
Proceedings of the 1988 Winter Simulation Conference 
M. Abrams, P. Haigh, and J. Comfort (eds.) 

Bootstrap and correlated d’ata 

David Alan Grier 
George Washington TJniversity 

Department of Statistics/ 
Computer and Information Systems 

Washington, DC 20052 

I. A Simplified Example 
Eleven black bank tellers work at a business that employs 120 
whitest. After one of the black employees is denied promotion 
four times, she sues the bank for racial discrimination. One of 
the statistics that is used in the trial is the number of black 
employees that are paid less than the average white salary (9 
out of the 11). This statistic is noted by one of the judges on 
the trial as seeming to affirm the plaintiff’s case, but little is 
done to analyze it. 

A naive approach to analyze the statistic would be to note 
that the number of blacks earning less than the number of 
whites is simply a sign statistics, with a binomial distribution. 
We will denote this statistic &I. In this case, we are testing 
the null hypothesis that the distribution of the black salaries 
is equal to that of the white salaries. In this circumstance, we 
assume that a black is equally likely to be above or below the 
mean, and hence the probability density of Sir is: 

Pr(Sr1 = Ic} = ‘k’ 
0 

0.511, 

where (g> is simply the binomial coefficient. in the case given, 
the one sided p value! is 

Pr(Sil 2 9) = 0.037, 

which, at a 0.05 level, would be strong enough evidence to 
reject the null hypothesis and to accept the claim that blacks 
were paid less than whites. 

There is a problem with this naive approach, because the 
mean of the white salaries is a random quantity. The business 
had a fairly constant turnover of staff and the average salary 
of the white staff depended on the experience and seniority 
of the white employees. This introduces an unwanted correla- 
tion structure into our problem. Before, going further, let us 
introduce some notation. 

Let the random variables Wi, i = 1,. . . , NW be the salaries 
of the white employees in our sample, let us further assume that 
these random variables are independent, having mean pw and 
variance a&. 

Also, let the random variables Bi i = 1,. . . , Nn be the 
salaries of the black employees in our sample. Again, we as- 
sume that they are independent, having mean pw and variance 
ai. Further more, we assume that Bi is independent of Wj 
l<_isNnandlsj<Nw. 

Our sign statistic is then based on the quantities 

and these quantities are no longer independent but have a pos- 
itive correlation. The covariance between the Ri is 

Cov(Ri, Rj) = COV 

= cov ‘(Bi, Bj) - COV('$~~~ 2 Bj) 

- cov(Bi, '$,Lw' ) 

4J =- 
NW 

l<i<jsNB. 

An hence, the correlation is 

z& 
Corr(R,-, Rf) = Nw , 

CT; -t $ 
l<i<j<NB 

which is always positive, and is constant for all pairs of R;. 
The effect of positive correlation on the sign statistic is to 

spread the distribution. As the correlation approaches 1, the 
probability that either all the Ri will be positive or all of them 
will be negative also approaches 1. The naive approach of just 
using the binomial distribution will be too liberal, rejecting the 
null hypothesis more frequently than should be the case. If we 
assume that the data are normal and have the same variance, 
we can compute the distribution of the sign statistic (Gastwirth 
and Grier, 1988). That distribution is: 

FSII w = 

a(--P*Z(l - pf))k(l-‘P(-&l -$)))n-kd@(z) 

1. This example is a simplified version of an analysis used in 
the appeal of Watson v Fort Worth Bank k Trust (798 F.2d 
791 (5th Cir. 1986)). While paralleling the data in that case, 
the data presented in this paper are fictious, and are intended 
to illustrate the problems of the analysis. The case is discussed 
in full in Gsatwirth and Grier(lQ88). 

5 The Wilcoxon would be a better statistic in this case, but 
the sign statistic was used in this csae and is commonly used in 
other caees because it has a meaning that is readily understood. 
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where @(z) is the cdf of the standard normal distribution, and 
p = Corr(R;, Rj), 1 i i < j 5 NB. 

While this is a valid solution, the formula does not easily 
generalize to more complicated models such as regression mod- 
els. Furthermore, the assumption of a normal distribution is 
too restrictive for courtroom use, as it would be immediately 
challenged by an opposing attorney. Except in cases where 
the data clearly follow a normal curve, the evidence will be 
weakened. 

The bootstrap is one method we can use to estimate the 
distribution of the sign statistic. We estimate the distribution 
of the sign statistic by doing a two stage random sample from 
the white data only. The algorithm is as follows: 

Algorithm 1. First Bootstrap estimate of the Distribution of 
the Sign Statistic. 

I. 

II. 

111. 

Iv. 

V. 

Randomly draw, with replacement, a sample of size NW 
from the white data and compute the average. 
Randomly draw, with replacement, a second sample of size 
NB from the white data and compute R; l<iINB. 
From newly computed Ri, compute the sign statistic and 
record its value. 

Repeat steps I to III until variance of results is appropriate 
low. 
Compute the probability density by dividing the accumu- 
lated number of times each sign statistic appeared by the 
number of times that you iterated steps I to III. 

This algorithm will estimate the distribution of the sign statis- 
tic under the assumption that the salaries of the Black popu- 
lation have exactly the same distribution as the salaries of the 
White population. No further assumptions are made about 
the nature of that distribution. This is an advantage for the 
legal work, in that the underlying distributions are often not 
normal, as was true in the case of Watson v Fort Worth Bank, 
and the sample sizes are too small for normal approximations. 

The bootstrap estimator is a consistent estimator of the 
probability (Bose, 1988), and has all the other usual properties 
of the bootstrap (Ephron, 1983). However, we can improve the 
accuracy of this estimator by applying the conditional monte 
car10 variance reduction transformation. Instead of doing our 
second random sample in step II of the algorithm, we note that 
we are simply doing binomial sampling with the probability 
that each Ri is positive equal to the number of white salaries 
greater than the estimated mean. This leads to an improved 
algorithm. 

Algorithm 2. Bootstrap estimate of the Distribution of the 
Sign Statistic using Conditional Variance Reduction. 

I. Randomly draw, with replacement, a sample of size Nw 
from the white data and compute the sample average. 

II. Estimate the probability that Ri will be positive by cal- 
culating the fraction, Pk of white salaries Wi, that are 
greater than the sample average. 

III. Repeat steps I and II until variance of results is appropri- 
ate low. 

IV. For each Ps, compute the binomial distribution of the sign 
statistic 

V. Do a weighted average of the distributions calculated in 
IV by multiplying each distribution by the fraction of times it 
occurs. 

This algorithm is just the conditional variance reduction trans- 
formation applied to the first algorithm. The variance reduc- 
tion can be substantial. If El is the estimate from the first 
algorithm and Ea is the estimate from the second algorithm, 
then 

Var(Er) = J h - SP/Lf(P&P,)sf(PJdp 

NW P 

+ J a- PMPJdp, 
NWNB 

where p,, is the probability that a single observation is less 
than the sample mean, f(m) is the density of the fraction of 
observations falling below the sample mean. 

We also have the variance of Es: 

Var(Ea) = J (Pr - SP~r(P,)dP~)zr(P,),p 
NW 

and hence the difference is: 

The difference term, Var(Er) -Var(Ez), can account for a large 
fraction of the variability in the EL estimator, especially if the 
original sample is tightly clustered. For a quick example, con- 
sider the caze where p,, can take one of three values { 5, f , $}, 
with equal probability. If we use NB = 11, then 

V4J-G) - V=P2) = 1 136. 
WE2) 

By using the second algorithm, we halve the variability of the 
estimate. 

II. A More General Example 
It is a rare company in which all employees have approximately 
the same salary. Salary is usually related to experience, edu- 
cation, performance and other factors. As was done in Wat- 
son v Fort Worth Bank & Trust, one common way to include 
this information is to fit a linear regression model to the white 
salaries, compare the final model to the black salaries and com- 
pute the sign statistic from the number of black salaries that 
are below the value predicted by the regression model. (Bel- 
son, 1956) This technique also induces a correlation structure 
on the sign statistic. This correlation structure can be much 
more complicated than that for the simple example. If we Ri 
be the difference between the black salary Bi and the value 
predicted by the linear regression model, then 

COII( Ri, Rj) = 
Xi(X’X)-lXjU& 

O2, + JXi(X’X)-‘XiXj(X’X)-‘XjU& 

This value can be either positive or negative, depending on 
the value of the value of the covariates. Furthermore, the Ri 
are not equicorrelated, since two difference pairs of Ri may 
have different correlations. This complicates the problem. In 

483 



the simple example, we can calculate the distribution of the 
sign sta.tistic, provided that we assume that all the data came 
from independent normal distributions with a common vari- 
ance. Even with those assumptions, we cannot calculate the 
distribution if we have more than about 5 blacks in the model. 
Calculating such a distribution would require use to evaluate a 
5 dimensional normal distribution CDF with arbitrary covari- 
ante matrix, something that cannot be done accurately. 

The bootstrap presents a reasonable alternative to calcu- 
lating the distribution of the sign statistic. For the general 
regression setting the algorithm is: 

Algorithm 3. Bootstrap estimate of the Distribution of the 
Sign Statistic using Conditional Variance Reduction for a Re- 
gression Model 

I. RandomJy draw, with replacement, a sample of size Nw 
from the white data (keeping covariates and response vari- 
ables matched) and fit the correct regression model to that 
data. 

II. Estimate the probability that Ri will be positive by cal- 
culating the fraction, Pk of white salaries WC, that are 
greater than the .sampJe average. 

III Repeat steps I and II until variance of results is appropri- 
ate low. 

IV. For each 9, com.pute the binomial distribution of the sign 
statistic 

V. Do a weighted average of the distributions calculated in 
IV by multiplying each distribution by the fraction of times it 
occurs. 

III. Power Calculations and Alternative Null Hypothe- 
ses 
Power calculations are important in legal work, especially for 
rebuttal evidence in a trial. To rebut the claim of discrimi- 
nation, a defendant will often present statistical evidence that 
does not reject the hypothesis of not no discrimination. To 
properly weigh such evidence, it is important to know what 
magnitude of difference the methods can detect. Results have 
been admitted in court that could not detect a one million dol- 
lar a month salary difference (Gastwirth,l988). This method 
can be easily modified to calculated the distribution of the sign 
statistic, given that the two groups have a known difference in 
mean, A. 

Algorithm 4. Bootstrap estimate of the Distribution of the 
Sign Statistic when the two groups differ by a constant A using 

Conditional Variance Reduction for a Regression Model 
I. Randomly draw, with replacement, a sample of size NW 

from the white data (keeping covariatez and response vari- 
ables matched) and fit the correct regression model to that 
data. 

ZZ. Estimate the probability that Ri will be positive by caku- 
lating the fraction, Pk of white salaries Wi plus the con- 
stant A, that are greater than the sampb average. 

III. Repeat steps I and ZZ until variance of results is appropri- 
ate low. 

IV. For each Pk, compute the binomial distribution of the sign 
statistic 

V. Do a weighted average of the distributions calculated in 
IV by multiplying each distribution by the fraction of times it 
occurs. 

The correlation between the residuals of both the simple 
model and the r’egression model are dependent on the ratio 
of the variances of the two populations. If the variance of 
the Black salaries is considerably larger than the variance of 
the White salaries, then the correlations are close to 0, and 
the regular sign test distribution may be used will little ill 
effects. However, if the Black salaries have a smaller variance 
than the white population, then the correlations between the 
residuals will be close to 1, and both the standard sign statistic 
distribution and the distribution estimated by Algorithm 2 will 
be far too liberal, suggesting a difference when there is none. 
The distribution of the sign statistic under these circumstances 
may still be estimated with the bootstrap technique. 

Algorithm 5. Bootstrap estimate of the Distribution of the 
Sign Statistic when the two groups differ possessing different 
variances, using Conditional Variance Reduction for a Regres- 
sion ModeJ 

I. Fit the correct model to the White data using the entire 
data sample. 

ZI. Create a set of pseudo observations, Wz, from the original 
data to reflect the difference in variances between the two 
groups. Let Wi be the fitted values from the regression. 

hfake the pseudo obserntions Wt = fii + Gig. 

III. Randomly draw, with replacement, a sample 2 size NW 
from the white data [keeping covariates and response vari- 
ables matched) and fit the correct regression model to that 
data. 

IV. Estimate the probability that Ri will be positive by CaJ- 
cuJating the fraction, Pk of white salaries l+‘; that are 
greater than the sample average. 

V. Repeat steps III and IV until variance of results is aPPm 

priate low. 
VZ. For each 9, compute the binomial distribution of the sign 

statistic 
VII. Do a weighted average of the distributions calculated in 
VI by multiplying each distribution by the fraction of times it 
0CC”Ki. 

The underlying assumptions for this last algorithm are 
under the null hypothesis, are that both the White and the 
Black salaries have a distribution F(y) k E {B, W}, and 

that the sample variance of the Black and White salaries are 
good estimators of en and uw respectively. 

IV. Summary 
This is a problem that demands a nonparametric solution. The 
nature of legal statistics requires as few extra assumptions as 
possible. Furthermore, a good legal strategist should evaluate 
the quality of the result by calculating the power. The boot- 
strap is a method that fulfills those requirements. In the re- 
gression setting, where an arbitrary correlation structure may 
exist, it presents the only tractable solution. 

The bootstrap is often applied naively, preparing the pro- 
gram to exactly model the sampling experiment. ln this case, 
as simple conditional variance reduction transformation can be 
easiiy applied. 
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