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AUSTRACT 

This paper explores the asymptotic covariance structure of the mean 

and standard deviation estimators used in the regenerative method of sim- 

ulation output analysis. It is shown that the asymptotic covariance of the 

mean and standard deviation estimators does not depend on the choice of 

return state. 

1. INTRODUCTION 

The regenerative method of simulation output analysis uses the fact that 

the interblocks of a regenerative stochastic process are independent and 

identically distributed to construct a consistent estimator of the variance 

constant used to derive confidence intervals. If a process has more than 

one regeneration point, the estimator will have the same limiting value 

no matter which point is used to block the observations. \Vhile all such 

estimators have the same limit, different regeneration points may yield 

more or less variable variance estimators. A con,,,,ol, rule of thumb for 

obtaining an estimator witlr low variance is to choose the regeneration 

point that has the least mean regeneration time. 

Glynn and Iglehart (lDS7) p roved a bivariate central limit theorem 

for the regenerative point estimator and the standard deviation estimator. 

Numerical calculations preseuted in the paper showed that the off-diagonal 

element in the covariance matrix appeared to be independent of the return 

state used to delimit regenerative cycles. The purpose of t,his paper is to 

derive an expression for the covariance matrix in the case of a class of 

hIarl;ov chains. The expressions derived show that the off-diagonal term 

is illdependcllt of the return state. Some insiglrt is gained into the nature 

of the variance of the variance estimators for different returu states. An 

example is given where the state that yields the least variable variance 

estimator has the greatest mean regcneratiorl time. 

The nest section introduces the notatiou. Section 3 presents two 

lemmas that are used in sertion 4 to provide a simple expression for t,he 

covariance matrix. Section h contains a simple example of a chain with 

three states. 

2. NOTATION 

Let {X,; n = 0, 1,2,. .} be a Markov chain with state space S, where S is 

a finite set or a subset of a Euclidean space. The probability law of the 

chain corresponding to initial probability distribution ‘p will be denoted 

5. We write E, for the expectation with respect to the probability P,, 

and if p is degenerate at z, then we write P, and E,. 

For a subset A of S, SA will denote the first return time of the chain 

to A and ra will denote the first hitting time of the set A (s at1 T coincide 

unless the chain starts in A, in which case s* = 0). 1% mill write s, and 

We will consider only chains that are vnifornlly p-recurrent (Orey 

(1971)); that is, there exists a o-finite measure ‘p such that if y(A) > 0, 

then Pz[rA 1 n] - 0 uniformly in z E S. Uniformly rp-recurrent chains 

have a unique invariant probability measure, which will be denoted by ?i. 

We assume that the chain is aperiodic. 

Throughout the paper z will denote a fixed return state with ~({t}) > 

0 (so that E,(r,) < co). When subscripts are omitted the state will be 

understood to be z: e.g. E(T) = !&(~a). 

Let f be a bounded real valued function on S, with &f(X) = 0. 

3. MOMENT CALCULATIONS 

Let T and Z be a random variables that have the same distributions as il 

and 

km), 
“=I 

respectively, under P,. In this section we will derive expressions for mo- 

ments of the form E(r’Zj); these moments will be used in the nest section 

to describe the covariance matrix. We start by defining several quantities 

that depend on the transition probability of the chain, but not on the 

return state t. Let 

and 

+o~(~,[f(xo)~f(X,)~] - En[f(Xo)21E,[f(X,)21} 
“=I 

+12 5 2 iE~-[f(xo)‘f(x”)f(x”+~)l- 
“=I rn=l 

En[f(Xo)21Er[f(~n)f(~n+,n)l} 
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We will express moments of the form E’(7’Zj) in terms 01‘ the abow: 

constans and also the fcsllowing quantities that do in general depend 011 

the choice of return state z: 

sz = E, [f*(x)Ex(s,)] + 2 5. [f(Xo)f(xn)Ex~(s.-)] , 
“=I 

and 

The following two lemmas can be proved using methods similar to 

those in Clung (19G7); in particular, Cbung’s Theorem 1.14.7. 

Lemma 1: If 

1+-Z] = E(r) (XI + 71). 

E [TZ”] = fv’ [E(r) + E(T’)] + 2E(r) 2 nE,[f(Xo)fiX,,)] 
“=I 

-+E(r) (c X1+~1)2+Xilfl,il+x2+172 > 

Lemma 2: If the series in the definitions of mz,m3, and mq converge 

absolutely, then 

E (Z’) = E(r)ml, 

and 

E(Z3) = E(T) [7J13 + 3nr3 (Xl + VI)] , 

E (24) = 

E(r) (w + 4,w (x: + 71) + Gm ((SI + w)’ + x; + ‘7; + xz + 712 >>. 

4. ESTIMATUR COVARIANCEMATRKX 

Let So = 0, and Sn == f(Xo) +. .+ f(X,-1). Under the assumptions 

on the chain described in section 2,,, 

+ (Sn”) - 2 

as n + 30, and 

n-“2s” =+ Aqo, 2) 

as n -+ IX. We are interated in estimating ~2 in order to obtain confidence 

hterd~. In the regenemtive method, S, is divided up into independent 

blocks by starting a new block whenever a regeneration point is reached. 

If Zi is the if/r block, tbeu 

,xi 72 i cc, where Ii, i:s the number of regenerations in n obsenatxons. 

Choosing <lifferent regaleration points will in general give different esti- 

mater variances. 

[,et r(n) and s(n) denote the regenerative mean and stnndwd *de- 

vlati.xl estimators, respectively, based 011 observation (of the cbaiu up to 

time n. It is shown in Glynn and Iglebart (1987) (for general regeuerstive 

procwca) that 

““2(r(n),s(n) - 0) =$ (r,3) - nr(O,D), 

l,lz = E(Z3) - 3c2E(rZ) 
2aE(r) ’ 

and 

Dz? = (E(Z4) - 2o*E(rZ’) + c+E(r*)) / (4n’E(r)) 

- (4K(rZ) E(Z3) - S,T?[E(TZ)]2) / (4cT?E(r)?) 

Usin; the -formulas from the lemmas, the covariance matrix call be written 

D= 

is independent of the return state. The first term in tlre expression for c is 

proportional to tire (limiting) coefficient of kurtosis of the random variable 

S,. Tbus if S,, h.ls large kurtosis, t.be standard deviation estimator will 

be bigbly variable no matter which return state is used. Notice that tbe 

diagonal term is also independent of the return state T, since as previously 

mentioned, u2 and m3 are independent of tbe return state. 

I,et R, be the coefficient of skewness for tile random variable S, under 

the initial distribution z; 

Clearly R, is defined independently of the return state. and 

Wit11 this noLatio.l, 012 = &u’K. For any symmetricd chain, for esa~nple 

a birth and death process 01, {-N, , 0, , N} for wbicb the birth and 

death paramt%.ers as well as the values of the function f are symmetrical 

about 0, h = 0 and so T ad s are ortl~ogonal. 

Choosing a return state to milrimize variance of the standard deviation 

estimator is equivalent zo choosing a return state to maximize cow&t ion 

between t.he estimators for the mean and the standard deviation. 
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5. EXAMPLE 

Consider the hfarkov chairs with state space S = {l, 2,3) and transi- 

tion matris 

pc[llTf p ‘+I; 

for 0 < c < 1. The stationary distribution is 
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