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ABSTRACT 

The bootstrap is a resampling method of 

estimating distributional properties of 

estimators. We discuss how this method 

can be applied to time series models and 

indicate directions of theoretical and 

applied researcih in this area. 

INTRODUCTION 

The bootstrap was introduced by Efron 

(1979) mainly to estimate the statistical 

accuracy of estimators. A brief descrip- 

tion of this procedure follows. 

Let Xl, . .." X, be i.i.d. observations 

from a distribution F, which is completely 

or partially unknown. Let en = G (Xl, 

. . . . Xn) be a symmetric estimator of a 

functional 8 (F). 

To have an idea of the accuracy of en, 
one often considers V (en) = c2 (F, n, 
en) = o2 (F) and one way to estimate it 

is to use ' 0 (ICn) where F n is the empiri- 

cal distribution function. 
Example -- If 8 (F) = j x d F (x) = EF (Xl) 

then Bn = 1 x d Fn (x) = n 
-1 n 

-1 
iEl xi = P n and 

V (en) = n p12 (F) where p2 (F) is the 

population variance and is estimated by 

u2 (F,) = n -c.f, (Xi - si;l) 2. 

However, in most cases an explicit for- 

mula for 0 2 (en) is unavailable and the 
following algorithm (bootstrap) is used 

(i) Estimate F by Fn. 
(ii.) Draw an i.i.d. sample XI, . . . . Xz 

from Fn. Based on this bootstrap 

sample calculate B* = ii (Xi, . . . . 

xi,. 
(iii) Repeat step (ii) a large number B 

A.* A* 
of times and obtain 8 lr . . . . eB. Calculate - - 

- xj2 ** 
where 8. = B -1 

b:l 'b and z2 is an estimate of CT~ (On). 

The basis of doing this is that if B + - 

then g2 -+ c2 (en). 

The three points worth noting are (a) 

the i.i.d. structure is crucial for the 

algorithm to work, (b) the method can be 

used for parametric or semiparametric 

models by replacing Fn by any other 

appropriate estimate at step (i), (c) any 

property 05 the estimate en can be esti- 

mated in this manner. Indeed, the entire 

probability distribution of On can be esti- 

mated by forming a histogram based on the 

bootstrap values. This is specially useful 
in confidence interval problems. 

There is a large amount of theoretical 
and empirical studies on bootstrap in var- 

ious types of problems, Refer to Bose 

(198823) for a fairly extensive list of 

references till the year 1987. For modi- 

fications of the bootstrap procedure, refer 

to Efron (1987). 

How can one possibly apply the bootstrap 

idea in the absence of an i.i.d. structure? 

In some situations an approximate i.i.d. 

structure can be recovered. One such sit- 

uation is the class of autoregressive type 

models in time series. 

In the next section we discuss how this 

method can be applied to such models. The 

classical normal approximation is avail- 

able in most cases. We compare this with 

the bootstrap approximation. For many 
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nonlinear models, even normal approximation 

is hard or impossible to justify. The 

bootstrap procedure has added importance 

in those situations. The need for both 

simulation and theoretical studies seem 

great in such models. The effect boot- 

strap has, in general on dependent models 

is far from understood. Further research 

in this area seems very pertinent. 

BOOTSTRAP IN DEPENDENT MODELS 

Freedman (1984) was the first to 

attempt bootstrap in dependent models. In 

a certain linear dynamic model he showed 

that the bootstrap distribution of the 

parameter estimates give the same asymp- 

totic result as does the asymptotic normal 

theory. Almost no theoretical results for 

dependent models have appeared since then. 

In the following subsections we deal 

with linear autoregressions, nonlinear auto- 

regressions and other models. The stress 

is on questions which are waiting to be 

satisfactorily settled. 

(a) Linear autoregression. One of the 

simplest dependent models is the sta- 

tionary autoregressive process of 

order 1 (AR (1)). 

Let (X,) be an observable process gen- 

erated by X 
t = e Xtwl + Et, t = 1, 2, 

.I. where (Ed) is a sequence of i.i.d. 
2 variables with E st = 0 and E ct = 1. 

We further assume that the unknown O 

satisfies 181 < 1. 

An efficient estimator of 8 is the 

least squares estimate; (1.s.e.) ob- 

tained by minimizing 

2 
& (5 - e 

xt-1) I yielding Bn = (C Xtml) -l c Xt 

Xt-l. Rubin (1950) showed that '3 
n 

- e a.s. no matter what the true value 

of 8 is. 

Clearly, the sampling distribution of 

'n is intractable. An approximation is 

obtained by showing that n 1/Z (en - 0) 

;e N (0, i - e2). Hence an approximate 

100 (1 - c()% confidence jnterval for 8 

is given by On _+ 2 (1 - a/2) n -l/2 (1 

- &l/2 
n . The accuracy of this inter- 

val is limited by the following theo- 

rem. 

Theorem 1. If the distribution of (Ed, 

sf) satisfies Cramer's condition and 

E ~i<~then S;p 1 P (n1'2 (On - 8) < 

X) - P (N (0, 1 - e2) 5 x) 1 = 0 (n=1'2). 

See Bose (1988a) for a proof. The 

Cramer's condition is satisfied, if, 

for example &1 has a density or has an 

absolutely continuous component. 

In addition to this limitation, the 

confidence interval is always symmet- 

ric, whereas, the distribution of en 

may be far from being so. 

The bootstrap distribution, in general 

is not symmetric and in fact corrects 

for the skewness. See Efron (1979). 

Thus the bootstrap emerges as a compe- 

titor. 

Note that from the model, ~~ = xt - 

e xt-1. Hence the st 's can be recov- 

ered in an approximate manner by de- 

fining zt = Xt - On Xt-1 and to improve 

this, let zt = zt - En where En = n-l 
n _ 

tz1 Et 
so that the mean of E t 's is 

zero. F n is the distribution function 

which puts mass l/n at each ct, t = 1, 

. . . . n. The bootstrap distribution can 

now be obtained. 

i.i.d. F . 
L 

Generate X: by Xt = Bn 
n, A ^ ^ ^ 

xtsl + Et’+Xo = X0’ Having obtained 

cx;, ..a, Xn) pretend that On is 
x 

unknown and obtain its 1.s.e. by 8 = 

cc x; x:-J (C xc-: e2. 
n 

The (conditional) distribution of 8: 

given X0, Xl, . . . . Xn can be used to 

approximate the distribution of tl 
n* 

Theorem 2. Assume the conditions of 
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Theorem 1. For almost every sequence 

x0, Xl' -.a, 

sup P* 
x 

! ( 

,w ce; - 0) < x 

(1-8J2 - ) 

_ 

( 

n u2 (en - 0) 
P- < x 

(1 -. e2)1'2 - 
)I 

= 0 (n -LfQ) 

For a proof see Bose (198833). In 

practice, the bootstrap distribution 

P* cannot be explicitly calculated but 

can be approximated to any desired 

degree of accuracy by a sufficiently 

large number of bootstrap samples. 

Clearly then, the bootstrap outperforms 

the normal approximation in some sense. 

The method can be extended to situa- 

tions with E st = P, E es = o2 with 

p and u 2 unknown. See Bose (1988b) 

for details. Some simulation results 

are available in Chatterjee (1985) 

but the author has not been able to 

obtain a copy of his work at the time 

of writing this paper. 

The case when 161 1_ 1 is trickier. 

Normal approximation is not valid. 

However, for a suitably normed On, 

the bootstrap still gives the correct 

result asymptotically. See Basawa et al. 

(1987). However, no results about 

its accuracy is known. Simulation 

work might yield an insight in this 

problem. 

(b) Nonlinear autoregressions. The scope 

of linear models being limited, re- 

searchers are looking increasingly at 
nonlinear models to explain compli- 

cated data. One class of models which 

has drawn some attention is Xt = f 

(0, xt-1 ) + ct where f is a nonlinear 

function. See Ozaki (1980), Jones 

(1978), Tjostheim (1986) for examples 

of such models. 

As before, we can obtain the 1.s.e. 

n 

en of 8 by minimizing C (X, - f (0, 
2 

t=1 

XL-11 r which might need the use of an 

algorithm. Asymptotic properties of 

6n do not fo:Llow immediately, Klimko 

and Nelson (1978) and Tjostheim (1986) 

prove the consistency and asymptotic 
normality of Bn in a general set up 

and these can be applied to the pre- 

sent situation. However, the function 

f needs to be smooth (at least three 

derivates) for their results to apply. 

Bose (1988c) obtains these properties 

with conditions similar to the above 

authors' but with less restrictive 

conditions on f. 

Theorem 3. Assume the following con- 

ditions: 

(a) If(O, x) - f(Q, X)1 (K(le-cyl) J(x) 

(b) i~,i;,X2 (10-q)) ded,cC 

Cc) 

id) 

53 (10 - Ql) 
with L (x) = ?, u-1 d g2 (u) < m 7-l __ 
c E YL 

t=1 
(Xtml) = 0 (nL (log 

,)-(l+e) 

n-1 i 
t=1 

[f (e, X) - f (e,, x)i2 

-+ I (8) a.s. where 13~ is the un- 

known true value and I (9) # 0 if 

e # e. 

(e) If' (e, X) - fZ (Q, X) I c K (16 
- Ql) J (X) and [f' (6, ;)I ( J(X) 

with K (x) = 0 (x") as x -+ 0 for 

somenu > 0. 

(f) n-l c fs2 (eO, xtB1) --+ J (8,) 
t=1 

> 0 a.s. 

Under these conditions, if the para- 

meter space is I-1, 11, On --+ B. a.s. 

and n1'2 (en - Oo) !+ N (0, J (8,). 

The above result can be generalized to 

some extent by relaxing some of the 

conditions. 

However, no results are known regarding 

the rate of the above convergence. 

Simulation studies might help to show 
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this rate for various choices of f and 

Et 'S. It can also help to judge the 

asymptotics when some of the above 
conditions are violated (e.g. (e) 

and (f)) which impose restrictions on 

the smoothness of f. 

The bootstrap idea assumes more impor- 

tance due to the sharpness of normal 

approximation being unknown. It can 

be implemented by defining Gt = xt - 

f (On, Xt-1) and proceeding as in the 

linear case. Simulation studies can 

help gauge the performance of the 

bootstrap. Theoretical aspects of 
the bootstrap also promises to be a 

difficult and interesting problem. 

(c) Other models. As is clear, the boot- 

strap idea can be used whenever an 

approximate i.i.d. structure can be 

recovered, usually by replacing un- 

known values with their estimates. 

It appears that this is tied up with 

the notion of invertibility of models. 

See Bose (1987) and Hannan (1970). As 

a test case Bose (1987) shows that it 

works well in the moving average model, 

Xt = Et + cc it-1 where resampling is 
a little trickier. As we have already 
discussed the bootstrap works in a 

AR (1) model with /9/ ) 1. So the 
invertibility does not seem crucial. 

This shows the inherent automatic nature 
and power of the bootstrap procedure. 

CONCLUSION 

In conclusion, bootstrap works in a 
wide variety of situations, even when the 

normal theory is no longer valid. When 
the normal theory is valid, bootstrap can 

outperform it. Finding a class of models 

where bootstrap works is an interesting 

question. Theoretical studies and simu- 

lation work are needed to gauge its per- 

formance and the factors affecting it. It 

will also be of interest to see how it 

performs where no known results of the 
properties of the estimator is available. 

Some of these problems are being looked 

at by the author currently. 
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