
Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

CSIMt: A C-BASED, PROCESS-ORIENTED SIMULATION LANGUAGE

Herb Schwetman
Microelectronics and Computer Technology Corporation

P.O. Box 200195
Austin, TX 78759, USA

ABSTRACT

CSIM is a process-oriented simulation language which is
implemented as a superset of the C programming language.
Using CSIM, a simulation programmer is able to quickly
construct concise models of systems and then to. execute
these models in an efficient manner. In addition to support-
ing process-oriented simulation, CSIM as a number of addi-
tional features dealing with modeling system resources, mes-
sage passing, data collection and debugging which ease the
task of building simulation models.

1. INTRODUCTION
Computer-based simulation models have become impor-

tant tools in the analysis of complex systems. A simulation
modeling methodology has emerged as the use of these
models has increased. This methodology is based on decom-
posing system behavior into a sequence of discrete events,
where an event corresponds to a change of state of the sys-
tem (Law and Kelton 1982). These state changes occur
instantaneously, so events take no time; simulated time
passes between events.

Software packages and programming languages special-’
ized toward implementing computer simulation models have
been developed. These can dramatically decrease the time
and effort required to implement, debug and utilize these
models. CSIM is one such language. It uses a process-
oriented view of a system, in contrast to an event-oriented
view which is common in many other languages.

CSIM is a process-oriented simulation language which is
implemented on top of the C Programming Language (Ker-
nighan and Ritchie 1978). The current version of CSIM
runs on the UNlXtt operating system (the 4.2 BSD Version)
on several computer systems including the DEC VAX and
the SUN III workstation. CSIM gives the simulation pro-
grammer facilities for defining processes, for initiating these
processes, and for synchronizing these processes. Programs
written in CSIM are really C programs, with calls to pro-
cedures which form an extended run-time support system.
Thus, users have all of the power and convenience of the C
language, with the additional feature of being able to create
process-oriented simulation models.

The primary purpose of this paper is to present CSIM
as a tool, useful for easily modeling a variety of systems. In
order to provide a basis for understanding CSIM, the first
two sections introduce discrete event simulation, as well

briefly describing both event-oriented and process-oriented
approaches to simulation. Several examples illustrate the
basic features of CSIM.

2. APPROACHES TO SJ.MULATION
There are three different approaches to discrete event

simulation (Nance 1981): event-oriented simulation,
activity-oriented simulation, and process-oriented simulation
(Franta 1977) (Pritsker and Pegden 1979) (Saydam 1985).
In the event-oriented approach, the simulation programmer
defines events and then writes routines which are invoked as
each kind of event occurs. Simulated time may pass
between the events. In the activity-oriented approach, the
programmer defines activities which are started when cer-
tain conditions are satisfied. In many cases, this type of
simulation uses a simulated clock which advances in con-
stant increments of time. With each advance, a list of
activities is scanned, and those which have become eligible
are started. This type of model is used more often with
simulating physical devices and will not be discussed futher
in this paper. In the process-oriented approach, the pro-
grammer defines the processes (entities, transactions, etc.)
which “use” the resources of the system. Each process can
be in one of three states: active (currently being processed
by the simulator), holding (waiting for au interval of simu-
lated time to pass) or waiting (in a queue) for au event to
occur. Simulated time passes only when processes are in the
hold state.

Event-oriented simulation is probably the more pre-
valent approach in current use, for two reasons: event-
oriented simulation models can be implemented in standard
high-level programming languages (e.g., Fortran, Pascal and
C) and a number of packages and languages which aid the
development of these kinds of models are widely available
(e.g., Simscript (Kiviat, Vilaneuva and Markovitz 1975) and
GASP-IV (Psitsker 1974)).

Process-oriented simulation models are usually imple-
mented in special simulation languages which support this
approach. Some notable examples are GPSS (Gordon 1978),
Simula (Dahl and Mygaard 1967), SLAM (Pritsker and
Pegden 1979) and ASPOL (MacDougall and McApline 1973,
MacDougalk 1974, 1975, 1976). Of these, ASPOL and
Simula -are general purpose programming languages
(enhanced with the addition of some simulation features),
while SLAM and GPSS are special purpose languages,
tailored to implementing simulation models. In the next

t CSIM is copyrighted by Microelectronics and Computer Technology Corporation,

1985.

tt UNIX is a trademark of AT&T Bell Laboratories.

38’7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F318242.318464&domain=pdf&date_stamp=1986-12-01

section, we will discuss the features which must he present
to support process-oriented simulation. We then present a
new process-oriented simulation language, CSIM, which has
been implemented.

The choice of which approach to use is usually limited
to the choice of languages and packages available on a
specific system. This is unfortunate, as there are situations
in which the nature of the model to be developed might
make one approach preferable to the other. The choice is in
some sense a matter of taste, as any model developed using
one approach could have been implemented using the other.
However, some models are more straightforward when
implemented using a particular approach.

As an example, consider the simple M/M/l single
server queue. In this system, entities (transactions, jobs, cus-
tomers, etc.) arrive at the queue at intervals called arrival
intervals, wait for the single server to become available, use
this server for a period of time (the service interval) and
depart. There is an infinite (well anyway large) customer
population. In the M/M/l version of this simple queueing
system, both the arrival intervals and the service intervals
are exponentially distributed. To simulate this system using
the event-oriented approach, the programmer could devise a
model with two events:

- the arrival event, and

- the departure event.

Once these two events are defined, the processing associated
with each event is as follows:

- when an arrival event occurs, generate the next arrival
event to occur in the future after an arrival interval;
check the server, to see if it is busy or free; if busy, put
this arrival on a queue of waiting tasks; if the server is
free, assign this arrival to the server and generate a
departure event to occur in the future after a service
interval.

- when a departure event occurs, put the server back in
the free state and cause the completed entity to depart;
check the queue of waiting requests; if a request is wait-
ing, get the next one from the queue, assign it to the
server and schedule a departure event.

In the process-oriented approach, the programmer could
devise a model with two independent types of processes:

- the arrival-generator process, and

- the processes which represent the entities which are
being processed by the simulated system.

The activities of these types of processes can be described as
follows:

- the generator process initiates the next arriving entity
(process), and then allows an arrival interval to pass
before initiating the next arriving entity; and

- the entity process requests use of the server; when the
entity process receives control of the server, it does a
hold for a service interval (this cause the simulator to
simulate the passage of the specified amount of time),
releases control of the server, and termi.nates.

The runtime environment for a process-oriented simulator
must include facilities for managing these processes and for
implementing statements such as reserve, hold and release.

H. Schwetrnan

The point of this example (with two implementations)
is to demonstrate that in the event-oriented approach, the
programmer defines events and event processing procedures.
In the process-oriented approach, the programmer defines
the necessary interacting processes; the focus is on the enti-
ties and descriptions of their behavior. In many cases, this
latter approach corresponds more nearly to the system being
modeled. In fact, when only event-oriented simulation is
available for use, it is common practice to design the model
in terms of the interacting processes and then to (manually)
decompose the model into the underlying events, for use in
the event-oriented simulation model.

In a process-oriented simulator, the simulator automati-
cally Imaps the process-oriented model onto the underlying
event-oriented model. Thus, process-oriented simulation
requires a more complex run-time environment, to support
simulation of multiple interacting processes executing on a
single processor computer. Such environments have been
developed and are available for some computer systems.

3. PROCESS-ORIENTED SIMULATION
As stated above, in a process-oriented simulator, the

programmer defines the model in terms of interacting
processes. In this context, we define a process as a complete

computing activity. In a process-oriented simulator, a pro-
cess is an “independent” program or procedure which can
execute n in parallel” with other processes. The notion of
“in parallel” is used with some liberty, because, on a single
cpu computer, the processes only appear to execute in paral-
lel: they simulate parallel or simultaneous sequences of
activities.

It is also possible to define processes to simulate the
resources of a simulated system. This would be a resource-
oriented view of the system, in contrast to the transaction-
oriented view described above. In any process-oriented
model, deciding just what will be the processes and what
will be the resources is a critical decision. In most of what
follows, we will use the transaction-oriented approach, but,
in many cases, this choice is one of taste.

Many kinds of systems can be modeled as collections of
simultaneously active processes. In the example above (the
single server queue), the arriving entities could be modeled
easily by one process, which is initiated (a new instance of
the process is activated) whenever an arrival occurs. Exam-
ples of other simulation models which can use this approach
include:

- models of computer systems, where jobs or transactions
being processed by the system are modeled as processes,

- transportation models, where vehicles are modeled as
processes.

- models of commercial establishments, where customers
are modeled as processes, and

- models of manufacturing operations, where component
assemblies are modeled as processes.

At the user level, we need to be able to define and
describe processes, and then to be able to initiate processes
at z,pecified points in simulated time. Each of the initiated
processes must be able to execute simultaneously with other

388

processes (or at least appear to do so). This means that All of the features of CSIM are described in a reference
each process must have a “private” data area, to store manual which is available from the author. In the next sec-
results of computations and to save data values (such as the tions, some of these features will be presented via a set of
time of process generation). All process-oriented simulation simple CSIM programs. It is assumed that the reader has a
systems have these facilities. knowledge of C.

Furthermore, it is necessary for the simultaneously
active processes to interact with each other. In the M/M/l
example, each process had to be able to acquire exclusive
control of the single server. Thus, process-oriented simula-
tion systems have several mechanisms which allow processes
to communicate and synchronize with each other. Different
systems do this in different ways. Most systems have the
equivalent of a facility (or server) which can be reserved for
exclusive use by individual processes. In addition, the sys-
tern must properly handle a process which requests use of a
facility which is already busy. The most common solution is
to automatically suspend the requesting process and to place
it on a queue of processes waiting to use the facility. As
each requester gains control of the facility, it is reactivated
(allowed to resume). At some point, that process will
release the facility (give up control of the facility); when this
occurs, the next waiting process can be given access to the
facility, and so on.

The first example is the simple M/M/l queue, cited
earlier. The listing for this program is shown in Figure 1.
The output for this example is shown in Figure 2.

/* simulate an M/M/l queue */

#include “csimlib/csim.h”

#define SVTvf
#define IATM
#define NARS

int f, done;
int cnt;

1.0
2.0
5000

sim()
t

int i;

To summarize, process-oriented simulation allows simu-
lation programmers to model systems by defining interacting
processes as abstractions of the active entities in the system.
Each process must be able to execute in parallel with other
active processes; each process requires a private data area;
and active processes must be able to interact (communicate
and synchronize) with other active processes. The underly-
ing support system provides these facilities. In particular,
the underlying system must be able to manage conflicting
requests for exclusive use of simulated resources. The next
section describes an implementation of process-oriented
simulator which provides these features (and more).

f = facility(“queue”);
done = event(“done”);

cnt = NARS;
for(i = 1; i <=NAFZS; itt) {

hold(expntl(IATM));
cust();
J

wait(d‘one);
report();

I

4. CSIM

CSIM provides an extended set of features which facili-
tate the implementation of process-oriented simulation
models. These are implemented as a set of extensions to the
C programming language. A CSIM program accesses these
features via function or procedure calls from a C program,
very similar to the way GASP features are accessed from
FORTRAN programs. The major difference is that CSIM
provides a processoriented view, while GASP provides the
event-oriented view.

ho‘ld’(expntl(SVTM));
release(f);
cnt--;
if(cnt = 0)

set(done);
)

Figure 1: Example #l - M/M/l Queue

The CSIM programmer is able to create concise models
(see the following examples) which are much shorter than an

Example #l illustrates some of the most basic concepts
of process-oriented simulation. The two process descriptions

equivalent program written using only C constructs. Also (sim and cust) look like C procedures. The appearance of
important in an evaluation of CSIM is the fact that, because the create statement causes each of them to be instantiated
CSIM is based on C, all of the C programming environment as processes every time the create statement is executed.
is available to the CSIM programmer. A CSIM program can Thus the first process (it must be named sim) creates itself
perform useful computation as well as being a simulation as a process, does some housekeeping (see below) and then
model of some system. This latter point is one of the major enters a for-loop which repeatedly executes a hold for the
motivations for using CSIM: actual C procedures can be next interarrival period and then generates the next arrival.
part of the CSIM model. Another motivation is that CSIM The interarrival periods are randomly drawn from an
is available under UNIX. The conciseness of CSIM pro- exponential distribution with mean specified by the constant
grams, the variety of features available and the fact that a IATM (1.0 in this example). After the last arrival is gen-
CSIM model is a compiled program (as opposed to being erated, the process sim executes a wait statement; the pro-
interpreted) means that most process-oriented models can be cess cust is designed to send a signal when the last arrival
implemented quickly and executed efficiently. has departed. Thus, this wait causes sim to wait for the last

CSIM: A C-Based Simulation Language

389

Il. Schwctrnan

Tue .Tul 2 14:58:44 CSIM Simulation Report Version 8

Model: CSIM Time: 10041L.661
Interval: 10041.661
CPU Tinle : 39.867 (seconds)

Facility Usage Statistic:;

+----------------------+---------------means----------------+---co”nts----,
facility ST” disp serv-tm util tput qlen reap cmp Pre

queue 0.992 0.494 0.5 0.991 1.989 5000 0

Figure 2: Example #l - Sarr~ple Output

arrival to leave; when this happens, the report statement
causes a summary report to be printed; the simulation then
terminates (when the process sim ends).

The two “housekeeping” statements mentioned above
declare two simulation data objects: f is a pointer to a f&l-
ity and done is a pointer to an event (here, an event is a
data object which will be defined, not an event in the execu-
tion of the model). A facility is a data object which can be
reserved and released by processes. It is used to model the
single server queue described in this example. A facility can
be in one of two states: BUSY or FREE. If a process
reserves a FREE facility, the facility is assigned to that pro-
cess and the process continues. If a process re.serees a
BUSY facility, the process is suspended until another
process releases that facility. When this happens, the wait-
ing process is given control of the facility and execution
resumes.

An event, another kind of data object, also has two
states: OCCURRED and NOT-OCCURRED. When a pro-
cess waits for an event in the OCCURRED state, the event
is automatically placed in the NOT-OCCURRED state and
the process continues. When a process waits for an event in
the NOT-OCCURRED state, execution of the process is
suspended. When some other process sets that event, the
event is placed in the OCCURRED state and all waiting
processes are placed back in the active state; as this hap-
pens, the event is automatically returned to the NOT-
OCCURRED state.

In the example, the multiple instances of the cust pro-
cess compete for use of the queue. Each t,ime cust is ini-
tiated (by the sim process), the create statement causes a
new instance of cust (the process) to be created and allows
the initiator (sim) to continue. Each instance of cust tries
to gain access to the queue by executing the reserve state-
ment. Because each instance of a process inherits its process
priority from the initiating process, all instances of cust
have the same priority. The processes waiting to use the
queue are selected in order by priority; since, in this exam-
ple, they all have the same priority, the order of selection
becomes first-come, first-served. When an instance of cust
does gain access to the queue, it executes a hold statement,
which allows simulated time to pass. After this, the process
releases the queue, allowing the next waiting process to gain
control. As each process departs, it decrements a counter;
the last process to depart executes a set statement, which
allows sim to resume.

The output for Example #1 gives an overview of the
usage of the resources of the simulated system (the queue).
The performance parameters produced by this run include
the mean service time, the utilization of the queue (percen-
tage of elapsed time busy), the throughput rate (customers
per unit time), the mean queue length (average number of
customers either waiting or in service) and the response time
for a customer (time of arrival to time of departure). In this
example, 5OOO customers completed service at the queue and
the model ran for 10,041.661 simulated units of time. On
the VAX 11/750 used to execute this program, 39.867
seconds of user-mode cpu time were required.

This example has illustrated the fundamental concepts
which are present in a process-oriented simulation model.
namely describing and initiating processes and process
interaction, as typified by the declaration and use of facili-
ties and events in CSIM. It is easy to see how more com-
plex systems could be modeled by extending this basic single
resource model. For example, a system in which customers
visit a number of queues could be modeled by adding more
facilities and then having the customer visit (reserwe, hold
and refease) each of these in some specified pattern.
Another extension could involve the use of multi-server
facilities (e.g. having two equally competent tellers in a
bank, with a single common queue of waiting customers).
The Jucility statement can have a second argument, which
specifies the number of servers (the default is one).

5. SIMULATING COMPUTER SYSTEMS
A major use of process-oriented simulation has been to

simulate the operation of computer systems and system
components. Simulation-based studies have focused on
analyzing system performance, f:stimating program perfor-
mance, predicting subsystem performance (e.g. and I/O sub-
system) and verifying component level operation and perfor-
mance.

CSIM has several features which are particularly useful
in this type of application. Example #2 (see Figure 3) illus-
trates a number of these. The output generated by an exe-
cution of this model is shown in Figure 4.

In this example, some of the resources of the system are
represented as facilities - the cpu and the disk drives. The
cpu is declared to be a two-server facility; the disk drives
are a set of four, single-server facilities. The main memory
is declared using the storage statement. A storage is similar

390

CSIM: A C-Based Simulation Language

to a facility, except that a process can allocate a specified
amount of storage. The allocate compares the amount
requested with the amount available in the storage. If the
amount available is sufficient, it is decreased by the amount
requested and the requesting process continues. If the
amount requested exceeds the amount available, the request-
ing process is suspended and placed on a queue (in order by
priority) for that storage. When enough storage has been
deallocated, the waiting request can be satisfied and the pro-
cess allowed to continue.

/* CSIMExample of General Computer System */

#include “csiml ib/csim.h”

#define NJOBS 100
#define NCPUS 2
#define NDISKS 4
#define AMIMEM 20

#define INTAFW 1 .o
#define MWPU 0.25
#define MVDSK 0.030

#define TOTCPU 1 .O
#define EPS 0.0005

int cpu,
disk[NDISKS],
mem,
done,
act;

sim()
(

int i;

create(“sim”);

cpu = facility(“cpu”, NCPUS, pre-res);
~~~i~i:~,s~~!t’~S,,~~iskn, NDISKS); 

n n ? -1; 
done = event(“done”); 

act = NJOBS; 
for(i = 1; i <=NJOBS; i++) { 

job(i); 
hold(expntl(INTARV)); 
) 

wait(done); 
report(); 

> 

job(i) 
int i; 
t 

int j, amt, iodone; 
float t, cpt, x; 

create(“job”); 
set-priority(i); 
iodone = event(“iodone”); 

t = clock; 
amt = random(5, AMIMEM); 
allocate(amt, mem); 

cpt = erlang(TOTCPU, 0.5*TOTCPU); 
while(cpt > EPS) { 

j = random(0, NDISKS-1); 
io(j, iodons); 
x = hyperx(MWPU, 4.OW%PU); 
cpt -= x; 

use(cpu,x); 
wait(iodone); 

1 
deallocate(amt, mem); 
act--; 

if(act = 0) set(done); 
1 

io(d, ev) 
int d, ev; 
{ 

create(=io”); 

reserve(disk[d]); 
hold(expntl(hNWSK)); 

release(disk[d]); 
set(ev); 

1 
Figure 3: Example #2 - Computer System Model 

The cpu in this example is defined by a form of the 
jacility statement which allows the programmer to specify a 
scheduling strategy (discipline) for that facility. In the 
example, a preempt-resume strategy based on process priori- 
ties is specified. In order to utilize this feature, the pro- 
grammer specifies a use (instead of the the request, ho&d, 
release sequence which is normally given). The use state- 
ment is interpreted to mean that the specified facility is to 
be used for a period of time, and this use is governed by the 
scheduling policy in effect for the facility. Five different 
scheduling policies are provided in CSIM. 

This example also uses some of the different (pseudo-) 
random sample generators provided in CSIM. The exponen- 
tial distribution (the expntl function) was called to generate 
the interarrival and disk service intervals. In addition, the 
Erlang distribution (the erlang function), the hyperexponen- 
tial distribution (the hyperz function) and the uniform dis- 
tribution (the random function) were used. Seven different 
random sample generators (functions) are part of CSIM. 

6. SIMULATED PARALLEL PROCESSING 
The fact that CSIM is a programming language means 

that it is possible to write programs which implement paral- 
lel algorithms and then to estimate the performance of these 
algorithms on various multiprocessor systems. The tech- 
nique which is used to simulate execution of a parallel algo- 
rithm using CSIM is to implement the algorithm with the 
parallel segments of the algorithm written as separate 
processes. As each parallel segment of the algorithm begins, 
a processor is reserved. After receiving a processor, the seg- 
ment gets the current user-mode cpu time (from the operat- 
ing system’s clock). When the parallel segment completes, 
the user-mode cpu time is obtained again. The difference 
between these two clock readings is the elapsed processor 
time required for that segment of the computation. The 
segment executes a hold for this amount of time and then 
releases the simulated processor. This technique can pro- 
vide a rough approximation to the time required to execute 
the algorithm on a parallel system. 

Example #3 (see Figure 5) demonstrates use of this 
technique on a simple parallel algorithm (to add up the ele- 
ments of a vector of integers). In Example #3, the execu- 
tion of this algorithm is simulated on a series of systems, 
each with a number of processors and a common block of 
main memory. The output from this example is given in 
Figure 6. 

391 



H. Schwetman 

Wed Jul 3 11:26:12 CSIM Simulation Report Version 8 

Model: CSIM Time: 205 .517 
Interval: 205.517 
CPU Time: 8.383 (seconds) 

Facility Usage Statistics 

+-----------------------t---------------means--~-------------+---counts.---+ 
facility SW dislp servetm util tpul; qlen resp cw Pre 

CPU 0 pre-res 0.301 0.910 3 0 622 
CP” 1 pre-res 0.302 0.179 0 B 122 
CPU pre-l-es 0.301 1.090 3.8 1.091 0.301 744 4 
disk(O] 0.028 0.025 0.9 0.025 0.028 183 II 
disk111 0.029 0.025 0.6 0.025 0.030 174 0 
disk[2] 0.031 0.029 0.9 0.029 0.032 191 0 
disk[3] 0.035 0.033 0.9 0.033 0.036 192 0 

Storage Usage Statistics 

+----------------+-------------------means---------------+---co”nts----+ 

storage capacity ant util s rv-tm qlen resp cmp we 

merlwry 20 12.8 0.712 2.293 28.030 53.495 100 82 

Figure 4: Example #2 - Sample Output 

Example #3, in addition to illustrating a method for 
simulating execution of a parallel algorithm on a multipro- 
cessor system, also demonstrates use of the rerun statement. 
In the program, the model is executed several times; each 
time, there is one additional processor in the :simulated sys- 
tem. The rerun statement causes the simulation support 
system to be completely reinitialized (with the exception of 
the random number function). This feature can be used to 
obtain several independent executions of the model. 

The method used to simulate execution of a program 
on a multiprocessor system has a couple of flaws. One is 
that there was no attempt made to model the effects of con- 
tention for access to shared memory. In real systems, it is 
common for the execution times of the parallel segments to 
be lengthened (slightly) as more processors are simultane- 
ously accessing main memory. There are ways of modeling 
these effects, but they were not implemented in this exam- 
ple. Another problem can be seen in the output for this 
example: no process ever had to wait to obtain the lock (for 
the global variable named sum). A study of the underlying 
simulation mechanisms reveals that no process will ever wait 
for access to this lock. The problem is that no (simulated) 
time passes while the lock is being held. In a real system, 
time would pass while the lock was held, creating the poten- 
tial for delays in accessing the lock. The simulation model 
could be corrected to allow for these delays, but this would 
require a overt recognition of these problems by the pro- 
grammer. 

7. MESSAGES ATVD MAILBOXES 
A common technique for interprocess communication is 

to use messages and mailboxes. CSIM provides a simulation 
data object called a mailbos. By using mailboxes, a process 
can send a message, consisting of a single integer, to another 
process. Because C can represent a pointer to any arbitrary 

data structure as an integer, passing a single integer as a 
messa.ge is equivalent to passing a dat.a structure. Of 
course, a process cannot pass a pointer to a data structure 
within its “private” data area, as this area will not be locat- 
able when another process is in the active state (this is 
because of the way processes and private data are<as are 
managed by the CSIM support, system). 

A mailbox is created by a process. A process can send 
a message to a mailbox [using the send-msg function), and 
it can receive a message from a mailbox (receive-msg). The 
mailbox contains a queue of unreceived messages. When a 
process does a receive-msg, specifying a particular mailbox, 
it either gets the next unreceived message or it enters the 
wait state. The mailbox also contains a queue of processes 
waiting to receive messages. Whenever a message arrives at 
a mailbox, the process at the head of this queue (if there is 
one) is reactivated and the message is passed to that pro- 
cess. A process can determine the number of unreceived 
messages in a mailbox. 

Example #4 (see Figure 7) is a CSIM program which 
makes use of messages and mailboxes. The program prints 
a lis,t of all of the prime numbers less than or equal to a 
specified number. The technique used is a variation on the 
famous Sieve of Eratosthenes. In the CSIM version, the first 
process (sim) generates a stream consisting of all of the 
integers less than or equal to the specified limit. Sim also 
initia.tes a process (called proc) which will receive the stream 
of integers via a mailbox. As proc receives its input stream, 
the first number in the stream is the next prime number in 
the stream. Each instance of proc initiates another instance 
of itself. It then checks its stream of input numbers by 
doing a modulus operation (determine the remainder) with 
its prime number. All number which are not multiples of 
this prime are sent to the successor process. The output for 
this example is in Figure 8. 



CSIM: A C-Based Simulation Language 

/* Sum Elements of a Vector in Parallel */ 

#include “csimlib/csim.h~ 

#define LENGTH 100000 
#define N 5 

int epu, 
lock, 
done ; 

int a[LENGTH), 
sum, 
act; 

float t1, 
t2, 
etime [Nj ; 

s im() 
1 

int irun, i; 

init(); 
for(irun = 1; irun <=N; irunt+) { 

create(“sum”); 
epu = iaeiliiy(“cpu”,irun); 
lock = facility(“loek”); 
done = event (“done”); 
tl = clock; 
act = irun; 
sum = 0; 
for(i = 1; i <= irun; i++) 

add(irun, i); 
wai t(done); 
t2 = clock; 
etime(irun] = t2 - tl; 

printf(“LENGTH=%d, NPROC=%d, sum=%dO, 
LENGTH, irun, sum); 

printf(“irun =?&, etime(irun) =%.3fO, 
irun, etimejirun]); 

report!{); 
rerun(); 
} 

prtreso; 
1 

add(nproc, i) 
int nproc, i ; 
I 

int j, kl, k2, 1, 1 sum; 
Aoat xl, x2; 

create(‘)add 
reserve(cpu); 

xl = cputime(); 
lsum = 0; 
j = LENGTH/nproc ; 
kl = (i-l)*j; 
k2 = (i != nproc) ? i*j : LENGTH; 

printf(“process Y&l, kl =?&I, k2 =%dO, 
i, kl, k2); 

for(1 = kl; 1 < k2; I+t) 
lsum += a[I]; 

reserve( lock); 
sum i- Isum; 

release(lock); 
x2 = cputime(); 
hold(x2 - xl); 
act--; 
iC(act = 0) 

set(done); 
release(cpu); 

init() 
i 

int i; 

for(i = 0; i < LENGTH; ii+) 
a[i] = 1; 

1 

prtres() 
{ 

int i; 

printf(“0); 
printf(“Num. ProcsSim Elapsed Time (seconds)O); 

for(i = 1; i <=N; i++) 
printf(“%2d%.3fO, 

i, etime[i]); 

I 

Figure 5: Example #3 - Simulated Parallel Processing 

8. DATA COLLECTION AND DEBUGGING 
An important feature in any simulation package is the 

set of features for collecting data on the performance of the 
simulated system. The examples above have demonstrated 
the “automatic” features available in CSIM (the reports on 
the usage of facilities and storages), as well as the “do-it- 
yourself” approach (as in Example #a). An important third 
technique for data collection makes use of tables and 
(numerical) histograms. In CSIM, there are simulation data 
objects which can be created and then used by the 
programmer to collect data in some specific forms. These 
are described in this section. 

There are two basic simulation objects which can be 
used to collect data: one is based on recording values in a 
table or a frequency histogram and the other is based on col- 
lecting information about the state of a resource, e.g., the 
queue length distribution, where the state is the number of 
customers at a resource. 

With the first approach, the CSIM statements table and 
histogram are used to create either a table or a table with a 
frequency histogram appended to it. The record statement 
is used to record floating point values in these simulation 
objects. Example #5 (see Figures 9 and 10) demonstrates 
the use of these statements. In this example, the program 
generates 1,000 random samples drawn from an exponential 
distribution and records them in the table. The output con- 
sists of both a statistical summary of these values (mean, 
variance, minimum and maximum) and a frequency histo- 
gram of the recorded values. 

The other form of data collection uses qtables and qhis- 
tograms to tabulate data on states of the system or system 
components. One example would be to tabulate changes in 
the length of a queue as the model progresses. The 
note-entry and note-exit statements would then be used to 
notify the data collection routines of changes in the queue 
length. 



/* the Sieve of Eratothenes */ 

#include “csimlib/csim.h” 

#define N 500 
#define WINE 9 

int epu, 
done, 
act, 
linect; 

s im() 

1 
int i, mb; 

create(“sim”); 
Printf(“%8d”, my-prime); 
1 inecttt; 

cpu = facility-ms(“cpu”, N/3 
next-mb =mailbox(); 

1; proc(next-mb); 
done = event(“done”); do f 

printf(“The primes <=‘?&I are 
receive(mbox, &num); 

:O, N); 
linect =M4XLINE + 1; 

i I’( (num % my-prime) != 0) 
send(next-mb, num); 

act = 0; 
mb =maiIbox(); 

reserve(cpu); 
proc(mb); 
for(i = 2; i <=N; i++) { 

1 
send(n;b, -1); 
wai t(done) ; 
release(cpu); 
if(linect > 0) 

printf(“0); 
printf(“0cpu time =%.3f secondso, 

cputime()); 

} while (num > 0); 
send(next-mb, 

1 
-1); 

release(cpu); 
act--; 
if(act <= 0) 

set(done); 
1 

Figure 7: E;xample #4 - Sieve of ErAosthenes with Mailboxes 

H. Schwet)man 

Tue Jul 9 08:58:37 CSIh4 Simulation Report Version 8 

Model: CSIM Time : 0.533 
Interval : 0.533 
CPU Time: 10.550 (seconds) 

Facility Usage Statistics 

+----------------------+---------------means-----“----------+---co”“ts----+ 
facility STV disp sew-tm util tput qlen resp cw p:e 

CPU 0 0.517 0.969 1.9 1 
CPU 1 0.533 1.000 1.9 1 
CPU 2 0.517 0.969 1.9 1 
CPU 3 0.533 1.000 1.9 1 
CPU 4 0.517 0.969 1.9 I 
CPU 0.523 4.906 9.4 4.906 0.523 5 
lock 0.000 0.000 9.4 0.000 0.000 5 

lvun&er of Processors Simlated E:lapsed Time (seconds) 

2.583 
1.350 
0.867 
0.667 
0.533 

Figure 6: Example #3 - Output 

proc(mbox) 
int mbox; 
l 

int my--prime, next--mb, UUU,; 

create(“proc”); 
act*; 
reserve(cpu); 

receive(mbox, &my-prime); 
if(my-Prime * 0) { 

if(linect >MAXLINE) { 
printf(“0); 
linect = 0; 

1 



CSIM: A C-Based Simulation Language 

‘Ihe primes c$= 500 are: 

2 
31 
73 

127 
179 
233 
283 
353 
419 
467 

3 5 7 
37 41 43 
79 83 89 

131 137 139 
181 191 193 
239 241 251 
293 307 311 
359 367 373 
421 431 433 
479 487 491 

11 
47 
97 

149 
197 
257 
313 
379 
439 
499 

13 17 19 23 29 
53 59 61 67 71 

101 103 107 109 113 
151 157 163 167 173 
199 211 223 227 229 
263 269 271 277 281 
317 331 337 347 349 
383 389 397 401 409 
443 449 457 461 463 

cpu time = 14.333 seconds 

Figure 8: Example #4 - Sample Output 

/* Data Collection */ 

#include “csimlib/csim.h 

#define N 10 
#define M’J 2.0 

int hist; 

sim() 
{ 

int i; 

create(“sim”); 

hist = histogram(“expntl”, N, 0.0, 4*MN); 
for(i = 1; i <= 1000; i++) 

record(expntl(MI), hist); 
report(); 

1 

Figure 9: Example #5 - Collecting Data 

The major debugging aid in CSIM is a trace, which can 
be turned on or off either under program control using the 
trace-on and trace-of statements or when the program is 
invoked using the -tr option on the invoking command line. 
The trace output is a fairly detailed listing of the activities 
of the processes of the model. The level of detail is usually 
sufficient to allow most bugs to be detected and corrected. 
In addition, there are many checks for errors in the runtime 
support system. These checks detect illegal conditions and 
print an error message before halting. 

9. SUMMARY 

CSIM is a process-oriented simulation language, in 
many respects similar to ASPOL. Because it is a complete 
programming language (it is embedded in C), it can be used 
in a variety of simulation projects. In addition to the usual 
system simulation models, CSIM can also be used to simu- 
late the execution of programs on systems with different 
architectures, as was illustrated in Example #3. The 
process-oriented nature of CSIM means that many types of 
models can be easily implemented. 

CSIM is currently implemented on a VAX computer 
system using the UNM operating system. The implementa- 
tion is really a set of functions and procedures which the 
model (the C program) calls. The create function causes a 
procedure to be set up as a process, capable of executing in 
a pseudoparallel manner with other processes. The run- 
time support package includes a small number of short rou- 
tines written in VAX Assembly Language; these routines 
manipulate the C run-time stack and save and restore some 
registers and jump addresses. 

CSIM is a useful simulation tool. Several large projects 
have used CSIM to model various aspects of program and 
system behavior. The simple examples found in this paper 
illustrate the rich variety of features which enable a simula- 
tion programmer to easily develop, test and use system 
models. 

Because there is currently no CSIM compiler, there is 
no good mechanism for checking that a CSIM program is 
syntactically correct: it is possible to write a program which 
compiles, but which has CSIM errors. An example of this 
would be reserving a facility which had not been declared. 
A future enhancement would be to develop a CSIM com- 
piler. 

The performance of a CSIM program is similar to that 
of a C program, except for the process management over- 
head. Because the program and the run-time support pack- 
age are all compiled, CSIM programs should execute at 
acceptable levels of performance. However, it is possible to 
devise models which will require a great deal of CPU time. 

The choice of a simulation language to use in a simula- 
tion project is usually based on factors such as availability 
and familiarity, and not on the suitability of the language to 
the proposed model. CSIM is useful because it offers an 
viable alternative to other simulation languages, and attrac- 
tive because it is process-oriented and because it is a 
complete programming language. There are situations 
where these features will make CSIM a sensible choice. 

395 



11. Schwetman 

Man Aug 4 16:28:23 CSIM Simulation Report Version 93 

Mode 1 : CSIM Time: 0.000 
Interval : 0.000 
CPU Time: 2.400 (seconds) 

Table 1 

Tab I I Name : expnt 1 

mean I..923 min 0.002 
variance 3.619 max 13.359 

Number of entries 1000 

Histogram 

Low - 

0.000 - 
0.800 - 
1.600 - 
2.400 - 
3.200 - 
4.000 - 
4.800 - 
5.600 - 
6.400 - 
7.200 - 
8.000 < 

REFERENCES 

Dahl, O.J. and K. Nygaard (1967), Simula. A Language for 
Programming and Description of Discrete Event Sys- 
tems, Fifth Edition, Norwegian Computing Center, 
OSlO. 

High count Fraction Cumulative 
0.000 = 0 0.000 0.000 
0.800 = 344 0.344 0.344 
1.600 = 218 0.218 0.562 
2.400 = 157 0.157 0.719 
3.200 = 91 0.091 0.810 
4.000 = 62 0.062 0.872 
4.800 = 43 0.043 0.915 
5.600 = 23 0.023 0.938 
6.400 = 19 0.019 0.957 
7.200 = 17 0.017 0.974 
8.000 = 14 0.014 0.988 

= 12 0.012 1.000 

Total = 1000 

Figure 10: Example #5 - Sample Output 

Franta, W.R. (1977), The Process View of Simulation, 
North Holland, New York. 

Gordon, G. (1978), System Simulation (%d Edition), 
Prentice-Hall, E1nglewood Cliffs, NJ. 

Kernighan, B.W. and D.M. Ritchie (1978), The C Program- 
ming Language, Prentice-Hall, Englewood Cliffs, NJ. 

Kiviat, P.J., Vilanueva, R. and H.M. Markovitz (1975), Sim- 
script 11.5 Programming Language, CACI Inc., Los 
Angeles. 

Law, A.M. and W.D. Kelton (1982), Simulation Modeling 
and Analysis, McGraw-Hill, New York. 

MacDougall, M.H. and J.S. McAlpine (1973), Computer Sys- 
tem Simulation with ASPOL, Symposium on the Simu- 
lation of Computer Systems, ACMfSIGSIM, pp. 93-103. 

MacDougall, M.H. (1974), Simulating the NASA Mass Data 
Storage Facility, Symposium or the Simulation o/ Com- 
puter Systems, ACM/SIGSIM, pp. 33-43. 

MacDougall, M.H. (1975), Process and Event Control in 
ASPOL, Sllmposiunt of the Simulation oJ Computer Sys- 
tems, ACM/SIGSIM, pp. 39-51. 

MacDougall, M.H. (1976), System Level Simulation, Digital 
System Design Automation: Languages, Simulation and 
Data Base, (M.A. Breuer, Editor), Computer Science 
Press, Inc., Rockville, MD, pp. l-115. 

Nance, R.E. (1981), The Time and State Relationships in 
Simulation Modeling, Communications of the ACM, 24, 
pp. 173-179. 

Pritsker, A.A.B. (1974), The GASP-IV Simulation Language, 
.John Wiley and Sons, Inc., New York. 

Pritsker, A.A.13. and C.D. Pegden (1979), Introduction to 
Simulation and SLAM, Halstead Press, New York. 

Saydam, T. (1985), Process-Oriented Simulation Languages, 
Simuletter, 16, ACM/SIGSIM, pp. S-13. 

AUTHOR’S BIOGRAPHY 

HERB SCHWETMAN is a member of the technical 
staff of the Microelectronics and Computer Technology Cor- 
poration (MCC), joining the staff in IQS4. Prior to that, he 
was a professor in the Department of Computer Sciences at 
Purdue University. He received his Ph.D. in computer sci- 
ences from The University of Texans at Austin in 1970. He is 
past chairman of the ACM Special Interest Group for Meas- 
urement and Evaluation (SIGMETRICS). 

396 


