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ABSTRACT 

Developing simulation programs shows many 
similarities with classical system software 
development tasks. In simulation one is 
often concerned with allocating and deallo- 
cating resources. Two forms of deadlock -- 
the 'deadly embrace' and 'apres-vous' -- can 
be troublesome to simulators unless they know 
how to avoid them in the first place. Cri- 
tical races and time dependent functions are 
other characteristics shared between simula- 
tion and systems programming. If simulation 
is viewed and taught as data processing, the 
simulator will be ill-prepared for writing 
simulation code. 

Most simulations in industry are not 
written by skilled software developers. 
There is good reason for this: the simula- 
tion writer must ultimately understand the 
problem, its features and the managerial 
concerns that lead to the requirement for the 
simulation. However, simulation writers with 
no software training are poorly equipped for 
developing simulation code that is easy to 
design, debug, verify, maintain and explain. 
A number of simple modern software engineer- 
ing techniques which are described in this 
paper can be applied to simulation programs 
in a practical way to improve both the quality 
of the simulation and the productivity of the 
simulator. 

1. INTRODUCTION 

There exist four major concerns in simu- 
lation. These are: input and output data 
analysis, model verification and validation, 
communication, and model construction. 
Software engineering [ZELK79] concepts can 
simplify verification, lessen the impact of 
communication difficulties, and ease the 
burden of model construction. Specifically, 
the aspects of software engineering used in 
systems programming are directly applicable 
to simulation development [RYAN79]. 

The analogy between simulation and sys- 
tems programming is discussed in section 2. 
This is followed by a description of software 
engineering techniques as applied to simula- 
tion development. Concepts are illustrated 
using a model of a surface mounted technology 
(Sf:TT) printed circuit board assembly line 
that was developed in SIMAN [PCGD85]. This 
assembly line model is a discrete-event 
simulation using SIMON in its block form with 
no special FORTRAN code. 

2. SOFTWARE ENGINEERING AND SIMULATION 

Software engineering encompasses many 
aspects of software development: require- 
ments, specification, design, coding and 
debugging, performance evaluation, verifica- 
tion, validation, project management, docu- 
mentation, communications, standards, 
migration, portability, security, etc. In 
the late sixties and early seventies, land- 
mark work such as Dahl/Dijkstra/Hoare 
[DAHL72], Brooks [BR0075], and Knuth [KNUT68] 
created a significant interest in academic 
and industry circles concerning the method 
and madness used to develop software. Re- 
search concentrated on operating systems, 
languages, desiqn methods, databases, veri- 
fication techniques, data processinq appli- 
cations, etc., with the majority of work 
being performed in computer science groups 
and defense agencies. 

Although surrounded by clouds of mystique 
and magic, simulation development is essen- 
tially a software development project. An 
additional difficulty not mentioned in the 
introduction is that many programmers devel- 
oping simulations are not trained in soft- 
ware development practices which span 
requirement analysis through verification. 
Coming from engineering or the sciences, the 
developers may understand what needs to be 
simulated but not how to go about doing it. 
They might have had one or two courses in 
FORTRAN, COBOL, PASCAL or ASSFNRLER. 

Assuming that a simulation writer wants 
to have an easier time of it, where does 
he/she start? As with any set of concepts 
and tools, there are some tools more appro- 
priate for certain jobs than others. The 
size and category of job may dictate the tool 
selection. The reader of software engineer- 
ing literature should always keep the problem 
and solutions in perspective: the solution is 
the tool, not the end objective. 

For our purposes, we rule out the large- 
scale simulations of the defense and aero- 
space industries. Sheppard [SHEPS~I provides 
a good overview of the software engineering 
aspects that can be applied to large simula- 
tions. Of the remaining simulation projects 
almost all appear to be one or two people 
projects and contain less than 5,000 lines of 
code. The simulation projects entail resource 
control, resource allocation, process flow, 
and timing considerations. With few excep- 
tions, the common simulation languages are 
low level and the programmer is required to 
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build up primitive functions that rcalate to 
the concept to be modelled. These problem 
characteristics, potential solutions, and 
development tools are identical to small 
system programming tasks. In a high-level 
tutorial survey of software engineering and 
simulation [RYAL779], the usefulness of oper- 
ating system research to simulations is noted. 
We stress the similarity in the software and 
delve deeper into the areas of software 
engineering that can benefit simulation 
projects. 

A software project consists of several 
phases. The first is the requirements anal- 
ysis and problem definition phase. The 
design phase is next which is followed by the 
detailed design and implementation (program- 
ming) . Software is then exposed to a series 
of unit, module, and systems tests to verify 
that the requirements are satisfied. Finally, 
the customer obtains the software to see if 
it really does the job. Early customer 
involvement is crucial with software projects. 
A prototyping approach can facilitate this 
interaction. A paper by Wolverton [e7OLV74] 
mentions a common rule of thumb that indi- 
cates that 40% of development cost will be 
in analysis and design, 20% in coding and 
debugging, and 40% in the checkout and test 
phases. Khile each project will vary some- 
what, sufficient time must be given to the 
front-end work. Details of each phase are 
discussed in the following sections. 

3. REQUIRELGENTS ANALYSIS 

The requirements phase is one of the most 
important and difficult phases of a simula- 
tion project. The issues include: what is 
to be modelled; what are the main components 
in the model and their characteristics: what 
questions are to be answered; what are the 
assumptions; what are the limitations. Duket 
[DUXC82] emphasizes that the purpose of a 
simulation is to answer questions and influ- 
ence decisions. Note also that, what will 
not be in the simulation is often as impor- 
tant as what is! 

A major task is to determine how to com- 
municate the information among the people 
involved in the project. There has been 
significant research into formal specifica- 
tion languages and how to minimize the errors 
introduced at this point of the project 
[EALZ85]. Outside of the defense and related 
fields, there have been few reported efforts 
of using formal specification languages in 
industry. There are some problems with the 
formal specification language approach. 
First, a number of the languages have been 
algebraic in nature for conciseness and 
provability. This makes expressing meaning 
and intent difficult. Second, if the lan- 
guage is not algebraic, it still has a syntax 
and vocabulary which does not solve the com- 
munication problem between the analyst and 
'end user' who needs to understand what the 
analyst writes in the functional specifica- 
tion. An ideal specification language would 
be one in which the 'end user' can describe 
their desires with ambiguity, missing data, 
conflicting data, and erroneous data. That 

is one in which the language sys-tern knows 
.what the person really meant. We are not 
aware of any such language or system. Even 
with rigorous mathematical notation, such 
Artificial Intelligence systems are research 
concepts and experimental in nature [GOLDEN:]. 

Assuming that a suitable specification 
language does not exist, the simulation 
developer must rely on the traditional methods 
of requirements analysis. Unfortunately as 
one performs a requirements study, one learns 
that the popular saying: "constants aren't 
and vasiables won't" is true. The state 
requirements will be ambiguous, incomplete, 
conflicting, wrong and unstable. To address 
thes.e issues, the analyst is required to know 
about simulation development as well as the 
real world being model:Led. Interpretations, 
translations, and definitions are important 
parts of this "black art" of determining the 
requirements. 

In many ways, this phase is similar to 
the task faced by a systems programmer when 
designing a support tool such as an operat- 
ing system. The skilled system programmer 
wil:L listen to the 'end user' and mentally 
bui:Ld a 'model' consisting of application 
specific information and support functions. 
For example, a particular machine to place 
paste on a board has application specific 
information: it processes computer cards, 
puts paste on specific spots, etc. It also 
has support or operational information: it 
processes one thing at a time, takes a cer- 
tain amount of time for this action, cannot 
move its object until the next process down- 
stream is free, etc. Clearly, there is 
application information and what can be 
called generic information. 

To illustrate the concepts of abstraction, 
Figure la .Lists the Eunction of each segment 
of the SPIT line. In the seven segments, 
there are sixteen unique processes that are 
modelled with six abstract structures (E'igure 
lb). Figure lc shows the first two segments 
and how the abstraction matches the initial 
des,cription. 

The separation of the problem into appli- 
cation specific and generic characteristics 
can be accomplished in simulations and should 
be consciously performed. Documenting this 
separation in the requirements document is 
one way to minimize the impact of poor com- 
munications. The underlying structure will 
be clear as will the areas of application 
(which change with time). 

1 prepping 
2 screening and paste application 
3 top SIT? device population 
4 vapor-soldering 
5 pin-through-hole device population 
6 bottom SMT device population 
7 wave-soldering 

Figure la: Seven Segments of the SMT Line 
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Processes/Machines Abstractions 

1 Magazine Type A/B Load 
2 Magazine Type A/B Unload 
3 Wave Solder 
4 Cure Oven 
5 Panel Inversion 
6 Top SMT/PTH Placement 
7 Top Nonstandard SNT/PTH Placement 
8 Bottom Placement 
9 Aqueous Cleaner 

10 Paste Dry 
11 Vapor Phase Reflow 
12 Screen and Paste 
13 Inspect - Inline Rework 
14 Inspect - Paxallel Rework 
15 Pre-Clean 
16 Solvent Wash 

1 Magazine Load 
2 Magazine Unload 
3 Single Panel Machine 
4 Multiple Panel Machine 
5 Inspect - Inline Rework 
6 Inspect - Parallel Rework 

Figure lb: Processes and Abstractions 

Processes/Machines Abstractions 

1 Unpack 
2 Pre-Clean 
3 Magazine Unload 

1 Single Panel Machine 
2 Single Panel Machine 
3 Magazine Unload 

1 Magazine Load 1 Magazine Unload 
2 Screen & Paste 2 Single Panel Machine 
3 Inspect - Inline Rework 3 Inspect - Inline Rework 
4 SOIC Placement 4 Single Panel Machine 
5 PLCC Placement 5 Single Panel Machine 
6 SMT Non-standard Placement 6 Single Panel Machine 
7 Inspect - Parallel Rework 7 Inspect - Parallel Rework 
8 Paste Dry 8 Plultiple Panel Machine 
9 Magazine Unload 9 Magazine Unload 

Figure lc: First T~70 Segment Analysis 

4. DESIGN of the methods provide frameworks within which 
the problem is to be analyzed and the design 

Once the requirements of the simulation annotated. Each results in a slightly differ- 
are known and agreed to, the design problem ent design and orientation which might not be 
can be tackled. The issues in a simulation obvious upon first glance but which appears 
design are: what philosophy or approach later when functionality is changed or pro- 
should be used in the design; what is a suit- cess characteristics altered. It is quite 
able architecture for the model; what is the possible that the largest benefit of design 
support structure; and how should the design methods lies in forcing developers to approach 
be documented. The design of the model should the task systematically. A constant danger 
not be confused with the code design and what is the assumption that one design technique 
is internal within the software. The archi- will work for all problems and further that a 
tecture is concerned with the interfaces -- finished documented design is a good design. 
shape, form, and other characteristics. The The fallacy of assuming that the design pro- 
design should proceed relatively independent cess can be totally mechanized and systemized 
of any simulation language you choose. Most is pointed out in [PARN86]. The data struc- 
provide the necessary features in one form or ture (Jackson, Warnier), data-oriented, and 
another. object-oriented methods appear to us as the 

most relevant to simulation development. 
During the past decade, there have been a Several excellent texts on design for refer- 

number of software design methodologies (or ence are [JACK75], iEIYER79], and [YOUR79]. 
mythologies if you wish) developed and widely 
used by software developers. A recent survey While it may be desirable to understand 
by Yau [YAU~~] provides a good overview of the above design methods and intuitively 
the most popular: HIPO, SADT (Ross), grasp their subtleties, the finer points of 
Structured Design (Yourdon and Constantine), good design come only through practice. 
Composite/Structured Design (Myers), Module Based on our experience, the heuristics 
Interconnection Languages (DeRemer and Kron), listed in Appendix A are usually sufficient 
Jackson's Design Methodology, Marnier's to give a developer both the structure and 
Design Methodology, Stepwise Refinement orientation needed to design either systems 
(Parnas), Data-Oriented Design Techniques, programs or simulation software. Another 
and Object-Oriented Design flethodology. All approach to problem decomposition is [COHE82] 
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which involves decomposing the model into a 
series of queues and their connections. 

The structurle, orientation, and design 
methods do not delete the requirement for 
the designer to understand what is t:o be 
modelled, what forms of architecture are 
possible, and what support techniques can be 
used. For instance, there are many design 
issues independent of the notation technique. 
Should the flow be interrupt driven or polled? 
Should the design protect against deadlock 
situations during resource allocation, and if 
so, are semaphores appropriate? How is error 
recovery to be performed without contamina- 
tion of the environment? How can critical 
races be prevented? These problems and 
corresponding solutions have been studied by 
computer scientists for many years. If simu- 
lation developers are not aware of issues 
such as the deadly-embrace and after-you 
deadlock syndromes, then the wheel will be 
re-invented time and time again through pain- 
ful and frustrating lessons. Textbooks such 
as Shaw [SHAW74], Per Brinch Hansen [HAIJS73], 
and Freeman [FREE751 provide excellent in- 
formation on these and related issues. A 
short course on operating system internals 
would benefit almost every simulation cievel- 
oper and enable them to identify situations 
and understand what can be done. 

5. PROTOTYPING 

Prototyping is the development of a small 
experimental version of the final software 
and is often considered too expensive. How- 
ever, correcting ambiguities and misunder- 
standings at the specification stage is 
significantly cheaper than correcting a 
system after it has gone into production as 
pointed out by Gomaa and Scott [GOMAal]. 

Prototyping provides many benefits to the 
'end user' and modeller. First, a prototype 
provides feedback to the modeller and 'end 
user' that the system is understood and can 
indeed be modelled. Second, it shows the 
'end user' what information is required to 
feed the model and what the output of the 
model will be. Third, the prototype provides 
early visibility as to development problems 
and serves as an excellent base for estinat- 
ing the resources required to complete the 
model. 

A simulation prototype should contain at 
least one instance of all unique logic that 
will be found in the final model. This is 
determined by studying the significant com- 
ponents and their interfaces which were docu- 
mented during the design cycle. A final 
model will often have many similar elements, 
which for the purpose of illustrating a con- 
cept , do not have to be included in the pro- 
totype. A prototype should be significantly 
smaller than the final model and as a result 
is faster and easier to code, debug, and 
verify. 

In the seven segment SELT line, there are 
twenty-one discrete processes and thirteen 
magazine load and unload points. Figure 2 
shows the prototype model structure that was 

used to show that the six abstract building 
blocks were sufficient to perform the model- 
ling and that SIMAN was a reasonable choice 
for executing the model. 'The inline inspec- 
tion was trivial and not included in the 
prototype. The prototype had the necessary 
logic: for multiple panel types, segment setup 
and flushing between panel types, operator 
alloc:ation, shifts, mac:nine breakdowns, batch 
splitting in the event ,of segment failure, 
and magazine allocation. The prototype 
included the statistics for downtime, blocked 
operation, setup, and processing analysis. 
The initial prototype was approximately four 
hund:ced SINAN statements. 

As time progressed, the prototype was 
expanded to include different styles of 
multiple panel machines, single machine seg- 
ments, and transportation requirements be- 
tween segments. The prototype was used to 
train and instruct students and industry 
personnel on the model requirements and SIMAN. 

Segment 1 -- 

1 Single Panel Machine 
2 Inspect - Parallel Rework 
3 Magazine Unload 

Segment 2 

1 Magazine Load 
2 Single Panel Machine 
3 Multiple Panel Machine 
4 Magazine Unload 

Figure 2: Prototype Structure 

A developer should not view a prototype 
as ,a one-shot throwaway. If the modelled 
system does not exist, there will be many 
variations and design changes as time pro- 
gresses. A prototype can be used to design 
and test the change without involving the 
complexities of the complete model. Further 
uses of a prototype are in training new 
users of the model; training new programmers 
in the language; and as a demonstration tool. 
It is easier to understand and experiment 
with a model of four to five hundred lines of 
code compa.red to one of five thousand lines. 

6. DETAILED DESIGN 

In Yau's review [YAU~~], several detailed 
design techniques and representation methods 
are described including structured program- 
ming, flowcharts, Nassi-Shneiderman diagrams, 
heirarchical graphs, and program design lan- 
guage. Any of these methods and some others 
such as data flow diagrams or finite state 
automata [ZCLK79, HOPC79:I can be used to 
document the detailed design. Not all of the 
me-thods provide the same levels of comprehen- 
sion to a reviewer or maintenance person 
[SHEP81] and care should be taken in document- 
ing the concepts, exceptions, and critical 
assumptions. 

Our experience with systems programming 
and simulations has led xs to favor the data 
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flow, finite state, and program design lan- An important point about detailed design 
guage approaches. Often all three methods is the need for an intermediate layer between 
are used on the same project. We have chosen the actual programming language and the high 
the three methods partially because of the level architecture. The laver orovides the 
similarity of simuiations to operating sys- 
tems. A major similarity is that systems 
are control block driven with the blocks 
being totally self-explanatory as they flow 
through the system. Model entities can be 
viewed in the same light. The data flow and 
finite state diagrams can be useful for 
identifying the flow and necessary control 
information, while the program design lan- 
guage is excellent for describing the seman- 
tics of what is happening. A possible danger 
of the graphical approach to documenting a 
design is the tendency to draw a pretty 
picture -- changing the design to be visually 
pleasing. This does not always guarantee a 
good design. 

opportunity to have internal algorithms 
designed and written without the encumbrance 
of language syntax. The pxogran design 
language and information on the diagrams 
should not be at the statement level of 
detail. The intent and meaning of the logic 
should be conveyed, not the syntax. The 
designer should be careful to highlight the 
exceptions and the key steps and not over- 
whelm the design description with trivia. 

Figures 3a and 3b illustrate how an 
English description can be combined with 
pseudo-code to document the detailed design 
of a Single Panel Machine. 

There are two sets of logic required for single panel machines. The first is when 
another machine follows and the second for when the next structure is a magazine 
unload point. 

Both forms are identical in how operators, processing, breakdowns, line flushing, 
and blockages are handled. 

Before the machine can be considered 'obtained', the operator (if needed) 
must be available and nothing currently in the machine. 

Concurrent logic (see breakdown logic) is used to time machine breakdowns 
and claim the machine with priority. This eliminates the need for each 
machine to have breakdown logic inline. The concurrent logic inserts a 
fake breaker part into the line to indicate that batch splitting should 
occur. 

The machine is considered blocked if it cannot seize the next machine/ 
operator resource. 

Only after it successfully claims the next machine, will it free up the 
current one. 

When flush or breaker parts come down the line, no processing will occur. 

If the machine is the last one in the line . . . . 

Figure 3a: English Description - Single Panel Kachine 

At machine J-l 
Seize machine J 

If unsuccessful, wait until machine J is free 
If part is a fake one for breakdowns or line is being flushed 

Free machine J-l 
Else 

If operator is needed for machine J 
Seize operator for machine J 

If unsuccessful, wait until operator is free 
Free machine J-l 
Delay for processing time 
If operator was obtained 

Free operator for machine J 
Seize machine J+l 
etc. 

Figure 3b: Pseudo-Code - Single Panel Plachine 



7. CODING 

Once the detailed design is done, the 
coding of the prototype can begin. There has 
been much written about GOTOless programming, 
structured programming, etc. [DAHL72]. &lost 
of the literature makes sense when usinq a 
general purpose programming language. How- 
ever, simulation languages are not general 
purpose programming languages and do not sup- 
port all of the constructs and concepts found 
in languages such as PASCAL or MODULA-2. 
There has been some work [GOLD851 in identi- 
fying the software engineering requirements 
of simulation languages, but the research 
results have not migrated to the current lan- 
guages. Writing simulation code in languages 
such as SLAM II cPRIT84], GPSS [SCHR74], and 
SIMSCRIPT [CACI~~] is closer to writing in 
assembler than in Pascal. Some of the lan- 
guages do exhibit a few features of FORTR?W. 
However, as a group the general purpose simu- 
lation languages are low level. There have 
been a number of special purpose languages 
such as AutoEod [AUT086], MAP/l [MIIE86), and 
MAST [CMSR85] that are designed for a speci- 
fic application area such as manufacturing 
and can be considered fourth generation 
languages. 

Regardless of the language chosen, there 
should be standards imposed that wi.Ll make 
the code readable, maintainable, and consis- 
tent. Kernighan and Plauger's book on pro- 
gramming style [KERN741 is a good starting 
point for individuals looking for guidelines. 
Structured walkthroughs are one technique for 
seeking defects and is recommended for all 
but the most trivial of simulations. Appendix 
B contains a list of our coding standards. 

Simulation code can have a long life. If 
the code is consistent and follows a set of 
standards, it can be re-used in future simu- 
lations. This is especially true if the code 
is developed using 'black-box' concepts and 
clean interfaces. To gain this benefit re- 
quires discipline and the foresight to recoq- 
nize that more than one simulation will be 
written. Building prototypes will help devel- 
opers to design for reusable code. 

8. VERIFICATION 

After coding and initial debugging, the 
simulation code must be verified for accuracy. 
The question to be asked is whether the code 
reflects the descriptions found in the re- 
quirements document. This phase is the pre- 
cursor to model validation. The validation 
phase determines if the behavior of the model 
adequately corresponds to that of the system 
being modelled. The verification phase on the 
other hand ensures that the model <does what 
the user specified. 

Verification can be viewed as rigorous 
debugging with one eye on the code and one 
eye on the model requirements. Chattergy and 
Pooch [CHAT771 recommend that simulation ver- 
ification be performed in concert with the 
design effort using atop-down modular approach. 
Their approach tends to delay early visibility 
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of a working model and dces not incorporate a 
prototype model. 

There are some cases of software develop- 
ment where fo:rzlal specifj cation languages can 
be used and rigorous ve:rj.ficstion can be 
accomplished [HAYI.:: ] . Other automated tools 
have t,een devl2loped to <analyze software pro- 
grams, identify areas of complexity, instru- 
rlent the code to determine test effectiveness, 
etc. [CLAR76]. The automated tool.s have been 
oriented to the general programming languages 
and large-scale developments. Since simula- 
tlon development does not fit into these cat- 
egories, the developer must perform the 
verification manually. Cnfortunately, pro- 
grammers pake poor testers of their own code 
[WEIN71] anE must make conscious efforts to 
circumvent this problem. 

One of the goals of verification is to 
show that all. parts of the model work inde- 
pendently and together usinq the right data 
at the right time. A study of errors in 
system programs by Cndres [EXGR75] classified 
problems founrl in a larce system programming 
project and no-ted that approximately half the 
problems arose from requirements and the 
other half from the actual ,?roqrarrming task. 
Appendix C contains a list of the common 
proqramming errors encountered in both simu- 
laticn and systems proqramr2ing development. 
Although the list is plot comprehensive or 
exhaustive, it indicates many common mistakes. 

Appendix D contains a set of guidelines 
that can help developers uncover the problems 
noted in Appendix C. Since the prototype 
model should contain all of the critical code, 
it serves as an excellent base for performing 
the verification. It is small, manageable, * ana :Lnexpenslve. 

Tests should !-e written down in advance 
with the expected: results clearly stated 
before a test is run. Remember that the 
purpose of testing is to find errors -- not 
to find ways that the Frogram executes 
correctly. A test fails if no errors are 
found. All tests shotlld te e::ecuted such 
that they can be replicated: interactive 
changing of variables during a run should be 
avoided. 

9. COMCLUSIO~~ 

We believe that simulation development 
has many parallels to both systems progran- 
ming and operatiny system development. As 
such, a large number of concepts used by 
software engineers are directly applicable 
to simulation development. Eowever, there 
are a large number of methods which are 
inappropriate. We have tried to identify 
those techniques which have been found use- 
ful and which ones are not. There is ample 
opportunity for researching the similarities 
tha-t we ha\re noted and for determining how 
current and future research in software 
engineering can apply to simulations. 
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APPENDIX A 

The guidelines provided for simulation 
and systems programming are: 

* Design from the perspective of the enti- 
ties or objects flowing through the 
system to be modelled or developed. 

* Identify what happens as the entity pro- 
ceeds and what is the necessary control 
information used in deciding the flow. 

l Identify clear boundaries between where 
things happen and do not happen in the 
model. For example, a part moving on a 
conveyor versus processing on a machine. 

* Ensure that a clear interface and proto- 
col exists for getting across each bound- 
ary and that the interface does not make 
any assumptions about the internal 
terrain of any area. 

. Try to normalize and standardize the 
types of areas in the model so that the 
amount of unique logic will be minimized. 

APPENDIX B 

The following lists the standards used 
during development of the SMT model: 

* Code should be 'modular' or 'black-box' 
and reflect the architecture. 

+ Code should be data driven from tables 
and any hardwired values should be 
avoided. 

* Plodules will not make assumptions about 
preceding and subsequent modules. 

. Modules will have one exit and one 
entrance. 

* Modules should be relatively short, pre- 
ferably less than a page. 

* Prefixes used with labels and variables 
to readily identify modules, data, etc. 

* Use macros, equates, or synonyms (if 
supported) to provide meaning and to 
allow formulas to be specified in one 
location. 

. Comments used for all non-trivial opera- 
tions. 

* Exceptions and key code to be highlighted 

* Indenting and alignment used to provide 
visual cues. 

l Variables to serve ,one purpose and have 
one meaning. 

APPENDIX C 

* There is the off-by-one syndrome. This 
can occur in two ways. The index method 
might be origined at zero or one and not 

. 

all places in the code account for this. 
The other way is for inequality testing 
to be coded incorrectly and a 'less-than' 
should have been a 'less-than-or-equal-to' 
condition. 

* Index algorithms might not be accurate. 
Single vectors or two dimensional arrays 
can be segmented to reflect multi- 
dimension structures ox the index method 
is computational. Is the table and slot 
being picked correct? Will the last or 
first element be picked? 

* Iterative logic is not. A loop might not 
be executed depending on the context. A 
loop might be executed once and not a 
second time. A loop might execute twice. 
Or, a loop might loop a number of times. 
Simple errors in coding can cause some of 
these situations to fail and only by test- 
ing the zero, single, double, and triple 
iterations can the tester be assured that 
the code is working. 

* Relations can be mis-coded. Besides con- 
tributing to the off-by-one, index, and 
iterative problems, the use of compound 
relations and negative logic can cause 
other problems. Code that should not be 
executed is executed and the reverse. Do 
you know that every line of code was exe- 
cuted in the order it was supposed to be? 

. Errors and failure logic does not work. 
Programmers seem to have a tendency to 
test things that they know will work and 
as a result, the error and failure logic 
is never tried. 

* Debris. Do things get discarded and 
cleaned up when they should? Do variables 
have values left after the first run that 
should have been reset? Debris or old 
values can contaminate the system in very 
subtle ways. 

- The zero case. Can the code handle zero 
overhead entities flowing through the 
system? Can the code handle an entity 
being destroyed at various points in the 
code? The null case is very hard to 
program for and keep in mind at every 
point in the code. 

* Deadlocks and critical races. Do Proces- 
ses obtain more than resources? Can one 
entity pause in the system and another 
entity race by? Are two entities racing 
towards critical code that only one 
entity should be in at any one time? 
These are bar?. to identify and correct. 

APPENDIX D 

The following list provides some guide- 
lines for designing test suites for simula- 
tion code: 

- If possible single step and execute the 
prototype. 

* If A and R are the boundaries, check. for 
A, A+l, A-l, B, B-l, B-2. 



* Set all values in the matrix to unique 
values and while single stepping verify 
value retrieval. 

l Set up data to execute loops O,.L,2,3 
times. 

* Force all error code to be executed. 

- Set up data to be deterministic and 
verify results with pen and paper (cycle 
times, etc.). 

- If patterns of entities can occur, try: 
ABAB, AABB, AA, BB, Bh, BABA, BAAB, ABBA. 

* Schedule entities for close arrival and 
minimal delays (minimize flow). 

. Schedule entities for long arrival times 
(one in system at a time). 

* Run entities with zero processing, travel, 
setup times (also zero operators, etc.). 

- If multiple runs are performed, look at 
variables for proper initialization. 
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