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Abstract Source code terms such as method names and variable types are often dif-
ferent from conceptual words mentioned in a search query. This vocabulary mismatch
problem can make code search inefficient. In this paper, we present Code voCABUlary
(CoCaBU), an approach to resolving the vocabulary mismatch problem when dealing
with free-form code search queries. Our approach leverages common developer ques-
tions and the associated expert answers to augment user queries with the relevant,
but missing, structural code entities in order to improve the performance of matching
relevant code examples within large code repositories. To instantiate this approach, we
build GITSEARCH, a code search engine, on top of GitHub and Stack Overflow Q&A
data. We evaluate GITSEARCH in several dimensions to demonstrate that (1) its code
search results are correct with respect to user-accepted answers; (2) the results are
qualitatively better than those of existing Internet-scale code search engines; (3) our
engine is competitive against web search engines, such as Google, in helping users com-
plete solve programming tasks; and (4) GITSEARCH provides code examples that are
acceptable or interesting to the community as answers for Stack Overflow questions.

Keywords Code search - GitHub - Free-form search - Query augmentation -
StackOverflow - Vocabulary mismatch

1 Introduction

Code search is an important activity in software development since developers are
regularly searching [40| for code examples dealing with diverse programming concepts,
APIs, and specific platform peculiarities. Such examples can indeed help them practice
programming against a library and platform, or they can immediately be used for
inspiration in software development tasks. Because contemporary programmers often
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implement most of program elements (e.g., classes and methods) based on existing
programs already written by other programmers [33], an effective code search engine
is a critical factor for programming productivity.

Open source project hosting platforms, such as GitHub, SourceForge, and BitBucket
now offer an opportunity for students, researchers and developers to access real-world
software projects for improving their work. It is, however, challenging to locate relevant
source code due to the enormous size of existing code repositories. For instance, as of
August 2015, GitHub is hosting more than 25 millions private and public code repos-
itorie To help developers search for source code, several Internet-scale code search
engines [16], such as OpenHub [2] and Codota [3]| have been proposed. The advantage of
these engines is that users can express their queries in a list of keywords (i.e., free-form
queries) rather than specific program elements such as API classes and methods.

Unfortunately, these Internet-scale code search engines have an accuracy issue since
they treat source code as natural language documents. Source code, however, is writ-
ten in a programming language while query terms are typically expressed in natural
language. As a result, searching source code with query keywords in natural language
often leads to irrelevant and low quality search results unless the keywords exactly
correspond to program elements. According to Hoffmann et al. [23], however, around
64% of programmer web queries for code are merely descriptive but do not contain
actual names of APIs, packages, types, etc.

As in any search engine, the terms in a code search query must be mapped with
an index built from the code. Unfortunately, the construction of such an index as well
as the mapping process are challenging since “no single word can be chosen to de-
scribe a programming concept in the best way” |15]. This is known in the literature as
the vocabulary mismatch problem: user search queries frequently mismatch a major-
ity of the relevant documents [15,20,/45,46]. This problem occurs in various software
engineering research work such as retrieving regulatory codes in product requirement
specifications |12], identifying bug files based on bug reports |37], and searching code
examples [20-22].

The vocabulary mismatch problem is further exacerbated in code search engines
where the source code may be poorly documented or may use non explicit names for
variables and method names [26]. To work around the translation issue between the
query terms and the relevant code, one can leverage a developer community. Actually,
developers often resort to web-based resources such as blogs, tutorial pages and Q&A
sites. Stack Overflow is one of such leading discussion platforms, which has gained
popularity among software developers. In Stack Overflow, an answer to a question
is typically short texts accompanied by code snippets that demonstrate a solution
to a given development task or the usage of a particular functionality in a library
or framework. Stack Overflow provides social mechanisms to assess and improve the
quality of posts that leads implicitly to high quality source code snippets.

While code snippets found in Q&A sites certainly accelerate the software develop-
ment process, they fail to explore the potential of large code repositories. Typically,
those code snippets are manually crafted by developers rather than being actual ex-
amples from source code repositories. Thus, snippets often omit context information
(e.g., variable types and initialization values) that might be necessary to understand
interactions with other relevant components. On the other hand, actual examples in
source code repositories can provide different views on how a single functionality can

1 https://github.com/about/press (verified 14.08.2015)
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be implemented by different APIs. Source code repositories also contain concrete code
that demonstrates the interaction between various modules and APIs of interest. Be-
sides, usually, in Q&A sites, an acceptable answer only exists when the question, or a
very similar one, has been asked before. Otherwise, the questioner must wait for other
experienced developers to provide answers.

Our work focuses on building an approach to automatically expanding developer
code search queries. Specifically, we aim at translating free-form queries to augment
them with relevant program elements. To augment a user query, we consider first finding
similar (in terms of natural language words) queries for which we have some sketched
answers. Then we can collect from these answers some important code keywords. Fi-
nally, such code keywords are simply used to enrich the user’s initial free-form terms.
This query expansion is effective in retrieving relevant code search results even when
the user has not provided in his query terms essential information such as API names.

Contributions We propose a novel approach to augmenting user queries in a
free-form code search scenario. This approach aims at improving the quality of code ex-
amples returned by Internet-scale code search engines by building a Code voCABUlary
(CoCaBU). The originality of CoCABU is that it addresses the vocabulary mismatch
problem, by expanding/enriching/re-targeting a user’s free-form query, building on
similar questions in Q&A sites so that a code search engine can find highly relevant
code in source code repositories.

Overall, this paper makes the following contributions:

— CoCaABvuU approach to the vocabulary mismatch problem: We propose a
technique for finding relevant code with free-form query terms that describe pro-
gramming tasks, with no a-priori knowledge on the API keywords to search for.
In this regard, we differ from several state-of-the-art techniques, which perform by
searching relevant usage examples of APIs that the user can already list as relevant
for his task [10,25,(31,[35].

— GITSEARCH free-form search engine for GitHub: We instantiate the CoCaBu
approach based on indices of Java files built from GitHub and Q& A posts from Stack
Overflow to find the most relevant source code examples for developer queries.

— Empirical user evaluation: We present the evaluation results implying that GiT-
SEARCH accurately extends user queries to produce correct (i.e., relevant) results.
Comparison with popular code search engines further shows that GITSEARCH is
more effective in returning acceptable code search results. In addition, Comparison
against web search engines indicates that GITSEARCH is a competitive alternative.
Finally, via a live study, we show that users on Q&A sites may find GITSEARCH’S
real code examples acceptable as answers to developer questions.

The remainder of this paper is organized as follows. Section [2| motivates our work
further, listing some limitations in the state-of-the-art and introducing the key ideas
behind our approach. Section [3| then overviews the CoCABuU approach. We provide
evaluation results in Section [4] and discuss related work in Section [5] Finally, Section [¢]
concludes the paper.

2 Motivation

The literature contains a large body of approaches that attempt to solve the vocabu-
lary mismatch problem. They either 1) use a controlled vocabulary [27| maintained by
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File:RecyclerTest.java Projectt OHA-Android-2.2_r1.1
80 // Read in dictionary of words
81 mWords = new ArrayList<String>(98568); // count of words in words file
82 StringBuilder sb = new StringBuilder();
83 try {
84 Log.v(TAG, "Loading dictionary of words");
85 FileInputStream words = context.openFileInput("words");
102 Log.e(TAG, "can't open words file at /data/data/com.android.mms/files/words");
103 return;
104 }
105
106 // Read in list of recipients
107 mRecipients = new ArrayList<String>();
108 try {
109 Log.v(TAG, "Loading recipients");
110 FileInputStream recipients = context.openFileInput("recipients");
133 int wordsInMessage = mRandom.nextInt(9) + 1; // up to 10 words in the message
134 StringBuilder msg = new StringBuilder();
135 for (int i = 0; i < wordsInMessaqge; i++) {
136 msg.append(mWords.get(mRandom.nextInt(mWordCount)) + " ");
137 }

Fig. 1: Top result provided by OpenHub for the free-form code search query “ Gener-
ating random words in Java?’

experts in specific and restricted domains; or 2) automatically derive a thesaurus |14],
e.g., word co-occurrence statistics in an exhaustive corpus; or 3) interactively expand
user queries [39], e.g., by recommending other terms from previous query logs; or 4)
automatically expand queries [9] by adding derived words from the terms included in
the original query, e.g., add the integer word in a query with int; or 5) rewrite the
query automatically [17]. Most of these approaches are not suitable in the settings of
a code search engine, since the domain is not restricted, the corpus is not finite and
query logs are not always available.

Furthermore in practice, implementing a code search engine has its own additional
tasks: (1) relevant data is hidden in the deep web and unlinked; (2) the variety of con-
cepts in programming languages, APIs, platforms or development environment chal-
lenges indexing; (3) the vocabulary mismatch problem complicates query processing;
and (4) granularity of search output (e.g., code snippets, files, or applications) is also
challenging to determine and satisfy.

Among the above tasks, query processing is one of the key components since search
engine must match the query terms with relevant keywords from the index. The index-
ing step itself can improve speed and performance in finding relevant documents (source
code files in our case) corresponding to a given search query. It often uses the salient
keywords in a document. In code search, however, such keywords may not include API
names since a single programming concept can be translated and implemented by sev-
eral different classes and methods. This mismatch may degrade the quality of code
search results.

2.1 Limitations of the state-of-the-art

Online code search engines such as OpenHub |2| and Codota |3] perform basic string
matching between user free-form queries and the code (which is then strictly consid-
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24 public class RandomString {

25

26 private static final char[] symbols = new char[36];
27 private static final Random random = new Random();
28

29 static {

37 {

38 char[] buf = new char[length];

39 for (int idx = O; idx < length; ++idx)

40 buflidx] = symbols[random.nextInt(symbols.length)];
41 return new String(buf);

42 }

Fig. 2: Top result provided by a CoCaBu-based search engine (see Section
for the same query used in Figure This code snippet was found in class
org.neo4j.vagrant.RandomString of simpsonjulian/neophyte project from GitHub.

ered as a text document, with no distinction between code and documentation). This
however produces very low-quality results since programming language terms do not
always match natural language words .

Figure [1] shows an example of OpenHub’s search results for the query “Generating
random words in J ava?’ This top result from the search engine is not relevant: the
returned snippet is for a program that randomly selects a word from an array of words
rather than generating random words. This inaccurate search result occurs because the
words used in the query are not appropriate for direct match with source code terms;
“random string in Java’ is the correct terminology that would have matched a more
relevant program. Following results from the search engine were found irrelevant as
well. The described example shows the limitation of the current practice in face of the
vocabulary mismatch problem.

Our goal is to resolve this vocabulary mismatch problem in order to allow code
search engines to return highly relevant code snippets for user free-form queries. Indeed,
if we can appropriately transform words used in a search query to keywords found in
source code, the search result would be more accurate as shown in Figure 2} this is
an actual search result of our approach described in Section The produced code
snippet, extracted from real world code, is practically identical to the manually crafted
accepted answer for the question in the Q&A post.

Note that state-of-the-art approaches in the literature, such as Muse @ and
MAPO , focus on finding usage examples of API methods whose names must be
explicitly indicated in the query. Thus, they may not be suitable for development tasks
where users do not know the source code keywords of the relevant APIs. In particular,
novice programmers may fail to get relevant code usage examples without knowing
exactly necessary class or method names.

2 This is a real question asked by a user in this post: http://stackoverflow.com/questions/
4951997 /generating-random-words-in- java
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Other techniques such as Sourcerer [4] have proposed infrastructures to collect and
model open source code data that users can query programmatically (e.g., SQL query
statements). The Portfolio [34] search engine returns output relevant functions and
their usage scenarios. However, these approaches also simply match query terms with
function names in the code base.

In summary, because of the vocabulary mismatch problem, current state-of-the-art
approaches to code search fail to support entirely free-form and complex queries such
as the ones developers are asking to other experienced developers on Q&A sites (cf.
query in Figure [1).

2.2 Key Intuition

Q&A posts contain a wealth of information that can be automatically leveraged by
a code search engine. A typical Q&A post is a developer question accompanied with
answers provided by experienced developers:

— In Q&A sites, developer questions, which are also often rewritten to make them
explicit and limit the opportunities for duplicate questions, are good summaries of
typical developer query terms.

— Code snippets embedded in experienced developer answers are a good starting
point to systematically list relevant source code information related to developer
question.

Thus, by leveraging developer questions from Q&A sites, and the associated code
snippets, we can document concept mappings, i.e., the mappings between human con-
cepts, which are expressed in questions, and program elements, which can be identified
in code snippets. Once a large corpus of such mappings becomes available, the vo-
cabulary mismatch problem can be alleviated. Indeed, any developer query, written in
natural language, can be translated into a program query that explicitly makes refer-
ences to specific program elements such as method and class names. This new query
can then be directly matched against any source code file.

3 Our Approach

CoCaABU is about retrieving most relevant source code snippets to answer a free-
form query given by a user. To resolve the vocabulary mismatch problem illustrated
in Section our approach leverages the intuition described in Section Figure
provides an overview of our approach.

The search process begins with a free-form query from a user, i.e., a sentence written
in a natural language:

(a) — For a given query, CoCABU first searches for relevant posts in Q&A fo-
rums. The role of the Search Proxy is then to forward developer free-form queries to
web search engines that can collect and rank entries in Q&A with the most relevant
documents for the query.

(b) — CoCABU then generates an augmented query based on the information in the
relevant posts. To that end, it mainly leverages code snippets in the previously identified
posts. Since these snippets are approved by developers as acceptable code examples
from the posted question, COCABU can consider them translations of human concepts
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Snippet Code
Index Index
Relevant . Augmented Search
SQeSergzl Posts t Query Results
o Q
N2 O
22000 Sy
Search Code Query Code Search
Proxy Generator Engine
(@) (b) (c)

Fig. 3: Overview of CoCaBuU.

into program elements. CoOCABU’s Code Query Generator then creates another query
which includes not only the initial user query terms, but also program elements, such
as method and class names, from the extracted snippets. To accelerate this step in the
search process, COCABU builds upfront a snippet index for Q&A posts.

(c) — Once the augmented query is constructed, CoCABU searches source code
files for code locations that match the query terms. For this step, we can crawl a large
number of public code repositories and build upfront a code index for program elements
in source code. It then leverages the code index to produce search results for a given
augmented query. This search result can be presented to a user at different granularity
level (e.g., relevant source code file, or code snippet).

The remainder of this section details the design of CoCABU components (Sec-
tions — and discusses an implementation case for GitHub and Stack Overflow
(Section, Before presenting these design and implementation details, we overview a
cornerstone aspect element of our approach: the definition and extraction of structural
code entities for indexing (Section [3.1).

3.1 Extraction of Structural Code Entities

To efficiently search source code in repositories for relevant code locations that match
information from Q&A posts, CoCaBU makes indices of structural code entities in
code snippets and source code files. This section describes the structural entities and
how to extract them from snippets and source code.

Previous studies on code search and recommendation systems have already pro-
posed to take advantage of structural code information (e.g., method identifiers and
class types) to improve query results. Indeed, if provided by user query, this informa-
tion enables to map source code based on specific program elements. We use similar
structural entities to those leveraged in many of previous work [5}6,[11,/28]. Table
enumerates structural code entities that the CoCABU collects when parsing snippets
from Q&A posts and source code files from code repositories.

Wrapping code snippets: While source code from public repositories is mostly
compilable, code snippets from Q& A posts are inherently incomplete since they only
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URL url = new URL(urlToRssFeed);

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser parser = factory.newSAXParser();

XMLReader xmlreader = parser.getXMLReader();

RssHandler theRSSHandler = new RssHandler();
xmlreader.setContentHandler (theRSSHandler);

InputSource is = new InputSource(url.openStream());
xmlreader.parse(is);

return theRSSHandler.getFeed();

(a) Snippet before recovering name qualification.

URL url = new URL(urlToRssFeed);

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser parser = SAXParserFactory.newSAXParser();
XMLReader xmlreader = SAXParser.getXMLReader();

RssHandler theRSSHandler = new RssHandler();
XMLReader.setContentHandler(theRSSHandler);

InputSource is = new InputSource(URL.openStream());
XMLReader.parse(is);

return RssHandler.getFeed();

(b) Snippet after recovering name qualification.
Fig. 4: Recovery of qualification information.

Table 1: Structural Code Entities.

Field | Description
import | Name of import declarations
super | Direct superclass and implemented interfaces
class | Name of used classes
method declaration | Name of method declarations
nq_method invocation | Non-qualified method invocations
pq_method invocation | Partially qualified method invocations
instance | Class instance creations
literal | String Literals

include the necessary statements to convey expert responder explanations on a ques-
tion. Although few code snippets may contain a complete class declaration, in most
cases a code snippet consists of a block of code statements. Snippet authors further-
more frequently use ellipses (i.e., “...”) before and after code blocks. Thus, CoCaBuU
removes ellipses and wraps code snippets by using a custom dummy class and method
templates to make it able to parse by standard Java parsers.

Qualifying non-qualified names: In addition to wrapping snippets, our ap-
proach reasons about qualified names in code snippets. Enclosing class names of meth-
ods in snippets are often ambiguous |13] (i.e., method name qualification). For example,
Subramanian et al. [42] found that there are unqualified method name getId() more
than 27,000 times in their oracle containing 1.6 million types (i.e., classes and method-
/field signatures) whereas partially qualified name Node.getId() can be identified
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only few times. Thus, recovering unqualified names can improve the accuracy of code
search.

To recover qualified names of methods, COCABU transforms unqualified names to
partially qualified names using structural information collected during AST traversal.
Specifically, it converts variable names on which methods are called through their
respective classes. Figure [ illustrates this processing step with an example of code
snippet before and after the method qualification.

Text processing: In addition to structural entities, our approach collects tex-
tual information as well. By treating source code as text, the approach conducts pre-
processing such as tokenization (e.g., splitting camel case), stop word remova [32],
and stemming.

Indexing: With the collected set of information, COCABU can build an index of
text terms as well as structural code entities found in the source code. To create an
index, we build our approach on top of the Lucen Lucene stores data as an index,
each consisting of a set of fields, where each field value represents a basic code element
for search in our case. Fields are populated with the structural and textual information,
produced by the above process, along with the index specific metadata. Further details
on this process are provided in Section

3.2 Search Proxy

The search proxy takes a free-form query as an input and returns a set of relevant
posts collected from developer Q&A sites as an output. The goal of this component is
to collect sufficient data so that the search engine can later find out how
natural language concepts can be translated into program elements. Indeed,
code snippets in answers of Q&A posts can provide potential translation rules from
concepts written in natural languages to program elements such as API methods or
classes. As discussed in Section [2] such translation rules facilitate the subsequent code
search process by alleviating the vocabulary mismatch problem that exists between
user queries and source code elements.

Relying on general purpose engines such as Google Web Search, Bing, and Yahoo
Search, CoOCABU can search several different forums and rank the search results ac-
cording to their relevancy to the query. Thus, in practice, once a user submits a code
search query, the search proxy forwards it to a general-purpose web search engine to
obtain related questions in the web. Since these search engines are specialized for text
search, we assume that they are better than other built-in search engines in Q&A fo-
rums. Web search results are then filtered by the search proxy to eliminate URLs not
related to Q&A posts. For example, if we want to consider only Stack Overflow posts,
the search proxy would try to match the following pattern to collect relevant posts:

http://stackoverflow.com/questions/<ID>/<TITLE>

The ranking of relevant posts is directly preserved from the sorting order proposed
by the general-purpose search engine. If we consider for example the question “Gener-

3 Lucene’s (version 4) English default stop word set.
4 http://lucene.apache.org
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ating random words in Java?” described in Section [2] the search proxy supported by
Google Web Search returns the relevant post as listed in Table

Table 2: List of Q&A posts relevant to ‘Generating random words in Java?’

Q&A site Post title Post ID
Stack Overflow Generating random words of a certain length in java? 27429181
Stack Overflow Random word from array list 20358980
dummies.com How to Generate Words Randomly in Java -
java2notice.com How to create random string with random characters? -
coderanch.com Random string generation 374794

3.3 Code Query Generator

The Code Query Generator creates a code search query that augments and structures
the free-form query taken by the search proxy (Section |3.2]). This augmented query is
a list of program elements, such as class and method names (e.g., Math.random), as
well as natural language terms which can be used to match documentation.

To generate the augmented query, CoCABU must extract structural code entities
from code snippets embedded in the answers to the questions in the relevant posts
returned by the search proxy (Figure[5(b)). The code query generator component only
considers accepted answers, i.e., answers approved by the Q&A site community.

The augmented query produced by the code query generator is illustrated in Fig-
ure c) based on the Lucene search engine query format. The reader can observe
the following from the illustrated example query whose field semantics are previously
described in Table [1}

— terms, excluding stop words, in the user free-form query (i.e., Figure a)) are kept,
after stemming, in the augmented query (e.g., code:gener).

— structural code entities collected from Q&A snippets (i.e., Figure b)) are men-
tioned with their type (e.g., non-qualified /partially qualified method invocation, or
class) in the augmented query (e.g., pq_method_invocation:Random.nextInt).

To accelerate code query generation, COCABU builds an index of posts. Typically,
Q&A forums provide archives of their posts. These posts are often formatted by a
structural language such as XML. For example, in Stack Overflow posts, code snip-
pets are enclosed in <code> ...</code>. As shown in Figure [f] our approach takes
pre-downloaded posts from a Q&A site and extracts metadata (post 1D, question ti-
tle) and code snippets for each post. Each code snippet is then analyzed to retrieve
the structural code entities. This phase presents challenges that will be addressed in
Section [3.11

Building an index upfront reduces the query generation time when the target post
is already indexed. For new posts collected, the component follows the process shown
in Figure [f] to insert it into the index.

5 In this illustrative example, we excluded the actual post (http://stackoverflow.com/
questions/4951997/generating-random-words-in-java) where this question is asked. To
eliminate bias, in all experiments described in Section [4, in which we selected a question
of a Q&A site as a subject, we removed the corresponding posts from the list of relevant posts
to be used for augmenting the query.
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Fig. 5: Illustrative input, intermediate results, and output of a CoCaBuU-based code

search engine.
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Fig. 6: Creating an index for metadata and code snippets of Q& A posts.

3.4 Code Search Engine

The code search engine takes an augmented query from the code query generator and
provides a list of search results to the user who issued the original query. The search

results are of two granularity levels:

— In case the query is augmented, granularity is further controlled since the structural
code entities matched within a source file and the search result can focus on showing
only the excerpt with code lines where a match occurred.

— When the query has not been augmented (i.e., the search proxy did not find any
Q&A post link within the top ten web search results set), the search engine returns

for each result a whole file.
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Source Files
~—— €] Code
— @ | Analyzer
Source Code
Repository Code

Index

Fig. 7: Creating an index for source code in code repositories up front.

To efficiently provide answers for augmented queries, the code search engine builds
an index of source code files found in repositories (cf. Figure . The matching then
becomes straightforward as the structural entities in the augmented queries as well as
the NLP terms are directly search for using the index which will list the most relevant
files.

Since the snippet index and the code index (shown in Figure @ and |7} respectively)
store indices in the same format, full-text search can be effective to obtain search re-
sults. Source code files are then the documents while structural code entities represents
the search terms.

Once search results are retrieved, the code search engine computes rankings of the
source code files based on a scoring function that measures the similarity between
the matched files and query terms. The current implementation of CoCABU uses the
scoring function implemented in the Lucene library. This function combines the Boolean
Model (BM) and the Vector Space Model (VSM) to determine the relevancy of a
document given for a user query@ BM is used for reducing the amount of documents
that need to be scored by using Boolean logic in the query specification. Each document
is represented as a vector d = (w1, w2, ..., wn) where w; corresponds to the weight of
a term occurring in that document. To compute these weights we use the TF-IDF
weighting scheme implemented in Lucene. With these weights, VSM computes the
similarity between the documents by using the cosine similarity measur

Since displaying the entire content of a source code file is often ineffective for users
to understand code examples, the code search engine shows the files after summarizing
the content and highlighting lines of code relevant to a given query |32|. To summarize
and highlight search results, CoCABU uses a query-dependent approach that displays
segments of code based on the query terms occurring in the source file. Specifically,
the component displays a set of adjacent lines of code containing the matching query
keyword. Finally, we highlight query words occurring in the summarized file to ease
their identification.

3.5 The GITSEARCH Code Search Engine

This section describes an example instantiation of the CoCABU approach. We build
GITSEARCH, a code search engine on top of GitHub and Stack Overflow to explore
the large amounts of source code and Q&A posts. In the remainder of this section we
detail the implementation choices that were made in GITSEARCH.

6 https://goo.gl/MqETZP (last accessed 12.07.2015)
7 https://goo.gl/VPvxnX (last accessed 12.07.2015)
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Table 3: Statistics of collected projects from GitHub.

Feature Value
Number of projects 7,601
Number of files 1,705,677
Number of duplicate files 182,043
LOCs > 297 M

Table 4: Descriptive statistics of the snippet index and code index built from Stack
Overflow posts and GitHub projects, respectively.

Feature | Code Index Snippet Index
from GitHub from Stack Overflow

# of Documents 1,310,954 230,416
pq_method invocation 5,243,472 75,079
method _declaration 3,463,861 50,900
class 2,031,608 120,468
nq_method invocation 1,994,667 82,253
literals 1,526,440 82,253
instance 887,861 40,131
super 296,654 8,329

To build GITSEARCH, we selected Stack Overflow as the Q&A site where to re-
trieve relevant developer-approved code snippets. For the search proxy, our implemen-
tation directly leverages Google web searc}ﬁ User queries are sent to Google Search
for retrieving all relevant Q&A posts (i.e., text similarity matching). Note that it is
possible for other implementations to use other web search engines including built-in
search services of Q&A sites.

We used a dump of Stack Overflow posts between July 2008 and March 2015
containing 1,363,002 Java and Android tagged questions to build the snippet index.
Java was selected in this instantiation since it is one of the most popular programming
languages and represents a large developer base [8]. In this work, we made use of the
posts.xml documents that have an actual post (i.e., question and answer pair) and
other associated metadata such as tags, creation date, question ID, view count of the
post, and score of answers. In addition, we extracted snippets from answers that were
accepted and had a positive score to ensure high quality of code examples. To account
for updates in posts, we leveraged the StackExchange REST AP]E with which we could
extract metadata and snippets. Users of COCABU may collect and use posts from other
multiple Q&A forums to extend the opportunity to search for more code snippets.

For the code index, we considered GitHub projects that were forked at least once, to
avoid toy and/or inactive projects. Since we focused on Java and Android, we collected
GitHub projects in which its major language is “Java” and then removed all non-Java
files from the projects when building the code index. As a result, Table [3] shows the
statistics of GitHub projects we collected in this work.

Table [4] provides a summary of the resulting indices (i.e., the snippet and code
indices shown in Figures @ and [7)) built from Stack Overflow posts and GitHub open
source code repositories.

8 www.google.com

9 https://api.stackexchange.com/
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4 Evaluation

This section describes our evaluation design and reports its results. Our evaluation
consists of four studies: a manual verification, online survey, controlled user study, and
live study, focusing on answering the following research questions, respectively:

— RQ1: Can GITSEARCH effectively produce relevant code examples for developer
queries?

— RQ2: Does GITSEARCH outperform existing code search engines with more accept-
able results?

— RQ3: Is GITSEARCH competitive against general search engine for helping to solve
programming tasks?

— RQ4: Can Stack Overflow users accept the search results of GITSEARCH as an-
swers?

4.1 RQ1: Verification against a community ground truth

First, we investigate the relevance of the results yielded by GITSEARCH. To evaluate
the relevance, we consider comparing the output code examples against the ground
truth of code snippets in answers accepted by the Stack Overflow community. This
type of verification, which is commonly used in the literature [4]|29], is essential since
developers can be quickly deterred by search engine producing many irrelevant results.

Study Design: We collect well-known developer questions from Stack Overflow
posts based on two requirements: (i) a question in a post must relate to “Java” and (ii)
its answer must include code snippets. We select the top 10 posts with the highest ‘view
count’ values (for their questions) to ensure that the study focuses on representative
and popular developer tasks. Table []lists the queries used in this study. Note that this
process does not bias in favor of our approach. Indeed, for fair comparison, the actual
post where the question is asked is filtered out from the relevant posts, returned by
the search proxy that GITSEARCH uses to augment user queries.

Table 5: Free-form queries used for RQ1 and RQ2.

ID Query Terms

Q1 How to add an image to a JPanel?

Q2 How to generate a random alpha-numeric string?
Q3 How to save the activity state in Android?

Q4 How do I invoke a Java method when given the method name as a string?
Q5 Remove HTML tags from a String

Q6 How to get the path of a running JAR file?

Q7 Getting a File’s MD5 Checksum in Java

Q8 Loading a properties file from Java package

Q9 How can I play sound in Java?

Q10 What is the best way to SF'TP a file from a server?

We evaluate the top 5 code search examples by GITSEARCH. To assess the relevancy
of a GITSEARCH code example, two authors of this paper compared it against the
accepted answer on Stack Overflow for the associated query. We consider that the
example is indeed relevant when it includes the necessary API methods and classes
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Fig. 8: Relevance of top 5 GITSEARCH results for popular queries listed in Table

required in the Stack Overflow answer’s code snippet. To increase confidence, both
authors must unanimously agree on the relevance of a GITSEARCH result.

Results: Figure [§]shows that GITSEARCH results are largely relevant for the user
query, indirectly demonstrating the accuracy of the query expansion approach.

We also evaluate the effectiveness of GITSEARCH using the Precision@Fk metric:

QI

o 1 |relevant; |
Precision@Qk = — _ 1
TP W

where relevant; i, represents the relevant code search results for query i in the top
k returned results, and @ is a set of queries. Precision@k takes an average on all
queries whose relevant answers could be found by inspecting the top & (k = 1, 2, 5) of
the returned code examples. An effective code search engine should allow developers
to find the relevant code examples by examining fewer returned results. Thus, the
higher Precision@k, the better code search performance. We found that GITSEARCH
achieves 90%, 90% and 88% scores for Precision@1, Precision@2 and Precision@5,
respectively. We could not define recall@k because it is impossible to compile the
“complete” set of all possible correct answers for a code search query.

In addition, we applied the same queries in Table [f] to other code search engines:
OpenHub and Codota . These code search engines were selected since they are
state-of-the-art Internet-scale code search engines and currently available online. On
the other hand, we could not compare GITSEARCH against other recent state-of-the-art
approaches from the literature because of the reasons listed in Table [6]

The Precision@k values of those two search engines are lower than that of GiT-
SEARCH. OpenHub resulted in 60%, 60%, and 38% scores for Precision@1, Precision@2,
and Precision@b5, respectively. For Codota, these values are 10%, 10%, and 12%, re-
spectively.
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Table 6: Unavailability of code search tools and techniques.

Portfolio [34] is not available (anymore) and supports only C++.

Exemplar |33] is no longer available.

Sourcerer |4|’s team did not reply about the use of their SAS code search engine.
Muse [35] 1s not relevant: - focuses on API - cannot be queried for snippets.
SNIFF |10] engine could not work (issue with the Eclipse plugin).

Keivanloo et al’s [|2_5]’ tool is no longer available (lead developer left the project).
CodeHow @ is not available - only a demo video online.
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Fig. 9: Comparison between GITSEARCH, Codota and OpenHub.

4.2 RQ2: Comparison against other code search engines

We conduct a user study where we ask developers to check the effectiveness of different
code search engines, to assess the usefulness of GITSEARCH from the perspective of
practitioners.

Study Design: For this study, we recruited participants by posting online survey
invitations in software developer communities (750 GitHub, Mozilla, and Eclipse de-
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velopers, and developers in a Korean company). In all survey invitations, we clearly
stated that only developers/students who have Java experience are invited. To facil-
itate the study, we built a web-based survey tool displaying the code search results
from OpenHub, Codota, and GITSEARCH in three anonymized columns. To avoid bias
of people toying with the tool, we only consider the entries of participants who entirely
completed the study using the queries in Table

Participants can select code examples based on their preference. They can select
multiple search results (up to three). We also clearly ask them to select no result if
none is satisfying them. In addition to anonymization, the survey tool excludes the
source Stack Overflow posts listed in Table [5| from the training data of GITSEARCH
to avoid any bias.

Results: At the end of the study, we had 47 participants who tried the tool (at least
one response). Some of them did not complete the study. Among them, 14 participants
completed this study.

Figure Eka) shows the number of selected search results for each code search engine.
Participants selected more code examples returned by GITSEARCH than other engines
for all queries. In particular, the number of selected results was more than double
compared to others except for Query Q3.

In addition, we computed the distribution of rankings for the selected search results.
If multiple search results of an engine were selected by a user, we counted the highest
ranked result only. As shown in Figure Ekb), the median value of GITSEARCH is equal
to 1 while the values of other engines are 2.

Discussion: Although we could not compare against the most recent CodeHow
tool [29], note that its authors reported that it produces about 20% more relevant
results than OpenHuh'"| while Figure Eka) indicates that GITSEARCH provides 50%
more relevant result than OpenHub.

4.3 RQ3: Comparison against general search engines

We conducted a comparative study between GITSEARCH and general web search en-
gines (Google and Baidu). Since many developers rely on general search engines to
find solutions to programming tasks, we evaluate the competitiveness of GITSEARCH
in comparison to such engines.

Study Design: For this study, we recruited 20 graduate students from three uni-
versities (Pierre and Marie Curie University in France, University of Luxembourg, and
Zhejiang University in China). No author of this paper took part in the study. Each
student was asked to find code examples for solving the following two programming
tasks from a previous code search study [29]:

— Task 1: Sending emails - write a Java program to read a list of email addresses
from a text file, and then send an email with an attachment file to all the email
addresses.

— Task 2: Image format conversion - write a Java program to read an image in JPEG
format, rotate it 180, and then convert it to PNG format.

10 Ohloh is now OpenHub.

1 Despite different queries, our query sets are similar to those of [29] and representatives of

common developer search queries.
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Table 7: Performance of GITSEARCH vs. general search engine.

Percentage of successful queries’ MRR

GITSEARCH Google/Baidu GIiTSEARCH | Google/Baidu
Task 1 93.76% 90.00% 0.83 0.96
Task 2 75.00% 100.00% 0.89 0.84

t We compute the ratio of queries having produced satisfying results vs. the total
number of queries entered per task.

Participants to the controlled study have been asked to solve one task with GIT-
SEARCH and the other task with Google or Baidu. We specify ourselves the combina-
tions (task, tool) for every participant in order to ensure an even distribution. Each
participant fills a form indicating the different free-form queries used for code search
as well as the rank of the returned results that he/she found relevant for the task. We
specified that only top 10 results returned by the tools could be examined.

We assess the efficiency of the engines through the Mean Reciprocal Rank (MRR),
a statistical metric used to evaluate a process that produces a list of possible responses
to a query |18]. The reciprocal rank of a query is the multiplicative inverse of the rank
of the first relevant answer. The mean reciprocal rank is the average of the reciprocal
ranks of results of a set of queries . MRR is computed by using the formula:

Q]

1 1
MRR = — 2
Q| z:zl rank; (2)

where rank; represents the rank of the first search results that users find satisfying
for query 7. MRR values range between 0 and 1, and the higher MRR value the better
the performance.

Results: Participants to the study entered 77 (37 for Task 1 and 40 for Task 2)
distinct free-form queries.

Table m shows the percentage of relevant search results that participants in the
study marked for the different search engines. GITSEARCH provides more satisfying
results for Task 1 while users found more satisfying results with Google/Baidu for Task
2. In contrast, for Task 2, GITSEARCH outperforms Google/Baidu in terms of MRR,
returning in higher ranks the satisfying results. On the other hand, GITSEARCH has a
lower MRR for Task 1 results. These results suggest that GITSEARCH is competitive
against web search engines. We do not, however, take into account the effort required in

web search to follow link redirections and parse web pages to find potentially incomplete
code snippets. GITSEARCH on the other hand provides immediately real world working
code examples.

Discussion: We investigated the 77 queries entered by participants in this study.
We figured out an interesting pattern: queries entered on web search engines appeared
to be more “complete” and more redundant across participants than queries entered on
GITSEARCH. Participants to the study admitted that they followed auto-completion
suggestions by web search engines.

We perform a cross-validation experiment by randomly sampling 10 queries entered
by participants on web search engines and use them on GITSEARCH. Similarly, we
randomly sample 10 queries entered by participants on GITSEARCH and use them on
Google search engine. We record improved MRR values of 0.94 and 0.90 with Task 1
and Task 2 respectively for GITSEARCH. In contrast, MRR values for the web search
engine has decreased to 0.72 and 0.65 with Task 1 and Task 2 respectively.
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These results suggest a future work on GITSEARCH where we must include log-
ging and feedback mechanisms to record successful queries and propose them to auto-
complete queries of future requesters.

4.4 RQ4: Live study into the wild

To assess the usefulness of code search engines in Q&A forums, we posted code search
results as answers to Stack Overflow questions. This study investigates how develop-
ers interpret working code examples when they have programming issues. Although
GITSEARCH is not designed to directly answer developers’ questions, it might help
them find a starting point of a programming task. In particular, GITSEARCH can be
a good first responder in the context of Stack Overflow since there are many unan-
swered questions (not only “no answer selected by questioners” but also literally “no
answer”) in Stack Overflow.

Study Design: We monitored questions with Java tags and selected 25 out of
them based on the following criteria:

— Questions about Java programming.

“How-To” questions such as “List all files in resources directory in java project”.
No tool usage questions such as “How to create a project in Eclipse?”

No conceptual questions such as “What is the difference between A or B” and “why
this class is so slow?”.

— Questions not answered by anyone yet.

For each question, we extracted its title and put it into GITSEARCH to obtain code
search results. We took the topmost result among the search results and posted it as
an answer. The answer consists of 1) the most relevant code fragments selected by
GITSEARCH and 2) hyperlink for the original source code where GITSEARCH found the
fragments from. The latter is important since developers can figure out more context
about the working code examples. In addition, we repeated the same procedure with
OpenHub to compare its effectiveness with our technique. We do not post Codota’s
results on Stack Overflow to avoid “spamming” requesters, as we could see ourselves
that its topmost result was irrelevant for most questions.

Results: GITSEARCH could answer more questions than OpenHub as shown in
Table [8] (“Resp” of “#Ans”). GITSEARCH responded 25 questions by using its search
results while OpenHub did only for 18 out of 25 questions. For the other seven questions,
OpenHub could not produce any search result for reasons that are unknown to us
(perhaps, due to an issue of the engine’s query matching implementation). In addition,
at the end of the study, Stack Overflow users eventually answered only 8 out of 25
questions. Note that three answers were accepted by the questioners among the 25
answers by GITSEARCH. None of 18 answers by OpenHub were accepted. For human
answers, questioners accepted four out of 8 answers.

Our technique received more up and downvotes than OpenHub while human an-
swers took more upvotes and less downvotes. Six out of 25 answers by GITSEARCH
received at least one upvote while other five of them took at least one downvote (six
upvotes and 10 downvotes in total). Four of the six were the most-upvoted answers
in their posts. OpenHub’s answers had only two upvotes and three downvotes, respec-
tively. Human answers took 9 upvotes (from four different answers) and 1 downvote
(note that a single answer took 4 upvotes) where three answers were most-voted. In
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Table 8: Results of our live study between GITSEARCH, OpenHub, and Human. “Resp”
in “#Ans” is the number of questions answered by each technique while “Acc” is the
number of answers accepted by the questioners. “Up and down” votes are the number of
votes given by Stack Overflow users. “Pos.” and “Neg. Comm.” comments are positive
and negative comments made by the users for each answer. “Most voted?” represents
the number of answers that received the most number of upvotes. |z| indicates the
number of answers with at least one up/down vote and positive/negative comment. X
is the sum of occurrences while the numbers in parentheses are average (i.e., X'/|z|).

#Ans Upvotes | Downvotes |Pos. Comm.|Neg. Comm.| Most
Resp|Accl||z|| X ||z b)) |z| b)) || X voted?
GiTSEARCH| 25 | 3 | 6 |6 (0.24)| 5 [10 (0.40)| 7 | 7 (0.28) | 3 | 5 (0.20) |4 (0.16)

OpenHub| 18 | 0 |2 (2 (0.11)] 2|3 (0.17) |2 |2 (0.11) | 2| 3 (17) | ©

Human| 8 | 4 [4[9(1.13)| 1|1 (0.13)| 3|6 (0.75) | 2 | 2 (0.25) |3 (0.38)

Stack Overflow, votes imply that those users would encourage (or discourage) the
answer. While its up and downvotes were almost tied with human results, it is obvious
that GITSEARCH had more interest from users than OpenHub.

In addition, GITSEARCH initiated user discussions more frequently. We counted
comments made by Stack Overflow users and examined whether each comment is
positive and negative. Our answers took 7 positive and 5 negative comments while
OpenHub’s results were followed by two and three, respectively. GITSEARCH does not
explicitly outperform human answers (6 positive and 2 negative) but note that there
were 17 of out 25 questions unanswered yet by human users. For the 17 questions,
our technique answered them and received one upvotes and three downvotes as well as
three positive and two negative comments.

Discussion: The results of this study implies that GITSEARCH can be a better first
responder than OpenHub. As shown in Table [8] many questions in Stack Overflow
remain unanswered for several days. Our technique can provide a starting point of
questions even if they are not complete answers as many users would follow up the
answers by giving their votes and adding comments. Once users are interested in a
question, there might be more probability to discuss solutions for the question.

In addition, code search results by GITSEARCH can be selected by Stack Overflow
users as accepted answers, which implies that the results are highly relevant and ap-
propriate to the questions. For three out of 25 questions, the questioners accepted our
results even though the answers have only code excerpt from real source code without
any additional explanation. Note that a questioner can select only one answer as the
accepted one. This may indicate that questioners would take advantage of code search
results to deal with their problems shown in the question. Furthermore, this can imply
that code search engines would be an automatic answer generator for some questions
in Stack Overflow if their accuracy is improved.

4.5 Threats to Validity

The design of CoCABU and the implementation of GITSEARCH raises a number of
threats to validity that we have tried to mitigate. We list them below:

Internal validity: the user study was performed with a limited total number
of 34 (=14+20) participants compared to the large number of participants used by
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Muse [35] authors for their API example search engine. However, among free-form
code search works, some do not perform user studies (e.g., |[4]), while others use fewer
participants than us (e.g., CodeHow (20), Portfolio (19), SNIFF (undisclosed)). We
have attempted to reach representativity by inviting professional developers as well as
graduate students.

In addition, throughout the live study (Section , we tried to take feedback from
Stack Overflow overflow users in the loop of problem solving. This implies that an
additional number of participants were involved in our evaluation.

External validity: we used only English as a query language, focused on Java-
related questions, and explored only Stack Overflow and GitHub in our implementa-
tion. This threat should be limited by the fact that (1) English is a popular language
in the programming community, (2) Java is one the most popular programming lan-
guages, and furthermore, (3) GitHub and Stack Overflow are the largest code hosting
site and Q&A forum respectively.

Construct validity: we only focus on queries with no exact name of APIs. This
threat, however, is limited since for new tasks, developers often do not know the name
of the relevant APIs [23].

5 Related Work

There are several research work that relates to our approach. We list their main con-
tributions in each category.

5.1 API usage examples search

Recently, there have been been a number of code search techniques [6}/19,25,[31,[35,/43],
focusing on locating API usage examples. Searching for specific API usages is a subset
of code search activities. Compared to general code search, developers tend to be aware
of the exact (or similar) name of a target API, which facilitates search. Thus, these
techniques focus on creating an index of API call sites only.

Moreno et al. [35] proposed Muse, an approach to mining and ranking code exam-
ples that show how to use a given method. Muse and CoCaBuU differ on three main
aspects. First, CoOCABU supports free-form queries, while Muse takes as input an API
method signature. Second, Muse provides a code snippet for a specific method. Co-
CaBuU, on the other hand, is not attached to a single API, and shows a set if APIs
used to solve the task at hand. Lastly, Muse requires fully compilable client projects in
order to apply static slicing. In contrast, CoCABU is able to handle incomplete source
code.

Chatterjee et al. presented SNIFF |10, a technique that combines API documen-
tation with publicly available Java code. SNIFF annotates each method call statement
with its corresponding API documentation. This allows free-form English queries about
the task at hand, which relaxes the need to know the appropriate API beforehand. Al-
though SNIFF returns usage code examples as well, it requires a fully compilable code
unit and the accompanying API documentation as well as external libraries. Addi-
tionally, the before-mentioned code intersection is not suitable for Internet-scale code
search, because it has a complexity of O(n2), where n is the number of hits.
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5.2 Source code search

There have been several approaches to code search, which are relevant to CoCaABuU.
CodeHow, Sourcerer and Portfolio constitute the state-of-the-art of such approaches in
the literature. CodeHow [29] leverages code documentation to recognize the potential
APIs a query refers to and expands the query with these APIs to improve the accuracy
of the search results. In contrast, CoCABU assumes that 1) documentation is not
always available, and 2) leveraging independent API documentation may create noise
in a query whose answer requires a specific set of related APIs. Furthermore, CoCaABU
augments queries based on information of code terms in source code snippets.

Sourcerer [4] is an infrastructure that facilitates the collection and analysis of
large scale open-source repositories. On top of that infrastructure, Sourcerer provides
programmatic access to all the artifacts stored and managed through a set of ser-
vices. Sourcerer crawls Java projects from several types of code repositories such open
code repositories (e.g. Sourceforge and Apache) and web sites. Similar to CoCaBu,
Sourcerer leverage structural code information to perform fine-grained code search.
However, the construction of the search index requires a complete compilation unit
(i.e., all dependencies must be resolved). Moreover, we exploit high-quality code snip-
pets from Stack Overflow to improve the quality of code search results.

Portfolio |34] retrieves and visualizes relevant functions and their usage scenarios to
highlight a chain of function invocations. To realizes their objective, Portfolio computes
the textual similarity between a user query and the function signatures. Subsequently,
a function call graph is employed to locate functions which are relevant to a task,
even if those function signatures do not include any keywords of the query. Compared
to Portfolio, CoCABU focuses on usage examples that answer complex queries by
leveraging Stack Overflow code snippets.

OpenHub Code Search |2| (formerly ohloh.net) is a free web-based code search
engine. Although OpenHub has indices of more than 21 billion lines of code collected
from open source projects in the Internet, it directly matches query terms with terms
in source files. This is a common limitation of several Internet-scale search engines,
including Codota [3|. Contrary to them, we resolve the vocabulary mismatch problem
by augmenting user queries.

5.3 Miscellaneous

Code recommendation: Recommendation engines assist developers in their use of
complex libraries or frameworks by presenting them with reusable code fragments in
other locations of their code, with documentation, or with pointers to blogs and Q&A
sites. Strathcona [24] is an approach in which a query is generated from a user’s source
code and matched with an example repository that uses a target library of framework.
They thus require prior knowledge on the relevant library.

Prompter [38], on the contrary, does not provide code snippets but matches the
current code context with relevant Stack Overflow posts. The technique relies on
different features to capture the similarity between Stack Overflow discussions and
the current code context. In contrast, our approach does not recommend discussions
but use Stack Overflow’s code snippets to search for similar usage examples in a large
code repository.
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Stack Overflow: Several studies have explored Stack Overflow questions and
answers [1}71/30,[36]. However, to the best of our knowledge, its data has never been
leveraged to improve code search engine results.

6 Conclusion

We have presented CoCABU, a novel approach to addressing the vocabulary mismatch
problem in code search. COCABU augments free-form queries by leveraging code snip-
pets in answers of related posts from Q&A sites. The key insight from our work is that
it is possible to map human concepts expressed in queries (which are often written with
similar terms by developers) with structural code entities (which are the most relevant
terms for matching source code with high relevance). We implemented a code search
engine, GITSEARCH, following the COCABU approach for the GitHub super-repository
of projects. To that end, we leveraged Stack Overflow posts to find the best mappings
between developer query terms and structural code entities. Our evaluation with user
studies demonstrated that GITSEARCH outperforms Internet-scale code search engines
and is competitive against established web search engines for resolving programming
tasks. We also found with a live study that users in Q&A forums show interest in the
real-world code examples yielded by GITSEARCH.

Availability

We make all our data available: source code of GitSearch, search indices, user study
results. See https://github.com/serval-snt-uni-1lu/cocabul A prototype implemen-
tation of cocabu-based search engine, GITSEARCH, is live at http://www.cocabu.com.
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