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ABSTRACT 

Models describing the process of qualitative reason- 
ing have significantly enhanced our insight into the 
general nature of the challen es involved in mcdel- 
mg people’s imaginations i-i w en they think about 
complex processes. The composite picture created by 
combining models suggested by individual research- 
ers may appear blurred This is because, in some 
cases, the ran e of applicabilny of each approach is 
not sharply efined, and the theoretical claims sup- cf 
porting the work are not sufficiently stated. This 
state of the art clearly suggests that considerable 
amount of research is still required in order to rein- 
force the theoretical foundations for the modeling 
qualitative reasonin 
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In this paper I first describe 

some of the annroac es used for qualitative sjmula- 
tion. Second,* 1 discuss present _ the example of 
diffusion process in complicated media and the chal- 
lenges jnvolved in automating the qualitative esti- 
mations of diffusion transit times. 

1. INTRODUCTION 

The ability to describe behaviors of dynamical 
systems is of great importance for explaining and 
predicting changes. In some cases, if the relation- 
ships whtch compose the system are simple enough, 
It may be possible to use analytic mathematical 
methods to arrive at the solution to the equations 
which describe these relationships. However, in the 
stmulation of real-world systems, it is often the case 
that analytic solutions are out of the question and 
numerical simulation methods are used to 

cf 
enerate 

behaviors of systems given a well define set of 
initial and boundary values for the equations. 
llence. numerical simulation methods are of great 
significance for gaining knowled e about the &ssi- 
ble behaviors of a given model o a svstem for the H 
chosen set of initial”and boundary valies. However, 
in many real life situations, it is often the case that 
not all the data needed to build a reasonably exact 
structural model of a system is available. Further- 
more, in cases where systems are exceedingly com- 
plex, numerical simulations are highly cost in- 
effective, especially if what is sought after is the 
types of behaviors that this system can exhibit since, 
in such cases, many simulation runs have to be per- 
formed for different parameter ranges. Hence, in 
some of these cases it may be helpful to equipped 
the simulator with the ability to reason (simulate) 
uualitativeIv the behavior of the svstem and to 
ixplore the” possible range of behaviors. In other 
words, the simulation process should include the 
uttlization of commons&se knowledge about the 
process or the system being simulated. 

The developm’ent of intelligent systems that per- 
form complicated tasks such as qualitative reason- 
inp. necessitates representing world knowledge in 
sp?nbolic form. The essence of representing the 
knowledge is twofold: The content of the domain 
knowledge which is necessary to perform the task 
must be captured, and at the same time, this 
knowledge must be organized in a form which 
facilitates the task execution. Over the last decade, 
considerabIe research efforts in the field of Artificial 
Intelligence (AI) has been directed towards the auto- 
mation of qualitative reasoning, with special 
emphasis on commonsense reasoning about physical 
svstems. Oualitative reasonine nrograms have been 
developed -to reason about eGc’tro&c circuits (e. . 
Davis 1984, Genesereth 19841, and everyday 11 e 2 
physical processes (e.g. De Kleer and Brown 1984, 
Forbus 1984, Kuipers 1984). In addition, work has 
been done in a variety of other domams, such as 
medical diagnosis (e.g. Patil et al 1981). and the 
economy (Riesbeck 1384). For a survey .of recent 
work. see Chandrasekaran and Milne 1985 and 
Rajagopalan 1985. 

The: research reported here centers on the qualita- 
tive simulation of aspects of the process of diffusron 
in structured media. In particular, I am interested 
in the automation of reasoning about the effect that 
the geometry of the diffusion space and its composi- 
tion have on the diffusion transit time. To demon- 
strate the issues involved, consider the following 
problem: 

Molecules released from the surface on 
the left diffuse to, and are trapped by 
the surface on the right. The molecules 
are slightly soluble in water, and 
highly soluble in oil. In case (a> they 
diffuse through the layer of oil before 
reaching the layer of water. In case (b) 
the thickness of each layer is unchanged 
but the order is reversed so the 
molecules diffuse first through the 
water and then the, oil. Compare the 
transit times. 

The same in both 
Much longer in (a) F 3 
Much longer in (b) [ 3 

(a> (b) 

-I (Xl 
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Estimating Diffusion Transit Times 

Numerical simulation of the problem presented in 
the quiz question above is highly expensive. In 
addrtion, since all we are interested in, in this case, 
is a qualitative comparison between the average 
diffusion time in the two cases, an exact numerical 
simulation of the diffusion equation, can not give us 
the answer directly, and in addition, this solution 
method generate too much information that is 
beyond the scope of the problem. In some sense, all 
one needs to solve this problem is intuition about 
diffusional processes and some heuristics (rules of 
thumb) to guide the qualitative reasoning. In Hardt 
198Ob, and Hardt 1984, exact solution to the transit 
time and helpful heuristics are presented. The prob- 
lem I am addressing here is how to represent these 
commonsense knowledge in a way that a machine 
can use in order to solve this and similar problems. 

hurld some models of reality in order to function in 
everyday life situations, we may discover that the 
latter are amazingly effective and can produce 
relevant results for complex situations, in real-time. 
It is beyond the scope of the current paper to go in 
depth into a comparative discussion on the nature of 
the formalism of thought and the formalism of 
mathematics. For our purposes here, it is sufficient to 
conjecture that the two formalisms are different in 
scope and purpose. 

In the following the AI approaches to the automa- 
tion of qualitative reasoning are briefly described 
together with an outline of a solution to the above 
quiz problem. 

2. APPROACHES TO QUALITATIVE 
SIMULATION 

Research in AI is aimed at extending the capabili- 
ties of machines to perform computation of the kind 
people perform when they deal with task domains 
in the real world. Furthermore, AI research 
attempts to explore the nature of human thinking, 
and to build cognitively valid computer models. 
Naturally, these two aims are not mutually 
exclusive. AI research directed at understandinP and 
modeling qualitative reasoning, concentrates m%nly 
on: (a) derivin 

.B 
the qualitative concepts used in 

formal models 1 they exist, and (b> identifying the 
core knowled e underlying intuition in the domain 
(see Hayes 19&. 

There is a great similarity between building a 
simulation model and building a knowledge base. 
The descriptions of natural ph<nomena OT &ificial 
systems can be organized by the logical discipline of 
Mathematics. When mathematics is applied to prob- 
lems in the natural world, the resulting formula- 
tion is rich with the mathematician intuition. The 
thought processes that resulted in the formulation 
are. in an imoortant sense. incoroorated in it. There 
application of Mathematic; involves a few steps (e.g. 
Lin and Senel 1974). First. the formzdatim of the 
scientific pyoblem in mathematical terms. Second, 
the solution of the mathematical nroblems. And 
third, the interpretation of the solution and its 
empirical verification in scientific terms. Each of 
the& steps involves a translation of reality into a 
different vocabulary. 

The above description of the formulation of 
mathematical models of observed phenomena is a 
simplification to a rather complex cognitive process 
in which the scientist uses his native commonsense 
combined with the thinking tools provided by his 
training in the discipline of &athem&s, to pr&Iuce 
a formal model. If we now compare this process of 
model formation to the one employed by a person 
who has no training in mathematics, but who has to- 

Given the above distinction between mathematical 
and cognitive models of a process , we can now per- 
ceive some of the different ways one can o about 
building a qualitative simulation model. 7% ere are 
two basics approachs on can take. One approach is 
to simplify the exact mathematical equations 
describing the system and replace them with quali- 
tative equations. This approach is central to the 
work of De Kleer and Brown 1984, and Kuipers 
1984. The second approach to building qualitative 
reasonin systems is to construct the cognitive (com- 
monsense models that a person uses to reason about 5 
the processes under consideration. This anoroach is 
used- to different extents by various researchers in 
AI and Co 

% 
nitive Science. In particular it is central 

to the wor of Hayes 1985, Forbus 1984, Bylander 
and Chandrasekaran 1985, Gentner and Gentner 
1983 and Hardt 1984. 

In general, qualitative simulation captures less 
detail and therefore may produce partial behavioral 
descriptions. Also, the quantitative precision of 
these descriptions is reduced while crucial distinc- 
tions are retained. However, it 1s important to notice 
that in fields of scientific enquiry where exact 
models are desirable. manv of the basic conceots are 
qualitative. For example,-in Classical Physic’s, con- 
cepts like state, law, cause, equilibrium, oscillation, 
momentum, feedback, etc. are qualitative in nature, 
and they have been embedded in a complex frame- 
work established by the Mathematics of real 
numbers and differential equations. 

DIFFUSIONAL PROCESSES AND 
?~~M*NsENSE 

Building a qualitative reasoning system ,for reason- 
ing about diffusional process is a complicateP task. 
The complexity of the dynamics of diffusron IS hard 
to describe intuitively and hence, powerful com- 
monsense models are possessed by only a few 
experts. In addition, most of the reasoning about 
diffusion involves taking into account some averag- 
ing of complicated behaviors of many 0bJect.s (partr- 
cles) over long periods of time. 

Mathematically, there are different levels of 
description from which the physical process of 
diffusion can be formally described. Three of these 
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levels are: 1. The level of individual particles,. This 
level is presentable by the mathematical theory of 
stochastic processes. 2. The level of small collections 
of particles. In this context the notion of concentra- 
tiori is introduced and its dvnamic behavior 
expressed in terms of partial diff>rential equation. 
3. The thermodvnamic level where the notion of 
entropy is intrduced. Each level of descriptron has 
its own vocabulary and set of relations. 

Although these formal levels of description are 
based on reasonably sound mathematical t’heories, 
they are not suited,‘in many cases, to serve as foun- 
dations for commonsense knowled e about diffusion. 
It is important to keep in mind t f at as far as com- 
mon sense understandin is concerned the rules of 
thumb use a mixed leve f (’ vocabulary see for exam- 
ple Hardt 1980b and later this paper). A similar 
point is made by Feynman et al, 1963, when it is 
stressed that framing a physical description of a sys- 
tem of particles and their interaction, must start 
with a consideration of the hierarchical structure of 
possible descriptions. Only in the context of such a 
hierarchy, he emphasizes, do basic concepts, like 
frictional force, conservative force, kinetic ener y 
and potential energy, assume precision. This can %e 
abstracted to any system composed of modules. 

In the work reported here. the reasoning svstem is 
confronted wit< the task ‘of reasoning Yab&t and 
estimating the pace of diffusional Aow inside com- 
plicated channels. This process appears continuous in 
time and space yet its pace is crucially dependent on 
the shape size and texture of the channel. The abil- 
ity to reason about the pace of this flow process ori- 
ginates directly from detailed knowledge about the 
process. 

fsu 
3 

l&.I~~E ESTIMATION OF DIF- 

The duration of complex events can not be 
estimated in a straightforward fashion. Events may 
partially overlap in time, consecutive events may be 
delayed, side-effects may interfere to alter the pace 
of future events, and so on. The discussion here is 
limited in focus to the cognitive process of estimat- 
ing the duration of events that take place in the 
physical world, and therefore, this work can be 
characterized as naive physics. Limitin 
toire of events to physical events, name y f 

the reper- 
to events 

that do not include human intention, simplifies the 
task of time estimation considerably, as one need not 
worry about the effectiveness of individual human 
actors to formulate a coal. to vlan for a known noal, 
to perform a planner action ‘or to react to a grven 
action. However. even with this simplification. the 
computational task is far from simple.. 

It goes without saying that in order to estimate 
event durations, a system must have detailed 
knowledge about the dynamical behavior of the 
processes which cause the event. However, there 
are important questions that have to be addressed 
before such knowledge can be effectively made 
available to any reasomng system. For example, the 
question of event interpretation and analysis: given 
an event description, how to break this event into 
sub-events corresponding to some (primitive) events 
of known duration. This question is closely related 
to the question of how to determine what are the 

appropriate reasoning steps clurin qualitative rea- 
soninc using deep causal modets. n order to aPp\y 
this Garticufar method of problem solving, the-iea- 
soning system h.as to possess the knowledge on how 
to decompofie the process into more primiti,ve 
processes of known characteristics that take place in 
sub-re Gons of the system. 

f 
Part of the systems 

know edge base is listed informally below that 
should be used to solve the quiz and similar prob- 
lems (see Hardt 1984 for a list of problems and see 
Hardt 1979, 1980a, 1980b for the source of the 
rules). 

Rules for identifying sub-regions 

Rule 1: Different media (compositions) define 
regions. 
Rule 2: Dimensionality of the movement defines 

R”ug;e~ The target defines a region (scaled appropri- 
atelyk 
Rule 4: The source defines a region (scaled appropri- 
ately). 
Rule 5: The rest of the system defines a region 
(scaled appropriately). 

Principles of the process: 
Basic Property 1: Particles move randomly (equal 
chances to go left and right in each dimension). 
Ba;c YrOJXTty 2: Each degree of freedom is indepen- 

Basic Observation 1: Since diffusing particles look 
for the target randomly, if they spend more time in 
the re ion near it, they are more likely to find it. 
Basic 5 ffect 1 (Dimensionahty effect): The higher 
the dimensionality of the diffusion space, the harder 
it is to find a point in that space. 
Basic Effect 2 (Media effect): The greater the affinity 
of tbe particle to a particular media the more time 
it will spent there. 

In many cases, it is possible to decompose the sys- 
tem in more than one way. Therefore, the sub- 
region recognition rules are implemented as parallel 
processes, each pursuing its own interpretation and 
estimation of the process. 

5. CONCLUDING REMARKS 

There are many intri uing 
that have to be addresse li 

high level questions 
before a reasonably sound 

theoretical framework can be developed for model- 
ing qualitative reasoning. Among this questions are: 
1. Types of mechanisms for qualitative reasoning 
and their cognitive validity. 
2. Reasoning styles and their impact on reasoning 
effectiveness. 
3. The power of qualitative reasoning. 
4. Ways to incorporate qualitative reasoning in 
real-time problem solving. 

The research in-pro ress reported here is aimed at 
w gai-ning insight into t ese rssues by dealing with a 

complex reasoning problem for which an exact 
mathematical formulation exists and in which prob- 
lem solving can be aided by expansive numerical 
simulations and by fast and effective commonsense 
reasoning. 
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