This is the post peer-review accepted manuscript of:

Ahmet Erdem, Davide Gadioli, Gianluca Palermo, Cristina Silvano
Design Space Pruning and Computational Workload Splitting for Autotuning OpenCL Applications
Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, 2018

The published version is available online at: https://doi.org/10.1145/3180665.3180669

(©2018 ACM. Personal use of this material is permitted. Permission from the editor must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

Design Space Pruning and Computational Workload
Splitting for Autotuning OpenCL Applications

Ahmet Erdem

Gianluca Palermo

Davide Gadioli

Cristina Silvano

Department of Electronics, Information and Bioengineering
Politecnico di Milano
e-mail: name.surname@polimi.it

ABSTRACT

Recently, OpenCL standard reached much wider audiences
due to the increasing number of devices supporting it. At
the same time, we have observed an increase of differences
among devices that support OpenCL. This situation offers
to developers, who want to get high performance, a large
spectrum of platforms. Given the additional OpenCL plat-
form parameters alongside application specific parameters,
the design space for exploration is seriously large. Further-
more, availability of more than one kind of device allows
distribution of computation on the heterogeneous platform.
Automatic design space exploration frameworks are one of
the recent approaches to address these problems and to re-
duce the burden of programmers. In this work, we present
our automatic and efficient technique to prune the design
space before moving on to the exploration phase and we
propose a new method for splitting the computational tasks
to computing devices on heterogeneous platforms.*

1. INTRODUCTION

The recent advances in computer architecture made het-
erogeneous computer systems available to not only data cen-
ters and supercomputers, but also to commercial personal
computers. Especially, with the advent of AMD APUs and
Intel CPUs which include integrated GPUs, the heterogene-
ity of modern machines has increased. Furthermore, en-
abling discrete GPUs for general purpose computing has
added another type of computation device to the system.
While each system has provided different granularity of par-
allelism which needs to be properly exploited, the commu-
nication between various computation devices must also be
handled according to the requirements of application as well.

!This work is partially funded by the EU H2020 FET-HPC
program under grant 671623 ANTAREX.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2018 ACM. ISBN 978-1-4503-6417-1.
DOI: https://doi.org/10.1145/3180665.3180669

Open Computing Language (OpenCL), maintained by the
Khronos consortium [4], is an open standard for developing
parallel applications on heterogeneous systems by abstract-
ing the underlying compute machine. OpenCL adopts data
parallel approach by describing the parallel computations as
a group of work-items, named work-groups. In this hierar-
chical mechanism, a kernel function is executed in parallel
by each work-item in the work-group. A kernel function de-
scribes how each work-item defines the operations carried
out on a single data. Therefore, the collection of work-items
under all work-groups together expresses the data paral-
lelism for an application. Although OpenCL guarantees that
the execution of the application is portable between the de-
vices conforming the OpenCL standard, it does not guaran-
tee the performance to be optimal. Especially, moving ap-
plications to different types of architectures like from CPU
to GPU may result significant loss of performance. This
is the reason why OpenCL is not considered performance
portable. Heterogeneous platforms performance portability
represents a challenging research issue.

One naive solution to performance portability is to de-
velop separate kernel functions for each device the applica-
tion is supposed to run. This solution makes development
of application dramatically complicated when the system is
heterogeneous, because of explicit management of multiple
command queues and contexts in the presence of multiple
vendors on the system. Moreover, this approach has more
design flaws:

e The application developer must have knowledge of all
the device’s architectures.

e The application must be manually split between exist-
ing devices on the platform.

e The developer should have access to all the devices in
order to test and profile on them.

e The number of devices targeted by the application is
limited, consequently future architectures are impos-
sible to target in a performance optimal way without
modifying the application code.

The performance portability problem of OpenCL appli-
cations has been approached either by tuning significant
parameters as described in [6] or by introducing Domain-
specific languages to annotate kernel, to generate more spe-
cialized OpenCL code[2].

From another perspective, it is not always possible to ac-
cess these parameters to tune if they are not being exposed
by developers. The work of [1] tackles this problem by co-
alescing work-groups using compiler transformations while
preserving the correctness of application.

In Glinda framework presented by [8], a specific appli-
cation with possible imbalanced workload is analyzed and
used as a case study for their load balancing and autotuning
framework.

Sharing similar vision with [8], Alok Prakash et al. demon-
strate in their work [7] how they approached the problem of
utilization of heterogeneous computing platform on an em-
bedded device.

The open source library named Maestro [9], which is in-
troduced by Kyle Spafford et al., employs autotuning tech-
niques to find optimal work-group size and load balancing
between multiple devices on heterogeneous platforms.

Similarly, in the work of [3], adaptive ways of selecting
faster architecture using source-to-source polyhedral com-
piler explored. Concurrent runs on devices are not used to
accelerate the execution, but rather to use the fastest device
that finishes the execution.

In this work, we introduce an automation of extraction of
OpenCL platform parameters and usage of the information
that are gathered to aid the tuning process. Furthermore, we
propose a new method to split the computational workload
to different OpenCL devices on heterogeneous systems.

2. PROPOSED METHODOLOGY

2.1 Parameter Space Pruning

The procedure of autotuning an OpenCL application in
order to get optimum performance without any concerns
of the underlying architecture of the platform, requires a
set of parameters that define characteristics of the machine.
In the case of OpenCL, these platform specific parameters
are stated by the OpenCL standard itself. Furthermore,
it is possible to gather them using the querying framework
which is provided by the OpenCL standard. With these
information gathered, it is possible to determine the size of
the exploration space and then using intelligent methods for
searching optimum design space.

Besides platform parameters, there might be also applica-
tion specific parameters that are tightly related to platforms
capabilities. An example of this situation is the well-known
tiled version of the matrix multiplication. The size of the
tiles are considered as application parameters and due to
nature of the algorithm there is a sharing of information
between work-items on the elements of the same tile. Due
to OpenCL architecture design, this kind of communication
requires local memory to be used. Therefore, tile size is
directly related to local memory usage which is a limited
resource of the platforms.

There are some problems related to searching for the op-
timum configuration, design space is larger for even simple
applications. For instance, Nvidia Fermi architecture has
limitations on work-group sizes for each dimension allowing
up to 1024 work-items for first and second data-dimensions,
while 64 work-items for the third dimension, resulting in 225
different configurations. Most of these configurations are not
feasible (e.g. the total number of work-items may exceed de-
vices capabilities), in the sense that the kernel may not even
launch or may fail during execution, due to unfeasible con-

MiniZinc data from OpenCL
OpenCL querying framework
constraints __ (o
TN Workgroup sizes
| J' / Local memory size

MiniZinc
Constraint Solver

Total Design Space Pruned Design Space

Figure 1: Design Space Pruning

figurations parameters. Moreover these failed attempts of
kernel launches do not provide any information about the
sample that has been taken from design space. Hence, effort
and time are wasted on these unfeasible configurations.

To address this issue, the work in [6] presented a design
space exploration flow that includes constraint programming
to prune the design space and eliminate unfeasible solutions.
This helps the reduction of the design space. Moreover, it
only uses configurations which make sense within the scope
of OpenCL standard. Fig. 1 demonstrates this idea. Con-
straint Solver shown in Figure 1, eliminates the samples
which do not comply with the constraints from the design
space. And as output of the solver, a pruned design space is
generated such that all configuration samples are compliant
with the constraints.

Our work aims at improving the pruning phase by au-
tomating the extraction of platform specifications, to find
constraints that are valid for all the OpenCL devices in
the target system. Therefore, application programmer only
needs to insert constraints related to application itself. For
constraint programming, we use the MiniZinc [5] constraint
modelling language. Using clGetDeviceInfo function pro-
vided by OpenCL querying framework, for each OpenCL
compliant device available on the machine we generate MiniZ-
inc data files which include the following information about
the device:

e maximum work-group size for each dimension.

e maximum total number of work-groups considering all
dimensions.

e number of compute units on the device.
e local memory size of the device.

In addition to these device parameters, a set of constraints
that can be deduced from the rules defined by the standard
[4], has been used to generate platform constraint model
using MiniZinc constraint programming language. Thus,
together with application constraints provided by program-
mer, it is possible to prune the design space effectively. The
generated platform constraint model contains the following
rules:

e The total number of work-groups launched must be
less than or equal to maximum work-group size.

workgroupg * workgroupy *workgroup, <= max_total_wg

(1)

' ! 1
! Application 1 L]
1+ Constraints A Fomememees] e - GPU 1
1 N b / 1
Parameter * ! q 4 Calculate

; \/\ Pruning /4 Sl :_:-'_"I Split lIj’oint ! s

! 9 .] vy NP ~ § 1

1 h p 2 TOSWEEEs 1y N e oo - ’ o
] OpenCL f t ¥ i CPU .
i Constraints v eeeaa]
' Device ; !
H Parameters :

Figure 2: The proposed methodology

e Each global work-item dimensions must be multiple of
corresponding work-group dimension size.

global; Yoworkgroup, == 0
globaly Yoworkgroupy == 0 (2)
global . %oworkgroup, == 0

e The total number of work-groups should be equal or
greater than number of compute units. Otherwise,
there will be idle compute units.

globaly, /workgroups + globaly /workgroupy+

®3)

global, Jworkgroup. >= num_compute_units

Using both constraints coming from platform specifica-
tions and application domain, the total design space will be
reduced to a collection of configurations that satisfy these
constraints. This will reduce the exploration of the space,
which is crucial for the next phase.

2.2 Computational Workload Splitting

Heterogeneous computing architectures are widely adopted,
thus being able to utilize this heterogeneity is crucial for
achieving higher performance systems. Therefore, in this
work we propose a new method that splits huge OpenCL
computing kernels into smaller chunks. Then it maps those
partial computations to different devices in order to make
use of all the existing OpenCL devices.

Since the development of OpenCL framework has been
inspired from GPUs, which have been conceived for data-
parallel computing, we are focusing on data-parallel com-
putations by using the NDRange functionality of OpenCL
framework. When using NDRange, it is possible to launch
kernels on an iteration space where each iteration processes
one element of a set of data. The goal is to be able to prune
that iteration space and distribute the portions of it to the
available devices in a efficient manner.

To achieve this goal, we should address the following is-
sues:

e It is required the performance knowledge of a kernel
on each device of the heterogeneous platform in order
to find the right split point.

e After splitting, the chosen work-group sizes may be-
come ill-advised for kernel execution.

In order to find a balanced splitting point, we needed per-
formance information of the target kernel on each device. To
acquire this information, we measured execution time of the
remaining configurations after parameter space pruning de-
scribed in Section 2.1. After the exploration, the candidate

! CPU Partition GPU Partition
1 . 1 o
1 U NG, R
1 1
1 T
1 1
P R e ;
1 L
1 1
1 '
1 1
1 L)
! 1
1]
! 1
! 1
1 L
! 1
1 r
! 1
PR B S S (P TN SN RS N
Desired Adjusted Single .
Spliting Spliting Work-group Single
for CPU Work-group

: : for GP!

Figure 3: Global work space splitting

configurations with the lowest execution time for each device
are chosen for splitting decision. In Figure 2, the proposed
methodology has been shown to give high level perspective.

First, execution times are converted to speed values for
each device by taking multiplicative inverse. Then, these
speed values are used for calculating split factors for each
device using Equation 4; where split_factor; is the split fac-
tor of i'" device and N is the number of devices.

N-1
split_factor; = exe,speedi/(z exe_speed;) @
=0

where i=0,...,N —1s

Since split factors define how much computation will take
place in each OpenCL device, the sum of all the split factors
must be equal to 1.0. Otherwise, there would be residue
computation that is missing from the output of the task. It
is fairly easy to observe that Ziligl split_factor; = 1.0 is
satisfied by substituting split_factor; by the Equation 4.

While split factors are calculated from performance mea-
surements to give good hints about how to load balance
between different devices in heterogeneous environments, di-
viding the global work sizes using a generic split factors, may
easily result in partitions with fractional work sizes which
are invalid for the OpenCL standard.

For instance, let us consider a global work size of 512 work-
items and split factors of 0.4 and 0.6 for the two devices. In
this case, the share of device 1 would be 204.8 work-items
while device 2 has a share of 307.2 work-items. Because the
concept of work-items is intrinsically indivisible, the split-
ting factors are impractical.

Moreover, it is important to keep the optimum work-group
sizes found by exploration for each device, since the perfor-
mance is strongly related to work-group sizes. This situation
is problematic because different devices usually have differ-
ent optimal work-group sizes. In [7], a single work-group
size has been used for both GPU and CPU. In contrast, this
work introduces a new technique to overcome this limitation
by adjusting the splitting factors minimally while taking into

account the optimal work-group sizes discovered in the ex-
ploration phase.

Equation 5 defines the global work size. where wg; is the
work-group size and ~; is the number of work-groups for i*"
device. For simplicity, it only considers one dimension of the
iteration space. Moreover, it can be extended for the multi-
dimensional case, since splitting operation can be applied to
each dimension separately.

N—-1
G=) wgi*v (5)
=0

The number of work-groups that are needed for each de-
vice is calculated using devices’ optimal work-group sizes
and splitting factor S; (Eq. 6).

Vi = wg; (6)

It is important to note that at this stage, the numbers of

work-groups ~y; are real values, hence OpenCL framework

will not launch successfully. To deal with this issue, the

number of work-groups are reduced to an integer number
for all devices (Eq. 7).

Yo = vl (7

With the integer number of work-groups i, the splitting
factors are recalculated (Eq. 8a) in order to find the residue
(Eq. 8b).

5= 71091’5 i (&)
N— N-—-1 R
Sr = Z S; (8b)
i=0 j=0

Having a leftover part of the computation (G % Sg), we
determine how much work each device needs to process, in
order to compute residue (Eq. 9a and Eq. 9b). Then we
choose the device that requires the minimum amount of work
to cover the remaining computations.

~ G* SR
Yi = [ng1 (9a)
5 Wi *Yi
Si==g (9b)

Using this method, it is possible to preserve the desired
work-group sizes while adjusting split factor minimally. We
achieve this by reducing the number of work-groups conser-
vatively per device, then choosing the appropriate device for
the residue work to be computed on. An example of split-
ting and partitioning of global work space into work-groups
is illustrated in Figure 3.

An interesting feature of this method is that, when work-
group sizes of devices are not multiple of each other, there
will be overlap between the partitions of data that are com-
puted on devices. However the redundant computations will
be minimum due to choice of the device which requires least
amount of work for residue. In case the work-group sizes
are multiple of each other, there will be no overlap at all.
This outcome is observed because when work-group sizes are

Algorithm 1 Calculates the best theoretical performance

function THEORETICALHETEROPERF(splitFactors, exe-
Times)
devicePerfs <— empty list
140
while ¢ < number of devices present do
devicePerfs[i] « splitFactors[i] * exeTimes][i]

return MaX(devicePerfs)

multiple of each other, larger work-groups can perfectly be
accommodated by smaller work-groups.

Figure 4 shows the details of the splitting phase. In this
phase, we also measure how well the methodology stands
against theoretically best-case performance. After calcula-
tion the best split location, the theoretical heterogeneous
performance is calculated using Algorithm 1. The difference
between the calculated performance and the actual hetero-
geneous performance is the overhead of our methodology.

Estimate Performance Ms\hodol
(Theoretical —>"_Diff. —> ooy

Performance) p i g

Configuration with Calcullle Ee‘sl Split
best performance

Ad|usl Split Factors : 4 .
using Optimal > Evaluation
{ Work-group Sizes | K

Comparewith _y/ NewBest
| Heterogeneous Run | \Configuration,

Figure 4: Proposed splitting phase in detailed

3. EXPERIMENTAL SETUP

In order to test our approach, we used two platforms.
Platform 1(PLT1) consists of an Intel i7-4770 quad-core at
3.4Ghz and Intel HD Graphics 4600 with 20 Execution Units.
Platform 2(PLT2) has an Intel i7-2630QM quad-core CPU
at 2.0Ghz and a Nvidia GeForce GT 550M which is a mobile
GPU with 96 CUDA cores.

In order to validate our methodology, we have chosen two
application case studies; one dimensional convolution and
matrix multiplication. Both implementations make use of
local memory provided by OpenCL framework as cache.

Matrix multiplication is implemented as tiled version and
the size of the considered tiles is an application parameter
and it is used to calculate the local memory consumption of
the OpenCL kernel (Eq. 10). As a constraint to the explo-
ration space, we fixed the workgroup sizes equal to the tile
sizes.

local_mem = 2 X tile_size® (10)

OpenCL version of the convolution operation has been im-
plemented in a fashion that work-items, in the same work-
group, share as much data as possible. This is possible by
using local memory to load all the neighbouring data re-
quired for the whole work-group. Therefore, the number
of work-items, as well as the mask size defined in the con-
volution operation, affects the local memory consumption
according to (Eq. 11).

local_mem = workgroup_size + mask_size — 1 (11)

85.38

w
£
[
g =
=
&
o
5
o
g 266
k] 23 2275
20.2

20

i . .

0

CPU Only GPU Only Theoretical Hetero(dimO) Hetero(dim1)

(a) MatrixMult PLT1

Execution Time(ms)
]

10.7 10.14

m .]
5 -
0
CPU Only GPU Only Theoretical

(¢) Convolution PLT1

Hetero(dim0)

0 68.41

60 57.53

T
T
£
'E 40 36.62 36.45
2 31.25
3
@
S
w

20

10

0

CPU Only GPU Only Theoretical Hetero(dimO) Hetero(dim1)
(b) MatrixMult PLT2
2
23.0268

20 19.0484
-
@
E 5
@
5
E 11.3708
5 10.4247
£ 10
8
5
w

5

0

CPU Only GPU Only

(d) Convolution PLT2

Theoretical Hetero(dim0)

Figure 5: Execution times of heterogeneous runs

4. EXPERIMENTAL RESULTS

In this section, we present how much the design space is
reduced by using our methodology. The amount of acceler-
ation achieved due to utilization of both CPU and GPU as
well as the limitations of the techniques that are introduced
is examined. In order to get repeatable outcomes, we eval-
uated all the configurations 10 times and took the mean of
the best five results for all the experiments.

4.1 Design Space Pruning

Without our pruning phase implementation, the required
amount of kernel runs for the explorations are shown in
Table 1. The matrix multiplication used as test case is a
1024x1024 multiplication, while the convolution operation
has a mask size 625 over 2'® elements.

The numbers in Table 1, are generated considering only
the dimensions that are used by the kernel. Matrix multipli-
cation has a 2 dimensional iteration space, while convolution
is 1 dimensional in this case. This is the reason behind the
huge difference of the exploration size of the two applica-
tions. In Table 2, the number of feasible configurations that
require evaluation, are dramatically reduced. The amount of
reduction of the space allows us to explore all the remaining
configurations.

4.2 Computation Workload Splitting

Figure 5 shows the theoretical value, execution time of the
heterogeneous evaluations, along with only CPU and only
GPU configurations. For the matrix multiplication case two
different heterogeneous experiments are shown as dim0 and

Table 1: Exploration space size without pruning
PLT1 PLT2
CPU | GPU | CPU | GPU
Matrix Mult. | 2%° 218 2%0 270
Convolution | 8192 | 512 8192 | 1024

Table 2: Exploration space size after pruning

PLT1 PLT2
CPU | GPU | CPU | GPU
Matrix Mult. | 7 5 7 6

Convolution 24 17 24 19

diml in Figure 5. It is important to notice that on PLT1
the GPU is an integrated GPU and on PLT2 the GPU is
a mobile variant. Moreover, both CPUs and GPUs use the
same kernel with parameters tuned to the specific device.
For all the execution types, we show the configuration with
the minimum execution time among the explored ones.

We may observe that the performance differences between
the CPU and the GPU on PLT1 lead to less than 15% im-
provement for the two cases. Even the theoretical value does
not suggest much better speed up (Fig. 5a, Fig. 5¢). Con-
trarily, on PLT2 with matrix multiplication and convolution
applications, there is a 54% and a 68% speed up respectively
(Fig. 5b, Fig. 5d).

We have also investigated the effect of kernel data split-
ting on different dimensions of the iteration space. In order

Table 3: Data split factors (CPU,GPU)

PLT1 PLT2
Adjusted Optimal Adjusted Optimal
MatMul. | (0.762, 0.238) | (0.75, 0.25) (0.55, 0.45) | (0.5, 0.5)
Conv. (0.814, 0.186) | (0.812, 0.188) | (0.45, 0.55) | (0.45, 0.55)
Explored --m-- Theoretical Values
50
__ 45
@ 40
E 3 i
g g
F 25 ~
S22 =
g 15 S
o o 1 g

0
0 0.125 025 0375 05 0625 0.75 0.875 1
Data Split Factor (Only CPU =0, Only GPU = 1)

Figure 6:
PLT1)

Split Factor Evaluations(Convolution,

to test it, splitting technique has been applied to both di-
mensions (dim0, dim1) of matrix multiplication. According
to the experiment results, there is no significant improve-
ments for this case study due to the symmetric distribution
of the workload.

Table 3 shows the calculated optimal split factors and
split factors that are adjusted according to optimal work-
group sizes explored. For each case, the first value is the
computational share of CPU and second one is the share
of GPU. It is important to note that for all cases, it sums
up to 1.0, meaning that the computation covers all the it-
erations space. Overall, the difference between the optimal
split point and the split point adjusted by our methodology
is smaller in convolution application, due to the fact that
the size of the work-groups are much smaller compared to
global work size. This situation provides much a finer gran-
ularity when adjusting the splitting point, therefore leading
to closer to optimal splitting. In contrast to this, the ma-
trix multiplication work-group sizes are not as insignificant
to the global work size as convolution, although differences
between the adjusted and the optimal are still limited.

In order to further evaluate our methodology, we tried
different split points to compare with our split point calcu-
lation (Fig. 6, Fig. 7). The splitting factor, indicated with a
circle, is the factor computed by our method. On Platform
2 it is obvious that our splitting factor is the balancing point
between the two devices. While it is also the case on Plat-
form 1, the shape of the graph indicates the performance gap
between two computing devices used on the platform. Ad-
ditionally, the difference between the calculated execution
times (dashed blue line) and the explored execution times
(solid green line) is the overhead of the technique we intro-
duced. This overhead includes adjustment of splitting point
and runtime management of multiple OpenCL devices.

S. CONCLUSION & FUTURE WORK

The contribution of this work is twofold. The first con-
tribution is a more automatic way of collecting and using
OpenCL parameters as an improvement on [6]. Secondly,
a new technique on how to split data between OpenCL de-
vices while respecting work-group sizes has been introduced.
Compared to [7], it is not required to have the same work-

Explored --m-- Theoretical Values
25

20 -

P 2 P

10 "

Execution Time (ms)

0
0 0.125 025 0375 05 0625 075 0.875 1
Data Split Factor (only CPU = 0, only GPU=1)

Figure T7:
PLT2)

Split Factor Evaluations(Convolution,

group sizes for all the devices. Removing this limitation
enables the usage of better suited work-group sizes for each
device.

Experimental results have shown that it is possible to sig-
nificantly reduce exploration space and moreover by utilizing
all the devices available on the heterogeneous platform, our
methodology improves the performance.

6. REFERENCES

[1] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale.
Towards transparently tackling functionality and
performance issues across different opencl platforms. In
In proceedings of the Second International Symposium
on Computing and Networking - Across Practical
Development and Theoretical Research (CANDAR
2014), Dec. 2014.

[2] N. Chaimov, B. Norris, and A. Malony. Toward
multi-target autotuning for accelerators. In Parallel and
Distributed Systems (ICPADS), 2014, pages 534 — 541.

[3] J.-F. Dollinger and V. Loechner. Adaptive runtime
selection for gpu. In Proceedings of the 2013 42Nd
International Conference on Parallel Processing, ICPP
’13, pages 70-79, Washington, DC, USA, 2013. IEEE
Computer Society.

[4] Khronos Group. The open standard for parallel
programming of heterogeneous systems. [Online;
Accessed: Nov. 2015].

[5] MiniZinc. Medium-level constraint modelling language
minizinc. [Online; Accessed: Dec. 2015].

[6] E. Paone, F. Robino, G. Palermo, V. Zaccaria,

I. Sander, and C. Silvano. Customization of OpenCL
applications for efficient task mapping under
heterogeneous platform constraints. In Proceedings of
the 2015 Design, Automation € Test in Europe
Conference & Ezxhibition, pages 736-741, 2015.

[7] A. Prakash, S. Wang, A. E. Irimiea, and T. Mitra.
Energy-efficient execution of data-parallel applications
on heterogeneous mobile platforms. In Computer
Design (ICCD), 2015 33rd IEEE International
Conference on, pages 208-215. IEEE, 2015.

[8] J. Shen, A. L. Varbanescu, H. Sips, M. Arntzen, and
D. G. Simons. Glinda: a framework for accelerating
imbalanced applications on heterogeneous platforms. In
Proceedings of the ACM International Conference on
Computing Frontiers, page 14. ACM, 2013.

[9] K. Spafford, J. Meredith, and J. Vetter. Maestro: Data
Orchestration and Tuning for OpenCL Devices, pages
275-286. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

