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Abstract 
Many simulation environments lack modern user interfaces. 

This paper describes an approach to user interfaces that is very 
well suited for object-oriented simulation environments. Our 
approach views user interfaces as constraints that are main- 
tained between separate objects. The contraints and the par- 
ticipating objects are modelled with a type language that cap- 
tures the important aspects of an interface. Some of these as- 
pects are the relationships and their types between various pre- 
sentation objects. The type language can be produced graph- 
ically with the help of an interactive interface generator that 
can define and manipulate user interfaces to typed objects. The 
implementation of this interface generator does not disturb a 
running simulation and is based on constraint-satisfaction. 
Keywords: simulation environment, user interfaces, object- 
oriented, constraints. 

1 Introduction 

The principles of encapsulation and abstraction are germane 
to the field of simulation. Recently these ideas have become 
fashionable under the heading of object-oriented programming. 
Many simulation systems follow these principles [Kre86] with- 
out necessarily calling themselves “object-oriented.” In this 
paper we introduce our ideas of how to apply those principles 
to user interfaces for simulation environments. We extend the 
common notion of object-oriented programming with the con- 
cept of “constraints.” Constraints are a natural extension to 
abstraction and encapsulation, they allow us to state simple 
facts about objects and their relationships. 

Many modern object-oriented languages derive their fea- 
tures from the programming language Simula [DMN68]. Sim- 
ula is a ALGOL-like language that was intended to support 
simulation systems. Smalltalk- [GR83], the prototypical ob- 
ject-oriented language, can also be used in simulating systems. 
ThingLab [Bor81], a constraint-oriented simulation laboratory, 
extended object-oriented Smalltalk with constraints. Animus 
[Dui86], an animation kit, extended ThingLab to provide no- 
tions of time and continuity for simulation animation. There 
are many other constraint languages and systems available, a 
survey of constraint languages and systems can be found in 
ILe187). 

We start this paper with a simulation example that serves 
as an introduction to our “Filter Paradigm” and illustrates the 
usage of constraints to specify interfaces declaratively. The 
second section of this paper explains the major building blocks 
of our interface paradigm: objects, constraints and filters. The 
third section re-examines the introductory example and shows 

how such an animated interface can easily be constructed in our 
system. The fourth section briefly explains our environment 
that allows us to interactively specify and manipulate such 
interfaces. Our system is implemented using ThingLab, the 
last section discusses some of its implementation aspects. 

2 Introductory Example: Factory 
Simulation 

We use an event-driven simulation as an introductory example 
for how to build interfaces according to the filter paradigm. 
We want to simulate a situation of a factory, where unfinished 
products enter the system at the “producer,” pass through two 
“stations,” where they are refined and finished, and leave the 
system at the “consumer.” Figure 1 shows the general flow 
of products. The producer produces goods at a constant rate, 

which can be varied. The stations can be manned with at 
most two workers. There is one input queue for each station. 
The input queue of station one is filled by the producer; the 
input queue of station two is filled by station one. The finished 
products of station one are consumed by the consumer without 
being queued. This simulation has two variables: (1) the rate 
at which products are produced at the producer, and (2) the 
number of workers that work at each of the stations. 

v I . 
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I 
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Figlirc 3: Screen Layout. for Sinnilation Exam1)lc 

2.1 Constraints for Interfaces 

We assume that this simulation exists in an object-oriented 
system. Our goal is CO provide a user interface for it. The user 
interface has to portray the actions that are happening within 
the simulation and provide some means to manipulate it. Fig- 
ure 2 shows a possible screen layout for the user interface. To 
the left is the producer; connected to it are the two stations 
with their respective input queues; to the right is the consumer. 
The simulation can be manipulated as it runs by adjusting the 
rate of products that are introduced into the system and by 
adding or removing workers from their stations. 

2.2 Application Interface Model 

According to the “Logical Model of a UIMS” [GreSFj] an inter- 
face can be viewed as consisting of three components (see Fig- 
ure 3): (1) the presentation component, (2) the dialog-control 
component, and (3) the application-interface-model compo- 
nent. The application interface model for our factory simu- 
lation contains all those objects that are used in the interface 
to the simulation. The model will include the following ap- 
plication objects: the producer, with its number of produced 
elements and the production rate; the two stations with their 
input queues and workers; and the consumer, with its amount 
of consumed elements. The simulation will modify the objects 
within the model as it progresses. Other information, like the 
connection between the four elements in our simulation or de- 
tails about event generation and timing, is not important to 
the interface and is local to the simulation application. 

Figure 3: User Interface Management System 

2.3 Display 

‘The data structures for the objects In the application model 
will be mapped into the screen representations as shown in 
Figure 2. We can express these mappings with constraints. 
The screen bitmap is divided into four subparts by constraints 
to comain the presentations of the objects. We can view this 
constraint as a filter from the screen bitmap, the source, to a 
list of four smaller bitmaps, the view. The constraint specifies 
how the screen bitmap is divided up. The subparts are for: the 
producer, station one, station two, and the consumer. Each of 
the four subparts is then conslrained to contain the display of 
its corresponding application part. The presentations of sta- 
tions are further constrained to display the length of the input 
queues and icons for each worker. We use constraints instead 
of display functions to ensure that changes to the application 
data are reflected on the screen automaticaIly, e.g., if the input 
queue shrinks or grows, or workers are added or removed from 
the stations, the display is updated immediately. 

2.4 User Input 

This user interface can influence the simulation in two ways: 

1. The production rate of the source can be adjusted by 
pointing with the mouse at the gauge above the pro- 
ducer and pulling its needle within the markers. The 
productivity rate in the application interface model for 
the producer is constrained to reflect the position of the 
needle within the gauge. 

2. Workers can be added or removed from the stations. This 
is done by moving the mouse cursor into the presentation 
area of one of either stations. If the mouse cursor points 
to an icon of a worker directly, then this worker can be 
removed by pressing the mouse button. TWO types of 
workers are available to be added to a station: experts 
and apprentices. A menu is available for the mouse but- 
ton to select what type of worker has to be added to the 
station. 

The input actions affect the objects in the application mo- 
del, which are constrained to be presented on the screen. After 
the application model has been changed according to an input 
or the ongoing simulation, these changes are immediately vis- 
ible on the screen. This example interface can be completely 
defined with constraints. The relations between model, repre- 
sentation and input media are declared. The procedurality of 

Figure 4: Filter Diagram for Factory Simulation Interface 
______ 
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the interface is derived from the fact that the constraints are 
maintained by a constraint-satisfaction system. 

Figure 4 shows the top level objects and constraints that 
are part of our simulation interface example. Filters represent 
the constraints that are defined for source and view objects. 
On its left side, the figure shows the four source objects from 
the application: producer, station 1, station 2, and consumer. 
On the right side it shows the view object that is the device 
used for this interface. For each of the source objects there is a 
filter that constrains it to be represented on a part of the view 
device. The “ProducerFilter” filter relates its source object, 
“producer,” to the first part, “part 1,” that is the extracted as 
the left-most part from the view “device.” It displays the pro- 
ducer on the subpart of the screen and accepts input from the 
user to change the producer’s productivity. Two “StationFil- 
ter” filters relate their source objects, “station 1” and “station 
2,” to the second and third part that are extracted as the mid- 
dle parts from the view “device.” They display the stations 
on the subpart of the screen and accept input from the user to 
add or remove workers. The “ConsumerFilter” filter relates its 
source object, “consumer,” to the fourth part that is extracted 
as the right most part form the view “device.” It displays the 
consumer on the subpart of the screen and does not accept 
user input. The LLdevice” is the view object in four “Extract” 
filters that divide it into four source parts. An “Extract” filter 
constrains its source object to be mapped into a subpart of its 
view object. 

3 Building Blocks 

The introductory example shows how the filter paradigm em- 
ploys objects, constraints and filters. Objects have structure 
that is defined by their types. Constraints can be defined for 
an object and between objects. A filter is an object that repre- 
sents a constraint that is defined between two objects of specific 
types. The following three sections will define these concepts 
informally. 

3.1 Objects 

Objects are present at both sides of a filter. In order to de- 
fine constraints on them we need information about their struc- 
ture. We define an object to be an atomic value or a structured 
coIlection of fields. Fields consist of a name, called address, and 
a slot. The address is used to identify what fields are subject 
to constraints; the slot contains a reference to another object. 
Structured objects are formed from fields, which can be iter- 
ated or conditional. Objects can be accessed by naming the 
address of a field. Subfields of fields can be accessed by con- 
catenating addresses. A list of addresses, separated by a dot, 
is called an acceJ8 path to an object. 

An object type describes a set of objects that have similar 
structure. Objects have similar structure if their fields have 
the same addresses and reference objects of the same type. An 
object type is a subtype of another type if its elements are 
more specific, i.e., they have the same and more fields, than 
the elements of the other type. An object type is a supertype 
of another type if its elements have fewer fields than the ele- 
ments of the other type. Constraints can be defined on fields 
to express restrictions on objects in an object type. 

Object Type Station 
numberOfWorkers -> Integer 
workers [numberOfWorkeraj -> Worker 

inNumber -> Integer 
inqueue finNumber] -> Queue 
constraints LessThan (numberDfVorkers, 3) 

end 

Figure 5: Object Type for Station 

An example object type is Station (Figure 5). It con- 
tains four addresses: numberOfWorkers, workers, inNumber 
and inqueue. They name the four fields of type Integer, ar- 
ray of Worker, Integer, and Queue, respectively. The type 
Integer is atomic and we assume that the types Worker and 
queue are already defined. The iteration in the worker ad- 
dress uses the address numberOfWorkers to express how many 
workers fields are defined for this type. The number0fUorkers 
address is also used in the constraints statement, which con- 
strains the worker field to hold at most two workers. 

Subtyping is an important notion. An object type can be 
defined to be a subtype of another type. The fields of the 
supertype are then inherited by all elements of the subtype. 
Supertype and subtypes form a type hierarchy. A filter that is 
defined to accept objects of a specific type also accepts objects 
of their subtypes. The constraints in a filter are expressed with 
access paths that name addresses of fields. A subtype has at 
least all fields of its supertype, therefore the addresses in the 
access paths will exist. 

Figure 6 shows the three object types Worker, Apprentice 
and Expert. Object type Worker is a supertype of Apprentice 
and Expert. Object type Apprentice specifies in the inherit 
from statement that it will inherit all fields from object type 
Worker, and it adds one more field, level, of type integer. 
Object type Expert also inherits all fields from Yorker and 
adds a years field. Whenever an object of type Uorker is 
required we can now use objects of type Apprentice or Expert. 

We chose this object-type model because it lets us describe 
the structure of objects that are accepted for filters; it provides 
addresses, i.e., symbolic references to parts of the objects, to 

Object 

end 

Object 

end 

Object 

end 

Type Worker 

inherit from Person 
salary -> Integer 
throughput -> Integer 

Type Apprentice 
inherit from Worker 

level -> Integer 

Type Expert 
inherit from Worker 

years -> Integer 

Figure 6: Subtypes of Worker 
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express constraints; it provides dynamic fields to describe ob- 
jects of different structure with the type; and it distinguishes 
sub- and supertypes. Our object types are sufficient to char- 
acterize the objects that occur in our filter paradigm. 

3.2 Constraints 

Constraints are the backbone and the basic bui1din.g tool in 
our filter paradigm:. filters represent constraints and are used 
to express interfaces; constraints are used to place conditions 
on objects as part of the object type definition. A constraint is 
a condition that is expressed with access paths. The condition 
must be kept true upon updates to objects. The mechanism to 
maintain c0nstraint.s is called a constraint-satisfaction system. 

3.3 Filters 

A filter represents a package of constraints that have to be 
maintained between two objects. A filter is defined for specific 
types of objects. We have to distinguish atomic filters (filter 
atoms), which have to be provided by an implementation, and 
higher-level filters, which are constructed from atomic filters 
or other constructed filters. 

Like an object type, a filter type describes a set of filters 
that have similar structure. The fiIter type defines the subfilter 
of a filter. Our filter specification language provides construc- 
tors to define filter types. The basic const.ructor declares an 
arbitrary collection of subfiiters. The iteration constructor de- 
clares a variable number of identical subfilters. The condition 
constructor declares a conditional subfilter, i.e., the subfilter 
exists only if an expression is true. A subflter is declared by 
naming its type and its associations to the source and view ob- 
jects within the containing filter type. The set of subfilters of 
an instance of a filter type is called a configuration. The config- 
uration can change with time since the iteration and condition 
constructors depend on other objects. 

In general, we can distinguish end-to-end and side-by-side 
subfilter combination. In end-to-end combination, a filter is 
constructed using a chain of subfilters. The source object of the 
first subfilter is the source object, of the constructed filter. The 
view object of the first subfilter is also the source object of the 
next subfilter. The view object of the last subfilter is the view 
obje‘ct of the constructed filter. Two adjacent subfilters in the 
chain agree on a common intermediate object. Figure 7 shows 
how a filter is constructed from two subfilters. The source of 

the left subfilter is the source of the constructed filter. The 
view of the first subfilter is the source of the second subfilter. 
The view of the second subfilter is the view of the constructed 
filter. Note that this filter construction introduces intermediate 
variables as the connecting objects. 

Fie;ure 7: End-to-End Combination 
___- 

Figure 8: Side-by-side Combination 

In side-by-side combination a filter is constructed using a 

set of two or more subfilters. The source and view objects of 
the subfilters are parts of the source and view object of the 
constructed filter. Figure 8 shows how a filter is constructed 
from two subfilters. The source of the first and second subfilter 
are part of the source of the constructed filter. The view of the 
first and second subfilter are part of the view of the constructed 
filter. 

End-to-end and side-by-side combination are the most gen- 
eral form of constructing filters. Any specific constructed filter 
will probably represent a mixture of these two general forms. 

4 Factory Simulation: Revisited 

Object 

end 

Obj act 

end 

Object 

end 

Object 

end 

Using the concepts of “object” and “filter” we can now 
define our example interface in more detail. The application 
interface model for the factory simulation contains objects of 
type Producer, Consumer and Station. The structure of these 
objects is given by their object types (Figure 5 and 9). The 
objects for the simulation example are all aggregated into the 
object type Factory (Figure 9). Our factory has exactly one 

-- 
Type Producer 
productivity -> Integer 
produced -> Integer 

Type Consumer 
consumed -> Integer 

Type Factory 
producer -> Producer 
vsl -> Station 
us.2 -> Station 
consumer -> Consumer 

Type Device 
input -> Mouse 
out put -> Bitmap 

Figure 9: Object Types ftlr Factory Simulation -_ 
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Filter Type FactorySimulation (source: Factory, view: Device) 
var 

partC41 -> Device 
make set of 

ProducerFilter (source.producer, partril) 
StationFilter (source.vsl, part [23 ) 
StationFilter (source.as2, partC31) 
ConsumerFilter (source. consumer, part [41) 
iteration 4 times i 

Extract (part Cil , view) 

end 

Figure 10: Filter Type for Factory Simulation 
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tllc> tl(+c*c> m-v :nv using to comiulnliriltf~ with t.hc user. 0l)jrc.t consumer of the factory is rendered in its part using a Con 
t-lx’ Device luts n fi&l f<jr au input mrtlium of typp Mouse and sumerFilter subfilter. The iteration statement defines four 
iul olltpl~t m(*(lilun of t-1” Bitmap. subfilters to extract the four part variables from the view de- 

Figlur 10 shows the txl)e tlrfiuition fin the FactorySimula- vice. Figure 4 showed the filter configuration for the factory 
tion filt,c>r t,yl)e. A FactorySimulation filt.rr accr-pt.s an ol,- simulation filter. 
j~~c~t of tyl)(s Factory as SOI~U nut1 an oI,jcct of type’ Device The FactorySimulation filter decomposes the interface 
as Gaw. T11ca var st.atrmnlt tlc:fiues four iuterluediatr I-ariablrs into sub-constraints that are represented by subfilters. Each 
with au it,rr;ltc,tl fic,l<l. part [41 Tl IC f 01tr I-arial&s arr of tyl>p of these subfilters has to be defined separately using other con- 
Device ~ucl arc’ 11sc~l t.c) c<nmr~~t snbfiltc~rs. Thr Itlake st,at.e- strutted or atomic filters. We give here the definition of the 
1w11t <IC’fillPS t1w snl,filt.~rs that, nl’(’ wwl to rrmstr11rt fi1tcY+ of 
this t,yljc. The first s~\l)filtc~r. ProducerFilter. coustrilius t 11~ 

StationFilter to show the expressiveness of filter types. 

producer l’art of thr source factory t.c) 1,~ tlisl)la:~<~tl n-itlliu t.hc 
Figure 11 shows the StationFilter filter type, which is 

part [l] vnriai)lr. This subfiltcsr is rcnmrct.f~tl with its SO~~XY~ 
defined for source objects of type Station and view objects 

to t.ll<‘ producer fic>ltl of source. csprc~sed nit11 tllc ac’cpss loath 
of type Device. It displays the station for our simulation 
and allows the user to add or remove workers from it,. As in 

‘Lsource .producer.” ilud with its \-ic>n- to tlif, part Cl] sari- 
;rl,lc~. 

the FactorySimulation filter, it defines variables and is con- 

Filter Type StationFilter (source: Station, view: Device) 
var 

left, part [Zl -> Device 
WorkerDetected [21 -> Boolean 
selection -> Integer 
expert -> Expert 
apprentice -> Apprentice 

make set of 
QueueRender (source.inNumber, left) 
Extract (left, view) 
iteration 2 times i 

WorkerRender (source .vorker [i], part [i] ) 
Extract (part [i], view) 
DetectCursor (part [i], vorkerDetectedCi] > 
condition vorkerDetected[i] 

condition source. worker [i] isNil 
PopUpMenu (selection, “Expert, Apprentice”) 
condition selection = 1 

Equality (expert, source.worker[il) 

condition selection = 2 
Equality (apprentice, source.aorkerCi]) 

condition source.uorker[il notNil 
Equality (NIL, source.uorker[i]) 

end 

Figure 11: Filter Type for Station 
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strutted from subfilters. The first subfilter constrains the num- 
ber of products in the input queue of the station, inlumber, 
to be displayed witlnin the left variable. The left variable is 
extracted from the viev device. 

Since the part variable and the worker field of the station 
are iterated fields, we can use an iteration constructor that 
ranges over the number of workers per station. Each worker is 
rendered as icon within the corresponding part variable with a 
WorkerRender subfilter, which is provided as a primitive. The 
part Cf.1 variable is extracted from the view device. A Boolean 
variable (workerDetected) is used in aDetectCursor subfilter 
to detect whether the cursor is pointing at a worker within 
a station. The condition constructor (condition) is used to 

evaluate the Boolean variable. The constructor defines further 
subfilters that only exist if the condition is true. 

If a worker field is not filled, i.e., it contains the value 
NIL, then a PopUpMenu subfilter is defined that causes a pop- 
up menu to appear on the screen. The user can select from 
two types of workers: expert or apprentice. They are both 
subtypes of Worker, so they can be referenced in the worker 

field of Station that is of type Worker. The worker field is 
related to expert or apprentice variable with an Equality 
filter. 

If the worker field holds a worker, i.e., it does not contain 
the value NIL, then this worker is removed. The removal is 
done by deiining a.n Equality subfilter with source NIL and 
view source.aorkerCil, which will set the i-th worker field 
to due NIL. 

The StationFilter filter type uses all three subfilter con- 
structors: set, iteration and condition. The set constructor 
defines a static configuration of subfilters, while the iteration 
and condition constructors define a dynanlic configuration of 
subfilters that depends on the state of the source and view 
objects. 

5 Defining Interfaces Graphically 

The introductory example showed how we can decompose in- 
terfaces using constraints. Filter types are packages of con- 
straints that describe interfaces. In order to define interfaces 
graphically we represent filter types in an object-oriented SYS- 

tem and provided a graphical tool that manipulates the repre- 
sentation. Our tool, the Filter Browser (EhQ387], can define, 
manipulate and test filter types graphically. The filter browser 

has been implemented in Smalltalk-80. 
The filter browser creates the classes within Smalltalk that 

represent filter types. It also maintains a sample filter instance 
(prototype) that can be used to instantiate and test the filter 
type. Object types can be implemented directly in such a 
system as classes where instances of classes are instances of the 
object type. The filter browser cannot be used to define object 
types, they are modeled as regular classes within Smalltalk. 
Except for the name of a new filter type, the filter browser 
specifies filter types entirely graphically, using menus, icons 
and a pointing device. 

In defining filter types, we distinguish the external and in- 
ternal parts of the definition. A session with the filter browser 
has three different steps. Step one represents the external, 

step two the in.ternal definition, and step three tests the filter 
type. In step one, the name of the filter type and the type of 
source and view objects are gven. In step two, the variables 
and subfilters that participate in filter constructors, such as 
sequence, iteration and condition are specified. In step three, 
a constructed jilter type is inslantiated and exercised. The de- 
signer of a filt’er type will first proceed from step one to step 
1.~0 and then test the filter type in step three. Then he can 
go back to step two and add or delete subfilters and variables. 
At any time he can test the filter type in step three. If he goes 
back to step one and changes the source or view object type 
he will invalidate the interna. parts of the filter type and has 
to redo step two from the beginning. 

The appendix includes three screen snapshots of the Filter 
Browser as the user interface for the factory simulation example 
is generated, <as well as a screen snapshot of the resulting user 
interface. 

ThingLab [BorSl], an extension to Smalltalk, is used to do 
the constraint satisfaction. ThingLab extends the Smalltalk 
class definition with constraints, types for instance variables 
and dynamic access. Smalltalk does not keep information on 
the type of instance variables, so ThingLab augments the class 
definition to hold the type (reference to another object type 
class) for each instance variable. Constraints that are defined 
within the object type are also stored in the class definition. 
An instance of an object type refers back to its class defini- 
tion, so the constraint-satisfaction mechanism can retrieve the 
defined constraints. Note, that a subtype also inherits all con- 
straints that are defined for its supertypes. Thus, our im- 

plemented typing mechanism does not allow an instance of a 
subtype to be stored in a typed instance variable. This is 
clearly an undesirable limitation, which we plan to remove (see 
[Ege87\(BDFC87][Ege881). Removing it is not trivial, however, 
since depending on how the instance variable is used, we may 
need to ensure that the constraints on a subtype are not more 
restrictive than those on the specified type. 

All objects have to exist within ThingLab. Objects out- 
side ThingLab are the display bitmap, the keyboard, special- 
ized input devices (mice), or existing complex objects in an 
application. These object are incorporated by either provid- 
ing a special object in ThingLab t,hat holds the outside object 

and controls all accesses to it (object holder), or by provid- 
ing special filters that link existing objects within ThingLab to 
those external objects (implementation filter atoms). Graphi- 
cal primitives, such as line rendering or input sensoring [Ege86], 
are examples for filter atoms to incorporate I/O-objects. 

6 Conclusion 

Our object-oriented paradigm for user interfaces based on con- 
straints represents a new a.pproach to interfaces in a simulation 
environment. Constraints are used as the basic building block 
for interfaces. Constructors are provided to allow building of 
structured interfaces in a declarative way. The feasibility of 
the filter paradigm is shown by providing a working interface 
generation tool. A video tape that shows the animation and 
manipulation of the simulation as well as the generation and 
manipulation of the user interface itself is available. The major 
drawback of the current implementation is that, while it does 
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not influence the simulation process directly, it consumes most 
of the computing power of the workstation, which eventually 
has an indirect influence on the simulation. We are currently 

Acknowledgements 

working on a more efficient implementation of the constraint- This research has been funded by the National Science Foun- 
satisfaction mechanism. dation under Grants No. IRI-8604923 and IRI-8604977. 

Appendix 

FilterPackThing 
Filter-Render-Atom 
FilterSensorAtom 
FilterThing 
FilterVariableObject 
GenericEquality 
GenericFilter 
LineSegment 
NewFilter 
Point 
Rectangle 
SimFilter 
SimGause 
SimObje> t ‘.~im’FS’~~~iice~,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 . ..“““..‘“‘“‘““‘....““..‘““““““““’,..”””””””””’”‘“““..“..“”””””””““....“.......,,...” l,,. 
TextThlng 

. . . . . -.- - -~-‘-~mmF~i~.t-: 
. : - - ;- ‘:~;:~~‘#F.i -3 :gJ 

. -.. 
FaNodeSensor (Bottom, Bottom) 
FaPointEquality (Point, Point) 
FaPointlnkiect i&to&, W&m) ;~~~~i~~~~~~~r”~~Ginf”..‘Fil~~~~~~3~~ . . . . . . . . . . 

: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . ~ . . . . . . . . 

.tion condition i.Filt.eiDc&.g . . . . . . . . . . . . . . . . . . . . . . . . . . . ’ 
rr:’ .? T 

....i’“..“..“““‘i .,.......................i................,..............................,....................,...,........., 
FtlterDlsolavOblect 
FilterFork - _ 
FilterMergeObject 
FilterMouse 

, FilterPackThing 
FilterRenderAtom 

’ FilterSensorAtom 
’ FilterThing 
1 FilterVariableObject 
, GenericEquality 
GenericFilter 

1 LineSegment 
1 NewFilter 
1 Point 
Rectangle 
SimFiltor 

JewFilter 
2nsor (tzsottom, trottom) 
pality (Point, Point) 
Rect {Bottom. Bottom\ 

jimnliFr . . . . . . . . . . . I 
, ’ FaPointln 

.----- move variable i~~P,i~~Se~s6~,~~~rai~f”“‘FiTfe.~M.a’u:~~ _...,....._._,_._.,._.___., 
: ,.. . . ._. .,...... . ., .., ., __. ._ 

source I. swy kank3 j iteration I 
7-A condition ‘: riev, *’ -mm. 

source> SimProducer I view> FilterDevic 

#mouse> FilterMol 

needleLine> LineSe 

oint I> Point 
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q producer 

<source:> SimProducer 
<.produced> SmallInteger 
<.productivity> Smalllnteg 
<view> FilterDevice 
<-mouse> FilterMouse 
<#bitmap> FilterBitmap 
<simGauge4> SimGauge 
<.number> SmallInteger 
<.needleLine:- LineSegment 
<-frame:> Rectangle 

<source> SimFactoryNew 
<.producer> SimProducerNer 

~~.;~,~~~~.~~~~~~:~~~~;~~!~!,~,~~.~~;~~;;~~; 
<.,productivity> Smalllntegs 
<,ws I> SimStatianNew 
<.ws2> SimStationhJew 
(.consumer> SimConsumer 
<view> FilterDevice 

, <.mouse> FilterMouse 
<,bitmap> Filter-Bitmap 
<simGauge4> SimGauge 
<number> Smalllnteger 
<needleLine> LineSegment 
(,frame> Rectangle 
<simBarChartS> SinsBarCha 
<,dividend> Smalllnteger 
<#divisor> Srnalllnteger 
<*frame> Rectangle 
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