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ABSTRACT 

The behavior of sample means, which 

needs to be understood by all applied 

statisticians and users of simulation 

methods, can be considered to be the most 

basic question of both classical and modern 

probability and statistics. This theory, and 

its implications for practice, will be 

surveyed (in the methodology session on Time 

Series Analysis of Sample Means) by three 

statisticians who are experts on time series 

analysis. 

This paper consists of five sections 

discussing: notation; spectral density 

classification of memory type of a time 

series; equivalent degrees of freedom of 
asymptotic confidence intervals for the mean; 

sample Fourier transforms and sample spectral 

density; sample Brownian Bridge functionals 

and standardized time series. 

1. NOTATION AND INTRODUCTION 

The reader of these papers on time 
series analysis should be warned that time 

series analysts are far from agreeing on a 

standard notation to use for the basic 

concepts of the field. My notation is 
chosen not to be different but because it 

seems optimal according to my philosophy of 

notation. 

Y(l),...,YIT): a sample of size T, 
considered to be observations of a random 

variable Y, indexed by t=1,2,...,T. 
I?(y)=Prob[Yiy], -a<~<-: distribution 

function of Y. 

Q(u) r OluId: quantile function of Y, 
also denoted Q(u;Y), defined by 

Q(u) = F-'(u) = inf (y: F(y)&), Olu_(l, 

F'(y): sample distribution function of 

Y, defined by F'(y)=fraction of sample iy. 
Q'(u)=F--l(u): sample quantile 

function of Y. 

MY, mean of Y: usually denoted E[Y] 

MY=J:_ Y dF(y) = I; Q(u) du 

Z(iz)=Y(t)-MY: fluctuation series used to 

represent Y(t) as a sum Y(t)=MY+Z(t) of an 

unknown mean value MY to be estimated and a 

zero mean series Z(t) called the error 

series. 

MY-, sample mean of Y: under a general 

set of conditions (which we do not state in 

detail) an asymptotically efficient estimator 

of MY is the sample mean, denoted MY' or Y, 
defined by 

MY'= I:, y dF"(y) = J; Q'(u) du 

= (l/T) : Y(t) 
t=1 

Using the Central Limit Theorem, one 
can derive the asymptotic distribution of 

MY'. In developing expressions for the 

distribution of MY' to be used to form 

confidence intervals for MY one could use the 

sample variance VAR‘CY] and sample standard 

deviation OS*[Y] defined by 

VAR’[Y] = (l/T) : (Y(t)-MY')' 
t=1 

We assume that Y(l),...,Y(T) are 
identically distributed as Y but may not be 

independent. However they are a sample from 

a time series which is covariance stationary 

in the sense that there is a function R(v), 
v=O,+1,-+2,..., such that 
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COVCY(S), Y(t)] = R(t-s) . 

In the study of time series, the effect 
of the marginal distribution of Y(t) can be 

separated from the bivariate dependence of 

Y(t) and Y(t+v) by defining the correlation 

function 

rho(v) = R(v)/R(O) = CORR[Y(t), Y(t+v)]. 

The Fourier transforms of R(v) and 
rho(v) are denoted S(w), Oiwll, and f(w), 

O(w~l and are called the power spectrum and 

spectral density of the time series. Two 

basic definitions are 

f(w) = ; exp(2nivw) rho(v), Olwll , 
V=-" 

S(w) = R(O)f(w) . 

We interpret w as representing frequency 

and its reciprocal l/w represents period; 

thus a peak (local maximum) in the spectral 

density at frequency w = l/l2 represents the 

presence in the time series of a sinusoidal 

component or disturbed periodicity of period 

12. Note that a time series Y(t) has period 

P if Y(t+P) = Y(t) for all t. 

An AR(l) time series Z(T) - pZ(t-1) = 

e(t) where e(t) are independent N(O,oz) and 

IQI<I has VAR[Y] = az(?-pz), rho(v) = plvl, 

f(O) = (l+P)/(l-P), 

f(w) = (l-p2)/(l+p2 - 29 cos 2rw). 

When Y(l),... ,Y(T) are a sample from a 

stationary time series, the sample mean 

(under suitable conditions called "mixing") 

is asymptotically normal. To find suitable 

formulas for its asymptotic variance we write 

VARCMY‘] = (1/T2) E COVCY(S), Y(t)1 
s,t=l 

T VARCMY'] = VAR[Y] C (l-Iv/TN) rho(v) 
lvl<T 

As 'I'*-, assuming z [rho(v)I 
v=-00 

T VARCMY'] -, VARCY] f(O) 

~(MY-MY'~/(VAR[Y]f(0))0-5 + N(O,l) 

The time series analyst is interested in 

estimating the spectral density function to 

help identify models for the time series. I:n 

various applications, one only seeks to 

estimate the value of the spectral density at 

zero frquency because its value is required 

in other formulas. The infinite sum 

f(0) -= ; rho(v) 
v=-r 

cannot be estimated by merely replacing each 
rho(v) by an estimator. I would like to 

emphasize that the observation that this 

infinite sum is the value at zero frequency 

of the spectral density function is very 

important and useful because it provides a 

variety of methods for estimating f(0). 

Correlations are estimated by sample 
correlations defined by 

rho'(v) = R'(v)/R'(O), 

:in terms of the sample covariance function 

(defined for v=O,l,....T-I) 

T-v 
R'(v) = (l/T) C {Y(t)-MY')(Y(t+v)-MY'), 

t=1 

The variances of rho'(v) decrease to zero, as 

T--I as 1/T; the sum of M values of rho'(v) 

converge to zero as M/T and does not converge 

to zero when the limit of M/T is positive. 

The theoretical problem of spectral 

estimation can be regarded as how to choose M 

as a function of T so that M/T tends to 0 

while M tends to a. 

2. SPECTRAL DENSITY CLASSIFICATION OF MEMORY 
TYPE OF A TIME SERIES 

To estimate the spectral density one 

must identify the memory type of the time 

series in the spectral density domain. We 

defi.ne a time series to be: 

1. No memory if f(w) = 1 for all w; 

2. Short memory if there exist positive 

finite constants c and C such that 

O<c<f(w)<C<v for all w; 

3. Long memory if it has a zero or an 

infinity. 

At a frequency w. at which f(.) is zero 

or infinite we seek to model the rate of 
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approach to 0 or a by representing f(w) for w 
near wo by 

f(w) = (w-wo)+L(o) 

where L(w) is slowly-varying or log-like 

function, and 6 is called the index of 

regular variation at w0, 

A diagnostic statistic for memory is the 

spectral dynamic range (SDR) and its 

logarithm to base e (LSDR): 

SDR = max f(w) - min f(w), LSDR = log SDR 
O&ll~ 1 OLlJJwll 

The goal of the concept of memory is 

best illustrated by considering an AR(l) time 

series Y(t) - P Y(t-1) = e(t) where et.1 is 

independent normal(O,oz) series. 

For an AR(?),. SDR = (l+lel)/tl-11~0. A 

table of LSDR corresponding to different 

values of p gives us a guide to how to assign 

memory types: 

P .05 .15 925 -35 -45 55 .65 .75 805 .95 

LSDR .2 .6 1. 1.5 1.5 1.9 2.5 3.1 3.9 7.3 

Based on this table and empirical experience 
we might regard LDSR<l as very short memory 

and LSDLR>7 as very long memory. 

When one simulates time series in order 

to study the behavior of sample means, 

insight into the numbers obtained is provided 

by understanding: (1) the distribution of Y, 

especially the type of its departure from 

normality, and (2) the correlation structure 

of the time series Y(t), especially the type 

of its departure form independence (no 

memory) as measured by f(O), the value at 

zero frequency of the spectral density 

function. An initial way to empirically 

study the role of these effects on the 

behavior of the sample mean is by simulating 

an AR(l) process whose marginal distributions 

are exponential (a technical report by Will 

Alexander is in preparaton). 

Let us examine from the point of view of 
time series memory type the time series model 

considered by Titus (1985): 

Y(t) = MY + Z(t), MY = 10, e(t)= a(t) - 1 

where a(t) are independent exponential with 
mean 1, Z(t) obeys the model 

Z(t)-.5 ztt-lb-. 3 Z(t-2)-.2 Z(t-3)=e(t), 

initial values Z(l)=Z(2)=2(3)=-3. The 
memory type of the observed time series Y(t) 

is long memory since f(O) = 22.8 and its log 

spectral dynamic range equals 6. Results of 

simulations of this time series model should 

be interpreted as conclusions about the 

behavior of the sample mean when computed 

from long memory time series. 

3. EQUIVALENT DEGREES OF FREEDOM OF 
ASYMPTOTIC CONFIDENCE INTERVALS FOR THE 
MEAN 

One of the great contributions of 

statistical theory in the first half of the 

20th century was the development of small 

sample statistical methods based on t 

distributions, chi-squared distributions, and 

F distributions. For a no-memory time series 

exact (rather than asymptotic) confidence 

intervals for MY are obtained by using the 

fact: 

J-!f- {MY'-MYb/tc VAR-[Y])'.'= tT-, 

where tk denotes Student's t distribution 

with k degrees of freedom, and c = T/(T-1). 

We can attain an approximate exactness 
by using an approximation to tk (see Gaver 

and Kafadar (19841); an example of an 

approximation (see Parzen (1985))' is an 

asymptotic formula with correction factor h: 

hk log tl + (l/k)t : 1 * 2 2 

where Z ' obeys chi-squared distribution with 

1 degree freedom, and we define 

h=h(k) = (k-lj2/k(k-1.5). 

We write symbolically 

t: = iexp(Z2/h(k)k)-l)k 

This is a relation between distributions 
of random variables which is stated more 

precisely in terms of quantile functions; let 

Q(u;Xl denote the quantile function of a 

random variable X. We argue that 
approximately 
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Q(1-(u/Z);tk)=[texptQ(l-u;Z2~/h(k)k)-l)k]o*5. 

For u = 0.05, Q(.9S;Z2) = 3.84146. The 
approximate and exact values of Qc.975; tk) 

are given in Table I for k>6. 

Spectral density estimators f"(O) can be 

used to form confidence intervals for the 

mean, to take account of the (possibly 

severe) effects of dependence, by using an 

approximate distribution: 

J-T-- (MY- - MYb/tVAR'[Y] f-(O)1o.5 = 

= tk = [(exp(Z2/h(k)k)-l)k]o'5 

for a suitable value of k. One calls k the 

equivalent degrees of freedom. Research 

continues on suitable formulas for, and 

interpretation of, k. The next section 

suggests a formula for f-(O) which 

illustrates this approach to describing the 

behavior of sample means in a manner suitable 

for forming confidence intervals for MY. 

k 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

:: 
21 
22 

2: 
25 
26 
27 
28 
29 
30 
40 

120 

TABLE I 

Values of Q(Q.975:tkl 

Exact Approximate 

2.447 2.445 
2.365 2.365 
2.306 2.306 
2.262 2.262 
2.228 2.228 
2.201 2.201 
2.179 2.179 
2.160 2.160 
2.145 2.145 
2.131 2.132 
2.120 2.120 
2.110 2.110 
2.101 2.101 
2.093 2.093 
2.086 2.086 
2.080 2.080 
2.074 2.074 
2.069 2.069 
2.064 2.064 
2.060 2.060 
2.056 2.056 
2.052 2.052 
2.048 2.048 
2.045 2.045 
2.042 2.042 
2.021 2.021 
1.980 1.980 

4. SAMPLE FOURIER TRANSFORMS AND SAMPLE 
SPECTRAL DENSITY 

To a time series sample Y(t), t=l,...,T, 

one can compute (by the Fast Fourier 

Transform) far k=O, '1, . . ..T-1 

'IFOUR = (l/T) E Y(t) exp(2rikt/T) . 

The sample mean and 

MY' = YFOUR(0) 

VAR'CY] = Te' 
k=l 

t=1 

variance 

jYFOUR(k) 

can be expressed 

Note that YFOUR(k) are complex valued, 

obeying YFOURCT-k)=YFOUR*(k) where YFOUR*tk) 

denotes the complex conjugate of YFOUR(k1. 

The random variables YFOUR(k), 

k=0,'1,. ..,CT/2] are asymptotically 

uncorrelated for a stationary time series. 

The sample spectrum S'(w) and sample spectral 

density f'(w) are defined at w=k/T, 

k=O,l,...,T-1, by 

S'(k/n) = TIYFOUR(k)12 

f-(k/T) = S-(k/T)/VAR-[Y] . 

One can show that 

T-l 
VAR-[Y:] = (l/T) r S-(k/T) 

k=l 

T- 1 
I = (l/T) I: f'(klT) 

k=l 

Sample spectral densities are very wiggly and 

need to be smoothed. For white noise (random 

sample) the random variables f' (k/n) are 

asymptotically independent exponentially 

distributed with mean 1, and their optimal 

smoothing yields an estimated spectral 

density f*(w) = 1. For short memory time 

series one forms estimators f*(w) by suitable 

ave:rages of f'(k/T) for k/T in suitable 

neighborhoods of w. 

Thus it is natural to estimate S(0) by 
S-(O) of the form (first suggested by Albert 

Einstein in 1914 in a paper only recently 

discovered) 
m 

S’(O) = (l/m) E S"(k/T) 
k=l 

Asymptotically 

2m S^(O)/S(O) + chi-squared 
distribution, 2m degrees freedom 
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fi (MY--MY) J (S^(0)L".5 + t distribution, 
2m degrees freedom 

One can form a confidence interval for MY 

from the foregoing statistic, which can be 

written in terms of estimators of the 

spectral density (rather than the spectrum) 

by 

fi tMY--MY)JtVAR-[Y] f-(O11o'5 + t2m 

One can regard this statistic as being of 

standardized time series type (discussed in 

the next section) and also as standardization 

by an estimator of the spectrum at zero 

frequency if one lets m tend to - as T tends 

to -. 

One approach to choosing m in practice 
is to choose it to be as large as is 

compatible with the hypothesis that 

f-(1/T),..., f-(m/T) are identically 

distributed (using a test such as Bartlett's 

test for equality of variances). One expects 

m to be small when time series memory is 

long. 

5. SAMPLE BROWNIAN BRIDGE FUNCTIONALS AND 
STANDARDIZED TIME SERIES 

When the sample mean MY’ of a stationary 

time series is asymptotically normally 

distributed, its asymptotic distribution 

can be described by writing 

J-T- {MY' - MY) * Jsmr W(1) 

where W(1) is a N(O,l) random variable. We 

use the notation W(1) to introduce the role 

of the Weiner process W(u), Olull, and the 

Brownian Bridge process B(u), Olull. 

We define W(u) to be a zero mean 
Gaussian process with covariance kernel 

E[W(s)W(t)] = min(s,t). We define B(u) to be 

a zero mean Gaussian process with covariance 

kernel 

E[B(s)B(t)] = min(s,t) - st. 

Equivalently one can represent B(u) = W(u) - 

uW(1). 

An important role in the empirical 

analysis of time series (and in understanding 

the theory of standardized time series 

introduced into simulation studies by 
Schruben (1983)) is played by the gamnle 

Brpwnian BKidae. of a time series: 

B’(U) = E {Y(t)-MY-)/n , OIuXi . 
tLCTu1 

Under suitable mixing conditions one can show 

weak convergence of the stochastic processes 

tB’(u), OIuLll + tIS(O) B(u), Otull) 

An important graphical tool for analyzing a 

time series is a plot of B'(u), O<u<l. An 

important feature of the plot is its range 

RI= max B'(u) - min B'(u) . 
O<u<l o<u< 1 

Let (S-l2 = VAR'CY] = R'(O) denote the 

sample variance. The sample R/S statistic is 

the ratio R-/S'; Mandelbrot (1973) emphasizes 

plots of log R-- Log S- versus log T as a 

diagnostic tool for measuring the Hurst 

exponent of the time series which is a 

measure of its "long memory" nature [see 

Parzen (198611. 

R'is an example of a functional of the 
sample Prownian Bridge a"(,); its asymptotic 

distribution obeys R' + m R, defining 

R = max B(u) - min B(u) 
O~U~I O&IL 1 

To form a confidence interval for the 

population mean MY from the sample mean MY', 

without estimating S(O), the approach of the 

method of standardized time series is to form 

a random variable whose asymptotic 

distribution does not depend on S(O); an 

example of such a random variable is 

r {MY-- - MYIJR- + W(l)/R 

One can find an explicit formula for the 
random variable on the right hand side which 
can be related to the theory of the Kuiper 

statistic in the theory of nonparametric 

inference: 

Prob[R>x] = 2 E (4k2x2-l)exp(-2k2x2) , 
k=l 

Prob[R>1.75] = .05, Prob[R>2.0) = .Ol. 

Glynn and Iglehart (1985) have shown 
that alternatively one can form standardized 
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time series type statistics such that the 
limit random variable has a distribution 

which is Student's distribution with k 

degrees of freedom for a suitable value of k. 

They show that standardized time series 

methods of forming confidence intervals for 

UY are asymptotically larger than intervals 

obtained by a method which consistently 

estimates the asymptotic variance by 

estimating S(O), the spectrum at zero 

frequency. The connections between spectral 

density estimation, construction of 

confidence intervals for the mean MY, and 

standardized time series can perhaps be 

clarified by studying statistics which are 

simultaneously a standardized time series 

method and an estimated spectral density 

standardization. We believe that an example 

of such a statistic was introduced in the 

preceding section, namely 

Newton, H. J. (1987). 3'imesl&, Wadsworth: 

Belmont. 

Parzen, E. (1985). "Quantile-information- 

functionsal statistical inference and 

unification of discrete and continuous 

data analysis, * Proceedings 30th Army 

Conference on Design of Experiments, 

213-226. 

Parzen, E. (1986). "Quantile spectral 

analysis and long memory time series, 
. . 

iL!smmL Amlied ProkiaBllitv , 23A, 41-54. 

Schruben, L. (1983). "Confidence interval 

estimation using standardized time 

series," Gnerations Research 31, logo- 

1108. 

TtMY'-MYb2/(l/m) E S'(k/T) 
k=l 

Titus, Birney D. (1985). "Modified 

confidence intervals for the mean of an 

autoregressive pxoc:ess," Technical 

report 34, Stanford Operations Research 

Department. 
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where one chooses m as a function of T so 

that m + - and m/T+0 as t+a. 
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