
Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Heterogenous distributed simulation

Paul F. Reynolds, Jr.
Department of Computer Science and

Institute for Parallel Computation
The University of Virginia

Charlottesville. Virginia 22!)03

ABSTRACT
SimuIations can often be substituted for expensive or difficult

experiments involving real physical resources. Heterogenous dis-
tributed simulation, a fairly recent phenomenon, is an example of
simulation made possible by low cost, high performance processors
and medium-to-high-bandwidth, (potentially long distance) com-
munication networks. Heterogenous distributed simulation brings
together heterogenous, physically distributed resources for simula-
tion purposes, thus supporting experiments that could otherwise be
expensive or difficult. Heterogenous distributed simulation is suffi-
ciently new that many issues regarding its use remain. These issues
include fault tolerance, dynamic reconfiguration, real time require-
ments and optimal approaches to process synchronization and com-
munication. We discuss these issues and others and propose some
directions for research.

INTRODUCTION
Distributed simulation, sometimes called heterogenous or geo-

graphically distributed simulation, is distinguished from parallel
simulation (to confuse things, often called distributed simulation in
the literature) on the basis of inter-process communication times
and goals for employing multiple processors. Distributed simula-
tions tend to incur communication delays on the order of seconds,
and are generally employed for the purpose of bringing physically
separated, hetcrogenous resources together for simulation purposes.
Exanmles include SIMNBT IPoMi871 and the National Testbed
[wo488]. Distributed simulations ma; not be concerned with pro-
cessor utilization or minimum finishing time, although real-time
requirements may bring these into play. Parallel simulation
research, on the other hand, has focused primarily on maximizing
processor utilization and/or minimizing simulation finishing time.
Inter-processor communication times have generally been
presumed to be relatively small (e.g. - milliseconds). Parallel simu-
lation research has not been concerned with real-time issues,
human-in-the-loop or hardware-in-the-loop.

Examples of approaches to parallel simulation include the
pioneering work of Chandy and Misra [ChMi79] and Peacock, et
al. [PeWo79] as well as SRADS [Reyn82], and time warp [JeSo82].

Distributed simulation, as defined here, is barely a science.
There are critical issues revolving around it that simply have not
been addressed in the literature. There are systems such as SIM-
NET, but they have been developed without the benefit of an
underlying body of theory and without the benefit of testbeds for
studying ideas for synchronization, fault tolerance or reconfigura-
tion.

Parallel simulation is in its infancy. It is characterized by iso-
lated efforts to develop synchronization protocols (the papers cited
above are products of this sort of research). A recent paper
[Reyn88] demonstrates that parallel simulation researchers have
only begun to explore all of the possibilities, and that without ana-
lytic and rapid experimental support. the task could could be monu-
mental at best.

Distributed and parallel simulation have more in common than

not. The demands placed on each will become demands placed on
the other as scientists turn to them as the means for supporting low
cost experimentation; e.g. real time requirements axe becoming a
major consideration in parallel simulations. An exploration of
these two areas together will lead to a better understanding of each
of the areas alone.

In the remainder of this paper (and the attendant tutorial) we
make the concept of hetemgenous distributed simulation clearer by
reviewing design options, and we discuss issues facing those who
would wish to use distributed simulation based on sound scientific
principles. Because of the similarities between distributed and
parallel simulation, we also discuss the relevance of parallel simu-
lation research to distributed simulation research.

DEFINITIONS
Timestepped simulations assume that simulation time

advances in (generally) fixed increments, where the chosen incm
ment is sufficiently small that no two significant events that should
occur at distinct simulation times are simulated in the same time
interval. Discrete event simulation is suitable for simulations
which incorporate event sequences that occur on widely disparate
time and/or space scales.

Real time (a.k.a. faster than real time) simulations are
required to run at least in real time. There are a number of interpre-
tations of this requirement. One is that a simulation must at all
times not fall behind real time. A second is that a simulation must
reach certain milestones without falling behind. This latter
interpretation allows for lapses between milestones in the event
processing requirements momentarily outpace processing
resources. Two activities associated with simulation, distributed
simulation in particular, that are likely to make it have real time
Tequirements are human-in-the-loop and hardware-in-the loop. As
their names imply, this means the simulation incorporates a real
time process (human and/or hardware) and to meet that process’s
requirements the simulation itself must be real time.

Fault tolerance has its usual meaning from software engineer-
ing literature. If there is a failure in the system can the system
recover and proceed, perhaps at reduced capability? We shall see
that fault tolerance is important because distributed simulations
involving human- and/or hardware-in-the-loop arc often unrepeat-
able, at least without great expense. Fault tolerance under these
conditions is mandatory.

Load balancing is concerned with load sharing in order to
meet performance requirements. In distributed simulation, perfor-
mance requirements are likely to be real time requirements. Load
balancing takes on new meaning when communication times are on
the order of seconds, as they may be in distributed simulation.

DESIGN CHOICES
We review here the choices a designer of a distributed simula-

tion may be able to make. In some cases some of the choices may
be dictated by the application, for example real time requirements.

206

http://crossmark.crossref.org/dialog/?doi=10.1145%2F318123.318190&domain=pdf&date_stamp=1988-12-01

‘*. : *. @F- \ jjlu m/..:..~ ;F,

Figure 1. Example of Distributed Simulation

In many instances we refer to local and remote sites. In figure 1 the
two entities Iabeled “sim” are assumed to be pieces of a distributed
simulation, each located at a specific site. The dashed communica-
tion line between them represents a (relatively) slow communica-
tion link; e.g. satellite communications. Sensors and effecters are
optional, and can be represented by hardware and/or humans. As
shown in figure 1, communications between sensors and effecters
and local sites may be either high speed or low speed, depending
most likely on the remoteness of the sensors and effecters from the
site.

Real time heterogenous distributed simulations can be a chal-
lenge, particularly if pieces of the simulation are geographically
distant, or if their communication link time is on the order of
seconds. Real time takes on a modified meaning here: consider the
case where we have two interacting humans at physically remote
sites. Each of them interacts with a local piece of the distributed
simulation. If one of them acts, it could be a half of a second or
more, using current satellite communication links between the sites,
before the second human has any idea that the first one acted.
Clearly, “real time” has a modified meaning here if the half second
delay is not representative of the delay that would occur between
the two humans in the physical system being simmated. Thus,
when we say that real time may be a design choice, attendant with
that choice is compensation for those instances where lapses occur
in the maintenance of a real time rate in the simulation because of
communication delays.

Dead-reckoning is one option used to cope with this
phenomenon; i.e. local sites predict behavior of remote entities
(simulated or real) based on past history. It is then the responsibil-
ity of the remote sites to inform others of changes that would make
dead-reckoning inaccurate (in accordance with some threshold}.
This technique is descirbed in [PoMi871.

A choice of timestepped vs discrete event time management in
a distributed simulation is another design choice. The choice is not
dichotomous; combining the two, some sites doing one type of
management and others doing the other, is entirely feasible. There
are times when timestepped simulations are appropriate. This

includes cases where the generally low overhead of the timestepped
approach may make it a better method than an equivalent discrete
event simulation. Discrete event simulations are clearly more
appropriate in cases where a timestepped approach would have
many intervals where no significant events occurred.

We must view time management from at least two perspec-
tives: what is done at individual sites and what is done among sites.
We see no restrictions on the choices made, e.g. discrete event at
local sites but timestepped among sites, etc. The choice would be
dictated by characteristics of the simulation at individual sites,
including the kind of computations being performed, and whether
processing at a local site is sequential or parallel. Similarly, the
choice of time management technique among sites could be dic-
tated by the presence or absence of real time requirements, com-
munication bandwidth, etc.

It is in the area of time management that the research done in
parallel simulation can be most beneficial to distributed simulation.
An extensive amount of work has been done in parallel simulation
on the problem of ensuring that a discrete event parallel time
management algorithm is deadlock-free. Also, there is an emerging
understanding of what is required to make parallel simulation algo-
rithms work reasonably efficiently. Where one of the significant
challenges lies is in the determination of the impact of significant
communication times on algorithms that have heretofore assumed
relatively small communication times.

Fault tolerance is a choice that may or may not be dictated by
the application being simulated. Fault tolerance would addres the
issue of what to do if, for example, a sensor in a distributed simula-
tion failed, or if the communication link between a sensor and the
portion of the simulation receiving its output failed, say, intermit-
tantly. Fault tolerance could be desirable simply because of the
length of time the simulation requires to execute. We can imagine
some remotely connected sites cooperating on a common (distri-
buted) simulation which requires more time than the expected
mean-time-between-failure for the aggregation of processors
involved in the simulation. In this latter case, check-pointing is a
reasonable option, if the characteristics of the simulation are such

that the possible rollba.ck that goes with checkpointing is feasible.
Load balancing is perhaps the design choice that is least deter-

mined by the application being simulated. There are often altema-
tives to load balancing, e.g. adding more processing power at
bottlenecks. Recently, them have been a number of papers on
dynamic load balancing, mostly heuristics for performing it. There
is much to be learned from load balancing experiments done for
parallel simulation.

Distributed simulation poses new challenges for dynamic load
balancing, primarily because the large communication costs typi-
cally incurred by distributed simulations keep code or data transfers
for balancing purposes from being cost effective. A good dynamic
load balancing strategy would most likely be a distributed one,
where individual sites monitored some subset of the other sites, and
acting on knowledge of what those sites had to do, picked up some
of their load if they were observed to have fallen behind. The dis-
tributed nature of this algorithm comes in part from the requirement
that the processor being helped would have to recognize that
another processor had taken a portion of its load, all this to avoid
the long communication delays that would be incurred if a more
cooperative effort were employed.

Both fauh tolerance and dynamic load balancing may require
dynamic reconfiguration of a distributed simulation. As with fault
tolerance and load balancing, reconfiguration would work best if a
minimum of inter-site communications were required.

Dynamic reconfiguration may aIso be required as a result of
dynamic reconfiguration of the simulation itself. For example, it
may be planned that a piece of a simulation may “drop out” part
way through. If there are other sites dependent on its presence,
then reconfiguration is called for.

In addition to the choices outlined above, most of the design
variables described in [Reyn88] apply as well. For example, a dis-
tributed simulation could exhibit aggressive processing, in the
sense that local sites make assumptions about remote sites in order
to allow their own processing to advance. To a degree, the dead-
reckoning approach used in [PoMi87] is an example of aggressive-
ness. Similarly, partitioning - using different time management
technioues ar different sites - is another option.

We have outlined some of the design choices the designer of a
distributed simulation may face. These choices, in turn, reflect a
broader need to understand distributed simtdation well enough to
know what choices should be made under what conditions. In the
next section we discuss research issues that underlie the design
choices we have identified.

SOME ISSUES
Them is a need for research in the following areas if we are to

develop a good understanding of how to design efficient and
correct distributed simulations.
(1) Development of underlying formal models to, among other

things, keep a rein on an unmanageably large number of possi-
ble approaches. The number of possible design choices is suf-
ficiently large that we need models to identify those choices
that would not meet application-specific requirements.

(2) Development of testbeds for testing the approaches predicted
as viable by the models. It would be best to avoid the diic-
tion research has taken in parallel simulation, namely, the
development and isolated analysis of parallel simulation algo-
rithms (protocols). A testbed allows for the testing of dif-
ferent approaches in a common environment, which is the best
way to do comparative analyses.

(3) Gaining an understanding of the interplay between the some-

(4)

(5)

(6)

what different areas: distributed simulation and parallel simu-
lation. As we have indicated above, the two areas have much
in common. Many of the load balancing and protocol analysis
results done for parallel simulation are applicable to distri-
buted simulation as well.

Integration of real time requirements. Given sufficient pro-
cessing resources, this can be relatively simple. However, by
nature of their characterisiically long communication times,
distributed simulations must compensate for delays that would
not be present in underlying physical systems being simulated.

Understanding dynamic reconfiguration and load balancing.
We can approximate the problem to be considered in the fol-
lowing manner: for a set of processing resources, a set of com-
munication delays between processing resource pairs, a set of
reconfigurations of the processing resources, and a set of con-
straints on the reconfigurations, can we determine if a given
simulation can meet its performance requirements? For a
given simulation state, what is the optimal partitioning consid-
ering anlysis and reconfiguration costs?

Fault tolerance. Many distributed and parallel simulations are
real time, one-shot simulations. Users would pay a lot for reli-
ability and fault tolerance, because the price of a failure could
be very high. What are effective fault tolerance strategies?
Fault tolerance is often implemented using redundancy. That
could be expensive or impossible with distributed simulation
in the sense that “hot spares” may not be available. Without
redundancy of this sort, what other options exist?

CONCLUSIONS
This paper establishes the framework for our tutorial in that it

identities issues we perceive as relevant to the successful under-,
standing of the science of doing distributed simulation. The issues
and design choices outlined hem indicate the areas we view as the
ones requiring a better understanding before distributed simulation
will be well understood. We expect the tutorial to pro&e mom dee-
ply into the issues and choices identified here, as well as to identify
some new areas.

ACKNOWLEDGMENTS
This research was supported in part by the Department of

Defense, through the Jet Propulsion Laboratory, contract number
957721.

REFERENCE3

[ChMi79] Chandy, KM. and J. Misra, “Distributed Simulation: A
Case Study in Design and Verification of Distributed
Programs,” IEEE Trans on Soffware Engineering., SE-
5,5, May, 1979, 440-452.

[FJLOSS] Fox, G., et al., “Solving Problems on Concurrent Pro-
cessors,” Prentice Hall, 1988.

[HaDoSS] Hartrum, T.C. and B.J. Donlan, “Distributed Battle-
management Simulation on a Hypercube,” Proc., KS
Multi-conference,, San Diego, CA, Feb., 1988.

[JeSoSt] Jefferson, D. and H Sowizral, “Fast Concurrent Simula-
tion Using the Time Warp Mechanism,” A Rand NOW,
N-1906-AF.

[Jeff851 Jefferson, D., “Virtual Time,” ACM TOPUS, 7,3, July,

208

1985, 404-425.

[Misr86] M&a, J., “Distributed Discrete Event Simulation,”
ACM Computing Surveys, 18,1, March, 1986,39-65.

[Pew0781 Peacock, J.K., Wong, J.W. and E. Manning, “Distri-
buted Simulation Using a Network of Processors,”
Computer Networks, 3, North Holland Pub., 1979, 44-
56.

[PoMiS’Il Pope, A.R. and D.C. Miller, “The SIMNET Comrnuni-
cations Protocol for Distributed Simulation,” BBN
Technical Report, BBN Laboratories Incorporated,
Cambridge, MA, 1987.

[ReynSZ] Reynolds, P.F. “A Shared Resource Algorithm for Dis-
tributed Simulation,” Proc of the Ninth Annual Int’l
Camp Arch ConJ Austin, Texas, April, 1982,259-266.

[ReynSSl Reynolds, Jr., P.F. “A SPECTRUM of Options for
Parallel Simulation”, Proc. ACM Winter Simulation
Conf., San Diego, CA., Dee 1988.

IWord Worden, J. “National Testbed Program,” Proc ofSC,S
Multi-Conference: Aerospace Simulation III,,” Febru-
ary, 1988, San Diego, CA.

BIOGRAPHY
PAUL F. REYNOLDS, JR. is an Associate Professor of Com-

puter Science, as well as the Director of the Institute for Parallel
Computation at the University of Virginia. He is a member of the
Simulation Engineering Group, an oversight group for the National
Testbed. His research interests include parallel and distributed
simulation, and, in general, parallel Ianguage and algorithm design.
He has been a consultant to numerous corporations and government
agencies in the systems and simulation areas. His PbD is from the
University of Texas, 1979.

Institute for Parallel Computation
Thornton Hall
The University of Virginia
Charlottesville, VA 22901
(804) 924-1039
pfr@uvacs.cs.virginia.edu

209

