
Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

SOFTWARE ENGINEERING APPLIED TO DISCRETE EVENT SIMULATIONS

Kenneth N. McKay
John A. Buzacott

John B. Ploore
Christopher J. Strang

WATMIMS Research Group
Department of Management Sciences

University of Waterloo
Waterloo, Ontario, CANADA NZL 3G1

ABSTRACT

Developing simulation programs shows many
similarities with classical system software
development tasks. In simulation one is
often concerned with allocating and deallo-
cating resources. Two forms of deadlock --
the 'deadly embrace' and 'apres-vous' -- can
be troublesome to simulators unless they know
how to avoid them in the first place. Cri-
tical races and time dependent functions are
other characteristics shared between simula-
tion and systems programming. If simulation
is viewed and taught as data processing, the
simulator will be ill-prepared for writing
simulation code.

Most simulations in industry are not
written by skilled software developers.
There is good reason for this: the simula-
tion writer must ultimately understand the
problem, its features and the managerial
concerns that lead to the requirement for the
simulation. However, simulation writers with
no software training are poorly equipped for
developing simulation code that is easy to
design, debug, verify, maintain and explain.
A number of simple modern software engineer-
ing techniques which are described in this
paper can be applied to simulation programs
in a practical way to improve both the quality
of the simulation and the productivity of the
simulator.

1. INTRODUCTION

There exist four major concerns in simu-
lation. These are: input and output data
analysis, model verification and validation,
communication, and model construction.
Software engineering [ZELK79] concepts can
simplify verification, lessen the impact of
communication difficulties, and ease the
burden of model construction. Specifically,
the aspects of software engineering used in
systems programming are directly applicable
to simulation development [RYAN79].

The analogy between simulation and sys-
tems programming is discussed in section 2.
This is followed by a description of software
engineering techniques as applied to simula-
tion development. Concepts are illustrated
using a model of a surface mounted technology
(Sf:TT) printed circuit board assembly line
that was developed in SIMAN [PCGD85]. This
assembly line model is a discrete-event
simulation using SIMON in its block form with
no special FORTRAN code.

2. SOFTWARE ENGINEERING AND SIMULATION

Software engineering encompasses many
aspects of software development: require-
ments, specification, design, coding and
debugging, performance evaluation, verifica-
tion, validation, project management, docu-
mentation, communications, standards,
migration, portability, security, etc. In
the late sixties and early seventies, land-
mark work such as Dahl/Dijkstra/Hoare
[DAHL72], Brooks [BR0075], and Knuth [KNUT68]
created a significant interest in academic
and industry circles concerning the method
and madness used to develop software. Re-
search concentrated on operating systems,
languages, desiqn methods, databases, veri-
fication techniques, data processinq appli-
cations, etc., with the majority of work
being performed in computer science groups
and defense agencies.

Although surrounded by clouds of mystique
and magic, simulation development is essen-
tially a software development project. An
additional difficulty not mentioned in the
introduction is that many programmers devel-
oping simulations are not trained in soft-
ware development practices which span
requirement analysis through verification.
Coming from engineering or the sciences, the
developers may understand what needs to be
simulated but not how to go about doing it.
They might have had one or two courses in
FORTRAN, COBOL, PASCAL or ASSFNRLER.

Assuming that a simulation writer wants
to have an easier time of it, where does
he/she start? As with any set of concepts
and tools, there are some tools more appro-
priate for certain jobs than others. The
size and category of job may dictate the tool
selection. The reader of software engineer-
ing literature should always keep the problem
and solutions in perspective: the solution is
the tool, not the end objective.

For our purposes, we rule out the large-
scale simulations of the defense and aero-
space industries. Sheppard [SHEPS~I provides
a good overview of the software engineering
aspects that can be applied to large simula-
tions. Of the remaining simulation projects
almost all appear to be one or two people
projects and contain less than 5,000 lines of
code. The simulation projects entail resource
control, resource allocation, process flow,
and timing considerations. With few excep-
tions, the common simulation languages are
low level and the programmer is required to

485

http://crossmark.crossref.org/dialog/?doi=10.1145%2F318242.318481&domain=pdf&date_stamp=1986-12-01

build up primitive functions that rcalate to
the concept to be modelled. These problem
characteristics, potential solutions, and
development tools are identical to small
system programming tasks. In a high-level
tutorial survey of software engineering and
simulation [RYAL779], the usefulness of oper-
ating system research to simulations is noted.
We stress the similarity in the software and
delve deeper into the areas of software
engineering that can benefit simulation
projects.

A software project consists of several
phases. The first is the requirements anal-
ysis and problem definition phase. The
design phase is next which is followed by the
detailed design and implementation (program-
ming) . Software is then exposed to a series
of unit, module, and systems tests to verify
that the requirements are satisfied. Finally,
the customer obtains the software to see if
it really does the job. Early customer
involvement is crucial with software projects.
A prototyping approach can facilitate this
interaction. A paper by Wolverton [e7OLV74]
mentions a common rule of thumb that indi-
cates that 40% of development cost will be
in analysis and design, 20% in coding and
debugging, and 40% in the checkout and test
phases. Khile each project will vary some-
what, sufficient time must be given to the
front-end work. Details of each phase are
discussed in the following sections.

3. REQUIRELGENTS ANALYSIS

The requirements phase is one of the most
important and difficult phases of a simula-
tion project. The issues include: what is
to be modelled; what are the main components
in the model and their characteristics: what
questions are to be answered; what are the
assumptions; what are the limitations. Duket
[DUXC82] emphasizes that the purpose of a
simulation is to answer questions and influ-
ence decisions. Note also that, what will
not be in the simulation is often as impor-
tant as what is!

A major task is to determine how to com-
municate the information among the people
involved in the project. There has been
significant research into formal specifica-
tion languages and how to minimize the errors
introduced at this point of the project
[EALZ85]. Outside of the defense and related
fields, there have been few reported efforts
of using formal specification languages in
industry. There are some problems with the
formal specification language approach.
First, a number of the languages have been
algebraic in nature for conciseness and
provability. This makes expressing meaning
and intent difficult. Second, if the lan-
guage is not algebraic, it still has a syntax
and vocabulary which does not solve the com-
munication problem between the analyst and
'end user' who needs to understand what the
analyst writes in the functional specifica-
tion. An ideal specification language would
be one in which the 'end user' can describe
their desires with ambiguity, missing data,
conflicting data, and erroneous data. That

is one in which the language sys-tern knows
.what the person really meant. We are not
aware of any such language or system. Even
with rigorous mathematical notation, such
Artificial Intelligence systems are research
concepts and experimental in nature [GOLDEN:].

Assuming that a suitable specification
language does not exist, the simulation
developer must rely on the traditional methods
of requirements analysis. Unfortunately as
one performs a requirements study, one learns
that the popular saying: "constants aren't
and vasiables won't" is true. The state
requirements will be ambiguous, incomplete,
conflicting, wrong and unstable. To address
thes.e issues, the analyst is required to know
about simulation development as well as the
real world being model:Led. Interpretations,
translations, and definitions are important
parts of this "black art" of determining the
requirements.

In many ways, this phase is similar to
the task faced by a systems programmer when
designing a support tool such as an operat-
ing system. The skilled system programmer
wil:L listen to the 'end user' and mentally
bui:Ld a 'model' consisting of application
specific information and support functions.
For example, a particular machine to place
paste on a board has application specific
information: it processes computer cards,
puts paste on specific spots, etc. It also
has support or operational information: it
processes one thing at a time, takes a cer-
tain amount of time for this action, cannot
move its object until the next process down-
stream is free, etc. Clearly, there is
application information and what can be
called generic information.

To illustrate the concepts of abstraction,
Figure la .Lists the Eunction of each segment
of the SPIT line. In the seven segments,
there are sixteen unique processes that are
modelled with six abstract structures (E'igure
lb). Figure lc shows the first two segments
and how the abstraction matches the initial
des,cription.

The separation of the problem into appli-
cation specific and generic characteristics
can be accomplished in simulations and should
be consciously performed. Documenting this
separation in the requirements document is
one way to minimize the impact of poor com-
munications. The underlying structure will
be clear as will the areas of application
(which change with time).

1 prepping
2 screening and paste application
3 top SIT? device population
4 vapor-soldering
5 pin-through-hole device population
6 bottom SMT device population
7 wave-soldering

Figure la: Seven Segments of the SMT Line

486

Software Engineering Applied to Discrete Event Simulations

Processes/Machines Abstractions

1 Magazine Type A/B Load
2 Magazine Type A/B Unload
3 Wave Solder
4 Cure Oven
5 Panel Inversion
6 Top SMT/PTH Placement
7 Top Nonstandard SNT/PTH Placement
8 Bottom Placement
9 Aqueous Cleaner

10 Paste Dry
11 Vapor Phase Reflow
12 Screen and Paste
13 Inspect - Inline Rework
14 Inspect - Paxallel Rework
15 Pre-Clean
16 Solvent Wash

1 Magazine Load
2 Magazine Unload
3 Single Panel Machine
4 Multiple Panel Machine
5 Inspect - Inline Rework
6 Inspect - Parallel Rework

Figure lb: Processes and Abstractions

Processes/Machines Abstractions

1 Unpack
2 Pre-Clean
3 Magazine Unload

1 Single Panel Machine
2 Single Panel Machine
3 Magazine Unload

1 Magazine Load 1 Magazine Unload
2 Screen & Paste 2 Single Panel Machine
3 Inspect - Inline Rework 3 Inspect - Inline Rework
4 SOIC Placement 4 Single Panel Machine
5 PLCC Placement 5 Single Panel Machine
6 SMT Non-standard Placement 6 Single Panel Machine
7 Inspect - Parallel Rework 7 Inspect - Parallel Rework
8 Paste Dry 8 Plultiple Panel Machine
9 Magazine Unload 9 Magazine Unload

Figure lc: First T~70 Segment Analysis

4. DESIGN of the methods provide frameworks within which
the problem is to be analyzed and the design

Once the requirements of the simulation annotated. Each results in a slightly differ-
are known and agreed to, the design problem ent design and orientation which might not be
can be tackled. The issues in a simulation obvious upon first glance but which appears
design are: what philosophy or approach later when functionality is changed or pro-
should be used in the design; what is a suit- cess characteristics altered. It is quite
able architecture for the model; what is the possible that the largest benefit of design
support structure; and how should the design methods lies in forcing developers to approach
be documented. The design of the model should the task systematically. A constant danger
not be confused with the code design and what is the assumption that one design technique
is internal within the software. The archi- will work for all problems and further that a
tecture is concerned with the interfaces -- finished documented design is a good design.
shape, form, and other characteristics. The The fallacy of assuming that the design pro-
design should proceed relatively independent cess can be totally mechanized and systemized
of any simulation language you choose. Most is pointed out in [PARN86]. The data struc-
provide the necessary features in one form or ture (Jackson, Warnier), data-oriented, and
another. object-oriented methods appear to us as the

most relevant to simulation development.
During the past decade, there have been a Several excellent texts on design for refer-

number of software design methodologies (or ence are [JACK75], iEIYER79], and [YOUR79].
mythologies if you wish) developed and widely
used by software developers. A recent survey While it may be desirable to understand
by Yau [YAU~~] provides a good overview of the above design methods and intuitively
the most popular: HIPO, SADT (Ross), grasp their subtleties, the finer points of
Structured Design (Yourdon and Constantine), good design come only through practice.
Composite/Structured Design (Myers), Module Based on our experience, the heuristics
Interconnection Languages (DeRemer and Kron), listed in Appendix A are usually sufficient
Jackson's Design Methodology, Marnier's to give a developer both the structure and
Design Methodology, Stepwise Refinement orientation needed to design either systems
(Parnas), Data-Oriented Design Techniques, programs or simulation software. Another
and Object-Oriented Design flethodology. All approach to problem decomposition is [COHE82]

487

K. N. McKay et cl.

which involves decomposing the model into a
series of queues and their connections.

The structurle, orientation, and design
methods do not delete the requirement for
the designer to understand what is t:o be
modelled, what forms of architecture are
possible, and what support techniques can be
used. For instance, there are many design
issues independent of the notation technique.
Should the flow be interrupt driven or polled?
Should the design protect against deadlock
situations during resource allocation, and if
so, are semaphores appropriate? How is error
recovery to be performed without contamina-
tion of the environment? How can critical
races be prevented? These problems and
corresponding solutions have been studied by
computer scientists for many years. If simu-
lation developers are not aware of issues
such as the deadly-embrace and after-you
deadlock syndromes, then the wheel will be
re-invented time and time again through pain-
ful and frustrating lessons. Textbooks such
as Shaw [SHAW74], Per Brinch Hansen [HAIJS73],
and Freeman [FREE751 provide excellent in-
formation on these and related issues. A
short course on operating system internals
would benefit almost every simulation cievel-
oper and enable them to identify situations
and understand what can be done.

5. PROTOTYPING

Prototyping is the development of a small
experimental version of the final software
and is often considered too expensive. How-
ever, correcting ambiguities and misunder-
standings at the specification stage is
significantly cheaper than correcting a
system after it has gone into production as
pointed out by Gomaa and Scott [GOMAal].

Prototyping provides many benefits to the
'end user' and modeller. First, a prototype
provides feedback to the modeller and 'end
user' that the system is understood and can
indeed be modelled. Second, it shows the
'end user' what information is required to
feed the model and what the output of the
model will be. Third, the prototype provides
early visibility as to development problems
and serves as an excellent base for estinat-
ing the resources required to complete the
model.

A simulation prototype should contain at
least one instance of all unique logic that
will be found in the final model. This is
determined by studying the significant com-
ponents and their interfaces which were docu-
mented during the design cycle. A final
model will often have many similar elements,
which for the purpose of illustrating a con-
cept , do not have to be included in the pro-
totype. A prototype should be significantly
smaller than the final model and as a result
is faster and easier to code, debug, and
verify.

In the seven segment SELT line, there are
twenty-one discrete processes and thirteen
magazine load and unload points. Figure 2
shows the prototype model structure that was

used to show that the six abstract building
blocks were sufficient to perform the model-
ling and that SIMAN was a reasonable choice
for executing the model. 'The inline inspec-
tion was trivial and not included in the
prototype. The prototype had the necessary
logic: for multiple panel types, segment setup
and flushing between panel types, operator
alloc:ation, shifts, mac:nine breakdowns, batch
splitting in the event ,of segment failure,
and magazine allocation. The prototype
included the statistics for downtime, blocked
operation, setup, and processing analysis.
The initial prototype was approximately four
hund:ced SINAN statements.

As time progressed, the prototype was
expanded to include different styles of
multiple panel machines, single machine seg-
ments, and transportation requirements be-
tween segments. The prototype was used to
train and instruct students and industry
personnel on the model requirements and SIMAN.

Segment 1 --

1 Single Panel Machine
2 Inspect - Parallel Rework
3 Magazine Unload

Segment 2

1 Magazine Load
2 Single Panel Machine
3 Multiple Panel Machine
4 Magazine Unload

Figure 2: Prototype Structure

A developer should not view a prototype
as ,a one-shot throwaway. If the modelled
system does not exist, there will be many
variations and design changes as time pro-
gresses. A prototype can be used to design
and test the change without involving the
complexities of the complete model. Further
uses of a prototype are in training new
users of the model; training new programmers
in the language; and as a demonstration tool.
It is easier to understand and experiment
with a model of four to five hundred lines of
code compa.red to one of five thousand lines.

6. DETAILED DESIGN

In Yau's review [YAU~~], several detailed
design techniques and representation methods
are described including structured program-
ming, flowcharts, Nassi-Shneiderman diagrams,
heirarchical graphs, and program design lan-
guage. Any of these methods and some others
such as data flow diagrams or finite state
automata [ZCLK79, HOPC79:I can be used to
document the detailed design. Not all of the
me-thods provide the same levels of comprehen-
sion to a reviewer or maintenance person
[SHEP81] and care should be taken in document-
ing the concepts, exceptions, and critical
assumptions.

Our experience with systems programming
and simulations has led xs to favor the data

488

Software Engineering Applied to Discrete Event Simulations

flow, finite state, and program design lan- An important point about detailed design
guage approaches. Often all three methods is the need for an intermediate layer between
are used on the same project. We have chosen the actual programming language and the high
the three methods partially because of the level architecture. The laver orovides the
similarity of simuiations to operating sys-
tems. A major similarity is that systems
are control block driven with the blocks
being totally self-explanatory as they flow
through the system. Model entities can be
viewed in the same light. The data flow and
finite state diagrams can be useful for
identifying the flow and necessary control
information, while the program design lan-
guage is excellent for describing the seman-
tics of what is happening. A possible danger
of the graphical approach to documenting a
design is the tendency to draw a pretty
picture -- changing the design to be visually
pleasing. This does not always guarantee a
good design.

opportunity to have internal algorithms
designed and written without the encumbrance
of language syntax. The pxogran design
language and information on the diagrams
should not be at the statement level of
detail. The intent and meaning of the logic
should be conveyed, not the syntax. The
designer should be careful to highlight the
exceptions and the key steps and not over-
whelm the design description with trivia.

Figures 3a and 3b illustrate how an
English description can be combined with
pseudo-code to document the detailed design
of a Single Panel Machine.

There are two sets of logic required for single panel machines. The first is when
another machine follows and the second for when the next structure is a magazine
unload point.

Both forms are identical in how operators, processing, breakdowns, line flushing,
and blockages are handled.

Before the machine can be considered 'obtained', the operator (if needed)
must be available and nothing currently in the machine.

Concurrent logic (see breakdown logic) is used to time machine breakdowns
and claim the machine with priority. This eliminates the need for each
machine to have breakdown logic inline. The concurrent logic inserts a
fake breaker part into the line to indicate that batch splitting should
occur.

The machine is considered blocked if it cannot seize the next machine/
operator resource.

Only after it successfully claims the next machine, will it free up the
current one.

When flush or breaker parts come down the line, no processing will occur.

If the machine is the last one in the line

Figure 3a: English Description - Single Panel Kachine

At machine J-l
Seize machine J

If unsuccessful, wait until machine J is free
If part is a fake one for breakdowns or line is being flushed

Free machine J-l
Else

If operator is needed for machine J
Seize operator for machine J

If unsuccessful, wait until operator is free
Free machine J-l
Delay for processing time
If operator was obtained

Free operator for machine J
Seize machine J+l
etc.

Figure 3b: Pseudo-Code - Single Panel Plachine

7. CODING

Once the detailed design is done, the
coding of the prototype can begin. There has
been much written about GOTOless programming,
structured programming, etc. [DAHL72]. &lost
of the literature makes sense when usinq a
general purpose programming language. How-
ever, simulation languages are not general
purpose programming languages and do not sup-
port all of the constructs and concepts found
in languages such as PASCAL or MODULA-2.
There has been some work [GOLD851 in identi-
fying the software engineering requirements
of simulation languages, but the research
results have not migrated to the current lan-
guages. Writing simulation code in languages
such as SLAM II cPRIT84], GPSS [SCHR74], and
SIMSCRIPT [CACI~~] is closer to writing in
assembler than in Pascal. Some of the lan-
guages do exhibit a few features of FORTR?W.
However, as a group the general purpose simu-
lation languages are low level. There have
been a number of special purpose languages
such as AutoEod [AUT086], MAP/l [MIIE86), and
MAST [CMSR85] that are designed for a speci-
fic application area such as manufacturing
and can be considered fourth generation
languages.

Regardless of the language chosen, there
should be standards imposed that wi.Ll make
the code readable, maintainable, and consis-
tent. Kernighan and Plauger's book on pro-
gramming style [KERN741 is a good starting
point for individuals looking for guidelines.
Structured walkthroughs are one technique for
seeking defects and is recommended for all
but the most trivial of simulations. Appendix
B contains a list of our coding standards.

Simulation code can have a long life. If
the code is consistent and follows a set of
standards, it can be re-used in future simu-
lations. This is especially true if the code
is developed using 'black-box' concepts and
clean interfaces. To gain this benefit re-
quires discipline and the foresight to recoq-
nize that more than one simulation will be
written. Building prototypes will help devel-
opers to design for reusable code.

8. VERIFICATION

After coding and initial debugging, the
simulation code must be verified for accuracy.
The question to be asked is whether the code
reflects the descriptions found in the re-
quirements document. This phase is the pre-
cursor to model validation. The validation
phase determines if the behavior of the model
adequately corresponds to that of the system
being modelled. The verification phase on the
other hand ensures that the model <does what
the user specified.

Verification can be viewed as rigorous
debugging with one eye on the code and one
eye on the model requirements. Chattergy and
Pooch [CHAT771 recommend that simulation ver-
ification be performed in concert with the
design effort using atop-down modular approach.
Their approach tends to delay early visibility

I<. N. McKay c.:t nl

of a working model and dces not incorporate a
prototype model.

There are some cases of software develop-
ment where fo:rzlal specifj cation languages can
be used and rigorous ve:rj.ficstion can be
accomplished [HAYI.::] . Other automated tools
have t,een devl2loped to <analyze software pro-
grams, identify areas of complexity, instru-
rlent the code to determine test effectiveness,
etc. [CLAR76]. The automated tool.s have been
oriented to the general programming languages
and large-scale developments. Since simula-
tlon development does not fit into these cat-
egories, the developer must perform the
verification manually. Cnfortunately, pro-
grammers pake poor testers of their own code
[WEIN71] anE must make conscious efforts to
circumvent this problem.

One of the goals of verification is to
show that all. parts of the model work inde-
pendently and together usinq the right data
at the right time. A study of errors in
system programs by Cndres [EXGR75] classified
problems founrl in a larce system programming
project and no-ted that approximately half the
problems arose from requirements and the
other half from the actual ,?roqrarrming task.
Appendix C contains a list of the common
proqramming errors encountered in both simu-
laticn and systems proqramr2ing development.
Although the list is plot comprehensive or
exhaustive, it indicates many common mistakes.

Appendix D contains a set of guidelines
that can help developers uncover the problems
noted in Appendix C. Since the prototype
model should contain all of the critical code,
it serves as an excellent base for performing
the verification. It is small, manageable, * ana :Lnexpenslve.

Tests should !-e written down in advance
with the expected: results clearly stated
before a test is run. Remember that the
purpose of testing is to find errors -- not
to find ways that the Frogram executes
correctly. A test fails if no errors are
found. All tests shotlld te e::ecuted such
that they can be replicated: interactive
changing of variables during a run should be
avoided.

9. COMCLUSIO~~

We believe that simulation development
has many parallels to both systems progran-
ming and operatiny system development. As
such, a large number of concepts used by
software engineers are directly applicable
to simulation development. Eowever, there
are a large number of methods which are
inappropriate. We have tried to identify
those techniques which have been found use-
ful and which ones are not. There is ample
opportunity for researching the similarities
tha-t we ha\re noted and for determining how
current and future research in software
engineering can apply to simulations.

Software Engineering Applied to Discrete Event Simulations

APPENDIX A

The guidelines provided for simulation
and systems programming are:

* Design from the perspective of the enti-
ties or objects flowing through the
system to be modelled or developed.

* Identify what happens as the entity pro-
ceeds and what is the necessary control
information used in deciding the flow.

l Identify clear boundaries between where
things happen and do not happen in the
model. For example, a part moving on a
conveyor versus processing on a machine.

* Ensure that a clear interface and proto-
col exists for getting across each bound-
ary and that the interface does not make
any assumptions about the internal
terrain of any area.

. Try to normalize and standardize the
types of areas in the model so that the
amount of unique logic will be minimized.

APPENDIX B

The following lists the standards used
during development of the SMT model:

* Code should be 'modular' or 'black-box'
and reflect the architecture.

+ Code should be data driven from tables
and any hardwired values should be
avoided.

* Plodules will not make assumptions about
preceding and subsequent modules.

. Modules will have one exit and one
entrance.

* Modules should be relatively short, pre-
ferably less than a page.

* Prefixes used with labels and variables
to readily identify modules, data, etc.

* Use macros, equates, or synonyms (if
supported) to provide meaning and to
allow formulas to be specified in one
location.

. Comments used for all non-trivial opera-
tions.

* Exceptions and key code to be highlighted

* Indenting and alignment used to provide
visual cues.

l Variables to serve ,one purpose and have
one meaning.

APPENDIX C

* There is the off-by-one syndrome. This
can occur in two ways. The index method
might be origined at zero or one and not

.

all places in the code account for this.
The other way is for inequality testing
to be coded incorrectly and a 'less-than'
should have been a 'less-than-or-equal-to'
condition.

* Index algorithms might not be accurate.
Single vectors or two dimensional arrays
can be segmented to reflect multi-
dimension structures ox the index method
is computational. Is the table and slot
being picked correct? Will the last or
first element be picked?

* Iterative logic is not. A loop might not
be executed depending on the context. A
loop might be executed once and not a
second time. A loop might execute twice.
Or, a loop might loop a number of times.
Simple errors in coding can cause some of
these situations to fail and only by test-
ing the zero, single, double, and triple
iterations can the tester be assured that
the code is working.

* Relations can be mis-coded. Besides con-
tributing to the off-by-one, index, and
iterative problems, the use of compound
relations and negative logic can cause
other problems. Code that should not be
executed is executed and the reverse. Do
you know that every line of code was exe-
cuted in the order it was supposed to be?

. Errors and failure logic does not work.
Programmers seem to have a tendency to
test things that they know will work and
as a result, the error and failure logic
is never tried.

* Debris. Do things get discarded and
cleaned up when they should? Do variables
have values left after the first run that
should have been reset? Debris or old
values can contaminate the system in very
subtle ways.

- The zero case. Can the code handle zero
overhead entities flowing through the
system? Can the code handle an entity
being destroyed at various points in the
code? The null case is very hard to
program for and keep in mind at every
point in the code.

* Deadlocks and critical races. Do Proces-
ses obtain more than resources? Can one
entity pause in the system and another
entity race by? Are two entities racing
towards critical code that only one
entity should be in at any one time?
These are bar?. to identify and correct.

APPENDIX D

The following list provides some guide-
lines for designing test suites for simula-
tion code:

- If possible single step and execute the
prototype.

* If A and R are the boundaries, check. for
A, A+l, A-l, B, B-l, B-2.

* Set all values in the matrix to unique
values and while single stepping verify
value retrieval.

l Set up data to execute loops O,.L,2,3
times.

* Force all error code to be executed.

- Set up data to be deterministic and
verify results with pen and paper (cycle
times, etc.).

- If patterns of entities can occur, try:
ABAB, AABB, AA, BB, Bh, BABA, BAAB, ABBA.

* Schedule entities for close arrival and
minimal delays (minimize flow).

. Schedule entities for long arrival times
(one in system at a time).

* Run entities with zero processing, travel,
setup times (also zero operators, etc.).

- If multiple runs are performed, look at
variables for proper initialization.

BIBLIOGRAPHY

AutoSimulations (1986). Autotlod User Manual.
AutoSimulations, Bountiful.

Balzer, R. (1985). A 15 year perspective on
automatic programming. IEEE Transactions
on Software Engineering, Vol. 11, No. 11.

Brooks Jr., F.P. (1975). The Mythical Man-
Month: Essays on Software Engineering.
Addison-Wesley, Reading.

CACI (1983). SIMSCRIPT X.5 Programming
Language. C.A.C.I., Los Angeles.

Chattergy, R. and Pooch, U.W. (April 1977).
Integrated design and verification of
simulation programs. TEEE Computer.

Clarke, L.A. (September 1976). A system to
generate test data and svmbolicallv

a 2

execute programs. IEEE Transactions on
Software Engineering.

CMS Research (1985). MAST User Manual. CMS
Research, Oshkosh.-

Cohen, J.i7.. Fiore. A.M. and Larson, R.H.
(i982).’ Structured modelling. 'Proceed-

ings Winter Simulation Conference.

Dahl, D-J., Diikstra, E.W. and Hoare, C.A.R.
(1972). Structured Proqramminp. Academic

Press, London.

Duket, D. (1982). Implementation: a require-
ment for successful simulation. Proceed-
ings Winter Simulation Conference.

Endres, A. (June 1975). An analysis of errors
and their causes in system programs.
ICEE Transactions on Software Engineering,
vol. 1, No. 2.

Freeman, P . (1975).
ciples -

SoEtware System Prin.1
A

I--i
Survey. ---%-.-g.-- Scrence Research

Associates, Chicago.

lGoldb@rg, A-T. (July 1.986). Knowledge-based
programming: a survey of program design
and construction techniques. IEEE Trans- --
.actions on Software Engineering, Vol. 12,
‘No. 7.

Golden, D.G.. (October 1985). Software engi-
neering consideration for the design of
simulation languages. Simulation.

Gomaa, H. and Scott, D.B.H. (1981). Proto-
typinq as a tool in the specification of
user requirements. Proceedings Winter
Simulation Conference -*

Hansen, P.B. (1973). Operating System Prin-
ciples. Prentice-Hall, Englewood Cliffs.

Hayes, I.J. (January il386). Specification
directed module testing. IEEE Transac-
tions on Software Engineering, Vol. 12,
No. 1.

Woocroft, J.R. and Ullman. J.D. (1979).
Introduction to Automata Theory Languag-
es, and Computation. Addison-WLsley,
Reading.

Jackson, &!.A. (1975). Principles of Program
Design. Academic PG;s, New York.

Ker:nighan, B.W. and Plauger, P.J. (1974).
The Elements of Programming Style.
McGraw--Hill, New York.

Knuth, D.E. (1968-1973). The Art of Computer
Programming, Vol. 1-3. Addison-F7esley,
Reading.

Hiner, R.J. and Ralston, L.J. (1986). MAP/l
User's Manual, Version 3.0. Pritsker &
Associates, West LaFayette.

Eyers, G.J. (1978). Composite/Structured
Design. Van Nostrand Reinhold, London.

Parnas, D.L. and elements, P.C. (February
1986). A rationa.L design process: how
and why to fake it. IEEE Transactions
on Software Engineering, Vol. 12, No. 2.

Pegden, C.D. (1985). Introduction to STMAN.
Systems Elodelling Corporation, State
College.

Pritsker, A.A.B. (1984). Introduction to
Simulation and SLAM II.
-New York.

-- John Wiley &

Ryan, K.T. (1979). Software engineering ant
simulation. Proceedings Winter Simula-
tion Conference.

Schriber, T.J. (1974). Simulation Using
GPSS. John Wiley, New York.

Shaw, A.C. (1974). The Logical Design of
Operating Systems. Prentice-Iiall,
Cnglewood Cliffs:

Sheppard, S. (January 1983). Applying soft-
ware engineerinq to simulation.
Simulation.

Sheppard, S-B. et al. (1981). The effects of
symboloqy and spatial arrangement on the
comprehension of software specifications.
Proceedings 5th International Conference
on Software Engineering.

Weinberg, G.M. (1971). The Psychology of
Computer Programming. Van Nostrand
Reinhold, London.

Wolverton, R.p7. (June 1974). The cost of
developing large-scale software. IEEE
Transactions on Computers.

Yau, S.S. and Tsai, J.J.P. (June 1986). A
survev of software design techniaues.
IEEE Transactions on Soitware Engineering,
Vol. 12, No. 6.

Yourdon, C. and Constantine, L.L. (1979).
Structured Design. Prentice-Hall,
Cnglewood Cliffs.

Zelkowitz, M.V., Shaw, A.C. and Gannon, J.D.
(1979). Principles of Software Enqin-
eering and Design. Prentice-Hall,
Englewood Cliffs.

AUTHORS' BIOGRAPHIES

KENNETH N. MCKAY is Associate Director of
WATMIKS, the University of Waterloo Manage-
ment of Integrated Manufacturing Systems
Research Group, and is responsible for the
administration and planning of the group's
activities. He has experience in R&D in the
computer industry and has developed perform-
ance monitoring software, relational database
software, and a variety of real-time systems
for handling cheques in the financial indus-
try. Mr. McKay's expertise includes: design
evaluation, software engineering, software
quality, systems architecture, and man-
computer interfaces.

Kenneth 77. McKay
Associate Director, v7ATMIMS Research Group
Department of Management Sciences
University of Waterloo
Waterloo, Ontario, CANADA NZL 3Gl
(519) 358-4519

JOHN A. BUZACOTT is a Professor in the
Department of Management Sciences at the
University of F7aterloo and is Director of the
k7ATMIMS Research Group. His interests in
manufacturing include the planning of inte-
grated systems and the assessment of their
performance, improvement of work flow, con-
trol of work in progress, and quality plan-
ning and analysis. Dr. Buzacott is also
investigating methods for understanding the
factors determining the impact of flexible
manufacturing systems on industry. He is
Departmental Editor in Manufacturing and
Automated Production for the IIE Transactions,
an Associate Editor for the Naval Research
Logistics Quarterly, and on the Editorial
Board of Queueing Systems, Theory and

Software Engineering Applied to Discrete Event Simulations

Applications of Material Flow. He has been
Hof of the NATO
Advisory Panel on Advanced Study Institutes.

John A. Buzacott
Department of Management Sciences
University of Waterloo
Waterloo, Ontario, CAMADA N2L 3Gl
(519) 888-4009

JOHN B. MOORE is Associate Professor of
Management Sciences and Associate Chairman
of the Department of Management Sciences at
the University of Waterloo. He is the de-
signer of a state-of-the-art planning and
scheduling system for microcomputers and is
currently investigating the modelling of
information and production flows in fle:cible
manufacturing systems and the design of
decision support systems for manufacturing.
Dr. Moore's work also entails investigating
the application of expert systems and the
creation of effective strategies and tactics
for large man-machine systems. He is par-
ticularly interested in man-machine inter-
faces utilizing graphics and animation.

John B. Moore
Department of Management Sciences
University of Waterloo
Waterloo, Ontario, CANADA N2L 3Gl
(519) 888-4036

CHRISTOPHER J. STRANG, P.Eng., is a
research assistant and graduate student in
Management Sciences at the University of
Waterloo. He received his B.A.Sc. in Civil
Engineering in 1980 from the University of
tlaterloo. He has held various positions in
industry with IBM, Ingersoll-Rand, and
Hewlett-Packard before returning to graduate
school and doing research for the University
of Waterloo Management of Integrated Manu-
facturing Systems Research Group (F7ATMIPIS).

Christopher J. Strang
Department of Management Sciences
University of Waterloo
Waterloo, Ontario, CANADA N2L 3Gl
(519) 885-1211, ext. 3863

493

