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ABSTRACT

An important task for recommender system is to generate explana-
tions according to a user’s preferences. Most of the current methods
for explainable recommendations use structured sentences to pro-
vide descriptions along with the recommendations they produce.
However, those methods have neglected the review-oriented way
of writing a text, even though it is known that these reviews have
a strong influence over user’s decision.

In this paper, we propose a method for the automatic generation
of natural language explanations, for predicting how a user would
write about an item, based on user ratings from different items’ fea-
tures. We design a character-level recurrent neural network (RNN)
model, which generates an item’s review explanations using long-
short term memories (LSTM). The model generates text reviews
given a combination of the review and ratings score that express
opinions about different factors or aspects of an item. Our net-
work is trained on a sub-sample from the large real-world dataset
BeerAdvocate. Our empirical evaluation using natural language
processing metrics shows the generated text’s quality is close to
a real user written review, identifying negation, misspellings, and
domain specific vocabulary.
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1 INTRODUCTION

One of the key challenges for a recommender system is to pre-
dict the probability that a target user likes a given item, taking
into account the user’s history and their similarity to other users.
However, making predictions in this way does not explain why the
item matches with the users’ preferences. Recent works have in-
troduced the concept of explainable recommender systems, which
try to generate explanations according to users’ preferences rather
than only predicting a numerical rating for an item. In this work
we develop an approach using character-level neural networks to
generate readable explanations.

Current explainable recommendations propose to mine user re-
views to generate explanations. In [27] they propose an explicit
factor model, where they first extracts aspects and user opinions
by phrase-level sentiment analysis on user generated reviews, then
generate both recommendations and disrecommendations according
to the specific product features and personalised to the user’s inter-
ests and the hidden features learned. On the other hand, in [8] they
propose a tripartite graph to enrich the user-item binary relation to
a user-item-aspect ternary relation. In each of the these work, they
propose to extract aspects from reviews to generate explainable
recommendations, but they do not consider user opinions and influ-
ences from social relations as a source of explanation. In [23] they
propose the social collaborative viewpoint regression model, which
detects viewpoints and uses social relations as a latent variable
model. This model is represented as tuples of a concept, topic, and a
sentiment label from both user reviews and trusted social relations.

Explanations generated in this manner lack natural language
expressions, since the sentences are generated in a modular way.
However, it is well established by [25] that a good explanation must
be clear, and interesting to the target user, since this information
has a significant influence on the user’s decision. On-line user-
generated reviews present clear and interesting information about
items, since they describe personal usage experience from users.
Furthermore, this source plays an important role on the user side,
since he/she tend to trust the opinion of other users [5, 13, 22].
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Recurrent neural networks (RNNs) have recently demonstrated
to show very good performance in natural language generation,
since the generating function can be automatically learned from
massive text corpora. Due RNNs suffers from gradient vanishing
problem, long-short term memory (LSTM) has been applied to the
text generation field, and leads to significant improvements on this
issue. Another advantage of using LSTM is the ability to keep in
memory the long-range dependencies among words and characters.
The combination of RNNs with LSTM have shown promising re-
sults on such different text datasets as Shakespeare poem, scientific
papers, and linux source code generation [12].

Most natural languages text generation approaches focus on the
raw textual content and often neglect their contextual information.
This context, such as the specific location, time and sentiment are
important factors in the creation of user generated on-line reviews
and should not be neglected. Recent research on recommender
systems demonstrated improvements achieved by including context
[1]. This paper incorporates this information to enrich the generated
sentences with particular contextual features.

In this paper, we propose a technique for the automatic gen-
eration of explanations, based on generative text reviews given a
vector of ratings that express opinions about different factors of an
item. Our method is based on a character-level LSTM trained on a
sub-sample from the large real-world dataset BeerAdvocate. It is
divided into three modules: a context encoder, LSTM decoder, and
the review generation. The ratings are normalised, then concate-
nated to the characters to feed the LSTM cells, which can generate
characters that are contextualised by the normalised ratings. The
generative review module has a weighted generation based on rat-
ings vector as input. The weights learns soft alignments between
generated characters and sentiment, where we adaptively compute
encoder-side context vectors used to predict the next characters.

Automatic generated review-oriented explanations, are useful
for companies and users, who can benefit from helpfulness aspect
of the explanations to assess an item recommendation. [4] shows
character-level generation has advantages over other techniques
such as unsupervised learning of grammar and punctuation, and
can be more efficient than word-level generation, since it allows
for the prediction and generation of new words and strings.

This paper presents as contributions:

o A context-aware review generation based on rating scores
o Generate readable reviews in a human perspective.

2 PROBLEM FORMULATION

In this section, we provide the basic definition and preliminaries to
generate natural language explanations. Given a set of items I, and
target user u:

e Anitem is a product (beer) represented by i € I.

e Explicit feedback is an action represented by the matrix
X, :UXI — R, whereu € Uisauser,i € Iis an item,
and r € R represents a rating that the user u have been
given to item i. Considering the each r rating is a vector
corresponding to a set of five features appearance, aroma,
palate, taste, and overall.

e Reviews are another explicit feedback in text format repre-
sented by the matrix X, : U X I — T, where u € U is a user,
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i € Iisanitem, and t € T represents a review that the user
u have been given to item i.

2.1 Problem Statement

Ratings are attributes to express opinions from a user about a certain
item, however it is difficult to compose a judgement of a product
based only on the rating score. Therefore, user-generated reviews
are richer, since the user can give explanations according to different
features and aspects of a specific item. There are many approaches
to generating explanations for different types of recommender
systems, including collaborative filtering [9] and case-based ap-
proaches [18]. Explanations showed to increase the effectiveness
of the recommendation and the user’s satisfaction [26] in various
evaluations methods. Current state of the art in explainable recom-
mender systems does not offer human-oriented explanations. To
address this particular issue, our model is defined to target the prob-
lem of generating explanations in a review-oriented and natural
language basis.

We formulate the item explanation generation problem as fol-
lows. Given input ratings vector r; = (rq,... ,r|ri|), we aim to
generate item explanation e; = (wi, ..., w);,|), maximizing the
conditional probability p(e|r). Note, rating r; is the average values
from the evaluation of target item i in a fixed numerical represen-
tation, while the review ¢; is considered a character sequence of
variable length. We set |r| as 5 in our task, as we have 5 features
with different ratings values. The model learns to compute the
likelihood of generated reviews given a set of input ratings. This
conditional probability p(e|r) is represented in the Eq. 1.

4

plelr) = [ pwslw < s5,7) (1)
s=1
where w <s = (wg, ... ,ws_1)

3 RELATED WORKS

Neural networks have started to attract attention in recommender
systems community only recently. In [14] they study recurrent
neural networks in different architectures for a collaborative rec-
ommender system with experiments showing good performance.
Despite good performance, this example of work suffers from the
same problem as the other works that it is not explainable.

The work of [2] is among the first where a recommender sys-
tem is utilising the review text as side information to improve
the performance of recommender system and the solutions are
rooted in recurrent neural networks. Our work differs from this
work as we are in fact trying to generate explanations in the form
of a user-generated review to improve a user’s understanding of
recommended items.

What we would like to achieve however is an alignment between
variables or features which lead to a recommendation of one item or
another and a descriptive text where rules about the text composi-
tion are learned from the existing reviews. Therefore, we would like
to achieve similar alignment as others have achieved in different
domains such as text generation for images as in [11].

Learning the rules for generating the reviews can be accom-
plished by representing input as sentences, words or characters. In
[19] and [24] they propose a tree-based neural network model for
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natural-language inference based on words and their context. We
study character-level explanation generation to further improve
the state of the art. The work of [12] provides the first insights into
why the LSTM variant of neural networks has such good perfor-
mance. Similar technique were used on [4], where they build on
the previous work to generate product reviews in the restaurant
domain.

Encoding rating vectors in the training phase allows the system
to calculate the probability of the next character based on the given
rating. In previous work, [6] showed an efficient method for gener-
ation of next the word in the sequence when we add an attention
mechanism, showing that this idea improves performance for long
sequences.

Character-level generation has shown improvement over word-
level on the text generation problem using RNNs [4]. This is be-
cause, on the character-level, the neural network can autonomously
learn grammatical and punctuation rules. In [4] they mention the
character-level RNN provides slightly worse performance than the
equivalent word-based model, however it shows improvements in
terms of computational cost, which grows with the size of the input
and output dictionaries, an in contrast, it allows for the prediction
and generation of new words and strings.

In [15] they focus on character-level review generation and clas-
sification where the ratings are used as auxiliary information. Our
work differs from both aforementioned approaches for character-
level text generation in utilising richer data (ratings are used to
explicit quality of a product in different features, identified as a
source of user’s preference) and providing a first attempt to gen-
erate explanations with character level networks to reflect user
differences and preferences.

4 GENERATED EXPLANATIONS

4.1 Recurrent Neural Network

Recurrent neural networks (RNNs) are feed-forward networks with
temporal verifying activation, processing and learning sequential
data. While in the training step, given an input vector X; in time ¢
and the cell state of previous time step ¢ — 1, where the input weight
matrix is represented by Wy and state weight metrices refers to
W}, the RNN s then pass the cell state h; to the next time step and
propose a prediction value Y; via a softmax layer which consists of
a non-linear softmax function, as shown in Eq. 2.

hy = tanh(X; © Wy + hy—1 O Wy)
Y; = softmax(h; © W + b)

According to Eq. 2, if we continue feeding the same values to
X, the input weight matrix Wy and state weight matrix W}, will be
changed to suit the input value. RNN’s suffer a vanishing gradient
problem, that depending on the activation functions, sequential
information gets lost over time. To handle this issue, [10] introduced
Long short term memory (LSTM) cells, and was later improved by
[7] using forget gates to discard some information.

LSTM is an improved version of RNNs controlled by sequential
connection of gates: forget gate, input gate and output gate. When
receiving an input data x; at time ¢t and the cell state C;—; from
previous time step ¢ — 1, those values will be concatenated together
for the next computation. It will feed the forget gate initially, where

@
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Figure 1: Generative Concatenative Network

it decides which information has to be discarded. There, f; repre-
sents the results via the forget gate in time t, Wy and by refers to
the weight matrix and bias, respectively. The next step for LSTM
cells is to determine which information should be stored in cell
state through the input gate. At the update step, i; means the input
gate results, W; and b; are its parameters. The cell creates a candi-
date state C; through a tanh layer. Using the candidate state with
the previous cell state, forget gate results f; and input gate results
iy to update the current state C;. Finally, the data goes to output
gate, where it uses sigmoidal function layer to determine which
part of the cell state is the output, then it multiplies tanh with the
current cell state C; to give as result the character with the highest
probability.

X = [x¢,Ct-1]

fi ZO'(XQWf+bf)

ir :O'(XQVVI"I-bi)

C; = tanh(X © W, + b.) (3)

Cy :f,OCt_l +i[@C;

ot = O'(X@Wo +b0)

H; = 0y © tanh(Cy)

4.2 Generative Concatenative Network(GCN)

Generative RNN models can be applied in many fields as most data
can be represented as a sequence, especially for text generation.
State weights benefits generative RNNs to generate coherent text,
where one character can be fed into the network at a time step and
these affect the state weights. This project builds on the generative
concatenative network presented by [15], which uses an LSTM RNN
character-based generation model, adding auxiliary information
according to ratings for different feature preferences.

In [12] they define a character-level language model given a
sequence of characters as input to an LSTM neural network, cal-
culate the probability of the next character in the sequence with a
softmax function at each time step s then generate the character
as output. Given a set of C characters we encode all characters with
C — dimensional 1-of-C vectors {x;},t = 1,...,T, and feed them
to the recurrent network to obtain a sequence of H — dimensional
hidden vectors as the last layer of the network {Hg},t =1,...,T.
To obtain predictions for the next character in the sequence, the
output goes to the top layer of a sigmoid activation function to
a sequence of vectors 7, where § = Wy.HtL and Wy, is a [K X D]
parameter matrix. The output vectors are interpreted as holding
the log probability of the next character in the sequence and the
objective is to minimize the average cross-entropy loss over all
targets.

In [15] they propose to generate text, conditioned on an auxiliary
input x44x, where the input x4« is concatenated with the character
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Figure 2: Generative Explanations

(t)

representation X ha

> asitis seen in Fig. 1. They train their network

t) ]

based on the concatenated information input x” () = [xi har Xaux
At training time, x4y is a feature of the training set, while dur-
ing the generation step, they define some x,,x, concatenating it
with each character sampled from (). They replicate the auxiliary
information x4y at each input to allow the model to focus on
learning the complex interactions between the auxiliary input and
the language, rather than just memorising the input. However, they
consider only the overall rating or temperature for a certain item,
neglecting the user’s preference in different aspects.

4.3 Context Encoder

Similar to [12] and [15], our model is based on LSTM RNNs network
to generate reviews. Our model adds a set of auxiliary information
to each character in the context encoder module.

In our model, the context encoder module encodes the input
character using one-hot encoding and concatenates a set of ratings
to it, before feeding it into network as we can see in Fig. 2. In our
experiments, we generate a dictionary for all the characters in the
corpus to record their positions, which will be used as the encoding
process in the training step and for decoding in the generating
step. For each character in the reviews, a one-hot vector will be
generated by using its position in that dictionary. Then the one-hot
vector will be concatenated with a set of auxiliary informations
which relies on the review, as shown in Eq. 4. Meanwhile, in terms
of the auxiliary information, our model uses a set of numeric values
of the users’ ratings, which are rescaled to the range [0, 1].

Xt, = [One}mt(xchar);xauxiliary] (4)

4.4 Generative Explanation

As mentioned previously, [15] proposed a GCN model concatenat-
ing characters with some auxiliary information, i.e. overall rating
or temperature, being able to generate some remarkable samples.
It uses one piece of auxiliary information to enrich the probability
to define the next character.

We propose an improvement to the concatenation process, where
we consider a vector of auxiliary data, i.e a set of the ratings scores
for different features of items, instead of only one dimension of
auxiliary information. During the review generation our model
generates distinct pieces of text tuned to the distribution of applied
ratings.
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A non-linear so ftmax layer is used in our model to compute the
probability for all characters. During the generation process the
model concatenates a prime text, which is a start symbol in each
review, concatenated with a series of ratings scores to the model.
Then the model passes its output to a softmax layer, as shown in
5, where H; is the output of a LSTM cell, W and b are the weight
and bias of softmax layer, respectively.

Y; = softmax(H; © W + b) (5)

This procedure is applied recursively and a group of characters
is generated until we find the pre-defined end symbol.

By using LSTM cells for character-level explainable review gen-
eration, and merging with the vector of ratings, we allow the model
to learn grammar and punctuation, being more efficient than word-
level models [4], since our model can predict and generate new
words and strings. Therefore, our model generates explanations for
recommender systems with a review-oriented perspective, adding
improvements on the quality of the explanation text presented to
to the user in the form of a review.

5 EXPERIMENTS

5.1 Parameters Definition

Empirical experiments used a customised LSTM RNN library writ-
ten in Python and using Tensorflow. There are 2 hidden layers with
1024 LSTM cells per layer. During training, a wrapper mechanism
is used to prevent over-fitting. Feed-in data was split by 100 batches
with batch size of 128 and each batch has a sequence length of 280.

5.2 Dataset

We tested our model in a sub-sample from the large real-world
dataset: BeerAdvocate. The original dataset consists of approxi-
mately 1.5 million reviews retrieved from 1998 to 2011. Each review
includes rating ! in terms of five categories: appearance, aroma,
palate, taste, and overall impression. Reviews include item and
user ids, followed by each of these five ratings, and a plain text
review. The summarised statistical information from the extracted
sub-sample is shown on the Table 1.

BeerAdvocate
# Users 2,815
# Beers 1,372

# Reviews | 4,999
Table 1: Dataset Statistics

5.3 Data Preparation

The BeerAdvocate dataset contains several beer categories, and we
selected a sub-sample dataset based on just 5 categories: "ameri-
can ipa" ,'russian imperial stout" ,'american porter",'american am-
ber/red ale" and "fruit/vegetable beer". Considering some reviews
are probably too short or even empty that would cause problems
with training, we filter our sub-sample to include only reviews

with at least 50 characters. For our experiments we concentrate on

!Original ratings were normalized with values between 0-1.
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Figure 3: Readability metrics with epoch. The metrics are detailed in Sec. 5.4.

generating reviews conditioned on the size of reviews of each beer
categories, we select 4k reviews of each category for our training
datasets.

We first generate a dictionary for all characters, i.e. punctuation,
numbers and letters, then transform each character into a one-
hot vector using that dictionary. We train the network based on a
sequential approach, where each review is fed into a sequence, to do
so it is essential to remind the network of the start and end position
of each of the reviews. We do this by appending start and end
symbols, i.e. < #str# > and < #end# >, to each reviews for both the
training and generation modules. In order to generate explanations
for different ratings, we concatenate the input characters with the
ratings of the review the character belongs to. In addition, we
normalise the scale of the ratings to [0, 1].

5.4 Evaluation Metrics

Current methods to explain recommendations do not have a natural
language way to present the information to the user. Our proposed
method explains the recommendation to a target user in a style of a
user-generated review. To measure the quality of the presented text,
we used a suite of natural language readability metrics : Automated
Readability index (ARI) [16], Flesch reading ease (FRE) [20], Flesch-
Kincaid grade level (FGL) [21], Gunning-Fog index (GFI) [20], simple
measure of gobbledygook (SMOG) [17], Coleman Liau index (CLI)
[21], LIX [3], and RIX[21]. Flesch reading ease score is considered
the oldest method to calculate the readability through the analysis
of number of words and sentence length. An updated version of
this metric is the Flesch-Kincaid grade level. The Gunning Fog
index is commonly used to confirm a text can be read easily by the
intended audience. The SMOG score is a improvement of Gunning
Fog index, showing better accuracy overall. Automated Readability
index relies on a relation of the number of characters per word. The
Lix score gauges the word length by the percentage of long words.

5.5 Results

The initial test of our explanation generation is about readability.
We use 8 readability evaluation metrics as mentioned above for
both generated and reference reviews.

We first select 10 reviews from our sample dataset as the ref-
erence reviews. By using the same users and items from these 10
reviews, as well as considering the different learning curve of the
model in different epochs, we generated 10 reviews per epoch from
the model. We then apply the readability metrics to the generated
and reference reviews to evaluate the text. The readability results
are shown in Fig. 3, where it is observed the generated reviews
reach the same level of readability as the user reviews on all metrics
after 20 epochs.

1.2

1.0

0.9 H

0.8 1

score(gen) /score(ref)

0.6 = T T
ARI FRE FGL GFI SMOG CLI LIX RIX

readability features

Figure 4: Extent of readability for different metrics. The
readability of generated text is shown relative the mean
score for the user-generated reviews.



DLRS’17, August 2017, Como, Italy

As Fig. 3 shows, the readability evaluation metrics illustrate the
capacity of the model to generate reviews which are close to the
user’s style of writing. We use the readability scores of the gen-
erated reviews from the final epochs and normalise to the scores
obtained from the reference reviews to demonstrate the relative
readability in Figure 4. This emphasises the neural network gener-
ated reviews are close in style to the human written reviews. This
is determined by a broad range of readability metrics which are
sensitive to different qualities of the text. It is important for our
explanations that they are legible, easy to understand, and appear
to be written in a recognisable style.

We established our model can generate natural language text
which reaches the overall readability level of the user-generated
reviews. We now investigate the different kinds of explanations
that can be generated when we modify the auxiliary values at the
generation stage. We are using the ratings from 5 aspects of the
beers as auxiliary values, and they represent each users preferences
and general ratings opinion about a target beer. We choose a user-
item pair (U, I), and compute the average ratings for each feature for
both user Ryser = 3; Ruser,i/|Ruser| and item Ry,,. The precise
contribution of user/item ratings is controlled with a weighting
parameter «, and we demonstrate three different text samples to
compare through Eq. 6. As Eq. 6 shows, « controls the auxiliary
values and we then generate reviews based on them. When « is
close to 1, the generated review will be more like a review that
the user will write. With « close to 0, the generated review will be
closer to the general rating of all users for that beer. To investigate
the divergence of generated reviews, we set @ equal to 1, 0.5, 0,
which refers to the opinion of the user on general beers, the review
the user might compose on that beer, and the general reviews of
the beer.

Rauxiliary = @ X Ruser + (1-a) X Rpeer (6)

According to Fig. 5, the first review (¢ = 1) shows the opinion of
the user on general beers, which have a positive sentiment overall.
When we look into the last review (o = 0), the common view of that
beer is in a negative sentiment, represented by negative sentence,
as " wouldn’t recommend it". With & = 0.5 the generated review
displays a relatively neutral attitude towards the beer.

6 CONCLUSIONS

In this paper, we propose a model to automatically generate natural
language explanations for recommender systems.

Our explanations provide easily intelligible and useful reasons
for a user to decide whether to purchase a certain product. This
has important benefits for the field of recommender systems since
these explanations can help a user to make a better decision and
more quickly, as users place a high degree of trust in the reviews
of others.

As our experiments with natural language readability metrics
show, we were able to generate readable English text with specific
characteristics that match user-generated review text.

In the future we will focus on further extensions of the auto-
matic generation of natural language explanations in two ways:
(1) personalised explanations that benefit the user’s preferences,
where the explanation of the product is tailored to the users ratings,
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a=1.0
a: pours a clear amber color with a small white head. the
aroma is a little spicey with some sweetness. the taste is
also a bit more like a beer. there’s a little bit of a sweet
fruitiness to it as well. the mouthfeel is a bit thin for
the style. drinkability is good. i would drink this all
night long, but i wouldn’t try to get more than one.

a=0.5

a: pours a clear amber color with a small white head that
dissipates quickly. smell: a little spice. taste is also a bit like
a belgian wine. there’s a little bit of a banana flavor to it.
it is a little too sweet and a little strange. mouthfeel: thin
and watery. drinkability: i would drink this beer again, but i
wouldn’t try to get my entire offering into a pint glass.
i was pretty surprised this is the beer i was expecting
a bit more.

a=20.0

a: pours a clear amber color with a small white head that
dissipates quickly. smell: a little spice. taste is also a bit like
a belgian wine. there’s a little bit of a banana flavor to it.
it is a little too sweet and a little strange. mouthfeel: thin
and watery. drinkability: i would drink this beer again, but i
wouldn’t try to get my entire offerings. i wouldn’t rec-
ommend it.

Figure 5: Sample generated reviews for ¢ = {1,0.5,0}. The
dissimilar sentences are highlighted in bold.

preferred aspects and expressed sentiments; (2) we will test our
model in larger reviews domains such as hotels and restaurants.
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