
Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Constraint-based user interfaces for simulations

Raimund K. Ege

Florida International University
University Park

Miami, Fla. 33199

eger@servax.bitnet

Abstract
Many simulation environments lack modern user interfaces.

This paper describes an approach to user interfaces that is very
well suited for object-oriented simulation environments. Our
approach views user interfaces as constraints that are main-
tained between separate objects. The contraints and the par-
ticipating objects are modelled with a type language that cap-
tures the important aspects of an interface. Some of these as-
pects are the relationships and their types between various pre-
sentation objects. The type language can be produced graph-
ically with the help of an interactive interface generator that
can define and manipulate user interfaces to typed objects. The
implementation of this interface generator does not disturb a
running simulation and is based on constraint-satisfaction.
Keywords: simulation environment, user interfaces, object-
oriented, constraints.

1 Introduction

The principles of encapsulation and abstraction are germane
to the field of simulation. Recently these ideas have become
fashionable under the heading of object-oriented programming.
Many simulation systems follow these principles [Kre86] with-
out necessarily calling themselves “object-oriented.” In this
paper we introduce our ideas of how to apply those principles
to user interfaces for simulation environments. We extend the
common notion of object-oriented programming with the con-
cept of “constraints.” Constraints are a natural extension to
abstraction and encapsulation, they allow us to state simple
facts about objects and their relationships.

Many modern object-oriented languages derive their fea-
tures from the programming language Simula [DMN68]. Sim-
ula is a ALGOL-like language that was intended to support
simulation systems. Smalltalk- [GR83], the prototypical ob-
ject-oriented language, can also be used in simulating systems.
ThingLab [Bor81], a constraint-oriented simulation laboratory,
extended object-oriented Smalltalk with constraints. Animus
[Dui86], an animation kit, extended ThingLab to provide no-
tions of time and continuity for simulation animation. There
are many other constraint languages and systems available, a
survey of constraint languages and systems can be found in
ILe187).

We start this paper with a simulation example that serves
as an introduction to our “Filter Paradigm” and illustrates the
usage of constraints to specify interfaces declaratively. The
second section of this paper explains the major building blocks
of our interface paradigm: objects, constraints and filters. The
third section re-examines the introductory example and shows

how such an animated interface can easily be constructed in our
system. The fourth section briefly explains our environment
that allows us to interactively specify and manipulate such
interfaces. Our system is implemented using ThingLab, the
last section discusses some of its implementation aspects.

2 Introductory Example: Factory
Simulation

We use an event-driven simulation as an introductory example
for how to build interfaces according to the filter paradigm.
We want to simulate a situation of a factory, where unfinished
products enter the system at the “producer,” pass through two
“stations,” where they are refined and finished, and leave the
system at the “consumer.” Figure 1 shows the general flow
of products. The producer produces goods at a constant rate,

which can be varied. The stations can be manned with at
most two workers. There is one input queue for each station.
The input queue of station one is filled by the producer; the
input queue of station two is filled by station one. The finished
products of station one are consumed by the consumer without
being queued. This simulation has two variables: (1) the rate
at which products are produced at the producer, and (2) the
number of workers that work at each of the stations.

v I .
I Station One

I
.

I Station Two

263

http://crossmark.crossref.org/dialog/?doi=10.1145%2F318123.318200&domain=pdf&date_stamp=1988-12-01

Figlirc 3: Screen Layout. for Sinnilation Exam1)lc

2.1 Constraints for Interfaces

We assume that this simulation exists in an object-oriented
system. Our goal is CO provide a user interface for it. The user
interface has to portray the actions that are happening within
the simulation and provide some means to manipulate it. Fig-
ure 2 shows a possible screen layout for the user interface. To
the left is the producer; connected to it are the two stations
with their respective input queues; to the right is the consumer.
The simulation can be manipulated as it runs by adjusting the
rate of products that are introduced into the system and by
adding or removing workers from their stations.

2.2 Application Interface Model

According to the “Logical Model of a UIMS” [GreSFj] an inter-
face can be viewed as consisting of three components (see Fig-
ure 3): (1) the presentation component, (2) the dialog-control
component, and (3) the application-interface-model compo-
nent. The application interface model for our factory simu-
lation contains all those objects that are used in the interface
to the simulation. The model will include the following ap-
plication objects: the producer, with its number of produced
elements and the production rate; the two stations with their
input queues and workers; and the consumer, with its amount
of consumed elements. The simulation will modify the objects
within the model as it progresses. Other information, like the
connection between the four elements in our simulation or de-
tails about event generation and timing, is not important to
the interface and is local to the simulation application.

Figure 3: User Interface Management System

2.3 Display

‘The data structures for the objects In the application model
will be mapped into the screen representations as shown in
Figure 2. We can express these mappings with constraints.
The screen bitmap is divided into four subparts by constraints
to comain the presentations of the objects. We can view this
constraint as a filter from the screen bitmap, the source, to a
list of four smaller bitmaps, the view. The constraint specifies
how the screen bitmap is divided up. The subparts are for: the
producer, station one, station two, and the consumer. Each of
the four subparts is then conslrained to contain the display of
its corresponding application part. The presentations of sta-
tions are further constrained to display the length of the input
queues and icons for each worker. We use constraints instead
of display functions to ensure that changes to the application
data are reflected on the screen automaticaIly, e.g., if the input
queue shrinks or grows, or workers are added or removed from
the stations, the display is updated immediately.

2.4 User Input

This user interface can influence the simulation in two ways:

1. The production rate of the source can be adjusted by
pointing with the mouse at the gauge above the pro-
ducer and pulling its needle within the markers. The
productivity rate in the application interface model for
the producer is constrained to reflect the position of the
needle within the gauge.

2. Workers can be added or removed from the stations. This
is done by moving the mouse cursor into the presentation
area of one of either stations. If the mouse cursor points
to an icon of a worker directly, then this worker can be
removed by pressing the mouse button. TWO types of
workers are available to be added to a station: experts
and apprentices. A menu is available for the mouse but-
ton to select what type of worker has to be added to the
station.

The input actions affect the objects in the application mo-
del, which are constrained to be presented on the screen. After
the application model has been changed according to an input
or the ongoing simulation, these changes are immediately vis-
ible on the screen. This example interface can be completely
defined with constraints. The relations between model, repre-
sentation and input media are declared. The procedurality of

Figure 4: Filter Diagram for Factory Simulation Interface

264

the interface is derived from the fact that the constraints are
maintained by a constraint-satisfaction system.

Figure 4 shows the top level objects and constraints that
are part of our simulation interface example. Filters represent
the constraints that are defined for source and view objects.
On its left side, the figure shows the four source objects from
the application: producer, station 1, station 2, and consumer.
On the right side it shows the view object that is the device
used for this interface. For each of the source objects there is a
filter that constrains it to be represented on a part of the view
device. The “ProducerFilter” filter relates its source object,
“producer,” to the first part, “part 1,” that is the extracted as
the left-most part from the view “device.” It displays the pro-
ducer on the subpart of the screen and accepts input from the
user to change the producer’s productivity. Two “StationFil-
ter” filters relate their source objects, “station 1” and “station
2,” to the second and third part that are extracted as the mid-
dle parts from the view “device.” They display the stations
on the subpart of the screen and accept input from the user to
add or remove workers. The “ConsumerFilter” filter relates its
source object, “consumer,” to the fourth part that is extracted
as the right most part form the view “device.” It displays the
consumer on the subpart of the screen and does not accept
user input. The LLdevice” is the view object in four “Extract”
filters that divide it into four source parts. An “Extract” filter
constrains its source object to be mapped into a subpart of its
view object.

3 Building Blocks

The introductory example shows how the filter paradigm em-
ploys objects, constraints and filters. Objects have structure
that is defined by their types. Constraints can be defined for
an object and between objects. A filter is an object that repre-
sents a constraint that is defined between two objects of specific
types. The following three sections will define these concepts
informally.

3.1 Objects

Objects are present at both sides of a filter. In order to de-
fine constraints on them we need information about their struc-
ture. We define an object to be an atomic value or a structured
coIlection of fields. Fields consist of a name, called address, and
a slot. The address is used to identify what fields are subject
to constraints; the slot contains a reference to another object.
Structured objects are formed from fields, which can be iter-
ated or conditional. Objects can be accessed by naming the
address of a field. Subfields of fields can be accessed by con-
catenating addresses. A list of addresses, separated by a dot,
is called an acceJ8 path to an object.

An object type describes a set of objects that have similar
structure. Objects have similar structure if their fields have
the same addresses and reference objects of the same type. An
object type is a subtype of another type if its elements are
more specific, i.e., they have the same and more fields, than
the elements of the other type. An object type is a supertype
of another type if its elements have fewer fields than the ele-
ments of the other type. Constraints can be defined on fields
to express restrictions on objects in an object type.

Object Type Station
numberOfWorkers -> Integer
workers [numberOfWorkeraj -> Worker

inNumber -> Integer
inqueue finNumber] -> Queue
constraints LessThan (numberDfVorkers, 3)

end

Figure 5: Object Type for Station

An example object type is Station (Figure 5). It con-
tains four addresses: numberOfWorkers, workers, inNumber
and inqueue. They name the four fields of type Integer, ar-
ray of Worker, Integer, and Queue, respectively. The type
Integer is atomic and we assume that the types Worker and
queue are already defined. The iteration in the worker ad-
dress uses the address numberOfWorkers to express how many
workers fields are defined for this type. The number0fUorkers
address is also used in the constraints statement, which con-
strains the worker field to hold at most two workers.

Subtyping is an important notion. An object type can be
defined to be a subtype of another type. The fields of the
supertype are then inherited by all elements of the subtype.
Supertype and subtypes form a type hierarchy. A filter that is
defined to accept objects of a specific type also accepts objects
of their subtypes. The constraints in a filter are expressed with
access paths that name addresses of fields. A subtype has at
least all fields of its supertype, therefore the addresses in the
access paths will exist.

Figure 6 shows the three object types Worker, Apprentice
and Expert. Object type Worker is a supertype of Apprentice
and Expert. Object type Apprentice specifies in the inherit
from statement that it will inherit all fields from object type
Worker, and it adds one more field, level, of type integer.
Object type Expert also inherits all fields from Yorker and
adds a years field. Whenever an object of type Uorker is
required we can now use objects of type Apprentice or Expert.

We chose this object-type model because it lets us describe
the structure of objects that are accepted for filters; it provides
addresses, i.e., symbolic references to parts of the objects, to

Object

end

Object

end

Object

end

Type Worker

inherit from Person
salary -> Integer
throughput -> Integer

Type Apprentice
inherit from Worker

level -> Integer

Type Expert
inherit from Worker

years -> Integer

Figure 6: Subtypes of Worker

265

express constraints; it provides dynamic fields to describe ob-
jects of different structure with the type; and it distinguishes
sub- and supertypes. Our object types are sufficient to char-
acterize the objects that occur in our filter paradigm.

3.2 Constraints

Constraints are the backbone and the basic bui1din.g tool in
our filter paradigm:. filters represent constraints and are used
to express interfaces; constraints are used to place conditions
on objects as part of the object type definition. A constraint is
a condition that is expressed with access paths. The condition
must be kept true upon updates to objects. The mechanism to
maintain c0nstraint.s is called a constraint-satisfaction system.

3.3 Filters

A filter represents a package of constraints that have to be
maintained between two objects. A filter is defined for specific
types of objects. We have to distinguish atomic filters (filter
atoms), which have to be provided by an implementation, and
higher-level filters, which are constructed from atomic filters
or other constructed filters.

Like an object type, a filter type describes a set of filters
that have similar structure. The fiIter type defines the subfilter
of a filter. Our filter specification language provides construc-
tors to define filter types. The basic const.ructor declares an
arbitrary collection of subfiiters. The iteration constructor de-
clares a variable number of identical subfilters. The condition
constructor declares a conditional subfilter, i.e., the subfilter
exists only if an expression is true. A subflter is declared by
naming its type and its associations to the source and view ob-
jects within the containing filter type. The set of subfilters of
an instance of a filter type is called a configuration. The config-
uration can change with time since the iteration and condition
constructors depend on other objects.

In general, we can distinguish end-to-end and side-by-side
subfilter combination. In end-to-end combination, a filter is
constructed using a chain of subfilters. The source object of the
first subfilter is the source object, of the constructed filter. The
view object of the first subfilter is also the source object of the
next subfilter. The view object of the last subfilter is the view
obje‘ct of the constructed filter. Two adjacent subfilters in the
chain agree on a common intermediate object. Figure 7 shows
how a filter is constructed from two subfilters. The source of

the left subfilter is the source of the constructed filter. The
view of the first subfilter is the source of the second subfilter.
The view of the second subfilter is the view of the constructed
filter. Note that this filter construction introduces intermediate
variables as the connecting objects.

Fie;ure 7: End-to-End Combination
___-

Figure 8: Side-by-side Combination

In side-by-side combination a filter is constructed using a

set of two or more subfilters. The source and view objects of
the subfilters are parts of the source and view object of the
constructed filter. Figure 8 shows how a filter is constructed
from two subfilters. The source of the first and second subfilter
are part of the source of the constructed filter. The view of the
first and second subfilter are part of the view of the constructed
filter.

End-to-end and side-by-side combination are the most gen-
eral form of constructing filters. Any specific constructed filter
will probably represent a mixture of these two general forms.

4 Factory Simulation: Revisited

Object

end

Obj act

end

Object

end

Object

end

Using the concepts of “object” and “filter” we can now
define our example interface in more detail. The application
interface model for the factory simulation contains objects of
type Producer, Consumer and Station. The structure of these
objects is given by their object types (Figure 5 and 9). The
objects for the simulation example are all aggregated into the
object type Factory (Figure 9). Our factory has exactly one

--
Type Producer
productivity -> Integer
produced -> Integer

Type Consumer
consumed -> Integer

Type Factory
producer -> Producer
vsl -> Station
us.2 -> Station
consumer -> Consumer

Type Device
input -> Mouse
out put -> Bitmap

Figure 9: Object Types ftlr Factory Simulation -_

266

Filter Type FactorySimulation (source: Factory, view: Device)
var

partC41 -> Device
make set of

ProducerFilter (source.producer, partril)
StationFilter (source.vsl, part [23)
StationFilter (source.as2, partC31)
ConsumerFilter (source. consumer, part [41)
iteration 4 times i

Extract (part Cil , view)

end

Figure 10: Filter Type for Factory Simulation

l”.o<lu~~~r. two stations anrl one rons~nwr. Sinrc we want to Similarly, StationFilter subfilters relate the two stations
cksscGt,c> au iut.erfac.c,. \\-e also hvc t.0 nul>l)l>e i<ll ol)ject. tJ-1” for of the factory to the second and third part variable. The
tllc> tl(+c*c> m-v :nv using to comiulnliriltf~ with t.hc user. 0l)jrc.t consumer of the factory is rendered in its part using a Con
t-lx’ Device luts n fi&l f<jr au input mrtlium of typp Mouse and sumerFilter subfilter. The iteration statement defines four
iul olltpl~t m(*(lilun of t-1” Bitmap. subfilters to extract the four part variables from the view de-

Figlur 10 shows the txl)e tlrfiuition fin the FactorySimula- vice. Figure 4 showed the filter configuration for the factory
tion filt,c>r t,yl)e. A FactorySimulation filt.rr accr-pt.s an ol,- simulation filter.
j~~c~t of tyl)(s Factory as SOI~U nut1 an oI,jcct of type’ Device The FactorySimulation filter decomposes the interface
as Gaw. T11ca var st.atrmnlt tlc:fiues four iuterluediatr I-ariablrs into sub-constraints that are represented by subfilters. Each
with au it,rr;ltc,tl fic,l<l. part [41 Tl IC f 01tr I-arial&s arr of tyl>p of these subfilters has to be defined separately using other con-
Device ~ucl arc’ 11sc~l t.c) c<nmr~~t snbfiltc~rs. Thr Itlake st,at.e- strutted or atomic filters. We give here the definition of the
1w11t <IC’fillPS t1w snl,filt.~rs that, nl’(’ wwl to rrmstr11rt fi1tcY+ of
this t,yljc. The first s~\l)filtc~r. ProducerFilter. coustrilius t 11~

StationFilter to show the expressiveness of filter types.

producer l’art of thr source factory t.c) 1,~ tlisl)la:~<~tl n-itlliu t.hc
Figure 11 shows the StationFilter filter type, which is

part [l] vnriai)lr. This subfiltcsr is rcnmrct.f~tl with its SO~~XY~
defined for source objects of type Station and view objects

to t.ll<‘ producer fic>ltl of source. csprc~sed nit11 tllc ac’cpss loath
of type Device. It displays the station for our simulation
and allows the user to add or remove workers from it,. As in

‘Lsource .producer.” ilud with its \-ic>n- to tlif, part Cl] sari-
;rl,lc~.

the FactorySimulation filter, it defines variables and is con-

Filter Type StationFilter (source: Station, view: Device)
var

left, part [Zl -> Device
WorkerDetected [21 -> Boolean
selection -> Integer
expert -> Expert
apprentice -> Apprentice

make set of
QueueRender (source.inNumber, left)
Extract (left, view)
iteration 2 times i

WorkerRender (source .vorker [i], part [i])
Extract (part [i], view)
DetectCursor (part [i], vorkerDetectedCi] >
condition vorkerDetected[i]

condition source. worker [i] isNil
PopUpMenu (selection, “Expert, Apprentice”)
condition selection = 1

Equality (expert, source.worker[il)

condition selection = 2
Equality (apprentice, source.aorkerCi])

condition source.uorker[il notNil
Equality (NIL, source.uorker[i])

end

Figure 11: Filter Type for Station

267

strutted from subfilters. The first subfilter constrains the num-
ber of products in the input queue of the station, inlumber,
to be displayed witlnin the left variable. The left variable is
extracted from the viev device.

Since the part variable and the worker field of the station
are iterated fields, we can use an iteration constructor that
ranges over the number of workers per station. Each worker is
rendered as icon within the corresponding part variable with a
WorkerRender subfilter, which is provided as a primitive. The
part Cf.1 variable is extracted from the view device. A Boolean
variable (workerDetected) is used in aDetectCursor subfilter
to detect whether the cursor is pointing at a worker within
a station. The condition constructor (condition) is used to

evaluate the Boolean variable. The constructor defines further
subfilters that only exist if the condition is true.

If a worker field is not filled, i.e., it contains the value
NIL, then a PopUpMenu subfilter is defined that causes a pop-
up menu to appear on the screen. The user can select from
two types of workers: expert or apprentice. They are both
subtypes of Worker, so they can be referenced in the worker

field of Station that is of type Worker. The worker field is
related to expert or apprentice variable with an Equality
filter.

If the worker field holds a worker, i.e., it does not contain
the value NIL, then this worker is removed. The removal is
done by deiining a.n Equality subfilter with source NIL and
view source.aorkerCil, which will set the i-th worker field
to due NIL.

The StationFilter filter type uses all three subfilter con-
structors: set, iteration and condition. The set constructor
defines a static configuration of subfilters, while the iteration
and condition constructors define a dynanlic configuration of
subfilters that depends on the state of the source and view
objects.

5 Defining Interfaces Graphically

The introductory example showed how we can decompose in-
terfaces using constraints. Filter types are packages of con-
straints that describe interfaces. In order to define interfaces
graphically we represent filter types in an object-oriented SYS-

tem and provided a graphical tool that manipulates the repre-
sentation. Our tool, the Filter Browser (EhQ387], can define,
manipulate and test filter types graphically. The filter browser

has been implemented in Smalltalk-80.
The filter browser creates the classes within Smalltalk that

represent filter types. It also maintains a sample filter instance
(prototype) that can be used to instantiate and test the filter
type. Object types can be implemented directly in such a
system as classes where instances of classes are instances of the
object type. The filter browser cannot be used to define object
types, they are modeled as regular classes within Smalltalk.
Except for the name of a new filter type, the filter browser
specifies filter types entirely graphically, using menus, icons
and a pointing device.

In defining filter types, we distinguish the external and in-
ternal parts of the definition. A session with the filter browser
has three different steps. Step one represents the external,

step two the in.ternal definition, and step three tests the filter
type. In step one, the name of the filter type and the type of
source and view objects are gven. In step two, the variables
and subfilters that participate in filter constructors, such as
sequence, iteration and condition are specified. In step three,
a constructed jilter type is inslantiated and exercised. The de-
signer of a filt’er type will first proceed from step one to step
1.~0 and then test the filter type in step three. Then he can
go back to step two and add or delete subfilters and variables.
At any time he can test the filter type in step three. If he goes
back to step one and changes the source or view object type
he will invalidate the interna. parts of the filter type and has
to redo step two from the beginning.

The appendix includes three screen snapshots of the Filter
Browser as the user interface for the factory simulation example
is generated, <as well as a screen snapshot of the resulting user
interface.

ThingLab [BorSl], an extension to Smalltalk, is used to do
the constraint satisfaction. ThingLab extends the Smalltalk
class definition with constraints, types for instance variables
and dynamic access. Smalltalk does not keep information on
the type of instance variables, so ThingLab augments the class
definition to hold the type (reference to another object type
class) for each instance variable. Constraints that are defined
within the object type are also stored in the class definition.
An instance of an object type refers back to its class defini-
tion, so the constraint-satisfaction mechanism can retrieve the
defined constraints. Note, that a subtype also inherits all con-
straints that are defined for its supertypes. Thus, our im-

plemented typing mechanism does not allow an instance of a
subtype to be stored in a typed instance variable. This is
clearly an undesirable limitation, which we plan to remove (see
[Ege87\(BDFC87][Ege881). Removing it is not trivial, however,
since depending on how the instance variable is used, we may
need to ensure that the constraints on a subtype are not more
restrictive than those on the specified type.

All objects have to exist within ThingLab. Objects out-
side ThingLab are the display bitmap, the keyboard, special-
ized input devices (mice), or existing complex objects in an
application. These object are incorporated by either provid-
ing a special object in ThingLab t,hat holds the outside object

and controls all accesses to it (object holder), or by provid-
ing special filters that link existing objects within ThingLab to
those external objects (implementation filter atoms). Graphi-
cal primitives, such as line rendering or input sensoring [Ege86],
are examples for filter atoms to incorporate I/O-objects.

6 Conclusion

Our object-oriented paradigm for user interfaces based on con-
straints represents a new a.pproach to interfaces in a simulation
environment. Constraints are used as the basic building block
for interfaces. Constructors are provided to allow building of
structured interfaces in a declarative way. The feasibility of
the filter paradigm is shown by providing a working interface
generation tool. A video tape that shows the animation and
manipulation of the simulation as well as the generation and
manipulation of the user interface itself is available. The major
drawback of the current implementation is that, while it does

268

not influence the simulation process directly, it consumes most
of the computing power of the workstation, which eventually
has an indirect influence on the simulation. We are currently

Acknowledgements

working on a more efficient implementation of the constraint- This research has been funded by the National Science Foun-
satisfaction mechanism. dation under Grants No. IRI-8604923 and IRI-8604977.

Appendix

FilterPackThing
Filter-Render-Atom
FilterSensorAtom
FilterThing
FilterVariableObject
GenericEquality
GenericFilter
LineSegment
NewFilter
Point
Rectangle
SimFilter
SimGause
SimObje> t ‘.~im’FS’~~~iice~,.

1 . ..“““..‘“‘“‘““‘....““..‘““““““““’,..”””””””””’”‘“““..“..“”””””””““....“.......,,...” l,,.
TextThlng

. -.- - -~-‘-~mmF~i~.t-:
. : - - ;- ‘:~;:~~‘#F.i -3 :gJ

. -..
FaNodeSensor (Bottom, Bottom)
FaPointEquality (Point, Point)
FaPointlnkiect i&to&, W&m) ;~~~~i~~~~~~~r”~~Ginf”..‘Fil~~~~~~3~~

: . I . ~

.tion condition i.Filt.eiDc&.g . ’
rr:’ .? T

....i’“..“..“““‘i .,.......................i................,..............................,....................,...,.........,
FtlterDlsolavOblect
FilterFork - _
FilterMergeObject
FilterMouse

, FilterPackThing
FilterRenderAtom

’ FilterSensorAtom
’ FilterThing
1 FilterVariableObject
, GenericEquality
GenericFilter

1 LineSegment
1 NewFilter
1 Point
Rectangle
SimFiltor

JewFilter
2nsor (tzsottom, trottom)
pality (Point, Point)
Rect {Bottom. Bottom\

jimnliFr I
, ’ FaPointln

.----- move variable i~~P,i~~Se~s6~,~~~rai~f”“‘FiTfe.~M.a’u:~~ _...,....._._,_._.,._.___.,
: ,.. . . ._. .,...... . ., .., ., __. ._

source I. swy kank3 j iteration I
7-A condition ‘: riev, *’ -mm.

source> SimProducer I view> FilterDevic

#mouse> FilterMol

needleLine> LineSe

oint I> Point

269

q producer

<source:> SimProducer
<.produced> SmallInteger
<.productivity> Smalllnteg
<view> FilterDevice
<-mouse> FilterMouse
<#bitmap> FilterBitmap
<simGauge4> SimGauge
<.number> SmallInteger
<.needleLine:- LineSegment
<-frame:> Rectangle

<source> SimFactoryNew
<.producer> SimProducerNer

~~.;~,~~~~.~~~~~~:~~~~;~~!~!,~,~~.~~;~~;;~~;
<.,productivity> Smalllntegs
<,ws I> SimStatianNew
<.ws2> SimStationhJew
(.consumer> SimConsumer
<view> FilterDevice

, <.mouse> FilterMouse
<,bitmap> Filter-Bitmap
<simGauge4> SimGauge
<number> Smalllnteger
<needleLine> LineSegment
(,frame> Rectangle
<simBarChartS> SinsBarCha
<,dividend> Smalllnteger
<#divisor> Srnalllnteger
<*frame> Rectangle

270

References

[BDF*87] Alan Borning, Robert D&berg, Bjorn Freeman-
Benson, Axe1 Kramer, and Michael Woolf. Con-
straint hierarchies. In Proceedings of OOPSZA ‘87
Conference, pages 48-60, Orlando, FL, October
1987.

[Bor81] Alan Borning. The programming language aspects
of ThingLab, a constraint-oriented simulation lab-
oratory. ACM Transactions on Programming Lan-
guages and Systems, 3(4):353-387, October 1981.

[DMN68] O.J. Dahl, B. Myhrhaug, and K. Nygaard. SIM-
UZA 67 Common BaJe Language. Technical Re-
port, Norwegian Computing Center, 1968.

[Dui86] Robert A. Duisberg. Conntraint-Based Animation:

The Implementation of Temporal Constraint8 in the
Animus System. PhD thesis, University of Wash-
ington, 1986.

lEge86)

Pge871

Pge881

[EMB87]

[GR83]

[Gre85]

[Kre86]

(Le187]

Raimund K. Ege. The Filter - A Paradigm for In-
terfaces. Technical Report No. CSE-86-011, Oregon
Graduate Center, Beaverton, OR, September 1986.

Raimund K. Ege. Automalic Generation of User
Interfaces LIaing ConslraintJ. PhD thesis, Oregon
Graduate Center, 1987.

Raimund K. Ege. Defining constraint-based user
interfaces. IEEE Data Engineering, Special Issue on
Whatever Happened to Semantic Modeling, 11(Z),
1988.

Raimund K. Ege, David Maier, and Alan Borning.
The Filter Browser: Defining interfaces graphically.
In J. Bdzivin et al., editor, Proceedings of Euro-
pean Conference on Object Oriented Programming
(Springer verhg: Lecture Note8 in computer sci-

ence No. &76), pages 155-165, Paris, France, June
1987.

Adele Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison Wesley,
Reading, Mass., 1983.

Mark Green. Report on dialog specification tools.
In Guenther E. Pfaff, editor, Workshop on User
Interface Management System3 (1983: Seeheim-
Jugenheim, Germany), pages 9-20, Springer Verlag,
1985.

Wolfgang Kreutzer. System Simulation - Program-
ming Styles and Languages. Addison Wesley, 1986.

Wm Leler. Constraint Programming Languages.
Addison Wesley, 1987,

Biographical Note

Dr. Ege received his Ph.D. degree in computer science and
engineering from the Oregon Graduate Center in 1987, where
he was a research assistant to Prof. David Maier. He is cur-
rently Assistant Professor of Computer Science at the School
of Computer Science at Florida International University. His
general area of research is object-oriented concepts. He has in-
vestigated the application of these concepts to user interfaces
and software engineering and has published several papers in
these areas. The School of Computer Science at FIU has an ex-
tensive object-oriented programming laboratory that features
many of the current object-oriented programming languages.

Raimund K. Ege
School of Computer Science
Florida International University
University Park
Miami, Fla. 33199
(305) 554-2744
eger@servax.bitnet

271

