
37

A Computational Architecture for Coupling Heterogeneous

Numerical Models and Computing Coupled Derivatives

JOHN T. HWANG and JOAQUIM R. R. A. MARTINS, Department of Aerospace Engineering,

University of Michigan

One of the challenges in computational modeling is coupling models to solve multidisciplinary problems.

Flow-based computational frameworks alleviate part of the challenge through a modular approach, where

data flows from component to component. However, existing flow-based frameworks are inefficient when

coupled derivatives are needed for optimization. To address this, we develop the modular analysis and uni-

fied derivatives (MAUD) architecture. MAUD formulates the multidisciplinary model as a nonlinear system

of equations, which leads to a linear equation that unifies all methods for computing derivatives. This en-

ables flow-based frameworks that use the MAUD architecture to provide a common interface for the chain

rule, adjoint method, coupled adjoint method, and hybrid methods; MAUD automatically uses the appropri-

ate method for the problem. A hierarchical, matrix-free approach enables modern solution techniques such

as Newton–Krylov solvers to be used within this monolithic formulation without computational overhead.

Two demonstration problems are solved using a Python implementation of MAUD: a nanosatellite optimiza-

tion with more than 2 million unknowns and 25,000 design variables, and an aircraft optimization involving

over 6,000 design variables and 23,000 constraints. MAUD is now implemented in the open source frame-

work OpenMDAO, which has been used to solve aircraft, satellite, wind turbine, and turbofan engine design

problems.

CCS Concepts: • Software and its engineering → Object oriented frameworks; Software libraries and

repositories; Object oriented development; • Theory of computation → Nonconvex optimization; • Mathe-

matics of computing → Solvers;

Additional Key Words and Phrases: Parallel computing, optimization, engineering design, multidisciplinary

design optimization, multiphysics simulation, PDE-constrained optimization, high-performance computing,

complex systems, adjoint methods, derivative computation, Python

ACM Reference format:

John T. Hwang and Joaquim R. R. A. Martins. 2018. A Computational Architecture for Coupling Heteroge-

neous Numerical Models and Computing Coupled Derivatives. ACM Trans. Math. Softw. 44, 4, Article 37 (June

2018), 39 pages.

https://doi.org/10.1145/3182393

This work was partially supported by NASA (grant number NNX14AC73A) and the National Science Foundation (award

number 1435188).

Authors’ addresses: J. T. Hwang and J. R. R. A. Martins, Department of Aerospace Engineering, University of Michigan,

1320 Beal Ave, Ann Arbor, MI 48109, USA; emails: {hwangjt, jrram}@umich.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

2018 Copyright is held by the owner/author(s). For all other uses, please contact the Owner/author

ACM 0098-3500/2018/06-ART37

https://doi.org/10.1145/3182393

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

https://doi.org/10.1145/3182393
mailto:permissions@acm.org
https://doi.org/10.1145/3182393
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3182393&domain=pdf&date_stamp=2018-06-16

37:2 J. T. Hwang and J. R. R. A. Martins

1 INTRODUCTION

Computational models are ubiquitous in science and engineering. They provide a cheaper and
more convenient alternative to physical experiments and are thus a valuable tool in many applica-
tions that involve design, decision-making, research, or forecasting. We consider a computational

model to be a computer program that represents the behavior of a real-world system or process
numerically.

In engineering design, we can leverage a given computational model by using numerical opti-
mization to determine the design variable values that maximize the performance of the system that
is being designed. In many cases, the computational model has several components, and it might
involve multiple engineering disciplines or areas of science, therefore requiring the coupling of
multiple numerical models. The field of multidisciplinary design optimization (MDO) emerged to
solve such problems (Cramer et al. 1994; Alexandrov and Hussaini 1997; Sobieszczanski-Sobieski
and Haftka 1997; Martins and Lambe 2013).

The work presented herein is also motivated by the solution of these types of problems. We
assume that the number of design variables is O (102) or greater, and thus that only gradient-based
optimization is practical. However, gradient-based optimization requires differentiability, as well
as accurate and efficient derivative computation, both of which make the implementation more
challenging. For coupled computational models, the coupled adjoint method can compute accurate
gradients at a cost similar to that of solving the model, regardless of the number of design vari-
ables, but it requires an ad hoc implementation (Martins et al. 2005; Kenway et al. 2014). Another
challenge is that these coupled systems might be composed of heterogeneous models. For example,
the modeling of the full system might require coupling a partial differential equation (PDE) solver,
a set of explicit functions, and a time integrator for an ordinary differential equation (ODE).

As we detail in Section 2.1, there are currently flow-based computational frameworks that facil-
itate the coupling of heterogeneous models, providing features like graphical interfaces, built-in
solvers and optimizers, and automatic unit conversions. However, they are designed to couple
models with a relatively small number of inputs and outputs. As a result, these frameworks are
inefficient in converging the coupled models and in computing the coupled derivatives for many
types of problems. On the other hand, there are computational frameworks (described in Sec-
tion 2.2) that use sophisticated methods to solve PDEs, including coupled multiphysics problems,
and a few of these frameworks automatically compute derivatives via adjoint methods. However,
there is currently no framework that computes the coupled derivatives efficiently for problems
with heterogeneous coupled models. The existing PDE frameworks that compute coupled deriva-
tives use the same numerical method, e.g., the finite-element method, for all the models.

Therefore, there is a need to make the implementation of coupled heterogeneous systems more
convenient, in a way that is scalable and efficient. We address this by developing a new architec-
ture for computational frameworks that we call modular analysis and unified derivatives (MAUD).
The MAUD architecture uses a new mathematical formulation of the computational model that
views each component as an implicit function, rather than an explicit one. MAUD then represents
the multidisciplinary computational model as a single system of algebraic equations and solves
the resulting nonlinear and linear systems using a hierarchical solution strategy, without adding
significant memory or computing overhead. This monolithic formulation enables a unification of
the existing methods of computing derivatives, including the adjoint method. As a result, the com-
putational framework can automatically compute the coupled derivatives across the components,
provided that the user computes partial derivatives within each component. The significance is
that, while many challenges remain, MAUD lowers the entry barrier for large-scale optimization
in problems with many heterogeneous components. This is especially true for multidisciplinary

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:3

models that have a complex network of dependencies among the components, as in the examples
described in Section 5.

MAUD makes three main assumptions about the components that are part of the multidisci-
plinary model. The first is that each component is continuous and differentiable. Since we require
derivatives of the overall model for gradient-based optimization, each component must have con-
tinuous first derivatives. There are problems in which the optimization succeeds despite some
discontinuities, so this is not a strict requirement. The second assumption is that each component
efficiently computes the derivatives of its outputs with respect to its inputs. If derivatives are not
available for a component, one would have to resort to finite differencing that component, which
could degrade the overall efficiency. The third assumption is that the Jacobian matrix of the multi-
disciplinary model is invertible, i.e., the problem is well-posed, although the Jacobian of parts of the
model can be singular in some cases. We discuss these assumptions in more detail in Section 4.5.

The remainder of the article proceeds as follows. First, we provide background on existing com-
putational frameworks, highlighting how the MAUD architecture differs from these frameworks.
Second, we present the mathematical foundation of MAUD, which is the representation of a com-
putational model as a system of equations and a unified equation for computing derivatives. Next,
we describe the MAUD strategy for efficiently solving nonlinear and linear systems. Finally, we
present two engineering design problems for which MAUD makes large-scale optimization pos-
sible despite the problem complexity: the optimization of a nanosatellite and the simultaneous
optimization of the mission profiles and route allocation for commercial aircraft.

2 BACKGROUND

This section provides the context for the MAUD architecture by reviewing the state of the art in
computational frameworks, which are also known as problem-solving environments (Houstis and
Rice 2000; Keane and Nair 2001; Marinescu and Boloni 2000). We categorize the existing frame-
works as either flow-based frameworks (Section 2.1) or frameworks designed for the modular
solution of PDEs (Section 2.2).

2.1 Flow-Based Frameworks

The existing computational frameworks that couple models from multiple disciplines adopt what
we call a flow-based architecture. Their defining characteristic is that each component implements
an explicit function that maps its inputs to its outputs. The component is considered a black box
because its intermediate variables and functions that are used in the evaluation of the explicit
function are hidden from the framework. In contrast, a component in the MAUD architecture
implicitly defines its variables by providing corresponding residuals. The MAUD architecture is
more centralized because the variables defined by each component are concatenated into a single
vector, and every component takes the entire vector as an argument, at least conceptually. The
component implementations in the flow-based and MAUD architectures are compared in Figure 1.

Flow-based frameworks are designed for components with a relatively small number of in-
puts and outputs. They are typically available as commercial software, e.g., Phoenix Integration’s
ModelCenter/CenterLink, Dassault Systèmes’ Isight/SEE, Esteco’s modeFRONTIER, TechnoSoft’s
AML suite, MathWorks’ MATLAB/Simulink, Noesis Solutions’ Optimus, Vanderplaats’ VisualDOC
(Balabanov et al. 2002), and SORCER (Kolonay and Sobolewski 2011). These frameworks have
four fundamental features in common: (1) a graphical user interface (GUI), (2) software libraries,
(3) interfaces to external software, and (4) grid computing management.

The GUI provides a drag-and-drop interface for the construction of computational models
from smaller components and includes tools for post-processing and visualization of the results.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:4 J. T. Hwang and J. R. R. A. Martins

Fig. 1. Comparison of the flow-based and MAUD architectures. In the flow-based architecture, each com-

ponent is an explicit function, and in the MAUD architecture, each component is an implicit function.

Software libraries are suites of reusable general-purpose components, e.g., optimizers, stochastic
modeling tools, and surrogate models. The built-in interfaces to existing commercial computer-
aided design and engineering software enable the framework to interact with other specialized
software by making it one component within the framework. Finally, grid computing management
typically involves a GUI that facilitates the handling of parallel computing tasks running on
remote clusters.

Flow-based frameworks integrate multiple components that are not computationally costly to
evaluate. These frameworks primarily focus on design of experiments (DOE) and gradient-free
optimization, since these methods do not require derivatives. They are flexible: the data can be
general objects, files, and databases rather than floating-point numbers. Flow-based frameworks
also provide utilities such as automatic unit conversions and data recording. However, the down-
side is that they are not suitable for the efficient solution of large-scale optimization problems. In
particular, they are usually limited to fixed-point iteration for coupled models and finite-difference
methods for derivative computation.

Many noncommercial flow-based frameworks have been developed in the context of MDO.
These frameworks are reviewed by Padula and Gillian (2006), who note that the modularity, data
handling, parallel processing, and user interface are the most important features to facilitate op-
timization based on simulations that involve multiple disciplines. An earlier survey (Salas and
Townsend 1998) listed more detailed requirements for MDO frameworks, categorized into the
framework’s architectural design, problem construction, problem execution, and data access.

Some MDO frameworks use coupling variables converged by an optimizer instead of simulta-
neously converging the residuals of a multidisciplinary system. Examples include reconfigurable
multidisciplinary synthesis (Alexandrov and Lewis 2004a, 2004b) and theψ specification language
(Tosserams et al. 2010). Like MAUD, both of these examples enable a decomposition-based ap-
proach, but they rely on the optimizer to solve the coupling between disciplines, limiting the
scalability with respect to the number of disciplines and the coupling variables. Another MDO
framework is pyMDO (Martins et al. 2009), which shares with MAUD the common objective of fa-
cilitating gradient-based optimization through the modular computation of derivatives using direct
or adjoint analytic methods (Marriage and Martins 2008). However, all the existing MDO frame-
works have the same limitations as the commercial frameworks: they do not scale well with the
total number of state variables. On the other hand, MAUD provides an infrastructure for efficient

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:5

parallel data passing, hierarchically solves the nonlinear and linear systems, adopts a matrix-free
approach, incorporates preconditioning, and has other characteristics that make it scalable.

The OpenMDAO framework (Gray et al. 2014) also has these features since it has recently
adopted MAUD as its architecture for the core algorithms and data structures. Via the OpenM-
DAO framework, MAUD has been used by many universities and institutions for a wide variety
of applications including aircraft design (Peherstorfer et al. 2018; Jasa et al. 2018a; Friedman et al.
2017) using an open source low-fidelity aerostructural optimization tool (Jasa et al. 2018b), satel-
lite design (Hwang et al. 2014), aircraft propulsion and trajectory optimization (Hendricks et al.
2017), structural topology optimization (Chung et al. 2018), electric aircraft design (Falck et al.
2017; Hwang and Ning 2018), and wind turbine design (Ning and Petch 2016; Gebraad et al. 2017).

2.2 Frameworks for Solving PDEs

Frameworks designed for solving PDEs are highly specialized, so they provide a high level of mod-
ularity and automation. These frameworks decompose the code into the PDE definition, boundary
conditions, embedded problem-specific models (e.g., structural material properties), discretization
scheme, element definition, and sometimes adaptive mesh refinement. Frameworks of this type are
also motivated by the goal of modularity, but they differ fundamentally from flow-based compu-
tational frameworks or the MAUD architecture because they are designed to solve only PDEs. In
contrast, the flow-based and MAUD architectures can integrate heterogeneous components, such
as a series of explicit formulas, a surrogate model, or the solution of a PDE, all of which are treated
the same way—as a set of components with a common interface.

Many frameworks for solving PDEs utilize the finite-element method. Finite-element frame-
works provide some combination of the following features: automatic mesh creation for simple
geometries, element libraries and quadrature routines, predefined sets of PDEs or a simple inter-
face to define custom PDEs, boundary condition libraries, and linear solvers and preconditioners.
Nearly all of these frameworks are written in C or C++, and they use an object-oriented paradigm
in which the user instantiates objects for meshes, elements, and solvers.

Many finite-element frameworks use what we call linear-algebra frameworks for the underly-
ing objects and solvers. These frameworks provide parallel vector and matrix objects, routines
for parallel data scattering, parallel sparse matrix assembly, direct solvers, iterative solvers, and
preconditioners. One example of a linear-algebra framework is the portable, extensible toolkit for
scientific computation (PETSc) (Balay et al. 1997). Several open source finite-element frameworks
rely on PETSc for their linear-algebra operations: MOOSE (Gaston et al. 2009), OOFEM (Patzák
2012), libMesh (Kirk et al. 2006), FEniCS (Logg et al. 2012), deal.II (Bangerth et al. 2007), PetIGA
(Collier et al. 2013), and PHAML (Mitchell 2002). Trilinos (Heroux et al. 2005) can be considered
another linear-algebra framework, although it contains subpackages that make it a finite-element
framework as well. SUNDANCE (Long et al. 2010) and deal.II are examples of finite-element frame-
works that use the linear-algebra packages in Trilinos. COMSOL Multiphysics is one of the most
widely used commercial finite-element frameworks, and it provides dedicated physics interfaces
to various engineering applications. Not all of these frameworks are specialized to the solution
of PDEs; however, they are all designed to solve systems of equations using finite-element dis-
cretizations. Since preconditioning is a critical and challenging part of solving PDEs, there are also
frameworks that perform block preconditioning (Cyr et al. 2016; Brown et al. 2012) and multilevel
preconditioning (Falgout and Yang 2002) in high-performance computing applications.

Other object-oriented PDE frameworks and libraries include OVERTURE (Bassetti et al. 1998),
UG (Bastian et al. 1997), Cactus (Goodale et al. 2003), Roccom (Jiao et al. 2003), MCS (van der Velde
and Mallinson 2007), UPACS (Yamazaki et al. 2000), Tellis (Beall and Shephard 1999), and SIERRA
(Stewart and Edwards 2003). This is by no means an exhaustive list, but it demonstrates the level

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:6 J. T. Hwang and J. R. R. A. Martins

Fig. 2. Implementation of a finite-element analysis model in flow-based and MAUD-based computational

frameworks. Vertical stacking of blocks indicates containment. Gray blocks are part of the computational

framework, blue blocks are components, red blocks are part of a finite-element framework, and green blocks

are part of a linear-algebra framework.

of interest in and historical precedent for software frameworks that simplify the solution of PDEs
using a modular, object-oriented approach. Many PDE frameworks are tailored to a specific field or
application and offer a combination of features such as adaptive meshing, multigrid, multiphysics
coupling, and adjoint computation.

Figure 2 illustrates how a computational framework and a finite-element framework can be used
together to couple a finite-element analysis (FEA) to other components, whether those components
are other finite-element models or different computations. This figure also shows the differences
between integrating an FEA component using a flow-based framework versus a MAUD-based
framework. In the former, the entire FEA model is a single component and the various steps are
nested: the FEA residual or matrix assembly calls the PDE definition class, which in turn calls the
element class, and so on. In contrast, the MAUD architecture facilitates further modularization of
the FEA so that the mesh computation is one component, the element shape function evaluations at
the quadrature points are another, and the solution of the linear or nonlinear system to find the PDE
state variables is another. The advantage is that it is simpler to compute partial derivatives for three
small components than for one complex component. It is also easier to find the derivatives of this
PDE’s residuals with respect to variables from the other components, enabling Newton’s method
and the adjoint method to be used when coupling the FEA computation with other components
or disciplines.

Many finite-element frameworks have common features with the MAUD architecture. Specif-
ically, SUNDANCE, MOOSE, and TACS (Kennedy and Martins 2014) also implement the adjoint
method and use matrix-free operators. However, once again, these frameworks differ fundamen-
tally from the MAUD architecture because they work only with computational models that solve
a PDE using a finite-element discretization and do not provide any automation for computing
derivatives involving general components with the efficiency of the adjoint method. Moreover,
SUNDANCE takes the “differentiate-then-discretize” approach to the computation of derivatives.
In contrast, the MAUD architecture applies the “discretize-then-differentiate” approach, since it
views each component as an explicit or implicit function mapping to and from finite-dimensional
vectors.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:7

3 A UNIFIED THEORY

We now describe the mathematical formulation of the MAUD architecture and explain its benefits.
The two main ideas are (1) to represent the multidisciplinary model as a single nonlinear system,
and (2) to linearize this system in a way that unifies the methods for computing derivatives, in-
cluding the adjoint method.

Section 3.1 defines the notation and form of a general numerical model, and Section 3.2 for-
mulates the general model as a single system of algebraic equations. Section 3.3 shows that the
derivatives of interest can be computed by solving a system of linear equations that unifies the
existing methods for computing derivatives. A list of nomenclature is given in Appendix A.

3.1 General Numerical Model

We use the term numerical model to refer to the discretized variables and their explicit or implicit
definitions, while computational model refers to the code that implements the numerical model.
Fundamentally, numerical models capture the relationships between quantities; they determine
the response of a set of variables to another set of given variables. Computing the response could
involve multiple disciplines; i.e., the numerical model can integrate multiple submodels corre-
sponding to different disciplines. Multidisciplinary models or problems are also characterized as
multiphysics in some contexts, with the same meaning.

We frequently use the term component in the context of both the numerical model and the com-
putational model. Each component computes one or more variables as a function of the variables
of the remaining components. A discipline can be implemented as one or more components; there-
fore, even a single-discipline problem can have multiple components.

3.1.1 Input, Output, and State Variables. For our purposes, a variable represents a vector of a
single type of physical or abstract quantity in a numerical model. In many settings, each individual
scalar is referred to as a separate variable. However, in the current context, a group of scalars
representing the same quantity—such as a vector comprised of temperature values at different time
instances—is collectively referred to as a single variable. The only exception is design variables;
we refer to each scalar varied by the optimizer as a design variable, to remain consistent with the
terminology used in the optimization literature.

The given quantities in a numerical model can be considered to be input variables, which we
represent as

x = (x1, . . . ,xm), where x1 ∈ RN x
1 , . . . ,xm ∈ RN x

m , (1)

so each variable xk has size N x
k

. Input variables are independent variables whose values are set
manually by a user or set automatically by an optimization algorithm. In the context of numerical
optimization, design variables are a subset of the input variables.

The response quantities of the numerical model can be considered to be output variables, which
we represent as

f = (f1, . . . , fq), where f1 ∈ RN
f
1 , . . . , fq ∈ RN

f
q . (2)

Output variables are computed while running the numerical model, and they represent quantities
that we are interested in. In the context of numerical optimization, they include the objective and
constraints.

In the process of computing the output variables, a numerical model might need to compute as
an intermediate step another set of variables, the state variables, which we represent as

y = (y1, . . . ,yp), where y1 ∈ RN
y
1 , . . . ,yp ∈ RN

y
p . (3)

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:8 J. T. Hwang and J. R. R. A. Martins

These are dependent variables that are defined by implicit or explicit functions of the design vari-
ables and other state variables.

All the variables in a numerical model can be classified into one of the categories described
above: input variable, state variable, or output variable. As an example, in the finite-element anal-
ysis of a truss structure, the input variables would be the bar cross-sectional areas; the state
variables would be the displacements; and the output variables could be the total weight and
stresses. The total number of degrees of freedom is

N = N x + Ny + N f , where N x =

m∑
k=1

N x
k , Ny =

p∑
k=1

N
y

k
, N f =

q∑
k=1

N
f

k
, (4)

where N x is the total size of them input variables, Ny is the total size of the p state variables, and
N f is the total size of the q output variables.

3.1.2 Explicit and Implicit Functions. State variables can be classified based on how they are
computed. A state variable is either explicitly computed by evaluating functions or implicitly com-
puted by converging residuals to zero. To simplify the presentation, we consider the two extreme
cases where all state variables are of an explicit type and where all state variables are of an implicit
type.

If all p state variables are individually of the explicit type, they are given by

y1 = Y1 (x1, . . . ,xm ,y2, . . . ,yp),
...

yp = Yp (x1, . . . ,xm ,y1, . . . ,yp−1).

(5)

We can also represent these functions with a single, concatenated function, Y = (Y1, . . . ,Yp),
which is no longer an explicit computation.

We distinguish variables from functions by assigning lowercase and uppercase letters, respec-
tively. This notation clearly distinguishes between the quantity and the function that computes
that quantity, making it easier to define total and partial derivatives.

Another possibility is that each of the p state variables is computed implicitly by driving a
residual function to zero through numerical solution. The residual function is R = (R1, . . . ,Rp) =

0, where Rk : RN x+N y → RN
y

k and

R1 (x1, . . . ,xm ,y1, . . . ,yp) = 0,
...

Rp (x1, . . . ,xm ,y1, . . . ,yp) = 0.

(6)

The multidisciplinary model can include a mixture of components defined by explicit func-
tions (5) and components defined by residual equations (6). Therefore, in general, the p state vari-
ables are a mixture of explicit and implicit variables.

The q output variables are computed via the output function, F = (F1, . . . ,Fq), where

f1 = F1 (x1, . . . ,xm ,y1, . . . ,yp),
...

fq = Fq (x1, . . . ,xm ,y1, . . . ,yp).

(7)

We can assume without loss of generality that all the output variables are computed explicitly
because if an implicitly defined state variable also happens to be a quantity of interest, we can
define an output variable that is equal to that state variable.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:9

Numerical models can always be represented with these three types of variables and functions.
We can always divide the variables in the model into input variables, x , which are independent
variables; state variables, y, which are computed explicitly by evaluating functions (5) or implic-
itly by driving residuals to zero (6) or a combination thereof; and output variables, f , which are
computed by evaluating explicit functions (7).

In this view of variables and functions, multiple levels of decomposition are possible. In the
least decomposed case, we could consider only input and output variables, by hiding all the state
variables in a single black-box component. At the other extreme, we could consider every line of
code with a variable assignment to define a new explicit state variable. In the following sections, we
combine the three types of variables into one vector and derive a linear equation whose solution
yields df /dx , the total derivatives of the functions of interest with respect to the input variables.
The level of model decomposition determines the derivative computation method.

3.2 A Monolithic Formulation for the Numerical Model

This section presents the reformulation of the numerical model defined by functions (5), (6), and (7)
as a single system of algebraic equations.

The first step is to concatenate the set of variables into one vector,

u = (u1, . . . ,un) = (x1, . . . ,xm ,y1, . . . ,yp , f1, . . . , fq), (8)

where n =m + p + q. As previously discussed, each of these variables can in general be a vector.
We denote the sizes of the variables in this concatenated vector as

(N1, . . . ,Nn) =
(
N x

1 , . . . ,N
x
m ,N

y
1 , . . . ,N

y
p ,N

f
1 , . . . ,N

f
q

)
. (9)

Now we define the residual associated with variable uk as the function Rk : RN → RNk for k =
1, . . . ,n. These residuals have different forms depending on the type of variable. For the input
variables, the residuals are defined as

Rk (u) = xk − x∗k , ∀k = 1, . . . ,m, (10)

where x∗
k
∈ RN x

k is the value of input variable xk at the point where the numerical model is being
evaluated, for k = 1, . . . ,m. For instance, if we want to run our model at x1 = 3, then we would
have R1 (u) = x1 − 3.

For the state variables, the residuals are defined differently, depending on whether they are
determined explicitly or implicitly:

Rm+k (u) =

{
yk − Yk (x1, . . . ,xm ,y2, . . . ,yp), if yk is explicitly defined
−Rk (x1, . . . ,xm ,y1, . . . ,yp), if yk is implicitly defined

,∀k = 1, . . . ,p. (11)

For example, an explicit state variable y2 that is defined as the product of x1 and y1 would have the
residual, Rm+2 (u) = y2 − x1y1. We have added a minus sign in the residuals for the implicit state
variables because this yields more intuitive formulas for computing the derivatives (Section 3.3).
Albersmeyer and Diehl (2010) introduced residuals for explicit variables as the difference between
the variable and the function output in their “lifted Newton method.” They start with what is
already a nonlinear system and modify Newton’s method to improve the convergence properties.
In contrast, we take heterogeneous computational models and turn them into a nonlinear system
while ensuring that the existing solution methods can be used in the new formulation.

Finally, we use the explicit function residuals for the output variables

Rm+p+k (u) = fk − Fk (x1, . . . ,xm ,y1, . . . ,yp), ∀k = 1, . . . ,q. (12)

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:10 J. T. Hwang and J. R. R. A. Martins

Concatenating all the residuals as R = (R1, . . . ,Rn), we can write the complete numerical model
as the following algebraic system of equations:

R1 (u1, . . . ,un) = 0
...

Rn (u1, . . . ,un) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⇔ R (u) = 0, (13)

where R : Rn → Rn . This represents a unified formulation for any numerical model, which we call
the fundamental system. The vector u∗ that solves the fundamental system (13) is also a solution
of the numerical model defined by Equations (5), (6), and (7).

3.3 Computation of Multidisciplinary Derivatives

In the context of optimization, the design variables that the optimizer varies are a subset of the
numerical model input variables x , and the objective and constraint functions provided to the
optimizer are a subset of the output variables f . Thus, the derivatives of interest are the derivatives
of the output variables with respect to the input variables, i.e., the Jacobian matrix df /dx .

In the next section, we will see that we can derive an equation that unifies all derivative compu-
tation methods starting from the fundamental system (13), where the resulting method depends
on the choice of the state variables. At one extreme, we can consider the whole system as a single
component that does not expose any state variables, whose linearization results in a black-box
differentiation using, for instance, the finite-difference method. At the other extreme, we can con-
sider every line of code in a computational model to be a component with the associated variable
as a state variable, which is equivalent to automatic differentiation using source-code transforma-
tion (Martins and Hwang 2013).

3.3.1 Connection Between the Fundamental System and Analytic Methods. Before we present the
equation unifying all the derivative computation methods, we show the connection between the
fundamental system and analytic methods. Analytic methods consist of direct or adjoint methods,
which are applicable when residuals are available for the state variables. Analytic methods can be
applied to accurately compute derivatives of coupled systems. We show this connection because
the analytic adjoint method is particularly powerful in that it computes the derivatives of a function
of interest with respect to all the input variables at a cost that is of the same order as the cost of
running the model.

Assuming that all the model state variables are implicitly defined, and using the numerical def-
initions in the preceding sections, we can represent the model evaluated at x = x∗ as

x = x∗ with R (x ,y) = 0 and f = F (x ,y). (14)

The fundamental system then has the form

u = ���
x
y
f

	
� and R (u) = ���
x − x∗
−R (x ,y)

f − F (x ,y)

	
�, (15)

and the numerical model can be encapsulated in the function

G : x �→ F (x ,Y (x)), (16)

which maps the inputs x to the outputs f . The derivatives of interest are then ∂G/∂x . The follow-
ing proposition shows how ∂G/∂x can be computed at a point x∗ using the fundamental system
defined by Equation (15).

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:11

Proposition 3.1. Let inputs x , states y, and outputs f be defined by Equation (14), and let G map

the inputs to the outputs as defined in Equation (16). Let R and u be given by Equation (15). If ∂R/∂u
is invertible and the inverse is defined as

∂R

∂u

−1

=

⎡⎢⎢⎢⎢⎢⎣
Axx Axy Axf

Ayx Ayy Ayf

Af x Af y Af f

⎤⎥⎥⎥⎥⎥⎦ , (17)

then the following identity holds:
∂G
∂x
= Af x , (18)

where ∂R/∂u is evaluated at u∗ satisfying R (u∗) = 0.

Proof. By construction, we have⎡⎢⎢⎢⎢⎢⎢⎢⎣
I 0 0

− ∂R
∂x

− ∂R
∂y

0

− ∂F
∂x

− ∂F
∂y

I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
Axx Axy Axf

Ayx Ayy Ayf

Af x Af y Af f

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
I 0 0

0 I 0

0 0 I

⎤⎥⎥⎥⎥⎥⎥⎦ , (19)

where the first matrix in the above equation is ∂R/∂u. Block-forward substitution to solve for the
first block-column yields ⎡⎢⎢⎢⎢⎢⎢⎢⎣

Axx

Ayx

Af x

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I

− ∂R
∂y

−1 ∂R
∂x

∂F
∂x
− ∂F

∂y
∂R
∂y

−1 ∂R
∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

Now, G is a composition of functions mapping x �→ (x ,Y (x)) and (x ,y) �→ F (x ,y), so applying
the chain rule yields

∂G
∂x
=

[
∂F
∂x

∂F
∂y

] ⎡⎢⎢⎢⎢⎢⎣
I
∂Y
∂x

⎤⎥⎥⎥⎥⎥⎦ . (21)

Using the implicit function theorem, we can write

∂Y
∂x
= − ∂R

∂y

−1 ∂R
∂x
. (22)

Combining these two equations yields

∂G
∂x
=
∂F
∂x
− ∂F
∂y

∂R
∂y

−1 ∂R
∂x
. (23)

Therefore, we can see from Equations (20) and (23) that

∂G
∂x
= Af x , (24)

as required. �

Note that ∂R/∂y must be invertible for a well-posed model. For instance, in a structural finite-
element model, a singular ∂R/∂y would indicate that there is an infinite number of solutions,
e.g., because of insufficient boundary conditions. In a multidisciplinary context where R and y
include multiple models, a singular matrix would indicate an ill-posed problem with no solution
or an infinite number of solutions, or a physical instability, e.g., divergence in the fluid-structure
interaction. It follows from the properties of determinants of block matrices that the invertibility
of ∂R/∂y implies the invertibility of ∂R/∂u.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:12 J. T. Hwang and J. R. R. A. Martins

Remark 3.1. The computation of the Af x block of the [∂R/∂u]−1 matrix turns out to be mathe-
matically equivalent to the direct or adjoint method. In an ad hoc implementation of the direct or
adjoint method, there is no advantage in computing the df /dx derivatives via ∂R/∂u instead of
the traditional equations. In fact, if poorly implemented, the ∂R/∂u approach may be less efficient.

The advantage of applying the adjoint method via ∂R/∂u is that this method is much more
general. As we will see in the following sections, solving the system with ∂R/∂u generalizes not
just the adjoint method but also the direct method, the coupled adjoint method, chain rule, and
the global sensitivity equations (Sobieszczanski-Sobieski 1990). The method used depends on what
type of model R andu represent, i.e., whether the state variables are explicit, implicit, or mixed; and
whether there are two-way dependencies among them. Therefore, a software framework can adapt
and implement each of these derivative computation methods without requiring dedicated code
implementations for each method, given that the user implements the partial derivative computa-
tion using the finite-difference method, the complex-step method (Squire and Trapp 1998; Martins
et al. 2003), automatic differentiation (Griewank 2000), or by differentiating by hand.

3.3.2 Definition of a Total Derivative. Before deriving the unifying derivatives equation, we
give a precise definition of the total derivative. To start, we introduce r ∈ RN as the value of the
residual vector, as we will need it later.

As mentioned previously, we distinguish variables from functions by assigning lowercase and
uppercase letters, respectively. We consider a total derivative to be the derivative of a variable with
respect to another variable, e.g., dy1/dx1, whereas a partial derivative is the derivative of a function

with respect to the argument of that function, e.g., ∂Y1/∂x1. Therefore, a total derivative captures
the coupling between components, while a partial derivative is local to a component.

The concept of a total derivative is used in many settings with various meanings, but in the
context of direct and adjoint analytic methods, the total derivative is written as

df

dx
=
∂F

∂x
+
∂F

∂y

dy

dx
. (25)

The df /dx term takes into account both the explicit dependence of F on the argument x and the
indirect dependence of F on the state variables y through the solution of a numerical model, for
example.

Suppose that R−1 exists and is differentiable on a neighborhood of r = 0. The Jacobian ∂(R−1)/∂r
has a similar meaning as the total derivative because the (i, j)th entry of the matrix ∂(R−1)/∂r
captures the dependence of the ith component of u on the jth component of r both explicitly
and indirectly via the other components of u. This motivates the following definition of the total
derivative.

Definition 3.3. Given the algebraic system of equationsR (u) = 0, assume that ∂R/∂u is invertible
at the solution of this system. The matrix of total derivatives du/dr is defined to be

du

dr
=
∂(R−1)

∂r
, (26)

where ∂(R−1)/∂r is evaluated at r = 0.

This defines the total derivative in the context of a model that contains multiple coupled com-
ponents. Equation (26) states that the total derivative matrix is the Jacobian of partial derivatives of

the inverse of the function that represents the model as a nonlinear system (13).

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:13

We break down the total derivative matrix du/dr into the blocks corresponding to the different
types of variables. We write the Jacobian blocks corresponding to the kth input variable as

dui

dxk
:=

[
du

dr

]
i,k

, (27)

for 1 ≤ k ≤ m and 1 ≤ i ≤ n. The total derivatives related to the state variables depend on whether
those variables are explicitly or implicitly defined. If the kth state variable is explicit, we write

dui

dyk
:=

[
du

dr

]
i,m+k

, (28)

and if the kth state variable is implicit, we write

dui

dryk

:=

[
du

dr

]
i,m+k

, (29)

for 1 ≤ k ≤ p and 1 ≤ i ≤ n. The blocks corresponding to the kth output variable are

dui

dfk
:=

[
du

dr

]
i,m+p+k

, (30)

for 1 ≤ k ≤ q and 1 ≤ i ≤ n.
In summary, a total derivative represents how changes in one variable result in changes in an-

other variable because of the constraints imposed by the residual function R. In contrast, a partial
derivative represents how the output of a function changes due to changes in an argument of that
function. Therefore, the total derivative is a property of a numerical model, while a partial deriva-
tive is a property of a component in the MAUD context.

Since the partial derivative has a precise and more familiar meaning, we can understand and
interpret the total derivative via the partial derivative with which it is defined. In the representation
of the numerical model as a nonlinear system, the total derivative with respect to an input variable
is simply the partial derivative of R−1 with respect to the residual for the input variable. In other
words, if we perturb the right-hand side of the nonlinear system (13) in a row corresponding to an
input variable, we would find that the resulting normalized change in the u vector is the vector of
total derivatives with respect to that input variable, in the sense of Equation (25).

3.3.3 The Unifying Equation for Derivative Computation. We can now present the unification
of methods for computing total derivatives. Assuming ∂R/∂u is invertible at our point of interest,
r = 0, the inverse function theorem guarantees the existence of a locally defined inverse function
R−1 : r �→ u |R (u) = r on a neighborhood of r = 0 that satisfies

∂(R−1)

∂r
=

[
∂R

∂u

]−1

. (31)

Combining Equations (26) and (31), we obtain

du

dr
=

[
∂R

∂u

]−1

. (32)

That is, du/dr is equal to the inverse of the Jacobian of the system. Therefore, we can write

∂R

∂u

du

dr
= I = ∂R

∂u

T du

dr

T

, (33)

which we call the unifying derivative equation. Recalling that a matrix and its inverse commute,
commuting and transposing the leftmost expression leads to the rightmost expression. The left and

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:14 J. T. Hwang and J. R. R. A. Martins

Fig. 3. Block matrix structure of the unifying derivative equation (33).

right equalities represent the forward mode and the reverse mode, respectively, in the terminology
of automatic differentiation. The unifying derivative Equation (33) is presented by Martins and
Hwang (2013) in different notation using an alternative interpretation and derivation. That paper
also shows in detail how all differentiation methods can be derived from this equation.

The total derivative Jacobian (du/dr) is the matrix of unknowns in the unifying derivative
Equation (33), and it contains the derivatives we ultimately want to compute (df /dx). However,
du/dr also contains various other derivatives that need to be computed in the process of obtain-
ing df /dx , which we now detail. As previously defined, the inverse of the residual function is
R−1 : r �→ u |R (u) = r , where u = (x ,y, f) and r = (rx , ry , rf). If all the state variables are implicitly
defined, we have

r = R (u),����
rx

ry
rf

	

� =
���

x − x∗
−R (x ,y)

f − F (x ,y))

	
�
⇒ du

dr
=
∂(R−1)

∂r
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx
drx

dx
dry

dx
drf

dy
drx

dy
dry

dy
drf

df
drx

df
dry

df
drf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
I 0 0
dy
dx

dy
dry

0

df
dx

df
dry
I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (34)

where the last equality comes from Equations (27), (29), and (30).
In the first column, dx/drx is the identity matrix, because x = rx + x

∗ when we evaluate R−1 and
x∗ is constant. It then follows that dy/drx = dy/dx and df /drx = df /dx . These are total derivatives
because they capture the implicit effect of x on y and f via the condition that the residuals ry must
always be zero.

In the second column, dx/dry is zero because x depends only on rx and not on ry . The dy/dry

and df /dry blocks capture the first-order perturbations toy and f given that we solve R (x ,y) = ry

instead of R (x ,y) = 0 and then update f = F (x ,y) with the perturbed y.
In the third column, dx/drf = 0 and dy/drf = 0 because x and y do not depend on rf . It follows

that df /drf is the identity matrix because x and y are not influenced by a perturbation to rf , so f
is equal to rf plus a constant.

The block matrices in the unifying derivative equation are shown in Figure 3, including the
blocks in du/dr that we have just explained. The derivatives of interest are df /dx , which is a block
matrix in du/dr , as we have just shown. Computing df /dx involves solving a linear system with
multiple right-hand sides. Depending on the relative sizes of f and x , it might be more efficient to
solve the forward system (left-side equality) or the reverse system (right-side equality).

If the state variables are explicitly defined, the terms dy/dry and df /dry are more meaningful.
We illustrate this by first considering the simplest situation, where each state variable depends only
on the previous state variables, so thatyk = Yk (x ,y1, . . . ,yk−1). Then, we have, from Equation (28),

dy

dry
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0

dy2

dy1
1
. . .

...

...
. . .

. . . 0
dyp

dy1
. . .

dyp

dyp−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

df

dry
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

df1

dy1

df1

dy2
. . .

df1

dyp−1

df1

dyp

...
...
. . .

...
...

dfq

dy1

dfq

dy2
. . .

dfq

dyp−1

dfq

dyp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (35)

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:15

In this case, the total derivatives are simply computed using the chain rule to multiply and add
combinations of partial derivatives to find the derivatives of the composite functions. The general
case extends to include implicit variables, coupling between the state variables, or both. In the
general case, the dy/dry or df /dry derivatives still have an important meaning: they represent
the sensitivity of the state or output variable of interest to changes in the residual variable in the
denominator.

4 ALGORITHMIC APPROACH AND SOFTWARE DESIGN

The overall goal of the MAUD architecture is to facilitate two tasks: the evaluation of a compu-
tational model with multiple components and the efficient computation of the model’s coupled
derivatives across the various components. The significance of the mathematical formulation pre-
sented in Section 3 is that the different algorithms for performing these two tasks are unified in
a way that simplifies the implementation of the computational framework. Specifically, the task
of evaluating a coupled computational model reduces to solving a system of nonlinear algebraic
equations, and the task of computing derivatives reduces to solving a system of linear equations.
To perform these tasks and achieve the overall goal, MAUD assembles and solves four types of
systems:

(1) Numerical model (nonlinear system)

R (u) = 0.

(2) Newton step (linear system)
∂R

∂u
Δu = −r .

(3) Forward differentiation (linear system with multiple right-hand-side vectors)

∂R

∂u

du

dr
= I.

(4) Reverse differentiation (linear system with multiple right-hand-side vectors)

∂R

∂u

T du

dr

T

= I.

Naively solving these systems of equations could incur large penalties in both computational
time and memory usage, in part because MAUD assembles a system of equations that is larger
than necessary when compared to an ad hoc implementation without a framework. For instance,
applying a Newton–Krylov solver to the fundamental system (13) would result in the allocation of
larger-than-necessary vectors that contain all the input, state, and output variables, even though
only the state variables are coupled. However, this potential pitfall is circumvented by adopting
a recursive hierarchical solver architecture that allows for the Newton–Krylov solver to be used
only on the coupled state variables even though the fundamental system (13) is still formulated.

To illustrate by example, Figure 4 shows several problems with simple model structures. In each
case, the problem structure (transpose of the Jacobian) is shown as a block matrix, and above it
is the corresponding hierarchical decomposition that would be the most efficient. Each bar rep-
resents an intermediate system in the numerical model, and a different type of solver would be
appropriate for each color. For example, a red bar indicates that its children systems have only
feed-forward coupling, so a single iteration of nonlinear (linear) block Gauss–Seidel would be the
best nonlinear (linear) solver. Systems with green bars would be best solved with a single iteration
of block Jacobi, since there is no coupling among the children. MAUD does not automatically se-
lect the right combination of solvers, but it provides the infrastructure for users to decompose and

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:16 J. T. Hwang and J. R. R. A. Martins

Fig. 4. Six sample problem structures and the corresponding MAUD hierarchical decompositions. The prob-

lem structure is shown using the design structure matrix, which transposes the structure of the Jacobian ma-

trix, so that feed-forward dependencies are above the diagonal. The hierarchical decompositions are shown

above the matrices, where the components are shown in blue, serial groups in red, parallel groups in green,

and coupled groups (i.e., those containing feedback loops) in gray. Each blue, red, green, or gray bar corre-

sponds to an intermediate system in the numerical model.

solve their models hierarchically, selecting the desired solver at each node. This section describes
this infrastructure.

Section 4.1 explains the hierarchical decomposition of the fundamental system (13) into smaller
systems of algebraic equations. Section 4.2 describes the object-oriented implementation of this hi-
erarchy of algebraic systems. Section 4.3 presents the hierarchical solution strategy, and Section 4.4
describes the data structures. Finally, Section 4.5 discusses the assumptions and limitations of the
MAUD architecture.

4.1 Mathematical Decomposition of the Algebraic System

To solve the fundamental system (13) efficiently, we partition the set of unknowns to form smaller
systems of equations. Moreover, we apply this partitioning strategy recursively, resulting in a
hierarchical decomposition of the fundamental system (13).

We introduce a smaller algebraic system, an intermediate system, for a given subset of the resid-
uals and unknowns of the fundamental system. We define the index set

S = {i + 1, . . . , j}, 0 ≤ i < j ≤ n, (36)

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:17

to represent the indices of the variables that make up the unknowns for this smaller algebraic sys-
tem. Without loss of generality we have chosen these indices to be contiguous, since the variables
can always be reordered. The residual function for this intermediate system is

RS : RN → RNi+1 × · · · × RNj , (37)

where we have concatenated the residual functions corresponding to the indices in S .
This subset of residuals is in general a function of all the unknowns u, but only some of

these unknowns are implicitly defined by RS . Therefore, we divide u into the intermediate sys-
tem’s unknown vector, uS = (ui+1, . . . ,uj), and the rest of the unknowns, the parameter vector

pS = (u1, . . . ,ui ,uj+1, . . . ,un). Then, the intermediate system implicitly defines uS as a function
of pS :

Ri+1 (u1, . . . ,ui ,ui+1, . . . ,uj ,uj+1, . . . ,un) = 0
...

R j (u1, . . . ,ui︸�����︷︷�����︸
pS

,ui+1, . . . ,uj︸��������︷︷��������︸
uS

,uj+1, . . . ,un︸��������︷︷��������︸
pS

) = 0

⎫⎪⎪⎬⎪⎪⎭ ⇔ RS (pS ,uS) = 0.
(38)

The significance of this definition is that intermediate systems are formulated and solved in the
process of solving the fundamental system. Solving an intermediate system that has only one vari-
able or a group of related variables in its unknown vector is analogous to executing a component
in the traditional view of a framework, i.e., computing the component’s outputs (uS) given the
values of the inputs (subset of pS). This formulation enables a hierarchical decomposition of all
the variables in the computational model by allowing the definition of intermediate systems that
group together other intermediate systems that may correspond to components.

4.2 Object-Oriented Software Design

In the numerical model, the fundamental system includes the full set ofn variables and corresponds
to the root of the hierarchy tree. It contains a group of intermediate systems that together partition
then variables and form the second level of the tree. Each of these intermediate systems can contain
other intermediate systems forming a third level, and so on, until we reach intermediate systems
that correspond to components and form the leaves of the tree.

The hierarchy in the computational model mirrors this hierarchy in the numerical model, as
shown in Figure 5. A leaf in the hierarchy tree is an instance of the Component class (or a subclass
thereof). Components are the user-implemented units of code that own some of the variables in the
overall model. Components are grouped together by instances of the Assembly class (or a subclass
thereof), which can in turn be grouped together by other assemblies. Therefore, all nodes of the
hierarchy tree that are not leaves are assemblies.

The class inheritance diagram is shown in Figure 6 for the various system classes. Both the
Assembly and Component classes inherit from the System class, which can be interpreted as any
intermediate system in the numerical model.

The first subclass of the System class is the Component class, and it has three derived classes
reflecting whether the system contains independent, explicitly defined, or implicitly defined vari-
ables. The three derived classes are IndepComponent, ExplicitComponent, and ImplicitComponent.
The user implements each component in the computational framework as a class inheriting from
one of these three classes and directly implements operations such as the residual function compu-
tation. Each component contains the variables that form the unknown vector in the component’s
intermediate system. During the initialization, the component must declare its variables as well as
its arguments, which are external variables that affect the component’s variables.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:18 J. T. Hwang and J. R. R. A. Martins

Fig. 5. Containment relationships in the computational model hierarchy tree. The top-level assembly cor-

responds to the fundamental system, and all other assemblies and components correspond to intermediate

systems.

Fig. 6. Class inheritance diagram showing the relationships between the System classes.

MAUD enables parallel computation both within a given variable (by distributing the variable
over multiple processors) and across variables (by assigning different variables to different pro-
cessors). Parallelization within a given variable takes place when a component is internally paral-
lelized, and different parts of the variable (a vector) are allocated to different processors. If another
component takes entries from this variable as its input, the parallel data transfers that occur dur-
ing execution abstract the mechanics of determining to which processors the desired entries are
allocated and of the necessary interprocessor communication. In the lightweight Python imple-
mentation of MAUD described in Section 5.1, the parallel data transfers are implemented using
PETSc (Balay et al. 1997) and petsc4py (Dalcin et al. 2011) for the underlying mechanics of the
scatter operations. Appendix B details the order in which the transfers are called, and the vari-
ables for which the transfers take place.

The second subclass of the System class is the Assembly class, and it is how MAUD supports par-
allelism across variables. It groups other System objects together, so their operations recursively
call those of their children. Moreover, they transfer data that is potentially distributed across mul-
tiple processors. The Assembly class has two derived classes that handle parallelism in different
ways. In the hierarchy tree in Figure 5, the root assembly is stored and run on all the processors. If
a given system is a SerialAssembly, it passes all of its processors to the systems it contains, and it
runs its recursive operations sequentially for those systems. If a given system is a ParallelAssem-

bly, it partitions its group of processors among the systems it contains, and it runs its recursive

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:19

Table 1. The Five Methods of the System Class

Method Operation Called by

1. apply_nonlinear Inputs: p, u • any nonlinear solver to

computes residuals Outputs: r check convergence

r = R (p, u) • Newton solver to compute RHS

2. solve_nonlinear Inputs: p • run script or optimizer to

solves R (p, u) = 0 Outputs: u run the model

and computes outputs u = F (p) • parent system during a

nonlinear block Gauss–Seidel

or Jacobi solution

3. apply_linear (forward mode) (reverse mode) • any linear solver to check

provides ∂R/∂p Inputs: dp , du Inputs: dr convergence

and ∂R/∂u as Outputs: dr Outputs: dp , du • all Krylov solvers

a linear operator dr = ∂R
∂p

dp + ∂R
∂u

du dp = ∂R
∂p

T
dr

du = ∂R
∂u

T
dr

4. solve_linear (forward mode) (reverse mode) • run script or optimizer to

provides [∂R/∂u]−1 Inputs: dr Inputs: du compute derivatives using the

as a linear operator Outputs: du Outputs: dr unifying equation
∂R
∂u

du = dr ∂R
∂u

T
dr = du • parent system during a

linear block Gauss–Seidel or

Jacobi solution

5. linearize • Newton solver after taking a

performs optional step and just before solving

assembly or factorization the linear system

of the Jacobian • run script or optimizer prior

to solving the unifying

equation

Note: The subscript S in RS , pS , and uS is omitted for brevity.

operations concurrently among those systems. This applies to all Assembly objects, and so each
system is assigned a subset of its parent system’s processors.

4.3 Hierarchical Solution Strategy

As explained in Section 4.2, the model is represented using a hierarchy of System class instances
that contain each other. Mathematically, each instance corresponds to an intermediate system

RS (pS ,uS) = 0, (39)

for a particular index set S , as explained in Section 4.1. We now present the System class methods
that represent operations performed on this intermediate system, such as the residual RS compu-
tation and the computation of the solution uS .

The System class has an interface consisting of the following five methods: apply_nonlinear,
solve_nonlinear, apply_linear, solve_linear, and linearize. Table 1 describes these methods, lists their
inputs and outputs, and details how they are called. The apply_nonlinear method is a nonlinear
operator that computes the residuals, and solve_nonlinear is a nonlinear operator that solves for

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:20 J. T. Hwang and J. R. R. A. Martins

the unknowns by converging the residuals to zero. The apply_linear method is a linear operator
that performs a Jacobian-vector product, and the solve_linear method applies the inverse of the
square part of the Jacobian as a linear operator. The linearize method provides preprocessing steps
such as matrix assembly, matrix factorization, and preconditioner computation.

All modern nonlinear and linear solution methods can be implemented using the interface pro-
vided by these five methods. For example, a Newton solver assigned to a given assembly (i.e.,
as the implementation of the solve_nonlinear method) would call the assembly’s apply_nonlinear

method to get the nonlinear residual vector for the right-hand side of the linear system, and the
solve_linear method to solve the linear system. If the user chose a Krylov solver as the implemen-
tation of solve_linear for this assembly, the Krylov solver would call apply_linear multiple times,
since this represents a matrix-vector product operation. Furthermore, suppose that the precon-
ditioner used by this solver is linear block Jacobi. Then the linear block Jacobi solver would be
another solve_linear implementation that would iteratively call the solve_linear methods of each
of the assembly’s subsystems. If the user preferred to use an incomplete factorization for the pre-
conditioner, he/she would perform the sparse matrix assembly and factorization in linearize and
the back substitution in another solve_linear implementation. Note that in these examples there
are multiple solve_linear implementations because the preconditioner is one linear solver nested
inside another (i.e., the Krylov solver). The method named solve_linear would run the top-level
solver, which is the Krylov solver in this case. More general solution methods such as nonlinear
preconditioned solvers, pseudo-transient continuation, and multigrid solvers can be incorporated
using custom solve_nonlinear or solve_linear implementations that override the base implementa-
tions that call one of the standard solvers. This can be done not just in components but also in
groups, for custom coupled solvers.

While the solve_nonlinear (solve_linear) implementations can contain any nonlinear (linear)
solver, there are four fundamental solvers that play important roles in MAUD: nonlinear block
Gauss–Seidel, nonlinear block Jacobi, linear block Gauss–Seidel, and linear block Jacobi. To ex-
plain the use of these four solvers, we refer back to Figure 4. Assembly objects with children that
have only feed-forward coupling (i.e., red bars in Figure 4) should be assigned nonlinear (linear)
block Gauss–Seidel as their nonlinear (linear) solver, since the nonlinear (linear) system would
“converge” in one iteration. For a similar reason, Assembly objects with children that have no
coupling (i.e., green bars in Figure 4) should be assigned nonlinear (linear) block Jacobi as their
nonlinear (linear) solver. However, all four solvers can be useful in assemblies that have children
with coupling (feedback loops) as well, although block Jacobi is known to have poor convergence
in this case.

Composable solvers similar to those described above are implemented in PETSc (Balay et al.
1997) in the nonlinear (Brune et al. 2015) and linear (Brown et al. 2012) settings. These approaches
hierarchically divide a multidisciplinary system by variable type, discipline, or mesh block (Brune
et al. 2015; Brown et al. 2012). Users can use PETSc’s composable solvers to implement solve_linear

or solve_nonlinear in MAUD, but they also have the option to use a custom solver, or a solver from
any other framework.

Table 2 lists the solvers and operations that can be involved in the implementation of each of
the System class methods, depending on whether the given System object is an Assembly or a Com-

ponent object. For instance, solve_nonlinear for an assembly could be a custom user-implemented
solver, Newton’s method, or a block solver; however, a block solver is not appropriate for a com-
ponent because components cannot be broken down further. The apply_nonlinear method must
be implemented by the user because it is completely dependent on the problem the user wants to
solve. Appendix B presents the algorithms for the key solver implementations.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:21

Table 2. Solver or Operation Executed for Each Type of Method and System

Method Assembly class Component class
1. apply_nonlinear • Recursion • User-implemented

2. solve_nonlinear • Custom nonlinear solver • Custom nonlinear solver
(optional) • Newton’s method • Newton’s method

• Nonlinear block Gauss–Seidel
• Nonlinear block Jacobi

3. apply_linear • Recursion • User-implemented
• FD*

4. solve_linear • Custom linear solver • Custom linear solver
(optional) • Krylov method • Krylov method

• Direct method • Direct method
• Linear block Gauss–Seidel
• Linear block Jacobi

5. linearize • Recursion
• User-implemented
• Factorization

*FD: finite-difference approximation of the Jacobian.

Fig. 7. Data storage for the u and p vectors for a Component object and all of the Assembly instances above

it in the hierarchy tree.

4.4 Efficient Data Structures

Efficient data structures are necessary to avoid memory and computing overhead in problems with
large vectors. For each system, the MAUD architecture stores six vectors: the outputu, inputp, and
residual r for the nonlinear operations and the corresponding variables for the linear operations,
which are du, dp, and dr . The latter three can be considered to be buffers for the linear solution
vector or the right-hand-side vectors, depending on the situation. For instance, for the Newton
system, the right-hand side is stored in dr and the solution vector is stored in du. The size of the
vectors u, r , du, and dr is N , the sum of the sizes of all the input, state, and output variables, as
defined by Equation (4). The size of the vectors p and dp depends on the sparsity of the problem.
The vectors u, du, r , and dr are instances of the UnknownVec class, while the vectors p and dp are
instances of the ParameterVec class.

To illustrate the UnknownVec and ParameterVec classes, Figure 7 shows how the u and p vectors
are stored in the MAUD architecture. For the UnknownVec instances (u in Figure 7, in blue), data
is shared with the systems above and below in the hierarchy tree. The full u, du, r , and dr vectors
are allocated in the top-level Assembly object, and the other systems store pointers to subvectors

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:22 J. T. Hwang and J. R. R. A. Martins

of the global vector (shown in darker blue). Compared to the allocation of separate vectors in
each system, this approach saves memory and computational time, since the subsystems operate
directly on subvectors of the larger system’s vector. When distributed-memory parallel computing
is used, each processor stores only its local parts of the u, du, r , and dr vectors; the storage via
pointers to subvectors remains the same even in the parallel situation.

The ParameterVec instances (p in Figure 7, in green) store only the variables that a Component

declares as its arguments. There are two reasons for explicitly storing a separate copy of the argu-
ments of each Component as opposed to simply reading the data as needed from the UnknownVec.
First, if the originating data is stored in a different processor, a buffer is needed for the parallel data
communication. Second, the linear and nonlinear block-Jacobi methods require a second copy of
the arguments to store their values from the previous Jacobi iteration. The MAUD architecture
allows for the use of block Jacobi at multiple levels in the hierarchy tree, and the challenge of up-
dating the arguments at the right times is simplified by incorporating the data transfers into the
Jacobi algorithm. In serial mode without block Jacobi, the separate copy results in a memory and
computational time penalty, but it is not significant in practice because the components typically
have only O (1) input variables (each can be a vector) and this number does not increase with the
number of components.

The MAUD architecture automates parallel data transfer between UnknownVec instances and
ParameterVec instances, providing two benefits. First, if component A depends on variable V from
component B, component A does not have to know how many processors component B has, or how
much of variable V component B has stored on each processor. For each argument that a Component

declares, the framework can automatically determine on which processor the requested data is
stored and what the local indices are, based on the global indices that were also declared. Second,
the data transfer operation is implemented as a method in the Assembly class, so it is integrated into
the solution algorithms. This operation performs data transfers for multiple Component objects
simultaneously, improving the parallel performance. A system transfer operation transfers data to
a subsystem ParameterVec instance from the UnknownVec instances of its other subsystems, and
vice versa for the reverse mode in a transposed linear system.

4.5 Assumptions and Limitations

The most important feature of MAUD is that it enables the computational framework to automat-
ically assemble the total derivatives for a multidisciplinary model given the partial derivatives of
each component. Furthermore, the unifying derivative Equation (33) adapts to the problem struc-
ture and model type, so that solving this equation is equivalent to assembling the total derivatives
using the appropriate method among the known methods for computing total derivatives. How-
ever, like any method for computing derivatives, the MAUD approach makes assumptions about
the underlying models.

The first assumption is that each component is continuous and differentiable. Strictly speak-
ing, both are necessary for the use of the unifying derivative Equation (33); however, they are
required only locally, so in practice piecewise continuity and differentiability are often sufficient.
Continuity and differentiability are also helpful for avoiding convergence issues in the optimiza-
tion problem. Continuity can be compromised by timestepping algorithms that have a variable
number of timesteps, since the number of iterations is inherently discrete. However, if the solu-
tion tolerance is sufficiently small, the discontinuities should be small enough that optimization
convergence issues can be avoided. An observed rule of thumb is that the solver tolerance must
be at least one or two orders of magnitude smaller than the tolerance of the derivative solver for
the unifying derivative Equation (33), which must in turn be one or two orders smaller than the
optimization tolerance.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:23

Although continuity and differentiability are required mathematically, many instances of
nondifferentiability that the authors have encountered have turned out to be benign. For in-
stance, adjoint-based optimization is commonly used in CFD solvers with upwind discretizations
(Kenway et al. 2014). In cases where point discontinuities might be problematic, the functions can
often be smoothed numerically. For instance, the satellite and aircraft operational optimization
problems discussed in Sections 5.2 and 5.3 use smoothing functions to eliminate points that are
not continuous and differentiable, enabling the overall optimization problem to be solved using
MAUD and a gradient-based optimizer.

The second assumption is that partial derivatives are available for the component. For explicit
variables, MAUD requires the partial derivatives of the explicit function with respect to the com-
ponent’s inputs, and for implicit variables, MAUD requires the partial derivatives of the residual
with respect to the state variable itself as well as the component’s inputs. The multidisciplinary
derivative computation can be degraded in both accuracy and computational cost if one of the com-
ponents wraps a commercial solver that does not compute derivatives, in which case the finite-
difference method is the only option. The error in the finite-difference component derivatives
propagates to the multidisciplinary derivatives, which can cause optimization convergence issues.

Due to these issues of nonconvergence, partial derivatives should be computed accurately us-
ing hand differentiation, the complex-step method, or automatic differentiation, when possible.
Differentiating by hand requires more effort, but it can be the most efficient method. The man-
ual effort can be reduced by decomposing a larger component into multiple smaller components
with simpler mathematical expressions. The complex-step method is accurate and can be relatively
labor-free to implement in certain cases, but the cost is proportional to the number of component
inputs. The cost of automatic differentiation is proportional to either the number of component
inputs or the number of component outputs, but both can be large in some cases.

The third assumption about the underlying models is that in the multidisciplinary Jacobian
of partial derivatives, the square diagonal blocks corresponding to intermediate systems that are
formed must also be invertible. This invertibility requirement only applies to the fundamental
system and to intermediate systems that are immediate children of systems that use a nonlinear
or linear block Gauss–Seidel or Jacobi iteration. Other intermediate systems, including individual
components, can have singular Jacobians if one of the groups above them in the hierarchy tree
uses monolithic solvers, such as Newton’s method or a direct solver.

This invertibility requirement is satisfied if the problem is well-posed, since it is also a require-
ment for Newton’s method. Similar assumptions are discussed by Keyes et al. (2013) in the context
of solving tightly coupled systems with Newton’s method. They assume that the matrix is diago-
nally dominant and that each block corresponding to a component or discipline is invertible. They
state that “these assumptions are natural in the case where the system arises from the coupling of
two individually well-posed systems with legacies of being solved separately.” When these condi-
tions hold, the matrix is typically invertible in practice.

MAUD has some limitations. Like the adjoint method, MAUD provides a significant speed-up for
total derivative computation only when there are implicit state variables, a feedback loop among
the components, or both. The presence of coupling in either form requires a nonlinear or linear
solver that dominates the computational time. When coupling exists, a straightforward assembly of
the partial derivatives of the components is not possible, and the finite-difference method is slower
than the adjoint method by roughly a factor of n, where n is the number of design variables. When
there is no coupling—i.e., no implicit state variables and no feedback loops—we can just apply the
chain rule. In this simpler case, MAUD merely automates the chain-rule assembly of the partial
derivatives, using a single linear block Gauss–Seidel iteration to compute the total derivatives.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:24 J. T. Hwang and J. R. R. A. Martins

This again highlights the fact that MAUD takes a unified approach because it handles coupled and
sequential problems within the same hierarchical solution approach.

5 RESULTS FROM ENGINEERING DESIGN APPLICATIONS

We give two examples to demonstrate how the MAUD architecture facilitates the implementa-
tion and solution of large-scale engineering design optimization problems: the optimization of a
nanosatellite (Hwang et al. 2014) and an aircraft operations optimization (Kao et al. 2015; Hwang
and Martins 2015). These two problems are larger and more complex than have been solved before
in their respective fields. We focus on how MAUD manages the many components and their net-
work of dependencies. The details and physical interpretation of the optimal designs can be found
in previous publications (Hwang et al. 2014; Kao et al. 2015; Hwang and Martins 2015, 2016).

5.1 Python Implementation of MAUD

To implement and solve the two demonstration problems, we use a bare-bones Python imple-
mentation of MAUD. The MAUD architecture has since been implemented in the OpenMDAO
framework (Gray et al. 2014), but the results herein use the bare-bones version because they were
generated prior to OpenMDAO’s adoption of the MAUD architecture. The bare-bones implemen-
tation depends only on the NumPy package for handling local vectors and on the petsc4py package
(Dalcin et al. 2011) as an interface for PETSc (Balay et al. 1997). PETSc is used for all parallel data
transfers, and its Krylov iterative methods are used as well, with flexible generalized minimal resid-
ual (fGMRES) as the default solver. PETSc is not a required dependency, however, since nonparallel
problems can be run with NumPy data transfers and SciPy’s Krylov solvers, in both the bare-bones
and OpenMDAO implementations of MAUD.

The entire bare-bones implementation of the framework consists of a single Python file with
about 1,000 lines of code, thanks to the simplifications enabled by MAUD’s monolithic mathemat-
ical formulation and the use of PETSc.

5.2 Large-Scale Optimization of a Nanosatellite

A CubeSat is a low-cost nanosatellite with a mass that is less than 1.33 kg. CubeSats are primarily
built by university teams for research purposes because they are easier and less costly to design,
build, and launch compared to larger satellites. Given that the turnaround time can be as short
as a year, the objective of this application of MAUD is to develop a computational model for the
CubeSat and to use optimization to expedite the design process, while improving the final design
(Hwang et al. 2014).

Part of the motivation for using numerical optimization is the multidisciplinary nature of the
problem. The CubeSat stores energy collected by the solar panels in batteries and uses this en-
ergy to power three main systems: the instruments that collect research data, the transmitter that
sends this data to stations on Earth, and the momentum wheels that enable attitude control. The
modeling of the systems involves several disciplines: orbital dynamics, attitude dynamics, solar
cell illumination, heat transfer, solar power generation, energy storage, and communication.

In our formulation, the model for this multidisciplinary system results in 43 separate compo-
nents (Component objects), each of which is responsible for computing a subset of the full system’s
variables. Some of these variables are determined implicitly through the solution of ODEs using a
fourth-order Runge–Kutta solver. The ODE state variables consist of the orbit trajectory, attitude,
temperature, and battery charge level. Other variables require interpolating tables of precomputed
discrete data to obtain smooth explicit functions. One of the variables—the solar panel exposure
variable—is discontinuous because the sunlight exposure on the solar panels rapidly drops to zero
when the satellite travels into the Earth’s shadow. However, we use cubic interpolation to smooth

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:25

Fig. 8. A subset of variables modeled in the nanosatellite design optimization problem. The total data is

minimized for a 12-hour period; the battery state of charge curve is constrained to be between 20% and 100%

at all times. The communication power profile, roll angle profile, and panel current profile are all parametrized

with design variables, and the remaining six quantities are state variables. Sun line-of-sight (LOS) and ground

station LOS describe whether the satellite is in view of the Sun and the ground station, respectively.

these transitions. This is done to satisfy the continuity and differentiability requirements discussed
in Section 4.5.

In total, there are roughly 200 input, state, or output variables, most of which are vector-valued
because they are time-dependent. The model contains six 12-hour simulations of the satellite
evenly distributed throughout the year, and each of the six simulations takes about 1,500 timesteps,
so these 200 variables result in 2.2 million unknown scalars.

The optimization problem has a total of over 25,000 (scalar) design variables because multiple
profiles that vary in time are simultaneously optimized. The optimizer we use is SNOPT (Gill
et al. 2005), which uses sequential quadratic programming to efficiently solve nonlinear con-
strained optimization problems that are large and sparse. The pyOpt optimization framework
(Perez et al. 2012) is used as the interface to SNOPT.

Figure 8 plots some of the simulation results at the optimized design point, illustrating the scope
of a large-scale optimization in a practical design problem. The operational design variables consist
of the discretized communication power, roll angle, and solar panel current curves. Figure 8 shows
that the optimizer determines that it is optimal to spike the power allocation to the communication
module only when there is a line of sight from the satellite to the ground station. The optimizer also
determines the optimal roll angle profile to balance the competing considerations of maximizing
power generation, shading some of the solar cells when they overheat, and maximizing signal
strength during data transfers to the ground station. Optimizing curves rather than scalar values

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:26 J. T. Hwang and J. R. R. A. Martins

Fig. 9. Convergence plots for the CubeSat optimization problem. The superbasic variables are the subset

of the design variables that are free (not at their bounds, or used to satisfy equality or active inequality

constraints). The merit function is the augmented Lagrangian, which is formed by appending to the objective

function both penalty and Lagrange-multiplier terms for the nonlinear constraints. The optimality is the

norm of the gradient of the augmented Lagrangian, and the feasibility is the norm of the constraints.

gives rise to tens of thousands of design variables, and these results show that our approach can
handle such problems.

The MAUD architecture provides two unique benefits that enable the solution of the satellite
design optimization problem. The first is the efficiency in executing the computational model.
Since the full coupled system involves 2.2 million unknowns, MAUD’s efficient data handling and
transfer operations are critical. To solve the large linear systems that arise, the hierarchical decom-
position enables the use of an LU decomposition for the Jacobian blocks corresponding to ODE
variables. The second benefit is that the coupled derivative computation in MAUD automates what
would otherwise be an extremely error-prone and laborious process of combining the derivatives
from 43 components and their complex network of dependencies. For this problem, the derivative
computation using MAUD amounts to a combination of the adjoint method and the chain rule
(since many of the components evaluate explicit functions), where each component is differenti-
ated analytically to obtain the partial derivatives. This problem does not take advantage of MAUD’s
hierarchically partitioned solvers, because there is no feedback loop among the 43 components so
a single iteration of block Gauss–Seidel suffices for both the nonlinear and linear solution.

Figure 9 shows that the optimization problem converged two orders of magnitude in optimal-
ity and four orders in feasibility. This optimization required approximately 100 h using a sin-
gle 2.93HGz Core i7-870 processor. This is a low computational cost for a nonlinear optimization
problem with so many design variables and states, thanks to the combination of adjoint-based
derivative computation and the gradient-based optimizer. The function evaluation and derivative
computation times are plotted as a function of problem size in Figure 10. The plot shows that the
additional computational time due to framework overhead does not cause a bottleneck when scal-
ing up this problem, since the overall time scales linearly with the number of degrees of freedom in
the problem. More details on this problem can be found in previous work by the authors (Hwang
et al. 2014).

5.3 Aircraft Operations Optimization

The other large-scale optimization application is an airline profit maximization for a fleet of com-
mercial aircraft (Hwang and Martins 2015). Given the design of a next-generation aircraft, the
profit maximization problem seeks to determine on which routes an airline should fly this new
aircraft. In addition to the route variables, the profit maximization simultaneously optimizes the

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:27

Fig. 10. Wall times for the functional evaluation and derivative computation (a single coupled adjoint solu-

tion) in the nanosatellite and aircraft operations problems with linear and quadratic (right plot only) refer-

ence lines.

Fig. 11. Class diagram showing the System instances in one of the 128 aircraft mission analyses.

altitude profiles for those routes. We assume that the airline has four types of current-generation
aircraft in addition to the next-generation aircraft, and that there is a limited number of each type
of aircraft. The motivation for this optimization is to evaluate the impact of next-generation air-
craft technologies that depend on the altitude profiles, such as morphing wings and continuous
descent approaches. This optimization problem is solved using 128 processors.

The computational model consists of 128 mission analyses to predict the fuel efficiency for each
aircraft route. Each mission analysis involves several coupled components. Figure 11 illustrates
how a single mission instance within the larger problem is partitioned, and the dependencies be-
tween the variables are shown in Figure 12. The Inputs, Bsplines, AtmosphericProperties, Coupled-

Analysis, and Outputs variables are grouped into these categories for convenience, and because
the resulting blocks have a sequential chain of dependence that can be solved with a single block
Gauss–Seidel iteration, as shown in Figure 12.

One of the variables in the AtmosphericProperties system is the atmospheric temperature at
a given point in the mission. The atmospheric temperature can be computed from the altitude,
while other quantities such as the pressure, density, and speed of sound are computed from the

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:28 J. T. Hwang and J. R. R. A. Martins

Fig. 12. Aircraft mission analysis variables (listed on left, top, and diagonal) and their dependencies (shown

in off-diagonal dark-gray blocks).

temperature. However, temperature is a piecewise function of altitude, since it decreases linearly
up to 11km and is constant above that. Since the temperature is not differentiable at 11km, we use
cubic smoothing to ensure that the model satisfies the continuity and differentiability assumption
from Section 4.5.

The CoupledAnalysis involves feedback loops between fuel burn, thrust, drag, lift, and weight,
due to the intrinsic coupling between the propulsion, aerodynamics, weight, and flight dynamics
disciplines. The rate of fuel burn at a given point in the flight depends on the engine throttle setting,
which is determined by the aerodynamic drag that the engine thrust must overcome. However, the
drag depends on how much lift is produced to counteract the weight of the aircraft, which in turn
is affected by the total amount of fuel being carried. Newton’s method is used to solve this coupled
nonlinear system after an optional start-up sequence of nonlinear block Gauss–Seidel iterations.
The linear systems that arise are solved using fGMRES (Saad 1993), and the optional preconditioner
consists of a few iterations of linear block Gauss–Seidel.

To evaluate a given set of routes at each optimization iteration, we require 128 instances of
the mission analysis we just described (Figures 11 and 12). These analyses compute the fuel burn

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:29

Fig. 13. Hierarchy tree showing how the allocation-mission model is structured. The items in gray are the

variables, the blue items group their systems in series, and the red item groups its systems in parallel. The

coupled analysis is shown in green because its variables are coupled, so it uses Newton’s method and GMRES.

Fig. 14. Convergence plots for the aircraft operations optimization. The superbasic variables are the subset

of the design variables that are free (not at their bounds, or used to satisfy equality or active inequality

constraints). The merit function is the augmented Lagrangian, which is formed by appending both penalty

and Lagrange-multiplier terms for the nonlinear constraints to the objective function. The optimality is the

norm of the gradient of the augmented Lagrangian, and the feasibility is the norm of the constraints.

for each route, and then the allocation model evaluates how much profit the airline would make
given the current aircraft allocation. Figure 13 shows the full hierarchy tree for the problem, which
consists of the mission analyses and the allocation model. In Figure 13, the Mission analyses system
groups the 128 mission systems. To enable parallel computation of the various missions, we use
the block-Jacobi solver for the linear and nonlinear systems. Hwang and Martins (2015) describe
the problem and discuss the results in more detail.

We see from this problem that in practice the hierarchy tree for the partitioning is chosen based
on how we want to parallelize and where there is coupling between variables. The desire to par-
allelize across the 128 missions motivates us to introduce the Mission analyses system, and the
coupling between the lift, angle of attack, drag, and thrust motivates us to group them into the
CoupledAnalysis system.

This optimization problem contains over 6,000 design variables and 23,000 constraints. The op-
timization achieves three orders of magnitude of convergence in optimality and feasibility in about
8 hours on 128 processors, as shown in Figure 14. The optimization was run on eight nodes, each
with 16 E5-2670 2.6GHz processors and 64GB RAM.

6 CONCLUSION

In this article, we have described the MAUD architecture, a novel method for facilitating the cou-
pling of multiple heterogeneous computational models and for computing their coupled solution

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:30 J. T. Hwang and J. R. R. A. Martins

and coupled derivatives efficiently. We have presented the mathematical formulation for cou-
pling models and computing their derivatives, discussed the algorithmic approach for solving the
resulting systems of equations, and given results from the application of MAUD to two multidis-
ciplinary design optimization problems.

The fundamental theory starts by combining all the input, state, and output variables from the
various disciplines into a unified vector. The multidisciplinary model is then formulated as a sin-
gle algebraic system of equations with this unified vector comprising the vector of unknowns, so
the task of running the simulation reduces to solving this nonlinear system. Next, we show that
the derivatives of the outputs with respect to the inputs of the model can be computed by solv-
ing Equation (33), a linear system with multiple right-hand sides. The nonlinear system is also
recursively partitioned to enable hierarchical solution methods.

The software implementation of MAUD is naturally object-oriented. The main base class is a
System with a compact interface consisting of five methods used to solve the nonlinear and lin-
ear systems. The user-defined components that own a subset of the variables are System objects,
as are the framework-provided System objects that group other System objects together. In the
interface, the components provide Jacobian matrices ultimately as linear operators, and MAUD
centrally stores and operates on all the vectors in a concatenated form, making pointers to sub-
vectors available to the components for easy access. This idea of a hierarchy of System objects with
the five-method interface is an important part of MAUD because it details how one can use the
aforementioned fundamental theory and formulation in practical problems and implement mod-
ern solution algorithms such as Newton–Krylov solvers and preconditioners without a penalty on
computation time.

The key benefits of the MAUD architecture can be summarized as follows. First, its modular-
ity allows the framework to automate parallel data passing between components. Components
that have parallel vectors as arguments need not know how those parallel vectors are distributed
across their processors. Second, MAUD provides a hierarchical way to organize the components,
with the user given a choice of solver at each node in the hierarchy. This is important because
MAUD formulates the model as a single system of equations, and without the hierarchical struc-
ture there would be memory and computational overheads. The third and most important benefit
is the automated computation of derivatives given the partial derivatives of each component and
the appropriate linear solvers. MAUD enables adjoint derivative computation, which can compute
a full gradient with respect to all the inputs at a cost that is of the same order of magnitude as that
of running the simulation. In particular, MAUD provides a common interface for the use of the
chain rule, the coupled adjoint method, and hybrid methods that combine the two; the appropriate
method is automatically chosen based on the model.

There are three underlying assumptions for problems that are to be solved with MAUD. First,
each component in the multidisciplinary model is assumed to be continuous and differentiable.
However, models with some discontinuities can be smoothed in practice, as was done in the two
applications presented in this article. The second assumption is that each component must be able
to compute its partial derivatives. If such a computation is not available, one must resort to the
finite-difference method, which is inaccurate and inefficient. Finally, MAUD solves linear systems
to converge simulations and compute derivatives, so the Jacobian matrices of the multidisciplinary
systems must be invertible.

The two applications presented herein demonstrate the power of the adjoint method for prob-
lems in which these assumptions hold. The first application is the optimization of a nanosatellite
involving seven disciplines modeled by 43 components and over 2 million total unknowns. The
optimization problem contains over 25,000 design variables, and it converges in the equivalent of
O (100) function evaluations, thanks to the coupled adjoint computation that MAUD performs for

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:31

the 43 components. The second application is an aircraft operations optimization that involves
over 6,000 design variables and 23,000 constraints. This problem has fewer components, but the
variables that are modeled are coupled at multiple levels, requiring a hierarchical nonlinear solver
to perform the multidisciplinary analysis and a hierarchical linear solver to compute the deriva-
tives efficiently using the coupled adjoint method. Moreover, this problem is solved using 128
processors, and MAUD fully automates the parallelization.

MAUD has been implemented in OpenMDAO (Gray et al. 2014), an open-source computational
framework being developed by NASA.1 Both the CubeSat optimization and the aircraft operations
optimization have also been implemented in OpenMDAO. The advantages of MAUD have been
tested and demonstrated through its application to aircraft, satellite, wind turbine, airline alloca-
tion, and engine design problems, and MAUD can now be easily used via OpenMDAO.

APPENDIXES

A NOMENCLATURE

List of Integers

Numbers of variables

n total number of input, state, and output variables
m number of input variables
p number of state variables
q number of output variables

Total sizes of variable groups

N sum of the sizes of all the input, state, and output variables
N x sum of the sizes of all the input variables
Ny sum of the sizes of all the state variables

N f sum of the sizes of all the output variables
NS sum of the sizes of the output variables of the intermediate system

Sizes of individual variables

Nk size of the kth variable (among all inputs, states, and outputs)
N x

k
size of the kth input variable

N
y

k
size of the kth state variable

N
f

k
size of the kth output variable

List of Variables

Basic types of variable groups

x ∈ RN x
vector concatenating allm input variables

y ∈ RN y
vector concatenating all p state variables

f ∈ RN f
vector concatenating all q output variables

x∗ ∈ RN x
value of the input variable vector at which the model is evaluated

Variable groups used to formulate a single nonlinear system

u ∈ RN vector concatenating all inputs, states, and outputs; short for uS

r ∈ RN output of the residual function for all the inputs, states, and outputs

rx ∈ RN x
output of the residual function for all the input variables

ry ∈ RN y
output of the residual function for all the state variables

rf ∈ RN f
output of the residual function for all the output variables

1www.openmdao.org.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

www.openmdao.org

37:32 J. T. Hwang and J. R. R. A. Martins

Variable groups used to formulate intermediate systems

p ∈ RN−NS short for pS

pS ∈ RN−NS input for the intermediate system defined by S
uS ∈ RNS output for the intermediate system defined by S
rS ∈ RNS residual value for the intermediate system defined by S

Individual variables

xk ∈ RN x
k kth input variable

yk ∈ RN
y

k kth state variable

fk ∈ RN
f

k kth output variable
uk ∈ RNk kth variable (among all inputs, states, and outputs)

List of Functions

Basic types of functions

Y : RN x → RN y
function that computes all the state variables

R : RN x+N y → RN y
residual function for all the state variables

F : RN x+N y → RN f
function that computes all the output variables

G : RN x → RN f
function that computes all outputs given inputs

Functions used to formulate a single nonlinear system

R : RN → RN residual function for all the variables
R−1 : C → RN inverse residual defined on an open neighborhood, C , of 0 ∈ RN

Functions used to formulate intermediate systems

FS : D1 × · · · × Di1 × Di2+1 × · · · × Dn → Di1+1 × · · · × Di2

function that solves the intermediate system defined by S
RS : D → Di1+1 × · · · × Di2

residual function for the intermediate system defined by S

Functions associated with individual variables

Fk : D1 × · · · × Dk−1 × Dk+1 × · · · × Dn → Dk

function that solves the kth residual function
Rk : RN → RNk residual function for the kth variable

(among all inputs, states, and outputs)

Yk : RN x+N y−N
y

k → RN
y

k function that computes the kth state variable

Fk : RN x+N y → RN
f

k function that computes the kth output variable

Rk : RN x+N y → RN
y

k residual function for the kth state variable

List of Symbols for Derivatives

dy

dx
∈ RN y × RN x

total derivative matrix of variable y with respect to variable x

∂F
∂x
∈ RN f × RN x

partial derivative matrix of function F with respect to argument x

List of Sets

D ⊆ RN Cartesian product of N closed intervals
Dk ⊆ RNk Cartesian product of Nk closed intervals
S ⊆ {1, . . . ,n} contiguous index set defining an intermediate system

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:33

B ALGORITHMS

In the following figures, the parts of the vectors in green are arguments; those in pink were com-
puted in previous iterations; those in red are computed in the current iteration; and those in gray
are not relevant. The parts of the matrices in light-blue were used in previous iterations; those in
blue are used in the current iteration; those in light-red represent the application of the precondi-
tioner; and those in gray are not relevant.

ALGORITHM 1: apply_nonlinear [recursive]

input: (p,u)
output: r
transfer u to each subsys .p
for each subsys do

subsys.apply_nonlinear

end

ALGORITHM 2: solve_nonlinear [GS]

input: p
output: u
while not converged do

for each subsys do
transfer u to subsys .p
subsys.solve_nonlinear

end

end

ALGORITHM 3: solve_nonlinear [Jacobi]

input: p
output: u
while not converged do

transfer u to each subsys .p
for each subsys do

subsys.solve_nonlinear

end

end

ALGORITHM 4: solve_nonlinear [Newton]

input: p
output: u
while not converged do

apply_nonlinear

d f ← −f
solve_linear

α ← line_search(du)

u ← u + α · du
end

In the next four figures, fwd indicates the “forward” mode, used to solve the Newton linear system
or the left-hand equality of Equation (33).

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:34 J. T. Hwang and J. R. R. A. Martins

ALGORITHM 5: apply_linear, fwd [recursive]

input: (dp,du)
output: dr
transfer du to each subsys .dp
for each subsys do

subsys.apply_linear

end

ALGORITHM 6: solve_linear, fwd [GS]

input: dr
output: du
rhs ←− dr
while not converged do

for each subsys do
transfer du to subsys .dp
subsys.apply_linear

subsys .dr ← rhs − subsys .dr
subsys.solve_linear

end

end

ALGORITHM 7: solve_linear, fwd [Jacobi]

input: dr
output: du
rhs ←− dr
while not converged do

transfer du to each subsys .dp
for each subsys do

subsys.apply_linear

subsys .dr ← rhs − subsys .dr
subsys.solve_linear

end

end

ALGORITHM 8: solve_linear, fwd [Krylov]

input: dr
output: du
rhs ← dr
function linear_operator(x)

dr ← x
solve_linear

apply_linear

y ← dr
return y

du ← krylov (rhs, linear_operator)

In the next four figures, rev indicates the “reverse” mode, used to solve the right-hand equality of
Equation (33).

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:35

ALGORITHM 9: apply_linear, rev [recursive]

input: dr
output: (dp,du)
for each subsys do

subsys.apply_linear

end

transfer each subsys .dp to du

ALGORITHM 10: solve_linear, rev [GS]

input: du
output: dr
rhs ←− du
while not converged do

for each subsys1 do

for each subsys2 do
subsys2.apply_linear

end

transfer each subsys2.dp to du
subsys1.du ← rhs − subsys1.du
subsys1.solve_linear

end

end

ALGORITHM 11: solve_linear, rev [Jacobi]

input: du
output: dr
rhs ←− du
while not converged do

for each subsys do
subsys.apply_linear

end

transfer each subsys .dp to du
for each subsys do

subsys1.du ← rhs − subsys .du
subsys.solve_linear

end

end

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

37:36 J. T. Hwang and J. R. R. A. Martins

ALGORITHM 12: solve_linear, rev [Krylov]

input: du
output: dr
rhs ← du
function linear_operator(x)

du ← x
solve_linear

apply_linear

y ← du
return y

dr ← krylov (rhs, linear_operator)

ACKNOWLEDGMENTS

The authors would like to thank Justin S. Gray, Kenneth T. Moore, and Bret A. Naylor from NASA
Glenn Research Center for valuable feedback and discussions, as well as their work on implement-
ing the ideas presented herein in OpenMDAO. The authors would also like to thank the following
researchers from the University of Michigan: Dae Young Lee and James W. Cutler for their involve-
ment in the CubeSat problem; Jason Y. Kao for his help in developing the aircraft mission model;
and Gaetan K. W. Kenway for insightful discussions.

REFERENCES

Peter Bastian, Klaus Birken, Klaus Johannsen, Stefan Lang, Nicolas Neuss, Henrik Rentz-Reichert, and Christian Wieners.

1997. UG—A flexible software toolbox for solving partial differential equations. Computing and Visualization in Science

1, 1 (1997), 27–40. DOI:http://dx.doi.org/10.1007/s007910050003

Dan C. Marinescu and Ladislau Boloni. 2000. A component-based architecture for problem solving environments. Mathe-

matics and Computers in Simulation 54, 4–5 (2000), 279–293. DOI:http://dx.doi.org/10.1016/S0378-4754(00)00189-0

Jan Albersmeyer and Moritz Diehl. 2010. The lifted Newton method and its application in optimization. SIAM Journal on

Optimization 20, 3 (Jan. 2010), 1655–1684. DOI:http://dx.doi.org/10.1137/080724885

Natalia Alexandrov and M. Y. Hussaini (Eds.). 1997. Multidisciplinary Design Optimization: State-of-the-Art. SIAM.

Natalia M. Alexandrov and Robert Michael Lewis. 2004a. Reconfigurability in MDO problem synthesis, part 1. In Proceed-

ings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. DOI:http://dx.doi.org/10.2514/6.

2004-4307

Natalia M. Alexandrov and Robert Michael Lewis. 2004b. Reconfigurability in MDO problem synthesis, part 2. In Proceed-

ings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. DOI:http://dx.doi.org/10.2514/6.

2004-4308

Vladimir Balabanov, Christophe Charpentier, Dipankar Ghosh, Gary Quinn, Garret Vanderplaats, and Gerhard Venter.

2002. VisualDOC: A software system for general purpose integration and design optimization. In Proceedings of the 9th

AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. DOI:http://dx.doi.org/10.2514/6.2002-5513

Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. 1997. Efficient Management of Parallelism in

Object Oriented Numerical Software Libraries. Birkhäuser Press, 163–202.

Wolfgang Bangerth, Ralf Hartmann, and Guido Kanschat. 2007. deal. II—A general-purpose object-oriented finite element

library. ACM Transactions on Mathematical Software (TOMS) 33, 4 (2007), 24.

F. Bassetti, D. Brown, K. Davis, W. Henshaw, and D. Quinlan. 1998. OVERTURE: An object-oriented framework for

high performance scientific computing. In Proceedings of the IEEE/ACM Conference on Supercomputing (SC’98). 14–14.

DOI:http://dx.doi.org/10.1109/SC.1998.10013

M. W. Beall and M. S. Shephard. 1999. An object-oriented framework for reliable numerical simulations. Engineering with

Computers 15, 1 (1999), 61–72. DOI:http://dx.doi.org/10.1007/s003660050005

Jed Brown, Matthew G. Knepley, David A. May, Lois Curfman McInnes, and Barry Smith. 2012. Composable linear solvers

for multiphysics. In Proceedings of the 2012 11th International Symposium on Parallel and Distributed Computing. IEEE,

55–62.

Peter R. Brune, Matthew G. Knepley, Barry F. Smith, and Xuemin Tu. 2015. Composing scalable nonlinear algebraic solvers.

SIAM Review 57, 4 (2015), 535–565.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

http://dx.doi.org/10.1007/s007910050003
http://dx.doi.org/10.1016/S0378-4754(00)00189-0
http://dx.doi.org/10.1137/080724885
http://dx.doi.org/10.2514/6.2004-4307
http://dx.doi.org/10.2514/6.2004-4308
http://dx.doi.org/10.2514/6.2002-5513
http://dx.doi.org/10.1109/SC.1998.10013
http://dx.doi.org/10.1007/s003660050005

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:37

Hayoung Chung, John T. Hwang, Justin S. Gray, and Hyunsun A. Kim. 2018. Implementation of topology optimization using

OpenMDAO. In Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

DOI:http://dx.doi.org/10.2514/6.2018-0653

Nathan O. Collier, Lisandro Dalcín, and Victor M. Calo. 2013. PetIGA: High-performance isogeometric analysis. CoRR

abs/1305.4452 (2013). http://arxiv.org/abs/1305.4452

E. J. Cramer, J. E. Dennis, P. D. Frank, R. M. Lewis, and G. R. Shubin. 1994. Problem formulation for multidisciplinary

optimization. SIAM Journal on Optimization 4, 4 (1994), 754–776.

Eric C. Cyr, John N. Shadid, and Raymond S. Tuminaro. 2016. Teko: A block preconditioning capability with concrete

example applications in Navier–Stokes and MHD. SIAM Journal on Scientific Computing 38, 5 (2016), S307–S331.

Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, and Alejandro Cosimo. 2011. Parallel distributed computing using python.

Advances in Water Resources 34, 9 (2011), 1124–1139.

Robert D. Falck, Jeffrey C. Chin, Sydney L. Schnulo, Jonathan M. Burt, and Justin S. Gray. 2017. Trajectory optimization

of electric aircraft subject to subsystem thermal constraints. In Proceedings of the 18th AIAA/ISSMO Multidisciplinary

Analysis and Optimization Conference. DOI:http://dx.doi.org/10.2514/6.2017-4002

Robert D. Falgout and Ulrike Meier Yang. 2002. hypre: A library of high performance preconditioners. In International

Conference on Computational Science. Springer, 632–641.

Sam Friedman, Seyede Fatemeh Ghoreishi, and Douglas L. Allaire. 2017. Quantifying the impact of different model discrep-

ancy formulations in coupled multidisciplinary systems. In Proceedings of the 19th AIAA Non-Deterministic Approaches

Conference. DOI:http://dx.doi.org/10.2514/6.2017-1950

Derek Gaston, Chris Newman, Glen Hansen, and Damien Lebrun-Grandié. 2009. MOOSE: A parallel computational

framework for coupled systems of nonlinear equations. Nuclear Engineering and Design 239, 10 (2009), 1768–1778.

DOI:http://dx.doi.org/10.1016/j.nucengdes.2009.05.021

Pieter Gebraad, Jared J. Thomas, Andrew Ning, Paul Fleming, and Katherine Dykes. 2017. Maximization of the annual

energy production of wind power plants by optimization of layout and yaw-based wake control. Wind Energy 20, 1

(2017), 97–107. DOI:http://dx.doi.org/10.1002/we.1993

Philip E. Gill, W. Murray, and M. A. Saunders. 2005. An SQP algorithm for large-scale constrained optimization. Society for

Industrial and Applied Mathematics 47, 1 (2005). http://www.stanford.edu/group/SOL/papers/SNOPT-SIGEST.pdf.

Tom Goodale, Gabrielle Allen, Gerd Lanfermann, Joan Massó, Thomas Radke, Edward Seidel, and John Shalf. 2003. The

cactus framework and toolkit: Design and applications. In Proceedings of the 5th International Conference on High Per-

formance Computing for Computational Science (VECPAR’02). Springer-Verlag, Berlin, 197–227.

Justin Gray, Tristan Hearn, Kenneth Moore, John T. Hwang, Joaquim R. R. A. Martins, and Andrew Ning. 2014. Auto-

matic evaluation of multidisciplinary derivatives using a graph-based problem formulation in OpenMDAO. In Proceed-

ings of the 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. DOI:http://dx.doi.org/10.2514/6.

2014-2042

Andreas Griewank. 2000. Evaluating Derivatives. SIAM, Philadelphia.

Eric S. Hendricks, Robert D. Falck, and Justin S. Gray. 2017. Simultaneous propulsion system and trajectory optimization.

In Proceedings of the 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. DOI:http://dx.doi.org/

10.2514/6.2017-4435

Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara G. Kolda, Richard B.

Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tuminaro,

James M. Willenbring, Alan Williams, and Kendall S. Stanley. 2005. An overview of the trilinos project. ACM Transactions

on Mathematical Software 31, 3 (2005), 397–423. DOI:http://dx.doi.org/10.1145/1089014.1089021

Elias N. Houstis and John R. Rice. 2000. Future problem solving environments for computational science. Mathematics and

Computers in Simulation 54, 4–5 (2000), 243–257. DOI:http://dx.doi.org/10.1016/S0378-4754(00)00187-7

John T. Hwang, Dae Young Lee, James W. Cutler, and Joaquim R. R. A. Martins. 2014. Large-scale multidisciplinary op-

timization of a small satellite’s design and operation. Journal of Spacecraft and Rockets 51, 5 (Sept. 2014), 1648–1663.

DOI:http://dx.doi.org/10.2514/1.A32751

John T. Hwang and Joaquim R. R. A. Martins. 2016. Allocation-mission-design optimization of next-generation aircraft

using a parallel computational framework. In Proceedings of the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dy-

namics, and Materials Conference. 1662.

John T. Hwang and Joaquim R. R. A. Martins. 2015. Parallel allocation-mission optimization of a 128-route network. In

Proceedings of the 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. DOI:http://dx.doi.org/10.

2514/6.2015-2321

John T. Hwang and Andrew Ning. 2018. Large-scale multidisciplinary optimization of an electric aircraft for on-demand

mobility. In Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

DOI:http://dx.doi.org/10.2514/6.2018-1384

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

http://dx.doi.org/10.2514/6.2018-0653
http://arxiv.org/abs/1305.4452
http://dx.doi.org/10.2514/6.2017-4002
http://dx.doi.org/10.2514/6.2017-1950
http://dx.doi.org/10.1016/j.nucengdes.2009.05.021
http://dx.doi.org/10.1002/we.1993
http://www.stanford.edu/group/SOL/papers/SNOPT-SIGEST.pdf
http://dx.doi.org/10.2514/6.2014-2042
http://dx.doi.org/10.2514/6.2017-4435
http://dx.doi.org/10.1145/1089014.1089021
http://dx.doi.org/10.1016/S0378-4754(00)00187-7
http://dx.doi.org/10.2514/1.A32751
http://dx.doi.org/10.2514/6.2015-2321
http://dx.doi.org/10.2514/6.2018-1384

37:38 J. T. Hwang and J. R. R. A. Martins

John P. Jasa, John T. Hwang, and Joaquim R. R. A. Martins. 2018a. Design and trajectory optimization of a morphing

wing aircraft. In Proceedings of 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

DOI:http://dx.doi.org/10.2514/6.2018-1382

John P. Jasa, John T. Hwang, and Joaquim R. R. A. Martins. 2018b. Open-source coupled aerostructural optimization using

Python. Structural and Multidisciplinary Optimization (2018). (In press).

Xiangmin Jiao, Michael T. Campbell, and Michael T. Heath. 2003. Roccom: An object-oriented, data-centric software inte-

gration framework for multiphysics simulations. In Proceedings of the 17th Annual International Conference on Super-

computing (ICS’03). ACM, New York, 358–368. DOI:http://dx.doi.org/10.1145/782814.782863

Jason Y. Kao, John T. Hwang, and Joaquim R. R. A. Martins. 2015. A modular approach for mission analysis and optimiza-

tion. In Proceedings of the 56th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

DOI:http://dx.doi.org/10.2514/6.2015-0136

Andy J. Keane and Prasanth B. Nair. 2001. Problem solving environments in aerospace design. Advances in Engineering

Software 32, 6 (2001), 477–487. DOI:http://dx.doi.org/10.1016/S0965-9978(00)00108-3

Graeme J. Kennedy and Joaquim R. R. A. Martins. 2014. A parallel finite-element framework for large-scale gradient-

based design optimization of high-performance structures. Finite Elements in Analysis and Design 87 (Sept. 2014), 56–73.

DOI:http://dx.doi.org/10.1016/j.finel.2014.04.011

Gaetan K. W. Kenway, Graeme J. Kennedy, and Joaquim R. R. A. Martins. 2014. Scalable parallel approach for high-fidelity

steady-state aeroelastic analysis and derivative computations. AIAA Journal 52, 5 (May 2014), 935–951. DOI:http://dx.

doi.org/10.2514/1.J052255

David E. Keyes, Lois C. McInnes, Carol Woodward, William Gropp, Eric Myra, Michael Pernice, John Bell, Jed Brown, Alain

Clo, Jeffrey Connors, and others. 2013. Multiphysics simulations: Challenges and opportunities. International Journal of

High Performance Computing Applications 27, 1 (2013), 4–83.

Benjamin S. Kirk, John W. Peterson, Roy H. Stogner, and Graham F. Carey. 2006. libMesh: A C++ library for parallel adaptive

mesh refinement/coarsening simulations. Engineering with Computers 22, 3–4 (2006), 237–254.

Raymond M. Kolonay and Michael Sobolewski. 2011. Service oriented computing environment (SORCER) for large scale,

distributed, dynamic fidelity aeroelastic analysis. In Proceedings of the Optimization, International Forum on Aeroelasticity

and Structural Dynamics (IFASD’11). 26–30.

Anders Logg, Kent-Andre Mardal, and Garth Wells. 2012. Automated Solution of Differential Equations by the Finite Element

Method: The FEniCS Book. Vol. 84. Springer Science & Business Media.

Kevin Long, Robert Kirby, and Bart van Bloemen Waanders. 2010. Unified embedded parallel finite element computations

via software-based Fréchet differentiation. SIAM Journal on Scientific Computing 32, 6 (2010), 3323–3351.

Christopher J. Marriage and Joaquim R. R. A. Martins. 2008. Reconfigurable semi-analytic sensitivity methods and MDO

architectures within the π MDO framework. In Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and

Optimizaton Conference. Victoria, British Columbia, Canada. DOI:http://dx.doi.org/10.2514/6.2008-5956

Joaquim R. R. A. Martins, Peter Sturdza, and Juan J. Alonso. 2003. The complex-step derivative approximation. ACM Trans-

actions on Mathematical Software (TOMS) 29, 3 (2003), 245–262.

Joaquim R. R. A. Martins, Juan J. Alonso, and James J. Reuther. 2005. A coupled-adjoint sensitivity analysis method for high-

fidelity aero-structural design. Optimization and Engineering 6, 1 (March 2005), 33–62. DOI:http://dx.doi.org/10.1023/B:

OPTE.0000048536.47956.62

Joaquim R. R. A. Martins and John T. Hwang. 2013. Review and unification of methods for computing derivatives of multi-

disciplinary computational models. AIAA Journal 51, 11 (Nov. 2013), 2582–2599. DOI:http://dx.doi.org/10.2514/1.J052184

Joaquim R. R. A. Martins and Andrew B. Lambe. 2013. Multidisciplinary design optimization: A survey of architectures.

AIAA Journal 51, 9 (Sept. 2013), 2049–2075. DOI:http://dx.doi.org/10.2514/1.J051895

Joaquim R. R. A. Martins, Christopher Marriage, and Nathan P. Tedford. 2009. pyMDO: An object-oriented framework

for multidisciplinary design optimization. ACM Transactions on Mathematical Software 36, 4 (Aug. 2009), 20:1–20:25.

DOI:http://dx.doi.org/10.1145/1555386.1555389

William F. Mitchell. 2002. The design of a parallel adaptive multi-level code in Fortran 90. In Proceedings of the International

Conference on Computational Science—Part III. Springer-Verlag, London, UK, 672–680.

Andrew Ning and Derek Petch. 2016. Integrated design of downwind land-based wind turbines using analytic gradients.

Wind Energy 19, 12 (2016), 2137–2152.

Sharon L. Padula and Ronnie E. Gillian. 2006. Multidisciplinary environments: A history of engineering framework de-

velopment. In Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. DOI:http://

dx.doi.org/10.2514/6.2006-7083

Bořek Patzák. 2012. OOFEM—An object-oriented simulation tool for advanced modeling of materials and structures. Acta

Polytechnica 52, 6 (2012).

Benjamin Peherstorfer, Philip S. Beran, and Karen E. Willcox. 2018. Multifidelity Monte Carlo estimation for large-scale

uncertainty propagation. In Proceedings of the 2018 AIAA Non-Deterministic Approaches Conference. DOI:http://dx.doi.

org/10.2514/6.2018-1660

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

http://dx.doi.org/10.2514/6.2018-1382
http://dx.doi.org/10.1145/782814.782863
http://dx.doi.org/10.2514/6.2015-0136
http://dx.doi.org/10.1016/S0965-9978(00)00108-3
http://dx.doi.org/10.1016/j.finel.2014.04.011
http://dx.doi.org/10.2514/1.J052255
http://dx.doi.org/10.2514/6.2008-5956
http://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
http://dx.doi.org/10.2514/1.J052184
http://dx.doi.org/10.2514/1.J051895
http://dx.doi.org/10.1145/1555386.1555389
http://dx.doi.org/10.2514/6.2006-7083
http://dx.doi.org/10.2514/6.2018-1660

A Computational Architecture for Coupling Heterogeneous Numerical Models 37:39

Ruben E. Perez, Peter W. Jansen, and Joaquim R. R. A. Martins. 2012. pyOpt: A Python-based object-oriented framework for

nonlinear constrained optimization. Structural and Multidisciplinary Optimization 45, 1 (Jan. 2012), 101–118. DOI:http://

dx.doi.org/10.1007/s00158-011-0666-3

Yousef Saad. 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing 14, 2

(1993), 461–469.

A. O. Salas and J. C. Townsend. 1998. Framework requirements for MDO application development. In Proceedings of the 7th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. DOI:http://dx.doi.org/10.2514/6.

1998-4740

Jaroslaw Sobieszczanski-Sobieski. 1990. Sensitivity of complex, internally coupled systems. AIAA Journal 28, 1 (1990), 153–

160. DOI:http://dx.doi.org/10.2514/3.10366

J. Sobieszczanski-Sobieski and R. T. Haftka. 1997. Multidisciplinary aerospace design optimization: Survey of recent devel-

opments. Structural Optimization 14, 1 (1997), 1–23. DOI:http://dx.doi.org/10.1007/BF011

William Squire and George Trapp. 1998. Using complex variables to estimate derivatives of real functions. SIAM Review 40,

1 (1998), 110–112.

James R. Stewart and H. Carter Edwards. 2003. The SIERRA framework for developing advanced parallel mechanics appli-

cations. In Large-Scale PDE-Constrained Optimization, Lorenz T. Biegler, Matthias Heinkenschloss, Omar Ghattas, and

Bart van Bloemen Waanders (Eds.). Lecture Notes in Computational Science and Engineering, Vol. 30. Springer, Berlin,

301–315. DOI:http://dx.doi.org/10.1007/978-3-642-55508-4_18

S. Tosserams, A. T. Hoftkamp, L. F. P. Etman, and J. E. Rooda. 2010. A specification language for problem partitioning in

decomposition-based design optimization. Structural and Multidisciplinary Optimization 42 (2010), 707–723. DOI:http://

dx.doi.org/10.1007/s00158-010-0512-z

P. van der Velde and G. D. Mallinson. 2007. The design of a component-oriented framework for numerical simulation

software. Advances in Engineering Software 38, 3 (2007), 182–192. DOI:http://dx.doi.org/10.1016/j.advengsoft.2006.05.007

Hiroyuki Yamazaki, Shunji Enomoto, and Kazuomi Yamamoto. 2000. A common CFD platform UPACS. In High Performance

Computing, Mateo Valero, Kazuki Joe, Masaru Kitsuregawa, and Hidehiko Tanaka (Eds.). Lecture Notes in Computer

Science, Vol. 1940. Springer, Berlin, 182–190. DOI:http://dx.doi.org/10.1007/3-540-39999-2_16

Received February 2016; revised January 2018; accepted January 2018

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 37. Publication date: June 2018.

http://dx.doi.org/10.1007/s00158-011-0666-3
http://dx.doi.org/10.2514/6.1998-4740
http://dx.doi.org/10.2514/3.10366
http://dx.doi.org/10.1007/BF011
http://dx.doi.org/10.1007/978-3-642-55508-4_18
http://dx.doi.org/10.1007/s00158-010-0512-z
http://dx.doi.org/10.1016/j.advengsoft.2006.05.007
http://dx.doi.org/10.1007/3-540-39999-2_16

