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ABSTRACT

This paper explores the asymptotic covariance structure of the mean
and standard deviation estimators used in the regenerative method of sim-
ulation output analysis. It is shown that the asymptotic covariance of the
mean and standard deviation estimators does not depend on the choice of

return state.

1. INTRODUCTION

The regenerative method of simulation output analysis uses the fact that
the interblocks of a regenerative stochastic process are independent and
identically distributed to construct a consistent estimator of the variance
constant used to derive confidence intervals. If a process has more than
one regeneration point, the estimator will have the same limiting value
no matter which point is used to block the observations. While all such
estimators have the same limit, different regeneration points may yield
more or less variable variance estimators. A common rule of thumb for
obtaining an estimator with low variance is to choose the regeneration
point that has the least mean regeneration time.

Glynn and Iglehart (1987) proved a bivariate central limit theorem
for the regenerative point estimator and the standard deviation estimator.
Numerical calculations presented in the paper showed that the ofl-diagonal
element in the covariance matrix appeared to he independent of the return
state used to delimit regenerative cycles. The purpose of this paper is to
derive an expression for the covariance matrix in the case of a class of
Markov chains. The expressions derived show that the off-diagonal term
is independent of the return state. Some insight is gained into the nature
of the variance of the variance estimators for different return states. An
example is given where the state that ylelds the least variable variance
estimator has the greatest mean regeucration time.

The next section introduces the notation. Section 3 presents two
lemmas that are used in sertion 4 to provide a simple expression for the

covariance matrix. Section 5 contains a simple example of a chain with

three states.

2. NOTATION

Let {X,;n=0,1,2,---} be a Markov chain with state space S, where S is
a finite set or a subset of a Euclidean space. The probability law of the
chain corresponding to initial probability distribution ¢ will be denoted
P,. We write E, for the expectation with respect to the probability P,
and if ¢ is degenerate at z, then we write P, and E,.

For a subset A of S, s4 will denote the first return time of the chain
to A and 74 will denote the first hitting time of the set A (s and 7 coincide

unless the chain starts in A, in which case s4 = 0). We will write s; and
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7 instead of s(z} and 7yz3.

We will consider only chains that are uniformly p-recurrent (Orey
(1971)); that is, there exists a o-finite measure ¢ such that if ¢(A4) > 0,
then Pylrqa > n] — 0 uniformly in £ € §. Uniformly ¢-recurrent chains
have a unique invariant probability measure, which will be denoted by .
We assume that the chain is aperiodic.

Throughout the paper z will denote a fixed return state with 7({z}) >
0 (so that E;(r;) < oo). When subscripts are omitted the state will be
understood to be z: e.g. E(7) = E.(7:).

Let f be a bounded real valued function on S, with E, f(X) = 0.

3. MOMENT CALCULATIONS
Let r and Z be a random variables that have the same distributions as 7,

and
D f(Xa),
n=1

respectively, under P,. In this section we will derive expressions for mo-
ments of the form E(r¢Z7); these moments will be used in the next section
to describe the covariance matrix. We start by defining several quantities
that depend on the transition probability of the chain, but not on the

return state z. Let
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We will express moments of the fornm E(7Z7) in terms of the above
constants and also the following quantities that do in general depend on

the choice of return state 2:

X1 = Ex [f(‘\’)EX(sz)] s

X2 = Ex [fHX)Ex(s:)] 42 Ex [f(Xo)f(Xn)Ex, (s:)],

n=1

m = AEA(Xa)] = ELf(Xa)]} = = Y E:[f (X)),
n=1 n=1

and
o

e = Z[Vz - a’zz,n]y

n=t
where

02, = E[f(X)+2 Y Blf(Xa)f(Xagm)).

m=1

The following two lemmas can be proved using methods similar to
those in Chung (1967); in particular, Chung’s Theorem 1.14.7.

Lemma 1: If
s
E, (Tz Z lf(Xn)l) < o0
n=1
then
E[rZ] = E(r)(x1 +m).
Also

EB[r2%] = 207 [B(r) + E()] +28(r) 3 nEalf(Xo) (X))

n=1
2 2 2
+E(T)((xl +m)  +xi+ai +xz+ U2)4

Lemma 2: If the series in the definitions of m,, mgs, and my converge
absolutely, then
E (ZZ) = E(r)ma,
E(Z% = E(7) [ma + 3ma (x1 + m)},

and

E(Z%) =
a9 o 9
B(r) (m4 +4mz(x1 + m) +6ma ((,\'1 +m) +xi+m X2+ nz))

4. ESTIMATOR COVARIANCE MATRIX
Let Sp = 0, and S, = f(Xo)+ -+ f(Xn-1). Under the assumptions

on the chain described in section 2,,
1E(52) - o?
n n

as n — o0, and
n~V28, = N(0,0?)

as n — 00, We are interested in estimating o2 in order to obtain confidence
intervals. In the regenerative method, S, is divided up into independent
blocks by starting a new block whenever a regeneration point is reached.

If Z; is the ith block, then
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K
.1 2 .

o? = Jim ;E(Zl bt Zye, ) = ﬂh_'ngo oy E . E(25)
i=

as n — oc, where K, i3 the number of regenerations in n observations.
Choosing, different regeneration points will in general give different esti-
matcr variances.

Let r(n) and s(n) denote the regenerative mean and standard de-
viation estimators, respectively, based on observation of the chain up to
time n. It is shown in Glynn and Iglehart (1987) (for general regenerative

processes) that

n’2 (r(n), s(n) — 3) = (r,s) ~ N(0, D),

where
Dy = E(Z%)/E(),
E(Z%) - 30%E(rZ)
1)12 = o ]
20 E(T)
and

Dy = (E(2%) - 20 E(rZ27) + o*E(r?)) / (46 E(7))
~(4E(rZ)E(Z°) — 852 [E(+Z)]?) / (407 E(7)?) .
Usingz the {formulas from the lemmas, the covariance matrix can be written

2 N3
o 2o

D= s
¢+ xi+ i
+x2 + 72

my
20

where

is independent of the return state. The first term in the expression for ¢ is
proportional to the (limiting) coefficient of kurtosis of the random variable
Sn.

be highly variable no matter which return state is used. Notice that the

Thus if 5, has large kurtosis, the standard deviation estimator will

diagonal term is also independent of the return state z; since as previously
mentioned, ¢? and m3 are independent of the return state.
Let x, be the coeflicient of skewness for the random variable S,, under

the initial distribution =;

_E(S3)
" B2

Clearly k,, is defined independently of the return state, and

né lim k, = 1—71—;
-+ 0O o

With this notatioy, Dy = 15025. For any symmetrical chain, for example
a birth and death process on {—N,---,0,- -, N} for which the birth and
death parameters as well as the values of the function f are symmetrical

about 0, » = 0 and so » and s are orthogonal.
Choosing a return state to minimize variance of the standard deviation
estirnator is equivalent to choosing a return state to maximize correlation

between the estimators for the mean and the standard deviation.



5. EXAMPLE
Consider the Markov chain with state space S = {1,2,3} and transi-

tion matrix

1—¢ ¢ 0
P=|1/2 0 1/2},
0 e l—c¢

for 0 < € < 1. The stationary distribution is

__ ( 12 1 )

TTA\TF 2242 252 )
Let f = (~M,0, M) for some M > 0, so that E, f = 0. The values of the
quantities that vary with state are given below (the values for state 3 are

the same as for state 1).

State Ui X3 72 X2
13 W s g e
9 0 0 %QZT_:T) “Ml’fs_q
The difference in variances is

Da(1) = Das(2) = 2 (%)

while
1+¢
E\(r) = E3(m3) = 2+ 2¢ — 2, Ea(m2) = --:—-—-»oo

as € | 0. Therefore, while the mean regeneration time for state 2 grows
without bound as € | 0, it gives the least variable estimator, with the
difference going to oo as € | 0. Essentially all of the difference is accounted
for by the n? and x3 terms.

In this example, the kurtosis of S, increases as M increases or ¢
decreases, so the variance of all 3 standard deviation estimators increases
as € | 0. Since the chain is symmetrical, k = 0 and the mean and standard

deviation estimators are asymptotically independent.

6. CONCLUSION

The covariance matrix that appears in the central limit theoreimn for
the regenerative mean and standard deviation estimators has been ex-
pressed in a form so that several conclusions could be reached. The off-
diagonal term, representing the covariance between the point and standard
deviation estimators, is independent of the return state chosen for block-
ing. The expression for the variance of the standard deviation estimator
shows that the variance is increased by kurtosis in the partial sum random
variables. The variance does depend on the return state used for blocking,
and an example showed that the state with the shortest mean return time

can have the greatest variance.
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