are more effective than
the current ones in helping developers identify design problems.

10 ACKNOWLEDGMENT

The authors would like to thank the reviewers for their valuable
comments and suggestions. This work is funded by CAPES/Procad
(grant # 175956), CAPES/Procad (grant # 175956), CNPq (grants
#309884/2012-8, 483425/2013-3 and 477943/2013-6), FAPER] (E26-
102.166/2013), FAPER] (grant # 102166/2013 and 22520 7/2016) and
FAPEAL (grant #60030 1201/2016 FAPEAL PPGs 14/2016).

Identifying Design Problems in the Source Code

REFERENCES

[1] M Abbes, F Khomh, Y Gueheneuc, and G Antoniol. 2011. An Empirical Study

(6

[10

[11

[12
[13
[14

(15

[16

[17

[18

[19

[20

[21

[22

[23

[24
[25

[26
[27

[28

=

)
]

]
]
]

]

]

]

]

]
]

of the Impact of Two Antipatterns, Blob and Spaghetti Code, on Program Com-
prehension. In Proceedings of the 15th European Software Engineering Conference;
Oldenburg, Germany. 181-190.

Holger Bar and Oliver Ciupke. 1998. Exploiting Design Heuristics for Automatic
Problem Detection. In Workshop Ion on Object-Oriented Technology (ECOOP *98).
Springer-Verlag, London, UK, UK, 73-74.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. 1996. Pattern-Oriented Software Architecture - Volume 1: A System of Patterns.
Wiley Publishing.

G Campbell and Patroklos P Papapetrou. 2013. SonarQube in action. Manning
Publications Co.

Munkhnasan Choinzon and Yoshikazu Ueda. 2006. Detecting Defects in Object
Oriented Designs Using Design Metrics. In Proceedings of the 2006 Conference
on Knowledge-Based Software Engineering: Proceedings of the Seventh Joint Con-
ference on Knowledge-Based Software Engineering. IOS Press, Amsterdam, The
Netherlands, The Netherlands, 61-72. http://dl.acm.org/citation.cfm?id=1565098.
1565107

O. Ciupke. 1999. Automatic detection of design problems in object-oriented
reengineering. In Proceedings of Technology of Object-Oriented Languages and
Systems - TOOLS 30 (Cat. No.PR00278). 18-32.

Bill Curtis, Jay Sappidi, and Alexandra Szynkarski. 2012. Estimating the Size, Cost,
and Types of Technical Debt. In Proceedings of the Third International Workshop
on Managing Technical Debt (MTD ’12). IEEE Press, Piscataway, NJ, USA, 49-53.
http://dl.acm.org/citation.cfm?id=2666036.2666045

K. Anders Ericsson and Herbert A. Simon. 1993. Protocol Analysis: Verbal Reports
as Data (2 ed.). A Bradford Book.

M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou. 2007. JDeodorant: Identification
and Removal of Feature Envy Bad Smells. In 2007 IEEE International Conference
on Software Maintenance. 519-520. https://doi.org/10.1109/ICSM.2007.4362679
M Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, Boston.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

J Garcia, D Popescu, G Edwards, and N Medvidovic. 2009. Identifying Architec-
tural Bad Smells. In CSMR09; Kaiserslautern, Germany. IEEE.

B.G. Glaser. 1998. Doing Grounded Theory: Issues and Discussions. Sociology Press.
https://books.google.com.br/books?id=XStmQgAACAAJ

M Godfrey and E Lee. 2000. Secrets from the Monster: Extracting Mozilla’s
Software Architecture. In CoSET-00; Limerick, Ireland. 15-23.

J. E. Hannay, D. I. K. Sjoberg, and T. Dyba. 2007. A Systematic Review of The-
ory Use in Software Engineering Experiments. IEEE Transactions on Software
Engineering 33, 2 (Feb 2007), 87-107. https://doi.org/10.1109/TSE.2007.12

Ross Jeffery. 2013. Paths to Software Engineering Evidence. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 133-144. https://doi.org/10.1007/978-3-642-37395-4_9
P. Johnson, M. Ekstedt, and I. Jacobson. 2012. Where’s the Theory for Software
Engineering? IEEE Software 29, 5 (Sept 2012), 96-96. https://doi.org/10.1109/MS.
2012.127

P. Kaminski. 2007. Reforming Software Design Documentation. In 14th Working
Conference on Reverse Engineering (WCRE 2007). 277-280.

A MacCormack, J Rusnak, and C Baldwin. 2006. Exploring the Structure of
Complex Software Designs: An Empirical Study of Open Source and Proprietary
Code. Manage. Sci. 52, 7 (2006), 1015-1030.

1. Macia, R. Arcoverde, E. Cirilo, A. Garcia, and A. von Staa. 2012. Supporting the
identification of architecturally-relevant code anomalies. In ICSM12. 662-665.

1. Macia, R. Arcoverde, A. Garcia, C. Chavez, and A. von Staa. 2012. On the Rele-
vance of Code Anomalies for Identifying Architecture Degradation Symptoms.
In CSMR12. 277-286.

Isela Macia, Joshua Garcia, Daniel Popescu, Alessandro Garcia, Nenad Medvi-
dovic, and Arndt von Staa. 2012. Are Automatically-detected Code Anomalies
Relevant to Architectural Modularity?: An Exploratory Analysis of Evolving
Systems. In AOSD ’12. ACM, New York, NY, USA, 167-178.

J.G. March and H.A. Simon. 1958. Organizations. Wiley. https://books.google.
com.br/books?id=fxIHAAAAMAA]

R Martin. 2002. Agile Principles, Patterns, and Practices. Prentice Hall, New Jersey.
Robert C. Martin and Micah Martin. 2006. Agile Principles, Patterns, and Practices
in C# (Robert C. Martin). Prentice Hall PTR, Upper Saddle River, NJ, USA.
Complementar Material. 2017. https://ssousaleo.github.io/ICSE2018/. (2017).
Ran Mo, Yuanfang Cai, R. Kazman, and Lu Xiao. 2015. Hotspot Patterns: The
Formal Definition and Automatic Detection of Architecture Smells. In Software
Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference on. 51-60.

N Moha, Y Gueheneuc, L Duchien, and A Le Meur. 2010. DECOR: A Method for
the Specification and Detection of Code and Design Smells. IEEE Transaction on
Software Engineering 36 (2010), 20-36.

[29

[30]

(31]

(32]

@
&

(34

[35

(36]

[37

[39

[40

[41

[42

[43

[44

[45

[46

[47

(48

[49]

[50

[51

[52

[53

(54]

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

Emerson Murphy-Hill and Andrew P Black. 2010. An interactive ambient visu-
alization for code smells. In Proceedings of the 5th international symposium on
Software visualization; Salt Lake City, USA. ACM, 5-14.

W. T. Norman. 1963. Toward an adequate taxonomy of personality attributes:
replicated factors structure in peer nomination personality ratings. Journal of
abnormal and social psychology 66 (June 1963), 574-583.

W Oizumi and A Garcia. 2015. Organic: A Prototype Tool for the Synthesis of
Code Anomalies. (2015). http://wnoizumi.github.io/organic/

W Oizumi, A Garcia, L Sousa, B Cafeo, and Y Zhao. 2016. Code Anomalies
Flock Together: Exploring Code Anomaly Agglomerations for Locating Design
Problems. In The 38th International Conference on Software Engineering; USA.

F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia. 2014. Do They
Really Smell Bad? A Study on Developers’ Perception of Bad Code Smells. In 2014
IEEE International Conference on Software Maintenance and Evolution. 101-110.
https://doi.org/10.1109/ICSME.2014.32

David L. Parnas. 1978. Designing Software for Ease of Extension and Contraction.
In Proceedings of the 3rd International Conference on Software Engineering (ICSE
’78). IEEE Press, Piscataway, NJ, USA, 264-277.

Dewayne E. Perry and Alexander L. Wolf. 1992. Foundations for the Study
of Software Architecture. SIGSOFT Softw. Eng. Notes 17, 4 (Oct. 1992), 40-52.
https://doi.org/10.1145/141874.141884

Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. 2012. Case Study
Research in Software Engineering: Guidelines and Examples. Wiley Publishing.

S Schach, B Jin, D Wright, G Heller, and A Offutt. 2002. Maintainability of the
Linux kernel. Software, IEE Proceedings - 149, 1 (2002), 18-23.

W. R. Shadish, T. D. Cook, and Donald T. Campbell. 2001. Experimental and
Quasi-Experimental Designs for Generalized Causal Inference (2 ed.). Houghton
Mifflin.

Marcelino Campos Oliveira Silva, Marco Tulio Valente, and Ricardo Terra. 2016.
Does Technical Debt Lead to the Rejection of Pull Requests?. In Proceedings of
the 12th Brazilian Symposium on Information Systems (SBSI '16). 248-254.

Dag L. K. Sjeberg, Tore Dyba, Bente C. D. Anda, and Jo E. Hannay. 2008. Building
Theories in Software Engineering. Springer London, London, 312-336. https:
//doi.org/10.1007/978-1-84800-044-5_12

Leonardo Sousa, Roberto Oliveira, Alessandro Garcia, Jaejoon Lee, Tayana Conte,
Willian Oizumi, Rafael de Mello, Adriana Lopes, Natasha Valentim, Edson Oliveira,
and Carlos Lucena. 2017. How Do Software Developers Identify Design Prob-
lems?: A Qualitative Analysis. In Proceedings of 31st Brazilian Symposium on
Software Engineering (SBES’17). 12.

Klaas-Jan Stol and Brian Fitzgerald. 2015. Theory-oriented software engineering.
Science of Computer Programming 101 (2015), 79 — 98. https://doi.org/10.1016/j.
5€ic0.2014.11.010 Towards general theories of software engineering.

Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded Theory in
Software Engineering Research: A Critical Review and Guidelines. In Proceedings
of the 38th International Conference on Software Engineering (ICSE ’16). ACM, New
York, NY, USA, 120-131. https://doi.org/10.1145/2884781.2884833

A. Strauss and .M. Corbin. 1998. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. SAGE Publications.

Antony Tang, Aldeida Aleti, Janet Burge, and Hans van Vliet. 2010. What makes
software design effective? Design Studies 31, 6 (2010), 614 — 640. Special Issue
Studying Professional Software Design.

Richard N. Taylor and Andre van der Hoek. 2007. Software Design and Archi-
tecture The Once and Future Focus of Software Engineering. In 2007 Future of
Software Engineering (FOSE "07). IEEE Computer Society, Washington, DC, USA,
226-243. https://doi.org/10.1109/FOSE.2007.21

A. Trifu and R. Marinescu. 2005. Diagnosing design problems in object oriented
systems. In WCRE05. 10 pp.

Adrian Trifu and Urs Reupke. 2007. Towards Automated Restructuring of Object
Oriented Systems. In CSMR °07. IEEE, Washington, DC, USA, 39-48.

J van Gurp and J Bosch. 2002. Design erosion: problems and causes. Journal of
Systems and Software 61, 2 (2002), 105 - 119.

S. Vidal, E. Guimaraes, W. Oizumi, A. Garcia, A. D. Pace, and C. Marcos. 2016.
Identifying Architectural Problems through Prioritization of Code Smells. In
SBCARS16. 41-50.

Santiago A. Vidal, Hernan Ceferino Vazquez, Jorge Andrés Diaz Pace, Claudia
Marcos, Alessandro F. Garcia, and Willian Nalepa Oizumi. 2015. JSpIRIT: a flexible
tool for the analysis of code smells. In 34th International Conference of the Chilean
Computer Science Society (SCCC). IEEE, Santiago, Chile, 1-6.

S. Wong, Y. Cai, M. Kim, and M. Dalton. 2011. Detecting software modularity
violations. In Software Engineering (ICSE), 2011 33rd International Conference on.
411-420. https://doi.org/10.1145/1985793.1985850

Lu Xiao, Yuanfang Cai, Rick Kazman, Ran Mo, and Qiong Feng. 2016. Identifying
and Quantifying Architectural Debt. In Proceedings of the 38th International
Conference on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 488-
498. https://doi.org/10.1145/2884781.2884822

A Yamashita and L Moonen. 2012. Do code smells reflect important maintain-
ability aspects?. In ICSM12. 306-315.

http://dl.acm.org/citation.cfm?id=1565098.1565107
http://dl.acm.org/citation.cfm?id=1565098.1565107
http://dl.acm.org/citation.cfm?id=2666036.2666045
https://doi.org/10.1109/ICSM.2007.4362679
https://books.google.com.br/books?id=XStmQgAACAAJ
https://doi.org/10.1109/TSE.2007.12
https://doi.org/10.1007/978-3-642-37395-4_9
https://doi.org/10.1109/MS.2012.127
https://doi.org/10.1109/MS.2012.127
https://books.google.com.br/books?id=fx1HAAAAMAAJ
https://books.google.com.br/books?id=fx1HAAAAMAAJ
https://ssousaleo.github.io/ICSE2018/
http://wnoizumi.github.io/organic/
https://doi.org/10.1109/ICSME.2014.32
https://doi.org/10.1145/141874.141884
https://doi.org/10.1007/978-1-84800-044-5_12
https://doi.org/10.1007/978-1-84800-044-5_12
https://doi.org/10.1016/j.scico.2014.11.010
https://doi.org/10.1016/j.scico.2014.11.010
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1109/FOSE.2007.21
https://doi.org/10.1145/1985793.1985850
https://doi.org/10.1145/2884781.2884822

	Abstract
	1 Introduction
	2 Concepts and Motivation
	2.1 Design Problems
	2.2 Design Problems Identification
	2.3 Grounded Theory

	3 Research Design
	3.1 Software Systems and Developers' Selection
	3.2 Experimental Tasks
	3.3 Provided Data
	3.4 Data Collection and Analysis

	4 A theory on how developers identify design problems
	4.1 Identification of Design Problems
	4.2 Design Problem Symptoms
	4.3 Design Problem Diagnosis

	5 Propositions Concerning the Developer
	5.1 Confidence in the Presence of a Design Problem
	5.2 Conscientiousness
	5.3 Incapability of Providing an Alternative

	6 Towards Improving Design Problem Diagnosis
	6.1 Supporting Multiple Symptoms
	6.2 Prioritization of Similar Elements
	6.3 Additional Support for the Developer

	7 Related Work
	8 Threats to Validity
	9 Concluding Remarks
	10 Acknowledgment
	References

