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ABSTRACT 

This paper discusses how simulation is used to 
design and analyze Imanufacturing or warehousing sys- 
tems. Topics discussed include: manufacturing issues 
investigated by simulation, techniques for building 
valid and credible models, manufacturing simulation 
software, statistical considerations, and simulation 
pitfalls. A case study is included. 

1. INTRODUCTION 

In this paper we present an overview of the use 
of simulation in the design and analysis of manufac- 
turing or warehousing systems. A more detailed dis- 
cussion of simulation, in general, may be Eound in 
Law and Kelton or 3anks and Carson (see "REFERENCES"). 

There has been a dramatic increase in the use of 
simulation in manufacturing during the past few years. 
Increased foreign competition in many industries has 
resulted in a greater emphasis on automation to im- 
prove productivity and quality and also to reduce 
cost. However, since automated systems are often 
considerably more complex, they typically can only be 
analyzed by a powerful tool like simulation. Re- 
duced computing costs and improvements in simulation 
languages (which have reduced model development time) 
have also led to the increased use of simulation. 
Finally, the availability of graphical animation has 
resulted in a greater understanding and use of simula- 
tion by engineering managers. 

1.1. Why (Simulation) Models are Necessary 

It is often of interest to study a dynamic real- 
world system to learn something about its behavior. 
However, it is generally necessary to use a model to 
study the performance of the system, since experimen- 
tation with the system itself is disruptive, not cost- 
effective, or simply impossible (e.g., the manufac- 
turing facility has not yet been built). For example, 
consider a manufacturing firm that is contemplating 
building a large extension onto one of its plants but 
it is not sure whether the potential gain in produc- 
tivity would justify the construction cost. It 
certainly would not be cost-effective to build the 
extension and then remove it later if it does not 
work out. However, an appropriate model could shed 
some light on this question by allowing the operation 
of the plant to be studied as it currently exists and 
as it would be if the plant were expanded. - - 

If the relationships which compose the model are 
simple enough, it may be possible to use mathematical 
methods (such as algebra, calculus, or probability 
theory) to obtain the exact answers to the questions 
of interest; this is called an analytic solution. As 
an example of an analytic solution, consider the sin- 
gle machine tool shown in Figure 1. Jobs (or work 
pieces) arrive to the machine tool and request pro- 
cessing. If the machine is idle when a job arrives, 
then processing of the job begins immediately. Other- 
wise, the job joins the end of a queue. When the 
machine finishes processing one job, it then begins 
processing the first job in the queue (if any). 

Cl Machine tool 

0 <Job in process 

0 Jobs in queue 

0 

0 

Figure 1: Single Machine Tool System 

Let a be the rate at which jobs arrive to the 
machine (i.e., jobs per unit time) and let p be the 
rate at which the machine can process jobs. If we 
assume that a is less than p, then it can be shown 
under appropriate assumptions that the long-run 
average time a job spends in the system (in queue 
plus being processed), w, is given by 

w = l/(p-a). 

Thus, this formula can be used to determine easily 
the average time in system for various legitimate 
values of a and p. 

Unfortunately, however, most manufacturing sys- 
tems are too complex to allow realistic models to be 
evaluated mathematically, and these models must be 
studied by means of simulation. In a simulation we 
use a computer to evaluate a model numerically over a 
time period of interest, and data are gathered to 
estimate the desired true characteristics (e.g., 
throughput) of the model. 

We will concentrate our attention on a particular 
type of simulation, which is called discrete-event 
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simulation. This type of simulation is generally 
stochastic in nature, which means that random samples 
from probability distributions are used to drive the 
model through time (see Section 5.1). 

1.2 Intuitive Explanation of Simulation 

In this section we intuitively explain the nature 
of simulation by showing how a simulation model of the 
single machine tool system (see Section 1.1) would 
evolve over time. Suppose that our goal in studying 
this system is to determine the average amount of 
time that a job spends in the system. 

We begin with some definitions. The system state 
are variables which describe the state of the system 
at a particular point in time. For our example, the 
state variables are the status of the machine (i.e., 
idle or busy), the number of jobs waiting in the 
queue, and the time of arrival for each job in the 
system. An event is an instantaneous occurrence 
which changes the state of a system. The arrival of 
a new job and the end of processing of a job by the 
machine are each events for the machine tool system. 
The event list is an array giving the time of the 
next occurrence for each type of event. For the 
machine tool system, the first entry in the event 
list would give the time that the next job will arrive 
and the second (last) entry would give the time that 
the current job (if any) will complete processing and 
depart. The simulation clock is a variable which 
gives the current value of simulated time. (If a 
simulation is two hours into a desired run length of 
eight hours, then the value of the simulation clock 
would be 2, if the time unit is hours.) Statistical 
counters are variables which contain information 
necessary to estimate the desired measure(s) of per- 
formance. The statistical counters necessary to 
estimate average job time in system are the number of 
jobs that have completed processing, and also the 
total time in system for all completed jobs. At the 
end of the simulation, we estimate the average time 
in system by dividing the total time in system for 
all completed jobs by the number of completed jobs. 

We now define some notation to facilitate our 
explanation of simulation. Let 

ti = time of arrival of the ith job to 
arrive to the system (to = 0) 

Ai = ti - tie1 = interarrival time between 
the (i-l)st and ith arrivals of jobs 

Pi = time that the machine actually spends 
processing the ith job to arrive (ex- 
clusive of a job's delay in queue, if 
any) 

Wi = time in system (wait) of the ith job 
to arrive 

In the actual machine tool system, the Ai's 
and Pi's may be random variables (i.e., their values 
will not be known with certainty). However, for 
expository convenience we assume that the interarrival 
times and processing times are known and have the 
values 

A1 = 55, A2 = 32, A3 = 24, . . . 

S1 = 43, S2 = 36, . . . 

Thus, between 0 and the time when the first job 
arrives there are 55 time units (e.g., seconds or 
minutes), between the arrivals of the first and 
second jobs there are 32 time units, etc., and the 
processing time of the first job is 43 time units, 
etc. 

Figure 2 gives a snapshot of the machine tool 
system itself and of a computer representation of the 
system at each of times 0, 55, 87, and 9%. (The 
latter three times correspond to the occurrence of 
events.) Our discussion will focus on how the com- 
puter representation changes at each of the event 
times. In the first section of the figure, we show 
the computer representation of the simulation after 
the model has been initialized at time 0. Note that 
the status of the machine tool, the number of jobs in 
the queue, the simulation clock, and both statistical 
counters are initially set to zero. (We use 0 to 
represent a machine status of idle and 1 to represent 
a status of busy.) There is an array to store the 
times of arrival of all jobs in the system which is 
initially empty. For the event list, observe that 
the time of the next (first) job arrival (denoted by 
A) is set to 55 since Al = 55. Since no job is 
currently being processed, the time of the next de- 
parture (denoted by D) is set to the large positive 
number 1030 to guarantee that the next event which 
occurs is an arrival, as desired. Since 55<1030, 
the simulation clock is advanced to time 55 where an 
arrival of a job will occur. (In general, the simula- 
tion clock will be advanced from one event time to 
the next most imminent event time to the next most 
imminent event time, etc. Each time the clock is 
advanced, the simulation model is updated in accord- 
ance with the occurrence of the corresponding event.) 

At time 55, the simulation model processes the 
arrival of a job. (The computer representation after 
all changes have been made at time 55 is shown in the 
second section of the figure.) Since the job arrives 
to find the machine idle (status equal to 0), it 
begins processing immediately and has no delay in 
queue. Note that the status of the machine has been 
set to 1, the time of arrival has been placed in the 
first location of the array, and the statistical 
counters are unchanged since the first job is just 
beginning processing. The time of the next arrival, 
87, was determined by adding the second interarrival 
time, A2 = 32, to the time of the first arrival, 55. 
Similarly, the time of the next departure (completion 
of processing), 98, was determined by adding the 
processing time of the first job, Pl = 43, to the 
time that processing began, 55. Since 87< 98, the 
simulation clock is advanced to time 87 where the 
arrival of another job will occur. 

At time 87, the simulation model once again 
processes the arrival of a job. Since the arriving 
job finds the machine busy, it joins the queue, the 
number in queue is set to 1, and its time of arrival 
is placed in the second location of the array. The 
values of the statistical counters are unchanged 
since no job has completed processing. The time of 
the next arrival, 111, was determined by adding A3 = 
24 to the time of this arrival, 87, and the time of 
the next departure is unchanged. (The first job is 
still being processed at time 87.) Since 98s 111, 
the simulation clock is advanced to time 98 where a 
departure (end of processing) will occur. 

At time 98, the simulation model processes the 
departure of a job (the one which arrived at time 55) 
from the system. The time that this job spent in the 
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Figure 2: Snapshots of the System and of the Computer Representation of the 
System at Each of the Times 0, 55, 87, and 98 

system is computed as Wl = 98 - 55, where 98 is the 
current value of the clock (the departure time) and 
55 is the first entry in the array (the time of ar- 
rival). Then the statistical counters "number com- 
pleted" and "total time in system" are updated to the 
values 1 and 43 = 0 + Wl, respectively. Since there 
was a job in queue prior to this departure (number in 
queue was equal to l), this job leaves the queue and 
begins being processed at time 98. The number in 
queue is reduced from 1 to 0 and the entries in the 
array are updated accordingly. The time of the next 
departure, 134, is computed by adding P2 - 36 to the 
time the job (the one which arrived at time 87) is 
beginning service, 98, and the time of the next ar- 
rival is unchanged. Since 111< 134, the simulation 
clock is advanced to time 111 where an arrival will 
occur, etc. 

The above procedure of advancing the simulation 
clock from one event time to the next event time is 
continued until some stopping rule is satisfied. At 
this time, an estimate of (expected) average time in 
system is obtained by dividing the total time in sys- 
tem by the number completed. For example, if the 
stopping rule is to run the simulation until 1000 com- 
pletions have occurred, then the estimate of average 
time in system would be (W.1 + W2 + . . . + WlOOO)/lOOO. 
An alternative stopping rule would be to run the simu- 
lation until a specified amount of simulated time has 
elapsed, say, 16 hours (the length of a work day con- 
sisting of two eight-hour shifts). 

In the above explanation, we assumed that the 
values of the Ai's and Pi's were simply given. How- 
ever, in an actual simulation the Ai's and the Pi's 
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would each have their own representative probability 
distributions. (Alternatively, for some manufacturing 
systems, processing times may be a constant.) The 
Ai's and Pi's are generated (using random numbers) 
from their corresponding probability distributions, 
as needed, during the course of the simulation. (See 
Section 5.1 for further discussion.) 

Formulate the problem and plan the study 

e 1 
1 Collect data and define a model 

1.3. The Steps in a.Sound Simulation Study 3 , 

There has been an unfortunate impression that 
simulation is just an exercise in computer program- 
ming, albeit a complicated one. Consequently, many 
simulation "studies" have been composed of heuristic 
model building, coding, and a single run of the pro- 
gram to obtain "the answers." This attitude, which 
neglects the important issues of how to develop a 
valid model and also of how to use a properly coded 
model to draw statistical inferences about the system 
of interest, has led to erroneous conclusions being 
drawn from many simulation studies. 

Construct a computer program and verify 

In light of the above discussion, we present in 
Figure 3 the steps that will compose a typical, sound 
simulation study and the relationships between them. 
The number beside the symbol representing each step 
refers to the list of important comments for that step 
which is given below. Some studies may not necessari- 
ly contain all these steps and in the order stated; 
some studies may contain steps which are not depicted 
in the diagram. Furthermore, a simulation study is 
not a strictly sequential process. 

1 

2 

4 

5 

7 

8 

0 

10 

1 Design experiments 

1 Make woduction runs 
1 

Analyze simulation output data 

Document and implement results 

1. Formulate the problem and plan the study 

e State the study's objectives clearly 
Figure 3: Steps in a Simulation Study 

. Delineate the system designs to be 
studied (if possible) 

a Specify the criteria for comparing 
alternative system designs 

4. Construct a computer program and verify 

. Decision must be made to use a general- 
purpose language (e.g., FORTRAN) or a 
simulation language (see Section 3) 

l Plan the study in terms of the number a Traces, structured walk-throughs, and 
of people, the cost, and the time re- animation should be used to debug (verify) 
quired for each aspect of the study the model 

2. Collect data and define a model 

. Data should be collected on the system 
of interest (if it exists) to specify 
input parameters and probability distri- 
butions (e.g., a machine repair time 
distribution) 

5. Make pilot runs 

. Used for validation purposes in Step 6 

. Data should be collected (if possible) 
on the performance of the system (e.g., 
throughput) to aid in validating the 
model 

6. Valid? 

. Pilot runs can be used to test sensiti- 
vity of model's output to small changes 
in an input parameter 

s Compare output data from an existing 
system (from Step 2) to output data from 
pilot runs of the same system 

. The level of model detail should be con- 
sistent with the study's objectives 

3. Valid? 

l Involve people who are intimately famil- 
iar with the operations of the system 
(e.g., machine operators, industrial 
engineers, etc.) in the model building 
process 

7. Design experiments 

. Specify the system designs to be simulated 

. Specify the number of independent simula- 
tion runs for each alternative 

l Specify the length of each run 

. Analysts should interact with decision 
maker on a regular basis 

l Specify the initial conditions for each 
simulation run (e.g., initial state of 
each machine, worker, etc.) 
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a. Make production runs 

l Simulation runs specified in Step 7 are 
made 

9. Analyze output data 

l Estimate measures of performance for a 
particular system design 

. Determine best system design relative to 
some measure of performance 

10. Document and implement results 

. Document model's assumptions as well as 
the computer program 

. Implement the results from the simulation 
study 

2. OBJECTIVES IN SIMULATION OF MANUFACTURING 
SYSTEMS 

In this section we discuss benefits of simula- 
tion, environments in which simulation is applied, 
manufacturing issues that simulation is used to 
address, and measures of performance in manufacturing 
simulation. 

2.1. Benefits of Simulation in Manufacturing 

The general benefit of simulation in manufac- 
turing is that it allows a manager to obtain a 
system-wide view of the effect of changes on his or 
her manufacturinn svstem (whether it exists or not). 
For example, - 1 . . the effect of adding an additional 
machine to a work station may be predictable by 
using simple queueing theory or back-of-the-envelope 
calculations; however, these techniques probably 
won't be adequate to determine what effect this 
change will have on the entire manufacturing system. 
Increasing the throughput at one work station might 
cause bottlenecks to develop at one or more other 
work stations. 

Specific (potential) benefits of simulation in 
manufacturing are increased throughput, reduced in- 
process inventories, increased utilizations of 
machines and workers, increased on-time deliveries, 
and reduced capital requirements. 

2.2. Manufacturing, Environments in which 
Simulation is Applied 

The following are three situations where simula- 
tion is applied in manufacturing: 

i) New equipment and buildings are required 
(called "green fields") 

a An example is the building of the 
manufacturing facility for General 
Motors' new car, the Saturn 

ii) New equipment is required in an old 
building 

l A new product will be produced in all 
or part of an existing building 

iii) Upgrading of existing equipment or its 
0perat:ton 

. Concerned with producing the same pro- 
duct more efficiently 

l Changes may be to the equipment (e.g., 
:.ntroduction of a robot) or to opera- 
tional procedures (e.g., scheduling rule 
employed) 

:!.3. Manufacturing Issues thatSimulation is Used to 
Address -__ 

Below we list a number of manufacturing issues 
that simulation is used to <address. These issues are 
broken into three general categories. 

i) The need for and the quantity of equipment 
and personnel 

number and type of machines for a parti- 
cular objective 

urmber, type, and physical arrangement 
'of carts, conveyors, and other support 
'equipment (e.g., pallets and fixtures) 

location and size of inventory buffers 

evaluation of a change in product mix 
(impact of new products) 

evaluation of the effect of a new piece 
of equipment on an existing manufactur- 
ing line 

evaluation of capital investments 

manpower requirements planning 

ii) Performance evaluation 

. throughput analysis 

. makespan analysis 

l bottleneck analysis 

iii) Evaluation of operational procedures 

. production scheduling (i.e., evaluating 
proposed policies for loading and se- 
quencing machines) 

. evaluation of policies for component 
part or raw material inventory levels 

. evaluation of control strategies (e.g., 
for an automared guided vehicle system 
or a flexible manufacturing system) 

. reliability analysis (e.g., effect of 
planned maintenance) 

. evaluation of quality control policies 

2.4. Measures of Performance in Manufacturing 
Simulation 

The following is a list of measures of performance 
which are commonly used in manufacturing simulation 
studies: 

. throughput (number of jobs produced per unit 
of time) 



l time in system for jobs (makespan) 

l times jobs spend in queue 

w times that jobs spend being transported 

l sizes of in-process inventories (WIP or queue 
sizes) 

l utilizations of equipment and personnel (i.e., 
proportion of time busy) 

l proportion of time that a machine is broken, 
blocked (i.e., unable to operate until current 
job is removed), starved (i.e., waiting for 
a job), or undergoing preventive maintenance 

l proportion of jobs produced which must be 
reworked or scrapped 

l return on investment for a new or modified 
manufacturing system (often given in terms of 
present value) 

l payback period (time to earn back the money 
invested in a new or modified system) 

3. SIMULATION LANGUAGES FOR MANUFACTURING 

One of the major tasks in building a simulation 
model of a manufacturing system is converting a flow- 
chart of a model of the system into an actual compu- 
ter program. A simulation may use either a general- 
purpose language (e.g., FORTRAN or BASIC) or a simu- 
lation language for this purpose. The advantages of 
using a language like FORTRAN are that the language 
is probably already known by the analyst, is probably 
available on the analyst's computer, and that the 
required computer execution time may be less than for 
a model written in a simulation language since the 
program is tailor-made for the application. On the 
other hand, simulation models written in a general- 
purpose language tend to take a long time to develop 
since these languages are not particularly oriented 
toward simulation modeling. 

Those simulation languages which are applicable 
to manufacturing problems may be further classified 
into two categories, general-purpose simulation 
languages and manufacturing-oriented languages/simu- 
lators. General-purpose simulation languages are 
useful for simulating a wide variety of systems (e.g., 
computer or military systems) in addition to manu- 
facturing systems, but may contain certain features 
specifically for manufacturing. Examples of languages 
in this category are (in alphabetical order) GPSS (H, 
V, or PC), SEE WHY, SIMAN, SIMSCRIPT 11.5, SLAM II, 
and TESS. (Strictly speaking TESS is not a language, 
but rather a graphics/database interface.) These 
languages allow an analyst to develop a simulation 
model of a manufacturing system in less time than 
would generally be required when using a language 
like FORTRAN. 

There are certain simulation software packages 
which are designed specifically for simulating manufac- 
turing-type.problems, including AUTOMOD, MAP/l, SIMFAC- 
TORY, WITNESS, and XCELL+. The use of these packages 
may result in an additional reduction in programming 
time, since their modeling constructs are manufactur- 
ing oriented. The latter four packages in the above 
list (i.e., MAP/l, SIMFACTORY, WITNESS, and XCELL+) are 
actually simulators rather than languages, since a 

particular system within an available class of manu- 
facturing systems is modeled by responding to menus 
rather than doing actual programming. In general, one 
would expect simulators to provide less modeling flex- 
ibility than languages. 

The "hottest" feature which is currently availa- 
ble in many simulation languages is the capability 
for graphical animation of the simulation output. 
Important elements of a manufacturing system such as 
machines, workers, transporters, etc. are represented 
by icons on a graphics terminal or CRT. Every time 
there is a change in the state of the simulation, 
there is a corresponding change in the graphical 
representation. Thus an analyst or manager can graph- 
ically watch a manufacturing system change over time. 
Some animation software packages operate as post- 
processors, while others operate as the simulation 
executes. Among those which operate in real time, 
several packages allow an analyst to stop a simulation 
during execution, change parameters of the simulation, 
and then continue execution for this "new" system 
design. (This capability may exacerbate the problem 
of poor output data analyses.) 

The following are some potential uses of anima- 
tion: 

i) Communicating the nature of a simulation 
model or its corresponding system to a 
manager 

ii) Debugging a simulation computer program 

iii) Showing a simulation model is not valid 

iv) Training manufacturing personnel on the 
operation of a %ew" system 

v) Suggesting new control policies for material 
handling systems 

On the other hand, some people may view animation 
as a substitute for a careful statistical analysis 
of the simulation output data (see Section 5.2). We 
strongly disagree with this attitude. For example, 
if a manufacturing system appears to operate properly 
during an animation of one hour of the system's opera- 
tion, then this does not necessarily mean that the 
system is well defined, Machine breakdowns, which 
could result in system bottlenecks, may not have 
occurred during the animation. 

4. DEVELOPING VALID AND CREDIBLE SIMULATION MODELS 
OF MANUFACTURING SYSTEMS 

A simulation model is a surrogate for actually 
being able to experiment with a manufacturing system 
(see Section 1.1). Thus, an idealized goal in 
building a simulation model is for it to be accurate 
enough so that any conclusions drawn from the model 
would be the same as those derived from physically 
experimenting with the system (if this were possible). 
We will, however, not know for most simulation models 
whether this goal is realized. It is not necessary to 
have a one-to-one correspondence between each element 
of the actual system and each element of the simula- 
tion model. Indeed, a simulation model should be de- 
signed to meet a specified set of objectives, rather 
than to be universally valid. 

We now briefly discuss what we feel are the most 
important ideas/techniques for deciding the appropri- 
ate level of model detail, for validating a simulation 
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model, and for developing a model with h:igh credibil- 
ity. Note that if a model (or the modelers) is not 
credible, then it may never actually be used in the 
decision-making process by a manager even if the model 
is "valid." A list of these key ideas is as follows: 

i) 

ii) 

iii) 

iv) 

VI 

vi) 

vii) 

viii) 

Define the issues to be investigated, the 
alternative system designs of interest, 
and the measures of performance for evalu- 
ation at the beginning of the study. 

Start with a simple model, which can 
later be embellished. This allows the 
analyst to get results to the manager/ 
sponsor in a reasonable amount of time. 

Use "experts" and sensitivity analyses to 
help determine the level of model detail. 

Do not have more detail in the model than 
is necessary to address the issues of 
Interest. On the other hand, a model must 
have enough detail to be credible. 

If a similar existing manufacturing system 
exists, then talk to all important people 
associated with this system (e.g., machine 
operators, engineers, managers, vendors, 
etc.) and use this information to build 
the simulation model. 

Interact with the decision makers (or 
managers) throughout the course of the 
simulation, to help ensure that the model 
is both valid and understood. 

Perform a structured walk-through of the 
model's flowchart before an audience of 
all interested parties (see item v above), 
before the actual coding of the program 
begins. 

First, build a simulation model of a 
similar existing system (if possible). 
Compare the output data (e.g., throughput) 
from the model to output data from the 
actual existing system. If possible, per- 
form this comparison by driving the model 
with actual shop floor input data (e.g., 
observed machine repair times). 

5. STATISTICAL ISSUES IN MANUFACTURING SIMULATION 

Since random samples from input probability dis- 
tributions (e.g., a machine repair time distribution) 
are used to drive a simulation model through time, the 
output data from a simulation (e.g., daily through- 
puts) are also random samples from probability dis- 
tributions. Therefore, it is important to model 
correctly the random inputs to a simulation model 
and also to design and analyze simulation experiments 
in a proper manner. These subjects are briefly dis- 
cussed in this section. 

5.1. Simulation Input Modeling 

Most manufacturing systems contain one or more 
(input) sources of: randomness (random variables). 
For example, interarrival times of jobs to a machine, 
processing times of jobs at a machine, machine running 
times before breakdown, machine repair times, and the 
outcomes of inspecting jobs (e.g., good, rework, or 

:;craP) are possible examples of random variables in a 
manuEacturing system. Furthermore, in order to model 
the system correctly, each random variable must be 
,represented. by an appropriate probability distribution 
in the srmulation model.. Procedrlres for selecting an 
appropriate probability distribution, which depend on 
whether system data are avai.lable or not, are dis- 
cussed in Chapter 5 of Law and Kelton (see "REFER-- 
ENCES"). 

Suppose that an appropriate probability distri- 
bution has been determined for each random variable 
in a simulaticn model. Then a random-number generator 
is used to generate random :samples from these distri- 
butions as the simulation advances through time. (A 
random-number generator is typically a computer-based 
mechanism for generating a "random" value between 0 
and 1, with each possible value being equally likely.) 
For example, suppose that the repair time for a broken 
machine is uniformly distributed on the interval 
[6, 101 minutes (i.e., each value between 6 and 10 
minutes is equally likely).. When the machine actually 
breaks down during the course of the simulation, a . repalr time 1s determined by generating a value from 
the random-number generator, multiplying this value 
by 4, and then adding 6. 

We now present an example to illustrate the im- 
portance of correct input modeling for manufacturing 
systems. Suppose that a company is going to buy a 
new machine tool (see Section 1.1) from a vendor 
which claims that the machine will be down 10 percent 
of the time. However, the vendor has no data on how 
long the machine will operate before breaking down or 
on how long it will take to repair the machine. His- 
torically, some analysts have accounted for random 
breakdowns by simply reducing the processing rate by 
10 percent. We will see, however, that this can 
produce quite inaccurate results. 

Suppose that the single machine tool system will 
actuallv operate in accordance with the following 
assumptions when installed by the purchasing company: 

i) Jobs arrive with exponential interarrival 
times with a mean of 1.25 minutes. 

ii) Processing times for a job at the machine 
are a constant 1 minute. 

iii) The machine runs for an exponential amount 
of time with mean 540 minutes (9 hours) 
before breaking down. 

iv) The repair time for the machine has a 
gamma distribution (shape parameter equal 
to 2) with mean 60 minutes (1 hour). 

v) The machine is, thus, broken 10 percent 
of the time. 

(The reader unfamiliar with exponential or gamma 
distributions should consult Chapter 5 of Law and 
Kelton.) 

In column 1 of Table 1, we present results from 
five independent simulation runs (see Section 5.2) 
of length 160 hours (20 &hour days) for the above 
system. In column 3 of the table are results from 
five simulation runs of length 160 hours for the 
machine tool system with no breakdowns, but with the 
nrocessinn (cvcle) rate reduced from 1 iob ner minute 
to 0.9 joE; per minute. (This has sometimes been the 
approach of simulation practitioners.) Note first 

46 



Table 1: Simulation Results for the Single Machine Tool System 

Measure of Breakdowns 
Performance Mean = 540 min. 

Breakdowns 
Mean = 54 min. 

No 
Breakdowns 

Throughput 
per week 

Mean time 
in system 

Maximum time 
in system 

Average number 
in queue 

Maximum number 
in queue 

35.1" 10.3 5.6 

256.7# 76.1 39.1 

7.3* 7.3 3.6 

231# 67 35 

All times are in minutes. 

*Average over five runs. 

#Maximum over five runs. 

that the weekly throughput is almost identical for 
the two simulations. (For a system with no bottle- 
necks which is simulated for a long amount of time, 
the throughput for a 40-hour week must be equal to 
the arrival rate for a 40-hour week which is 1920.) 
On the other hand, note that such measurea of per- 
formance as mean time in system for a job and 
maximum number of jobs in queue are vastly different 
for the two cases. Thus, the deterministic adjust- 
ment of the processing rate produces results which 
differ greatly from the correct results based on 
actual breakdowns of the machine. 

In column 2 of Table 1 are results from five 
simulation runs of length 160 hours for the machine 
tool system with breakdowns, but with a mean running 
time of 54 minutes and a mean repair time of 6 min- 
utes. (Thus, the machine is still broken 10 percent 
of the time.) Note that the mean time in system and 
the maximum number in queue are quite different for 
columns 1 and 2. Therefore, when explicitly 
accounting for breakdowns in a simulation model, it 
is also important to have an accurate assessment of 
mean running time and mean repair time for the 
actual system. 

5.2. Design and Analysis of Simulation Experiments 

One of the most common (and potentially danger- 
ous) practices in simulating manufacturing systems 
is that of making only one run (or replication) of 
a stochastic simulation. For example, suppose that 
a manufacturing system operates sixteen hours a day 
and that we would like to estimate the mean (or 
expected) daily throughput or production. If we run 
the simulation only one time, then the value of the 
throughput from the simulation output is only one 
observation from a probability distribution whose 
mean is the desired expected daily throughput. 
(This is absolutely no different than trying to esti- 
mate the mean of a population in classical statistics 
with only one data point.) Furthermore, this single 
observed value of throughput may differ from the 

expected daily throughput by a large amount. 

To emphasize the importance of the above point, 
consider a simple manufacturing system consisting of 
a machining center and an inspection station, as 
shown in Figure 4. Suppose that this system operates 
according to the following assumptions: 

i) 

ii) 

iii) 

iv) 

V) 

vi) 

Jobs arrive to the machining center with 
exponential interarrival times with a mean 
of 1 minute. 

Processing times at the machining center 
are uniform on the interval [0.7, 0.81 
minutes. 

After processing, jobs proceed to the in- 
spection station where inspection times 
are uniform on the interval [0.8, 0.91 
minutes. 

Ninety percent of the inspected parts are 
good and are sent to shipping; ten percent 
are bad and must be remachined. 

The machining center is subject to randomly 
occurring breakdowns. In particular, a new 
(or freshly repaired) machining center will 
break down after an exponential amount of 
time with a mean of 6 hours. 

Repair times are uniformly distributed on 
the interval [8, 121 minutes. 

In Table 2 we give selected results from five 
independent simulation runs of the manufacturing 
system (i.e., different random numbers are used for 
each run) each of length 16 hours. Note that results 
from different runs can be quite dissimilar. Thus, 
it is clear that one simulation run does not produce 
the "true answers" for the simulated system. If we 
want to estimate the expected daily throughput, then 
the average throughput across the replications (see 
the last row of the table) will be a better estimate, 
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Figure 4: Manufacturing System with Inspection Station 

Table 2: Simulation Results for Simple Manufacturing System with Breakdowns 

Run Throughput 
Average time 

in system* 
Maximum number 

in machine queue 
MaxImum number 

in inspector queue 

1 972 19.0 21 33 

2 922 7.6 19 12 

3 963 20.6 20 53 

4 930 6.4 17 9 

5 896 7.1 23 12 

Average 
or 

Maximum 
936.6 12.1 23# 53# 

+'A11 times are in minutes. 

#Maximum over five runs. 

in general, than the observed throughput from only one 
run. Also, the maximum queue sizes in the last row of 
the table may be important in designing a manufactur- 
ing system because they are indicative of the amount 
of storage required for in-process inventory. 

There is one additional issue related to the 
design and analysis of simulation experiments which 
we now discuss. When simulating manufacturing systems, 
we are often interested in the long-run behavior of 
the system, i.e., its behavior when operating in a 
"normal" manner . (In the above example, we were only 
interested in the behavior of the system over a 16- 
hour day.) On the other hand, simulations of manu- 
facturing systems are often initialized in an empty 
and idle (or some other unrepresentative) state. This 
results in the output data (e.g., daily throughputs) 
from the "beginning" of the simulation not being 
representative of the desired "normal" behavior of 
the system. Therefore, simulations are often run for 
a certain amount of time, the warm-up period, before 
the output data are actually used to estimate the 
desired measures of performance. A graphical approach 
for determining the length of the warm-up period is 
given in Welch. 

6. SIMULATION ANALYSIS OF A MANUFACTURING SYSTEM 

In this section we show, by means of an example, 
how simulation can be iteratively used to design a 
manufacturing system, However, due to space considera- 
tions we will not give a complete specification of 
the system. 

A company is going to build a new manufacturing 
facility which will consist of a receiving/shipping 
(R/S) station and five work stations. The distances 
between the stations have been decided; however, one 
of the goals of the simulation study is to determine 
the number of machines needed in each work station. 

Jobs arrive at the R/S station with exponential 
interarrival times having a mean of l/l5 hour. There 
are three types of jobs, with each type occurring 
with a specified probability. Furthermore, each 
type requires a specified number of tasks to be done, 
and each task must be done at a specif.ied work station 
in a prescribed order. For example, a type 1 job 
begins at the R/S station, visits work stations 3, 1, 
2, 5, and then leaves the system at the R/S station. 

A job must be moved from one station to another 
by an automated guided vehicle (AGV), and one of the 
goals of the simulation study is to determine the 
required number of AGVs. When an AGV becomes availa- 
ble, it processes requests by jobs using a shortest- 
distance-first priority rule. 

The machines in a particular work station are fed 
by a single first-in, first-out queue. Furthermore, 
the time to process a job at a particular machine has 
a gamma distribution (shape parameter equal to 2) 
whose mean depends on the -job type and the work sta- 
tion to which the machine belongs. When a machine 
finishes processing a job, the job blocks that machine 
(i.e., the machine cannot process another job) until 
the job is removed by an AGV. 
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We will simulate the proposed system to determine 
how many machines are needed in each work station and 
also how many AGVs are needed to achieve an expected 
throughput of 120 jobs per 8-hour day (the maximum 
possible). Among those system designs which can 
achieve the desired expected throughput, the best 
system design will be chosen on the basis of such 
measures of performance as mean time in system of a 
job. maximum work station queue sizes, proportion of 
time transporters are busy, etc. For each system 
design, we will make 10 simulation runs of length 160 
hours, with the first 24 hours of each run being a 
warm-up period (see Section 5.2). 

We first simulated the system design consisting 
of 4, 2, 4, 3, and 2 machines in stations 1, 2, 3, 4, 
and 5, respectively, and 1 AGV; this system will be 
denoted by (4, 2, 4, 3, 2; 1). The results from 
these simulation runs are given in Table 3. Note 
that the average throughput per day is only 94.2, 
which is much less than the expected throughput of 
120 for a well-defined system; it follows that this 
design must contain one or more bottlenecks. Since 
the average transporter utilization is so close to 1 
and since the proportions of time that the machines 
are blocked are relatively large, we will add another 
AGV to the system. 

The results from simulating system design (4, 2, 
4, 3, 2; 2) are given in Table 4. Note that the 
average throughput is still somewhat less than 120, 
indicating that a bottleneck probably still exists. 
Since the statistics (e.g., maximum queue size) are 
very large for station 3, we will add another machine 
there. 

The results from simulating system design (4, 2, 
5, 3, 2; 2) are given in Table 5. The average 
throughput of 120.0 indicates that this system pro- 
bably does not contain a bottleneck. Note also that 
the statistics for station 3 have been reduced consi- 
derably. To see the effect of adding additional ma- 
chines (and to save space), we will now add machines 
to stations 1, 3, and 5. 

The results from simulating system design (5, 2, 
6, 3, 3; 2) are given in Table 6. The system is now 
somewhat balanced in the sense that the proportions of 
machine busy time and the maximum queue sizes are 
roughly equal for all stations. The choice between 
the latter two system designs depends on the perform- 
ance requirements for the system and on the cost of 
machines. If floor space is very limited, then the 
last system design may be preferable since it results 
in smaller maximum queue sizes. 
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Table 3: Simulation Results Ear System Design (4, 2, 4, 3, 2; 1) 

Station 1 2 3 4 5 

Proportion 
machines busy 

Proportion 
machines blocked 

Average number 
in queue 

Maximum number 
in queue 

0.75 0.41 0.81 0.55 0.65 

0.21 0.35 0.19 0.38 0.35 

10.6 0.9 214.2 4.9 63.:3 

63 14 465 36 139 

Average throughput: 94.2 

Average transporter utilization: 0.996 

Mean time in system: 20.4 hours 

Table 4: Simulation Results for System Design (4, 2, 4, 3, 2; 2) 

- -___ 
Station 1 2 3 4 5 

Proportion 
machines busy 0.80 0.43 0.95 0.57 0.80 

Proportion 
machines blocked 0.05 0.06 0.05 3.06 0.06 

Average number 
in queue 3.0 0.2 67.5 0.4 4.3 

Maximum number 
in queue 37 7 203 10 28 

Average throughput: 114.5 

Average transporter utilization: 0.70 

Mean time in system: 5.9 hours 

Table 5: Simulation Results for System Design (4, 2, 5, 3, 2; 2) 

-- 
Station 1 2 3 4 5 
- -- 

Proportion 
machines busy 0.51 0.45 0.79 0.58 0.a3 

Proportion 
machines blocked 0.06 0.06 0.04 0.06 0.07 

Average number 
in queue 3.8 0.2 1.9 0.5 4.8 

Maximum number 
j.n queue 41 8 17 11 31 

-___ 
Average throughput: 120.0 
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Average transporter utilization: 0.71 

Mean time in system: 1.6 hours 

Table 6: Simulation Results for System Design (5, 2, 6, 3, 3; 2) 

Station 1 2 3 4 5 

Proportion 
machines busy 

Proportion 
machines blocked 

Average number 
in queue 

Maximum number 
in queue 

0.64 0.45 0.66 0.58 0.55 

0.05 0.06 0.03 0.06 0.05 

0.5 0.3 0.5 0.5 0.4 

14 13 15 11 10 

Average throughput: 120.0 

Average transporter utilization: 0.70 

Mean time in system: 1.0 hours 
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