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ABSTRACT
We propose monotonic classification with selection of monotonic
features as a defense against evasion attacks on classifiers for mal-
ware detection. The monotonicity property of our classifier ensures
that an adversary will not be able to evade the classifier by adding
more features. We train and test our classifier on over one million
executables collected from VirusTotal. Our secure classifier has 62%
temporal detection rate at a 1% false positive rate. In comparison
with a regular classifier with unrestricted features, the secure mal-
ware classifier results in a drop of approximately 13% in detection
rate. Since this degradation in performance is a result of using a
classifier that cannot be evaded, we interpret this performance hit
as the cost of security in classifying malware.
ACM Reference Format:
Inigo Incer, Michael Theodorides, Sadia Afroz, and David Wagner. 2018.
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1 INTRODUCTION
Malware has been a long-running problem in computer security,
and improvements in malware detection can benefit the field and
society at large. Malware detection has advanced significantly over
the last decade, yet deployed systems often rely heavily on black-
listing known-bad malware and struggle to detect new malware
that has not been previously detected [20].

Recently, researchers have shown that machine learning can be
used to improve detection of malware; for instance, Miller et al.
show that machine learning can achieve better results than com-
mercial antivirus software on their dataset [26]. However, existing
machine learning methods are fragile: it is easy for attackers to
make small changes to their malware to fool the classifier and
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evade detection [34]. In general, many machine learning methods
are known to be susceptible to evasion attacks, and we lack effective
defenses.

In this paper we introduce a new method for hardening malware
classifiers against these attacks, and we show that our method
makes it harder for an attacker to evade detection. Our approach
is based on an understanding of the attacker threat model in this
domain, including what kinds of changes attackers can easily and
economically make to their malware, and the attackers’ goals.

Our goal is to increase the cost to the attacker of fooling the clas-
sifier. To support this, we analyzed the features used for malware
detection, to see which ones can be trivially or cheaply manipulated
by an attacker. We discovered that some features are easy for an at-
tacker to modify, without disrupting the malicious functionality of
the malware, while others may be more expensive to change. Dur-
ing this analysis, we found many features that are easy to change
in one direction, but hard to change in the reverse direction. For in-
stance, it is easy to strip the signature from an application signed by
Microsoft, but difficult for a malware author to add such a signature
to his malware. Attacker goals also exhibit asymmetry. We expect
that attackers will seek to have their malware be misclassified as
benign, as there is less incentive to make benign applications be
misclassified as malware.

Our approach takes advantage of this fundamental asymmetry
in attacker goals and in features, by constructing a monotonic clas-
sifier. A boolean function f ∶ {0, 1}d → {0, 1} is monotonically
increasing if x ≤ x ′ (i.e. xi ≤ x ′i for each i) implies f (x) ≤ f (x ′). If
f represents a malware classifier operating on d features, where
f (x) = 1 indicates a prediction that the sample is malware, then
monotonicity is a powerful security property: it says that an at-
tacker who can only increase the feature values (but not decrease
them) cannot make modifications that fool the classifier into mis-
classifying malware as benign. With this in mind, our approach is
simple: we identify features where this holds, and train a monotonic
classifier. This lets us argue that the classifier is robust against all of
the modifications that our analysis found to be easy for an attacker
to make; to fool the classifier, the attacker must make some other
kind of change to her malware, which will presumably be more
expensive for malware authors. Thus, while not a perfect defense
against evasion, we hope that our approach raises the bar.

The remainder of this paper is structured as follows: in section 2
we give a brief overview of malware detection; we discuss previous
machine learning applications to malware detection in section 3;

https://doi.org/10.1145/3180445.3180449
https://doi.org/10.1145/3180445.3180449


in section 4 we define classification with monotonicity constraints
and explain its usefulness for security; in section 5 we define and
justify our threat model; we present the results of our experiments
in section 6 and conclude the paper in section 7.

2 OVERVIEW OF MALWARE DETECTION
Malware, or malicious software, has been a persistent problem in
computer security during the last few decades [32]. Traditional
malware detection involves maintaining a blacklist of malware and
whitelist of valid software that is used for detection [20]. In particu-
lar, traditional schemes identify malware by computing signatures
on software and its behavior and checking whether the signatures
exist in a database of known malicious signatures. This approach to
malware detection has been effective at detecting known malware;
however, signature-based malware detection is unable to detect
new, unknown malware.

Advances in machine learning techniques, as well as improve-
ments in computing power, have sparked the question of whether
machine learning can be effective at classifying malware. Miller
et al. demonstrated that it can: by applying logistic regression to
features extracted from input executables [25, 26], they are able to
detect 72% of malware at a false positive rate of 0.5%. They also
show that this can be improved to 89% detection, if the machine
learning model can suggest a small number of samples to be evalu-
ated by a human analyst. This achieved a better detection rate than
existing antivirus software, on the dataset they used.

While Miller et al. show that machine learning can be effective
at detecting malware, their scheme makes no attempt to build a
robust strategy that will continue to detect malware even if attack-
ers modify their malware with this defense in mind. Zhong et al.
showed that an attacker with knowledge of the model could modify
her malware to evade detection by changing (on average) just 5
features [34]. In this paper, we build on their work and develop
strategies for hardening the machine learning against attack, so
that attackers cannot easily modify malware samples to prevent
them from being detected by the classifier. We use the same datasets
and features from that work to evaluate our approach.

3 RELATEDWORK
A number of prior works have demonstrated adversarial attacks
and defenses on various machine learning models. Adversarial ro-
bustness can be improved by reducing overfitting [13], using an
ensemble of classifiers for prediction instead of a fixed one [1], us-
ing robust features that are costly for an adversary to change [33],
adding noise to the training data [21], retraining with adversar-
ial examples [22], discarding adversarial examples after detecting
them [12, 14, 24], and reducing dimensionality [5, 18, 30]. Unfor-
tunately, all of these papers evaluate against weak adversarial ex-
amples and fail to protect against strong adversarial attacks [6, 7].
Moreover, the effectiveness of these defenses are only evaluated
for the image recognition task using MNIST or CIFAR dataset.

A few works have examined adversarial attacks on machine
learning in themalware domain. Srndic et al. [29] examined PDFrate,
a deployed machine-learning-based PDF malware detector. They
demonstrated that an attacker can modify PDF malware to evade
detection by adding dummy features to the header of PDF malware.

Their attack can reduce the detection rate of the modified malware
from 100% to 33%. Similarly, Xu et al. [31] showed that genetic
algorithms can be used to automatically create evading PDF mal-
ware. They successfully defeat two malware detectors, PDFrate and
Hidost. Grosse et al. [15] examined Android malware and showed
that a highly accurate deep learning model can be evaded by adding
less than 20 features to the app manifest file. Hu et al. [19] used
a generative adversarial network (GAN) to construct adversarial
malware examples that can evade several ML models including
random forest, logistic regression, SVM, and a voting ensemble of
these classifiers.

Our approach is fundamentally different from all the prior ap-
proaches. Instead of fixing an existing weak classifier, we build a
classifier that is robust against certain kinds of adversarial attacks
by construction. The monotonicity property of our classifier guar-
antees protection from evasion attacks. To achieve this security
guarantee, we focus on features that are hard to change and that
are monotonic. Although some prior work suggested identifying
adversarially robust features [33], our paper is the first to focus on
the monotonicity property of the features.

Monotonic classification has been used to learn ordinal classes
and to improve the interpretability of an ML model [16]. We use
monotonic classification to improve the robustness of a classifier.
Monotonicity can be achieved in classes, features, and training data
[4, 16]. We apply monotonic classification considering only mono-
tonic features, while our training data is non-monotonic. Mono-
tonicity can be achieved in many different ways [16]: by using
monotonic constrain linear and polynomial functions [2, 9, 23],
by reducing monotonic violation after training [27], by penaliz-
ing monotonicity violations during training [3] and by relabeling
samples to be monotonic before training [10, 11]. We use the mono-
tonicity functionality implemented in XGBoost. XGBoost uses a
greedy algorithm to achieve monotonicity.

Ben-David et al. [4] showed that monotonicity reduces the accu-
racy of a classifier, a behavior which we also noticed. We are the
first to use monotonicity in feature selection and as a constraint to
the classifier in order to obtain a security property.

4 SECURE MALWARE CLASSIFICATION
WITH MONOTONIC CONSTRAINTS

Consider a classifier f which operates on vectors x ∈ Rd of d
features x1,x2,⋯,xd . We write x ≤ x ′ if xi ≤ x ′i for each i . A
monotone increasing classifier is one where x ≤ x ′ implies f (x) ≤
f (x ′). Equivalently, if xi ≤ x ′i , we demand

f (x1,x2,⋯,xi ,xi+1,⋯,xd) ≤ f (x1,x2,⋯,x ′i ,xi+1,⋯,xd),
i.e. increasing the value of an argument should only increase the
value of the output, regardless of the value of the other variables.
Figure 1 shows an example of a classification with a single feature in
which a gradient boosting classifier is used to predict the function’s
value. When monotonicity constraints are imposed on the classifier,
the classifier’s output is an increasing function of the feature value.

Monotonicity is desirable in a classifier used for malware de-
tection because attackers can readily change some features used
in malware detection in one direction (e.g. from false to true), but
changing them in other direction (e.g. from true to false) can be
much more difficult. Consider, for instance, the case of software
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Figure 1: Example of a classifier with monotonicity con-
straints.

signing: removing a signature is easy, but an attacker would have
a hard time getting his malware signed by a trusted entity. More
generally, monotonicity in a classifier prevents evasion attacks in
applications in which we can state that the greater the amount of
suspicious activity someone generates, the more likely he should be
to get caught. The malware detection application with monotonic
features is one such application.

Our purpose in this work is to research the relative effectiveness
of monotone classification on a malware dataset, compared to tra-
ditional classification without monotonic constraints. To study this
question, we adopted an off-the-shell classifier for our tasks. XG-
Boost, a tree boosting classifier described in Chen et al. [8], suited
our needs due its support for sparse feature vectors, its speed on
large datasets, and its implementation of monotonicity constraints.

We provide an overview of tree boosting following the descrip-
tion in Hastie et al. [17]. Suppose we have N samples (xi)Ni=1
(xi ∈ Rd) and labels y ∈ {−1, 1}N . We wish to compute an M-
additive function f ∶ Rd → R of the form

ŷi = f (xi) =
M
∑
m=1

βm b(xi ;γm),

where b is a basis function with parameters γm and weights βm .
The classifier is found by minimizing

min
{βm,γm}M

N
∑
i=1

L
⎛
⎝
yi ,

M
∑
m=1

βm b(xi ;γm)
⎞
⎠
, (1)

where L is a loss function. The solution to (1) can be computation-
ally taxing, and a technique called Forward Stagewise Additive
Modeling is used to assuage the computational burden. In this tech-
nique, instead of computing f directly, M + 1 functions fm are
computed iteratively as follows:

(βm ,γm) = argmin
β,γ

N
∑
i=1

L(yi , fm−1(xi) + β b(xi ;γ)) (2)

fm(x) = fm−1(x) + βm b(x ;γm).

In tree boosting, the function b(x ;γ) is a classification tree. Finally,
to solve (2) in the Forward Stagewise Additive Modeling iteration,
XGBoost implements a numerical optimization technique called
gradient boosting.

The enforcement of monotonicity constraints in XGBoost occurs
through a greedy algorithm. This algorithm places an upper and a
lower bound on the predicted values for each tree, and propagates
these bounds to each subtree when a split is made; this is done to
ensure that the branch taken at a node when the value of a feature
is negative is never larger than the value before the split occurs.

5 THREAT MODEL
We think of the problem as a two-player game between the attacker
and defender. The attacker has a malicious executable that would be
detected by the defender’s malware classifier, and seeks to modify
it so it is no longer detected. If there is an easy modification the
attacker can make to render it undetected, she will do so. However,
the attacker’s resources are not unlimited. In particular, our goal is
not to provide a perfect defense, but rather to increase the attacker’s
costs, hopefully sufficiently to make attacks unprofitable.

More formally, we envision that the attacker has a sample x that
is detected as malicious by the classifier, i.e., f (x) = 1. The attacker
seeks to somehow modify x into a variant x ′ that won’t be detected
(i.e., f (x ′) = 0), yet without disrupting the malicious functionality
embedded in x . If there is an easy, inexpensive modification that
achieves this goal, the attacker wins and we consider the classifier
insecure; otherwise, we consider the classifier (adequately) secure.

With this in mind, in this section, we systematically analyze the
set of modifications a resource-bounded attacker might be able to
make. For each modification, we determine whether it would be
easy and inexpensive to apply, and whether it risks disrupting the
malicious functionality of the malware. We consider a modifica-
tion admissible if it is easy to make and doesn’t risk breaking the
malicious payload of the malware sample. Our defense is aimed at
adversaries that only make admissible modifications.

We structure our analysis of which modifications are admissible
by analyzing each feature from Miller et al. [26], which are derived
from information provided by VirusTotal about the binary. We
identify which features can be controlled by an easy change to the
malicious executable. Since all the features are boolean, there are
four cases: (1) the feature cannot be easily changed; (2) the feature
can be easily changed from false to true, but not vice versa; (3)
the feature can be easily changed from true to false, but not vice
versa; (4) the feature can be easily changed to any desired value.
Features of type (1), (2), or (3) can be safely used with our monotonic
classifier. Features of type (4) are not safe to use, and we drop them.
Of the 13 feature categories used by Miller et al. [26], we were
able to keep 8 categories for our monotoinc classifier. Table 1 lists
categories of features that we kept and omitted from our classifier.
The rest of this section describes our analysis in detail.

We assume that the attacker has full knowledge of the classifier
and its parameters. We also allow the attacker to make any number
of admissible modifications. The security property guaranteed by
our scheme is that, if the original sample x is detected by our clas-
sifier as malicious, there is no set of admissible modifications that
will prevent it from being detected. Therefore, to avoid detection,



Feature Category Kept/Omitted Reasoning
Binary Metadata Removed Easy to change metadata in an executable’s header section
Digital Signing Kept Difficult to get malware signed by trusted entity
Heuristic Tools Partially Kept Some heuristic tools can fit our monotonic model
Packer Detection Kept Attacker using a packer has a reason to use a packer.
PE Properties Omitted Easy to change entropies, section hashes, and resources lists
Static Imports Kept Not trivial to remote imported function
Dynamic Imports Kept Not trivial to remote imported function
File Operations Kept Not trivial to eliminate a file access.
Mutex Operations Omitted Mutex names are easy for an attacker to change or remove
Network Operations Omitted IP Addresses can be easily changed
Processes Kept Removing an existing operation may disrupt functionality of malware
Registry Operations Kept Difficult to remove existing set/delete operation
Windows API Calls Omitted Could not fit to monotonic model

Table 1: Summary of feature categories kept from Miller et al. [26]

the attacker must either risk breaking the malicious payload or
incur the cost of making a more substantial modification.

Training set pollution attacks are beyond the scope of this paper:
we assume that the instances in the training set have not been
influenced by the attacker.

5.1 Unsafe Features
In our analysis of possible attacker modifications, we encountered
a few feature categories used in previous classifiers that are easy
for an attacker to modify. These includes features about network
traffic, mutexes, metadata in the executable, andWindows API calls.
The network features captured the IP addresses that are contacted
when the executable runs; attackers can presumably easily change
these IP addresses by using proxies or simply hosting their C&C
infrastructure on a different host. Some malware binaries use mu-
texes to avoid re-infecting the same machine by always grabbing
a specific mutex on first infection. Miller et al. [26] used mutex
names as a feature. However, since mutex names are easy for an
attacker to change or remove completely in most cases, we consider
them not safe to use. Similarly, in most cases it would be easy to
change metadata in the executable’s header section. Finally, Miller
et al. [26] used n-grams from the sequence of Windows APIs called
by the executable; we were unable to fit these within our monotonic
model, and we suspect it would be easy for an attacker to disrupt
these features by inserting extra Windows API calls that have no
effect but that change the n-grams. We did not use any of these
unsafe features in our classifier.

5.2 Imports
VirusTotal lists the library functions statically imported in the data
segment of the binary. Miller et al. [26] create a boolean feature for
each library function encountered in the dataset and set the value
to 0 for a program that does not import the function and to 1 for a
program that does import the library function. VirusTotal also runs
each binary in a sandbox and provides a list of all library functions
that were dynamically loaded at run-time through Windows API
calls or at load-time. Miller et al. [26] create a boolean feature for
each dynamically linked library.

Imports are monotonic features because it is in general not triv-
ial to remove an imported library. Typically a library is imported
because it is used by the malware, so removing this feature would

require the malware author to find another way to access the same
functionality, which is likely possible but might not be trivial. In
contrast, attackers can trivially import additional functions in their
malicious programs without using them or changing the malicious
actions of their programs, i.e., the binary can be modified to include
extra library functions that do not fulfill any purpose besides at-
tempting to evade malware detection. Consequently, we assume
that attackers can add extra unnecessary static or dynamic imports
to their malware, but not remove existing imports.

Moreover, we observe that it is easy for an attacker to swap
a static import for the identical dynamic import; as a result, we
merged the static and dynamic import features used by Miller et al.
into a single import feature for each imported library.

5.3 File Operations
VirusTotal reports all of the filesystem operations performed by
the program when run in the sandbox, including attempts to open,
read, copy, delete, move, and replace files. Miller et al. [26] create a
boolean feature for each pair of file operation and file path encoun-
tered in the training set. Its value is set to 1 if the particular file
operation is attempted on that file path. For example the FileRead-
Feature:c:\windows\Dcache.bin feature would be 1 if the program
attempts to read the Dcache.bin file; otherwise, it will be set to
0. We use features for each of the following file operations: copy,
delete, move (rename), open, read, and write. For copy and move,
we have a separate feature for the source and the target.

These features are monotonic because it is not trivial to eliminate
a file access. If a file is accessed, typically that will be because
it is part of the functionality of the malware. Removing this file
access might disrupt the behavior of the malware: for instance,
ransomware fundamentally requires reading and writing most files
on the disk, so there is no easy way for an attacker to avoid such
operations. It may be possible to find an alternative way to achieve
the attacker’s ends, but we anticipate that it will not be trivial. On
the other hand, it would be easy to add extra file accesses (e.g.,
to read a file and then ignore what was read), so we assume that
attackers can add extra file operations but not remove existing ones.

Miller et al. [26] also use features that count the number of file op-
erations of each type that a program includes, including a count of
the number of files replaced, written, copied, opened, moved, down-
loaded, and deleted. We transform these into monotonic, boolean



features.We create a feature for each power of two (say, 2k ) and each
operation; the feature is set to 1 if the number of such operations is
at least 2k , or 0 if not. For example the FileOpenedCountFeature_32
equals 1 if the program opened at least 32 files. These features are
monotonic as well, since attackers can add extra file operations
(increasing the count) but not remove existing operations (they
cannot decrease the count).

5.4 Packer Detection
Packers are tools used in the creation of malicious programs that
hide the contents of executables. VirusTotal includes reports from
three heuristic packer detection tools that list which packers (if
any) were used to create the binary. Miller et al. [26] introduce a
separate boolean feature for each packer, but we believe that this
is not monotonic: it would be easy for attackers to change which
packer they use to pack their binary, which changes one packer
feature from 1 to 0 and another from 0 to 1. Instead, to model packer
detection as a monotonic feature, we aggregate the results of all
packer reports for a program and include a single feature that is 0
if no packers are detected for a program and 1 if any packer was
detected.

We treat this feature as monotonic, because an attacker that is
not using a packer tool can easily begin using a packer if it will
help avoid detection. However, an attacker that is already using a
packer presumably has a reason to use a packer (e.g., to avoid being
detected by antivirus software); switching to an unpacked binary
would come at a significant cost (e.g., his malware might be easier
for antivirus software to detect).

5.5 Digital Signatures
VirusTotal lists all signers who have digitally signed each binary.
We believe that signatures from trusted signers are valuable for
determining whether a program is malware. For instance, a binary
that is signed by Microsoft or Dell is probably unlikely to be mal-
ware. Therefore, we include a feature for each trusted signer we
encounter in our dataset. The feature is set to 0 for programs that
are signed by that signer and 1 for programs not signed by that
particular signer. It is trivial for attackers to remove an existing
signature from a binary, but presumably infeasible for them to gain
a signature from a trusted signer on their malware. Therefore, we
model these features as monotonic.

To ensure monotonicity, we deviate from Miller et al. [26]’s
approach: they include a boolean feature for every signer seen in
the training set, whereas we limit it to signers who appear to be
trustworthy. It would be easy for attackers to create a new public
key and sign their binary with it, but hard for them to get it signed
by some existing trusted signer, so monotonicity requires that we
limit to trusted signers. We obtain our list of trusted signers by
identifying the signers in our training set who have never signed a
malicious program and have signed at least 100 benign programs.
We then manually inspect each signer in the list of verify that the
signer is a well-known trusted entity.

5.6 Processes
VirusTotal runs each binary in a Cuckoo sandbox that records the
executable path or process name of every process that a binary cre-
ates, injects, or terminates. Miller et al. [26] create a boolean feature
for each executable path or name encountered in the training set
and each operation (create, inject, or terminate); it is set to 1 if the
binary performs that operation on that process path/name.

We consider this feature monotonic: it is easy for an attacker
with sufficient permission to create, inject, or terminate additional
processes, but not easy to remove an existing operation, as that
may disrupt the functionality of the malware.

5.7 Registry
OnWindows, the registry is a system-wide key-value store used by
both the system and applications. VirusTotal lists all registry keys
set and deleted by each program. Since it is common for malware
to both set and delete keys in the registry, Miller et al. [26] include
both a set and deleted feature for each registry key encountered in
our dataset. The feature is set to 1 for programs that set or delete
the key respectively and 0 otherwise.

We treat this feature as monotonic: it is trivial to set or delete
additional registry keys, but may not be easy to remove an exist-
ing set/delete operation, as that operation might be crucial to the
operation of malware (e.g., its persistence).

5.8 Symantec Suspicious Insights
VirusTotal also reports data from Symantec’s Suspicious Insights
program, which computes a reputation score for the binary based
on how often it has been executed on other end-user machines.
We include a single feature for this information. Because gaining
reputation for a program requires installing the program on many
end user machines, we assume it is hard for an attacker to clear
this feature (but it is easy to set it). Therefore, we treat this feature
as monotonic as well.

6 EXPERIMENTS AND RESULTS
We applied our methods to a dataset containing over 700 GB of
binaries and scans carried out by VirusTotal between 2011 and
2014. This dataset has over 1.1 million binaries, 5.7 million scans
(some binaries were scanned multiple times on different dates), and
200,000 features extracted by Miller et al. [26]. Each scan reports
the number of AV vendors which, on the date of the scan, classify
the binary as malicious. If at least 4 AV vendors declare the binary
malicious, we label it malicious; otherwise, we label it benign. In our
dataset, 78% of binaries have a scan in which over 4 AVs declared
the binary malicious; that is, 78% of our binaries can be regarded
as malicious.

We split the data set into a training set and validation set, trained
a classifier using our methods, and evaluated its effectiveness by
measuring the following three metrics. Accuracy is defined as the
fraction of samples which the classifier classified correctly; the false
positive rate is the fraction of benign samples that the classifier clas-
sified as malicious; sensitivity is the fraction of malicious samples
that the classifier classified as malicious. Sensitivity is also called
true positive rate or detection rate. All metrics are measured on the
validation set. The sensitivity, S , validation accuracy, A, and false
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Figure 2: Training and validation accuracy of themonotonic
classifier operating on the reduced dataset for various values
of the maximum local tree depth of the gradient boosting
classifier. The two plots correspond to 1000 and 10000 weak
learners, as indicated.

positive rate, FP , are related as follows:
S = A(1 + η) − η(1 − FP),

where η is the ratio of benign samples to malicious samples.
When applying our monotonic classifier, we filtered the features

as explained in Section 5 to retain only those features that we treat
as monotonic, yielding approximately 100,000 features; we refer
to datasets using these features as “reduced features” datasets. We
compare to a conventional classifier that is trained on all features.

6.1 Non-temporal tests
In the first part of our tests, we disregard the temporal information
provided by the timestamped scans and declare a binary malicious
if there exists any scan for which at least 4 AVs declared the binary
malicious. As a result, for this part of the tests, our dataset is an
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Figure 3: Training and validation accuracy of themonotonic
classifier operating on the reduced dataset for various val-
ues of hyperparameters. A classifier composed of 1000 weak
classifiers was fit for each experiment, with each tree hav-
ing amaximumdepth of 2. The hyperparameter η is the step
shrinkage parameter; it takes values in the interval [0, 1] and
is tuned to prevent overfitting. Hyperparameter γ controls
the value by which the loss must decrease in order for the
classifier to accept a split; this hyperparameter takes non-
negative real values.

array of features and a label per binary for each of the 1.1 million
binaries. To reduce training time, we selected a random subset of
200,000 binaries and randomly split into training and validation sets,
with 80% of the binaries used for training and 20% for validation.
The primary limitation of this methodology is that results may be
biased by training on the future and testing on the past; we will
address those limitations in the next subsection.

We evaluated the performance of a monotone classifier (i.e. one
which enforces monotonicity of the trained model in all features
with which it is presented) operating on the reduced dataset. We
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Figure 4: ROC of themonotonic classifier on the reduced fea-
tures, with a training-test split that ignores temporal infor-
mation. Each sample corresponds to the performance of a
classifier composed of 1000 weak learners with a maximum
tree depth of 7.

experimented with hyperparameters, including the number of trees,
tree depth, learning rate, and minimum gain, to select values that
are suitable for this domain. We found little difference in perfor-
mance between using 1000 and 10000 trees in the XGBoost classifier
(see Figure 2), so we trained a classifier with 1000 trees and maxi-
mum tree depth 7. Similarly, we selected reasonable choices for the
learning rate (η) and minimum gain required to make a split in the
tree (γ ); as Figure 3 shows, it is not difficult to choose reasonable
values for these hyperparameters.

Figure 4 shows the ROC for the monotone classifier of 1000 learn-
ers. We observe that the classifier has approximately 50% sensitivity
at a 1% false positive rate.

6.2 Detecting malware over time
In practice, a malware detector will be trained on data received
in the past and must classify samples received after training has
occurred. We apply an evaluation methodology that reflects this. In
particular, we sorted the 5.7 million scans in our dataset by date and
chose five dates in the range of the timestamps such that the number
of scans between consecutive dates was the same (up to rounding).
For each chosen date, D, we constructed a training set by randomly
choosing 500k scans that occurred before that date. The labels on
training set instances correspond to the best knowledge available
regarding the scanned binary up to time D. The validation set was
created by taking the next 40k scans in our dataset that occurred
immediately after the chosen date D. We labeled binaries in the
validation malicious if there has been any scan in the entire dataset
that reported it as malicious (i.e., at least 4 AV products report
it as malicious). In this way, we construct 5 training/validation
splits. This procedure ensures both temporal sample consistency
and temporal label consistency, in the language of Miller et al. [26].

We train two classifiers: a monotonic XGBoost classifier, applied
to the reduced features, and an ordinary XGBoost classifier, applied
to all features. Figure 5 shows the detection rate obtained for both

Figure 5: Detection rate of both the ordinary classifier oper-
ating on all features and the monotone classifier operating
over the dataset containing the reduced set of features. The
classifiers are trained using 500k scans which occurred be-
fore the indicated date; the reported sensitivity corresponds
to the performance of the classifiers over the 40k binaries
with scans occurring immediately after the given dates. The
labels used to train the classifiers correspond to the best
knowledge of the label associated with the binary of the cor-
responding scanup to the given date, while the label used for
validation corresponds to the best knowledge we have of the
maliciousness of the binary. Each classifier consists of 1000
weak learners with a maximum depth of 5. The classifiers
are trained to target a false positive rate of 1%. On top of
each bar in the figure is the false positive rate of the classi-
fier. The fraction of scans labeled malware in all validations
sets was close to 50%.

classifiers and for the five chosen dates, and Table 2 shows how
the performance of classifiers trained at one point in time degrades
when this classifier is used in the future without retraining. We
infer from these results that retraining is necessary in order to
maintain adequate detection performance; moreover, retraining
reinforces our original assumption of monotonicity in some prop-
erties because any features which an attacker could have originally
added for distraction are likely to be removed over time (since the
attacker removed them to evade a detector), and after retraining
the attacker cannot remove these features anymore. All classifiers
consist of 1000 weak learners and use a loss function which targets
a 1% false positive rate. We observe that for the last date shown in
these results, 03 Jun 2014, the monotonic classifier operating on the
reduced dataset achieved 57% detection rate at a false positive rate
of 1.08%, and the ordinary classifier operating on all features had
77% sensitivity at 0.90% false positive rate.

Table 3 summarizes our results, showing the detection rate (sen-
sitivity) averaged across the five dates, for each classifier/feature-set



22 Mar 2013 Validation Dataset 28 Jul 2013 Validation Dataset 18 Nov 2013 Validation Dataset 03 Feb 2014 Validation Dataset 03 Jun 2014 Validation Dataset

Training Dataset Mon. classifier Ord. classifier Mon. classifier Ord. classifier Mon. classifier Ord. classifier Mon. classifier Ord. classifier Mon. classifier Ord. classifier

22 Mar 2013 57.05% (1.02% FP) 68.05% (0.92% FP) 61.26% (1.95% FP) 71.14% (1.70% FP) 54.52% (4.62% FP) 67.47% (5.71% FP) 49.40% (9.11% FP) 57.99% (9.57% FP) 44.29% (4.57% FP) 46.61% (3.77% FP)
28 Jul 2013 76.78% (0.78% FP) 85.03% (0.81% FP) 63.96% (4.23% FP) 75.71% (9.23% FP) 57.33% (10.32% FP) 63.42% (10.67% FP) 45.05% (5.45% FP) 47.93% (4.03% FP)
18 Nov 2013 61.55% (1.10% FP) 73.70% (0.91% FP) 57.89% (4.47% FP) 60.92% (3.95% FP) 35.84% (2.10% FP) 47.29% (1.33% FP)
03 Feb 2014 56.70% (0.99% FP) 69.31% (1.05% FP) 32.72% (0.56% FP) 44.81% (0.42% FP)
03 Jun 2014 57.17% (1.08% FP) 76.90% (0.90% FP)

Table 2: Detection rate of both the ordinary classifier operating on all features and the monotone classifier operating over the
dataset containing the reduced set of features, where the training and validation datasets and the training parameters are as
described in the caption of Figure 5. The table shows the resulting detection rates (with associated false positive rates) when
a model trained on one dataset is validated on datasets occurring at various times.

Classifier Dataset Sensitivity FP rate
Ordinary All features 74.6% 0.9%
Monotone Reduced 61.9% 1.0%

Table 3: Average of detection rate and false positives for both
classifier/dataset configurations over the five dates shown in
Figure 5.
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Figure 6: ROC curves for the ordinary classifier operating
on all features and the secure classifier operating on the re-
duced features. Classifiers were trained with the training/-
validation split set to 18 Nov 2013, the date which splits our
dataset in two equal numbers of scans. Each classifier con-
sists of 1000 weak learners which have a maximum depth
of 5.

configuration. As we can see, adopting our scheme causes approx-
imately a 13 p.p. drop in detection rate. Of course, the benefit of
our scheme is its security against a particular class of (low-cost)
evasion attacks. Thus, we interpret the 13 p.p. difference as the cost
of security for malware classification.

Figure 6 shows the ROCs of the monotonic classifier with re-
duced features and the ordinary classifier with all features using 18
Nov 2013 as the split date for the training/validation datasets. Fi-
nally, to help shed light on which features have the greatest impact,
we computed feature importance scores and ranked the features;
Tables 4 and 5 show the most important features.

Weight Feature
415 SuspiciousInsightSparseFeature:True
213 Uses Packer
103 Import:gdi32.dll
102 Import:oleaut32.dll
93 Import:shlwapi.dll
90 Import:comctl32.dll
89 Import:ws2_32.dll
84 Import:ole32.dll
84 Import:msvcrt.dll
84 Import:comdlg32.dll
81 Import:shell32.dll
79 Import:riched20
73 Import:wininet.dll
72 Import:uxtheme.dll
71 RegKeySetFeature:
70 Import:advapi32.dll
68 Import:version.dll
67 FileWrittenCountFeature:FileWrittenCountFeature_2_4
66 FileOpenedFeature:exe
62 ProcessCreatedFeature:c:
62 FileWrittenCountFeature:FileWrittenCountFeature_4_8
62 FileReadFeature:c:
60 Import:ntdll.dll
58 FileReadCountFeature:FileReadCountFeature_8_16
57 Import:secur32.dll
57 FileWrittenCountFeature:FileWrittenCountFeature_1_2
56 Import:winmm.dll
56 Import:riched20.dll
56 FileReadCountFeature:FileReadCountFeature_1_2
56 FileOpenedFeature:system32
55 FileOpenedFeature:dll
53 Import:user32.dll
53 FileDeletedCountFeature:FileDeletedCountFeature_4_8
52 Import:psapi.dll
52 FileReadFeature:tmp
51 Import:winspool.drv
50 FileReadCountFeature:FileReadCountFeature_4_8
49 FileOpenedFeature:c:
48 Import:userenv.dll
48 FileOpenedFeature:windows

Table 4: Most important features of themonotonic classifier,
ranked by the number of times a feature is used to make a
decision in the trees. The classifierwas trained and validated
on the 18 Nov 2013 dataset and targeted a 1% false positive
rate (shown in Figure 6).

6.3 A robust and effective malware detector
The ordinary classifier provides the best accuracy if attackers do not
attempt to evade the classifier, but very poor accuracy if attackers
do attempt to evade it. The monotonic classifier provides somewhat
worse accuracy if attackers do not attempt to evade, but much
better accuracy if attackers do attempt to evade. Can we construct
a scheme that provides the “best of both worlds”? We investigate a
construction that is a hybrid of these two methods.

Let fo denote the ordinary classifier, and fm the monotonic
classifier. We construct a new classifier as

f (x) = fo(x) ∨ fm(x),



Gain Feature
3680.39 FileWrittenFeature:lua
1403.96 FileOpenedFeature:C:\Program Files\SAItest.txt
1169.97 FileMoveSrcFeature:ocsetuphlp
1054.40 RegKeySetFeature:globaluserid
1051.98 FileWrittenFeature:C:\DOCUME 1\<USER> 1\LOCALS 1\Temp\$
949.79 FileOpenedFeature:css
940.36 Import:mpr
780.88 FileWrittenFeature:ftp
763.11 RegKeySetFeature:dotgetright
721.58 Import:icmp.dll
704.58 FileWrittenFeature:tp
579.27 FileWrittenFeature:loading
566.45 FileOpenedFeature:C:\DOCUME 1\<USER> 1\LOCALS 1\Temp\7z
553.54 RegKeyDeleteFeature:hardware
548.70 FileOpenedFeature:<user> 1
529.33 FileOpenedFeature:dup2patcher
390.79 Import:pstorec.dll
377.15 FileOpenedFeature:captura
357.08 FileOpenedFeature:C:\lua\ltn12\init.lua
347.41 ProcessCreatedFeature:1
344.44 FileMoveSrcFeature:data
307.83 FileCopySrcFeature:data
291.94 FileOpenedFeature:_setupx
283.58 FileCopyDstFeature:data
280.94 FileReadFeature:python27
271.76 ProcessCreatedFeature:svchost
261.89 FileReadFeature:C:\WINDOWS\system32\kernel32.dll
233.08 RegKeySetFeature:shell
223.47 RegKeySetFeature:HKEY_CURRENT_USER\SOFTWARE\1ClickDownl
217.59 RegKeyDeleteFeature:versionindependentprogid
207.93 RegKeySetFeature:notepad
207.13 FileDeletedFeature:nshelper
193.58 FileOpenedFeature:7
188.51 FileWrittenFeature:xp
186.19 FileMoveDstFeature:data
173.94 FileOpenedFeature:C:\Documents and Settings\<USER>\Loca
169.33 FileOpenedFeature:C:\DOCUME 1\<USER> 1\LOCALS 1\Temp\lo
167.16 FileDeletedFeature:install
148.13 ProcessCreatedFeature:cmd
146.78 RegKeySetFeature:runonce

Table 5: Most important features of themonotonic classifier,
ranked by the average gain obtained when using this fea-
ture in the trees. The classifier was trained and validated on
the 18 Nov 2013 dataset and targeted a 1% false positive rate
(shown in Figure 6).

i.e., classify the executable x as malware if either fo or fm does.
Our experiments show that this technique allows the classifier

f to keep the high performance of the ordinary classifier (in the
absence of evasion) with much of the robustness of the monotonic
classifier. For instance, we can form a combined classifier which has
a detection rate of 73% at a 1% false positive rate. This is obtained
by combining a monotonic classifier with a 56% detection rate with
an ordinary classifier having a detection rate of 69%. It follows that
it is impossible for an attacker to evade detection in 56% of the
malicious binaries in our validation dataset; our detector catches an
additional 17% of the malicious binaries in the validation dataset,
but it is possible for an attacker to evade this detection (because
it occurs through the ordinary classifier). Thus, in the absence
of evasion, this is as effective as the ordinary classifier (which
attains a 74% detection rate at 1% false positive rate). In the presence
of evasion, this scheme can detect many—but not all—malicious
binaries; whereas the ordinary classifier has essentially no security
against evasion attacks.

In general, we can trade off detection rate in the absence of eva-
sion vs robustness against evasion. Table 6 shows the FP rates and
detection rates of the combined classifier for various combinations
of FP rates and detection rates of the two classifiers which compose
the combined classifier.

Monotonic Classifier Ordinary Classifier Combined Classifier

FP Rate Sensitivity FP Rate Sensitivity FP Rate Sensitivity
0.75% 59.21% 0.64% 65.91% 1.11% 71.50%
0.76% 56.98% 0.64% 65.91% 1.13% 70.90%
0.73% 58.27% 0.64% 65.91% 1.15% 71.08%
0.76% 56.75% 0.64% 65.91% 1.14% 70.84%
0.60% 52.63% 0.64% 65.91% 1.00% 69.66%
0.56% 55.85% 0.64% 65.91% 0.94% 70.67%
0.42% 51.43% 0.79% 69.36% 1.00% 71.89%
0.33% 45.56% 0.79% 69.36% 0.93% 70.81%
0.24% 37.19% 0.79% 69.36% 0.91% 70.02%
0.56% 55.85% 0.79% 69.36% 1.10% 72.87%
0.42% 51.43% 0.86% 71.88% 1.08% 73.84%
0.33% 45.56% 0.86% 71.88% 1.03% 73.12%
0.24% 37.19% 0.86% 71.88% 0.98% 72.21%
0.75% 59.21% 0.34% 58.77% 0.90% 67.99%
0.93% 61.21% 0.34% 58.77% 1.05% 69.75%
0.86% 58.19% 0.34% 58.77% 1.03% 67.66%
0.76% 56.98% 0.34% 58.77% 0.95% 67.23%
0.93% 58.16% 0.34% 58.77% 1.09% 68.28%
0.73% 58.27% 0.34% 58.77% 0.91% 67.33%
0.89% 60.06% 0.34% 58.77% 1.07% 68.42%
0.92% 61.99% 0.34% 58.77% 1.10% 70.24%
0.76% 56.75% 0.34% 58.77% 0.92% 67.07%

Table 6:We create a new classifier, which we call a combined
classifier, by instantiating an ordinary classifier operating
on the full set of features, and a monotonic classifier operat-
ing on the reduced feature set. The table shows the detection
rate for the combined classifier for various detection rates of
each of the components (the monotonic and ordinary clas-
sifiers). The classifiers were trained and validated using 18
Nov 2013 as the split date. 500k samples are used for train-
ing, and the 40k scans which occur immediately after the
split date are used to create the validation set.

Monotonic Classifier Combined Classifier

Date Baseline FP Rate Sensitivity FP Rate Sensitivity
22 Mar 2013 47.53% 0.41% 55.34% 1.01% 77.93%
28 Jul 2013 55.80% 0.51% 74.27% 0.99% 85.12%
18 Nov 2013 58.74% 0.56% 53.09% 1.04% 72.43%
03 Feb 2014 50.60% 0.50% 47.82% 1.01% 66.32%
03 Jun 2014 55.18% 0.41% 49.49% 1.01% 73.99%

Table 7: We trained a combined classifier of a 1% false posi-
tive rate by using a secure classifier with a 0.5% false positive
rate for each of the datasets resulting from the split dates
shown in Figure 5. Each of the monotonic and ordinary clas-
sifiers comprising the combined classifier was trained on
500k samples occurring before the split date and validated
on the 40k samples occurring immediately after the split
date. The baseline indicates the fraction of malware present
in the validation set. Each classifier consists of 1000 boosted
trees with a maximum depth of 5.

We ran further tests to verify whether the combined classifier
keeps its higher detection rates over time. Table 7 shows the detec-
tion rate for a 1% false positive classifier which uses a 0.5% false
positive monotonic classifier for five split dates. Comparing these
results with those in Figure 5, we observe that the combined classi-
fiers outperform the secure classifiers for all dates.

7 CONCLUSION
In this paper, we focus on a specific type of evasion attack where
an adversary attempts to evade a classifier by adding more features.
Real world attacks are more complex than adding already known
features. Our proposal is the first step at designing a robust ML



model by construction, which can be used as a building block to
handle complex adversarial attacks.

Care has to be exercised when applying machine learning to
security-related applications [28], because of the potential for ad-
versaries to mislead the classifier using evasion attacks. We argued
that a more secure way to use machine learning techniques in mal-
ware classification is to train a malware classifier that enforces
monotonicity on certain carefully-chosen features. In particular,
we identify features where it is hard for attackers to modify their
malware to change those features in a particular direction, and
use those features with the monotonic classifier. In effect, we use
domain knowledge about the malware domain to categorize what
kinds of influence an attacker can have over the features, and then
select a classifier that will be secure by design against those kinds
of manipulations.

We evaluated our approach on over 700GB of binaries from
VirusTotal. Our results indicate that the approach is effective: we
can achieve comparable detection performance to a traditional, un-
protected classifier; yet the cost of modifying malware to evade
detection is increased. In particular, on average the detection rate
drops from approximately 75% (without hardening against adver-
sarial examples) to approximately 62% (with our hardening scheme),
a tax of approximately 13%. We interpret this as the cost of security
for applying machine learning in this domain.
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