
Proceedings of the I 986 Wi?lter Simulation Conference 
.J. Wilson, J. Henriksen, S. Roberts (eds.) 

EXAMPLES OF I!SING THE RESEKRd: QUEUEING PACKAGE 
MODELING ENVIRONMENT (RESQME) 

Robert F. Gordon, Edward A. MacNajr and Pete:r D. Welch 
IBM Thomas J. Watson Research Center 

Yorktown Heights, New York 10598 

Kurtiss J. Gordon and Jame.s F. Kurose 
Department of Computer and Information Science 

University of Massachusetts 
Amherst, Mass. 01003 

ABSTRACT 

The RESearch Queueing Package Modeling Environment 
(RESQME) is a system which provides an integrated, 
graphics-oriented, performance evaluation workstation en- 
vironment for constructing, maintaining, revising and eval- 
uating performance models of resource contention systems. 
In this paper we discuss examples illustrating its use and 
emphasize the iterative nature of the modeling process. 
Scenarios of model specification, selection and use of confi- 
dence interval methods, and model output analysis are in- 
troduced. 

1. INTRODUCTION 

We believe that graphics provides the most effective 
interface to investigate queueing problems, allowing the 
analyst to efficiently interpret a large amount of data by 
viewing a network diagram of the model and output graphs 
of its results (Browne et al. 1985, Gilbert and Kleinoder 
1985, Hcaly 1985, Melamed and Morris 1955, Pegden, 
Miles and Diaz 1985, Sinclair, Doshi and Madala 1985, 
Standridge, Vaughan and Sale 1985a and 1985b). The ana- 
lyst thinks in terms of a network diagram when constructing 
a model, when running a model, and when analyzing its re- 
sults. He interprets the model’s results by visualizing the 
graphs of its performance measures. Output graphs from 
pilot runs provide the analyst with needed information to 
design the experiment (for example, to determine run length 
and/or number of replications for statistical significance). 
Output graphs from detailed runs provide needed informa- 
tion for interpreting the results. Therefore, a graphical rep- 
resentation of a model combined with its output statistical 
graphs provides the basis for a single, uniform interface for 
all aspects of the modeling and performance evaluation 
process. We create such a modeling environment, called the 
RESearch Queneing Package Modeling Environment 
(RESQME), and provide the analyst with an integrated set 
of software tools for use throughout the modeling cycle. In 
this environment, the analyst views and manipulates the 
model directly through its graphical network representation. 
The analyst has access to both the model diagram and to the 
underlying attributes of the model’s elements. Additionally, 
the analyst can view the model results graphically with 
flexible control of both the contents and form of the output. 
The results of an analysis may lead to further model refine- 
ments and a need to modify the model diagram. Presenting 
one environment gives the analyst the ability to refine, exe- 
cute, and display the model at any time. The design and 
implementation of this environment, RESQME, is discussed 

in Kutose et al. (1986). An overview of RESQ, which forms 
the modeling language and solution component for this new 
environment, can be found in Chow, MacNair and Sauer 
(19851, MacNair (1985), MacNair and Sauer (1985), Sauer 
and hlacNair (1982) and (1983), Sauer, MacNair and 
Kurose (1982a), (1982b), (1982c), and (1984). 

There are three phases in the modeling process that are 
represented in RESQME. The first phase is model specifi- 
cation (and modification). In this phase, the analyst con- 
structs and edits his queueing model. The second phase is 
model evaluation. In this phase, the analyst assigns param- 
eter values and executes the model. The third phase is out- 
put analysis, in which the analyst displays the results of the 
model. The analyst can move freely between these phases 
until satisfied with the results of his experiment. RESQME 
also provides the tools for the overall control of the phases 
of the modeling process and the management of a data base 
of models and model versions. 

The hardware for RESQME consists of a personal com- 
puter with a graphics display and a character display. The 
personal computer is connected to a main frame. The 
graphics display is used to specify and present the queueing 
network and the output performance measures. It is the 
main focus of the analyst and is used by the analyst to con- 
trol the complete modeling process. The character display 
is used to specify and present attribute information about 
the network elements, the run parameters, and the content 
and form of the performance measure graphs. In this coop- 
eralive processing, the PC supports the creation of the 
queueing model, the specification of the run parameters, the 
display of the output results, the production of all graphics 
and the control of the modeling process; the main frame is 
used to execute the RESQ model, and the main frame con- 
nection is transparent to the user. 

In this paper we present examples of how to design and 
evaluate queueing experiments using RESQME. In section 
2 we illustrate phase 1 of the modeling process: the graph- 
ical construction and editing of models. In section 3 we ex- 
amine phase 2, model evaluation, and phase 3, output 
analysis. We present techniques For selecting model evalu- 
ation methods and for analyzing the results, and we do so 
through specific examples. Discussions involving the model 
evaluation and output analysis are supported by scenarios 
that illustrate the choice of procedures to obtain confidence 
intervals of desired accuracy, the determination of run 
lengths and the possible identification of the initial transient 
state from pilot runs. 

404 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F318242.318482&domain=pdf&date_stamp=1986-12-01


RESQME: Research Queueing Package Modeling Environment 

Figure 1. A Simple Four Node Communication Network. 

2. MODEL SPECIFICATION 

In this section we illustrate the use of RESQME for cre- 
ating and editing a RESQ model definition and construct, 
as an example, a model of a simple computer communi- 
cation network. The network to be modeled is shown in 
Figure 1 and consists of four nodes (“cities”) connected by 
unidirectional communication links. 

We begin building our model by defining the eight com- 
munication links; we will model each of these links as a sin- 
gle server, non-preemptive-priority queue. (As we will see, 
we will use priorities to model the fact that acknowledg- 
ment traffic is to be transmitted at a higher priority than 
standard data traffic.) To begin defining these queues, we 
first specify the model name and then select the 
“Create/Edit” option from the main RESQME command 
menu; at this point a pop-up Create/Edit submenu and a 
palette of RESQ icons appear. These menus and the palette 
appear on the graphics display, as shown in the lower por- 
tion of the screen in Figure 2. 

In order to define a link, we select a queue icon from the 
palette using the graphics pointing device (e.g., a mouse or 
a joystick) and place the icon in the modeling area. When 
the palette icon is selected it is highlighted in red on the 
palette; once placed in the modeling area, the queue’s color 
turns yellow to indicate that its attributes (e.g., its name, 
service time distribution, queueing discipline and priority 
structure) have not yet been specified. These attributes are 
specified in a context-sensitive form on the text screen ei- 
ther immediately after the queue is placed in the modeling 
area or by using the “Modify” option in the “Create/Edit” 
submenu at any later point in the modeling process. The 
text screen containing a completed form for the Chicago to 
New York link is shown in Figure 3. 

Once the attributes of a modeling element (in this case, 
a queue) have been specified, they are immediately parsed 

for both syntactic and semantic correctness. Assuming that 
we have correctly specified the queue’s attributes, its fill- 
color will be set to green. If we had made an error in the 
queue’s attribute specification, error messages would have 
been displayed on the text screen and its fill-color would 
have be set to red. In addition to the eight active queues, 
we also define a single passive queue with four allocate 
nodes. One of each of these four allocate nodes will be used 
within each of the four “cities” to collect response time 
statistics. 

Once we have defined the eight queues representing the 
eight inter-city communication links and the response time 
passive queue, we next specify the internal operation of each 
of the “cities”. As our model is meant only for pedagogical 
purposes, the internal operation of each city will be quite 
simple; for more realistic models of this network, in which 
protocol mechanisms such as timeouts and flow control are 
considered, the interested reader is referred to Sauer and 
MacNair (1983). 

In specifying the cities’ operations, we will take advan- 
tage of RESQ’s submodel facility. A submodel is essentially 
a parameterized template of an interconnected “subnet- 
work” of RESQ modeling elements. A submodel definition 
may be “invoked” several times (much the same way that a 
macro may be invoked several times in a programming lan- 
guage) to create multiple instances of that subnctwork. In 
our present model we will construct a single submodel for 
the operation of a generic “cily” and then invoke this sub- 
model four times in our main model, once for each “city” in 
the network. We note that submodels provide an important 
mechanism for constructing modular, well-structured and 
consistent performance models. Note, for example, that if 
at some point we need to modify the operation of the “city”, 
we need only change the single submodel definition and 
these changes will then be automatically reflected in each 
of the cities’ definitions. 



R. F. Gordon ct al. 

OPTIONS COPY 

Figure 2. Main Model, Menus and Palette. 
A submodel definition- is created by selecting the 

“Layer” option in the menu at the far right of the modeling 
screen. This will cause a pop-up window to appear contain- 
ing the names of all currently defined submodels as well as 
the options, “Up” and “New”. Since we are defining the 
first (and only) submodel in this model, we select this last 
option. This causes a new modeling area to be created. This 
new modeling area is separate from the main modeling area 
and RESQME enforces this structure by allowing the 
modeler to move between these planes only through the ex- 
plicit USC of the “Layer” command. We may thus think of 
this as a new modeling “plane” or “layer”, in which we may 
now proceed to define the elements of the city submodel. 

As in the main model definition, we construct the sub- 
model by picking icons from the palette, placing them in the 
modeling area, and defining their attributes in forms on the 
text dispIay. However, before doing this, we first specify 
the submodel name and parameters by selecting the 
“Header” option from the “Create/Edit” submenu (second 
page of this menu reached by scrolling) and fiIIing in the 
displayed form. 

After specifying the submodel header and modeling ele- 
ments, we next specify the routing of jobs between these 
elements. This is done simply by picking a set of “from” 
nodes (using the graphics pointing device), and then select- 
ing a set of “to” nodes. The environment then automatically 
connects the “from” nodes to the “to” nodes using straight 
lines. As shown in Figure 4, one-to-one, one-to-many, or 
many-to-one routing may be drawn; many-to-many routing 
may also be spccif ied. We may also draw a segmented line, 
stretch an existing Iinc, or add articulation points to an ex- 
isting line (without altering the routing definition itself) in 
order to create the desired pictorial representation of job 

routing. 

In our submodel, a job (representing a data message) is 
generaLed at a source node, ENTRANCE, and then passes 
through the node parameter R-T; this node parameter will 
be matched with an allocate node in the previously-defined 
response time passive queue in the submodel invocation 
specification. A message visits this node in order to pick up 
a token to measure the time between its generation at EN- 
TRANCE and the eventual receipt of its corresponding ac- 
knowledgment message at this city. The message then 
passes through the set node, MS<;-VALS, where values 
are assigned to its job variables. Job variable 0 indicates the 
destination city code (a number drawn from a distribution 
at the set node); job variable 1 indicates the message length 
(again, a random number); job variable 2 indicates the city 
code for the city at which the message was generated (a pa- 
rameter to the submodel), and job variable 3 indicates the 
message type (in this case, the numerical constant, DATA). 
Note that as we have not yet defined the constant, DATA, 
the set node definition contains an error. Thus, an error 
message will be displayed and the fill-color of the 
MSG VALS set node icon will be set to red. This error 
will beautomatically corrected w.hen we later define DATA 
in l.he main model header. 

Once a message passes through MSG-VALS, it arrives 
at the output node for this submodel. We will shortly con- 
nect this output node to two of the queues representing 
communication links in the main model and thus complete 
the routing of messages between cities. Messages arrive ex- 
ternally into the submodel via the submodel input node. One 
of three actions can then be taken on such an externally ar- 
riving message. First, if it is not destined for this node (as 
determined by the value of job variable 0 ), it is immediately 



RESQME: Research Queueing Package Modeling Environment 

RESQ Subsystem Model: FOURNODE 03/10/86 4: 18p 
CREATE/EDIT Submodcl: 

====r===========t===========================~ 
QUEUE: Chi-NY-q 

TYPE: prty 
CLASS LIST: Chi-NY 

SERVICE TIMES: constant(jv(msg 
PRIORITES: jv(msg-type) - 

leng)/9600+prop delay) - 

======E======== Expected Action Summary =============== 
Enter priority level for this class (smaller number implies higher priority) 
================= Message Window ================== 

IHelp 2Select 3Duplic 4Delete SInsert 6Up 7Down STop 9Bottom OReturn I 

Figure 3. A Complete Attribute Definition. 
routed to the output node. Otherwise if the message is a data 
message and destined for this city, it is routed to the set 
node, ACK MSG, where it is transformed into an ac- 
knowledgment message by re-setting each of the job vari- 
ables; the message is then routed to the output node. 
Otherwise, the message is known to be an acknowledgment 
message destined for this city, in which case it is simply 
routed to a sink node. 

Once we have completed the submodel definition, we 
return to the main model by selecting the “Layer” command 
on the far right menu and selecting “Up” on the resulting 
pop-up submenu; the (still incomplete) main model defi- 
nition is again displayed. We now complete the model defi- 
nition by placing four invocation icons in the modeling area, 
defining their attributes (the corresponding submodel name 
and parameter values), and connecting the input/outputs 
of the queues representing the communication links to the 
outputs/inputs of the submodel invocations, as shown in 
Figure 2. The specific communication link used by a mes- 
sage emerging from the invocation output node is deter- 
mined by the destination code carried by the message in job 
variable 0. 

Finally, we recall lhat we have yet to define the header 
for the main model; this header contains the main model 
parameters, global definitions, and model size information. 
We thus select the Header option from the “Create/Edit” 
menu (as in the submodel definition) and complete the 
header definition form. As previously discussed, the error 
in the set node definition in our submodel is immediately 
corrected once we define the numerical constant DATA in 
the model header. As a final step, we supply the simulation 
control information by selecting the “method dependent” 
option from the menu and complete the associated form. 
At this point, the model has been completely and correctly 
specified and we may now enter the model evaluation phase 
in RESQME. 

3. MODEL EVALUATION AND OUTPUT ANALYSIS 

This section describes, by continuing the above example, 
suggested ways to approach the model evaluation phase and 
the output analysis phase. In the model evaluation phase, 
we assign values to parameters which have been dcfincd in 
the model specification phase We select “Evaluale” from 
the main command menu. A template, specific to that 
model, is displayed on the character screen. prompting us to 
enter the values for the necessary model parameters. We 
can specify the parameters for multiple runs of the model. 
We recommend that models be highly parametcrized so that 
few changes are necessary when investigating several alter- 
natives. In this example, the template consists of the pa- 
rameters: mean message length and mean interarrival time. 
We enter, for example, the values 1400 bits and 0.2 seconds 
respectively. 

When we complete the parameter specifications for each 
run, the model is then evaluated on the host by the RESQ 
solution component, While RESQ is evaluating the model 
on the host, we can modify the model by selecting the 
create/edit phase or examine output from another run in the 
output analysis phase. When the model evaluation is com- 
pleted, the results can be graphically displayed on the PC. 

The output analysis phase permits the display of the 
model’s resulting performance measures directly along with 
the model diagram. WC select “Output Analysis” from the 
main command menu. The output analysis phase submenu 
appears, as in Figure 5, providing the commands to retrieve 
the model data, to select the contents of the display, to 
speciiy the form of the output display and position of the 
graphs, to plot the results, and to remove the graphs. Once 
the model output is sent from the host, we can specify the 
form and content of the displays. We can place the resulting 
graphs wherever we wish on the display by the pointing de- 
vice cursor using a rubberbanding rectangle; the resulting 
window locations and sizes are arbitrary. In the RESQME 

497 



R. F. Gord.on et al. 
---- _---- 

---El 

Figure 4. The “City” Suhmodel Definition. 
design, the Specification of the form of the sranh is scna- 

Y 1 1 

rated from the content, allowing the analyst to choose each 
independently. The most recent specifications of form and 
content arc remembered by the system and become the de- 
fault values for the next output chart. Form attributes can 
be specified to produce different types of graphs, to specify 
ranges of values, to select appropriate axis scales and labels, 
etc. The analyst selects the performance measures to plot 
and has the option to combine several performance meas- 
ures in a single chart and to plot performance measures 
across runs and against other performance measures. 
RESQME also provides the analyst with the capability to 
perform calculations on the resulting performance meas- 
ures, such as to project confidence interval widths for run 
length determination, to calculate moving averages, and to 
fit distributions. 

discussed below. Other methods can be found in Law 
(1983), Law and Kelton (1982), Welch (1983). Sequential 
stopping procedures can be employed with most methods to 
provide an automatic mechanism for determining when 
confidence intervals have reached a specified level of accu- 
racy. We will first apply the regenerative method to the 
above cxampIe. 

Three confidence interval methods are available in the 
RESQ system: the regenerative method, the spectral 
method, and the independent replications method. No 
method will work well for all situations. In the absence of 
any prior information, we recommend that they be tried in 
the following order when performing a steady-state simu- 
lation: the regenerative method, the spectral method and 
Iastly, independent replications. The reason for this recom- 
mended order is that when it is applicable, the regenerative 
method, which is a single run method, is normally more ef- 
ficient in its use of CPU time than the other two methods. 
In addition, it does not require the analyst to identify the 
initial transient, and the initial condition can just be the re- 
generation state. Since the spectral method is also a single 
run method, we recommend its use if the regenerative 
melhod fails. The method of independent replications in- 
volves multiple runs and possibly discarding the initial 
transient from each run. The use of these methods will be 

The regenerative method (Crane and Lemoine 1977, 
Fishman 1978, Jglehart and Shedler 1980, Lavenberg and 
Slutze 1975, Law and Kelton 1!)82, Welch 1983) works on 
a single run of the simulation. It divides the run into inde- 
pendent blocks of data by identifying returns to a regener- 
ation state. This method can only be used to analyze a 
model which reaches steady state. One major advantage 
that the regenerative method has over other methods is that 
the analyst does not have to be concerned with a choice for 
the initial condition. There also is no initial transient prob- 
lem since the first regeneration cycle is no different from 
any of the others. 

One of the most difficult problems related to using the 
regenerative method is the identification of an appropriate 
regeneration state. If the model which is being simulated 
contains only open chains, a good candidate for the regen- 
eration state is the empty system. It is frequently the case 
that if the model does not return to the empty state suffi- 
ciently often for valid confidence intervals to be calculated, 
then no other regeneration state will be easy to identify. If 
the model is a closed model (a model with only closed 
chains), a good regeneration state is all the jobs located at 
a service center with a long exponential service time. Ini- 
tialize all the customers at this service center. 

Since our example is an open system, we use the empty 

498 



RESQME: Research Queueing Package Modeling Environment 

KEATE/EDJT 1 GET KESQ DA’J-P 

EVALUATE SPEC. CONTENT 

‘UTJ’UT ANAL. 1 SPEClFY VlEW 

HELP PLOT 

3PTJONS REMOVE 

Figure 5. Estimate of CPU time versus Confidence Interval Width. 
system as the regeneration state. To estimate how fre- 
quently the regeneration state will occur, we run the above 
model (with parameters: mean message length of 1400 bits 
and mean interarrival time of 0.2 seconds) for 200 depar- 
tures from the response time queue. Since 200 departures 
occur in the middle of a regeneration cycle, RESQ continues 
to the end of the cycle which requires an additional 87 de- 
partures. During this short run, 2 regeneration cycles are 
produced. This is an indication that we should obtain a 
reasonably large number of cycles in a longer run. To make 
an estimate of a realistic run length, we increase the run to 
500 departures. This longer run produces 6 regeneration 
cycles, a 38.4% relative confidence interval width for the 
mean queueing time, and required 2.63 CPU seconds for the 
solution. A graphical estimate of the required run lengths 
for different relative confidence interval widths is given in 
Figure 5. To produce this graph, we select “Specify View” 
in the output analysis submenu and position a 
rubberbanding rectangle to a desired area of the display. 
Then we select “Specify Content” and specify the y variable 
to be mean queueing time, the x variable to be cpu time, and 
indicate that a confidence interval width projection is to be 
produced. The resulting graph shows that approximately 
155 seconds of CPU time is needed to produce a 5% relative 
confidence interval width. 

We can now employ the sequential stopping procedure 
of RESQ (Lavenberg and Sauer 1977) to run until a 5% 
confidence interval width is detected automatically. We 
also choose to make 3 runs in the evaluate phase with mean 
message length 1400, 1500 and 1600 bits, respectively. The 
simulation program checks for the specified accuracy con- 
dition every 20,000 departures. We then plot the mean 
queuing time for the Response Time Queue verses mean 
.service time for the three runs, producing the chart shown 

2 
0 
u 
T 

Z 
M 
1 
N 

P 
A 
N 

L 
0 
c 
T 

L 
A 
Y 

K 

0 

N 

0 

F 

;n Figure 6. The confidence interval widths are also shown 
on the plot. The number of regeneration cycles obtained for 
the above runs is 150, 101 and 41 at the specified stopping 
criterion. 

The successful use of the regenerative method requires a 
sufficient number of regeneration cycles in a reasonable 
amount of computing time; we recommend that you observe 
at least 20 regeneration cycles and preferably at least 100. 
The regenerative method is based on the normal distribution 
which implies it is more accurate as the number of regener- 
ation cycles increases. For short, fixed length runs, it is im- 
portant to make certain that the last regeneration cycle in 
progress when the simulation stops is completed. This will 
reduce the bias in the results as discussed by Meketon and 
Heidelberger (1982). RESQ attempts to complete the last 
cycle. If it is not able to complete the last cycle, it will dis- 
card some events. This is an indication that the run should 
be continued until the last cycle is finished. If the pilot 
study produces no cycles or so few that an extremely long 
main experiment would be necessary, we recommend that 
the spectral method be tried. 

The spectral method (Heidelberger and Welch 1981a and 
198 1 b, Welch 1983) works on a single run of the simulation. 
However, it does not attempt to identify independent data 
as does the regenerative method or independent repli- 
cations. Rather, it directly estimates and corrects for the 
effect of correlation whjch is found in the simulation out- 
put. It works only for models which exhibit equilibrium 
behavior and, as implemented in RESQ, produces confi- 
dence intervals only for the mean queueing times and points 
on the queueing time distributions. With this method, the 
analyst needs to be concerned with the initial transient 
phase. 



R. F. Gordon et (11. 

OUTPUT ANAL. 1 SPECIFY VIEW ) 

HELP PLOT I 

OPTFONS REMOVE 

Filrure 6. Performance Measures versus Mean Message Lengths. 
In RESQ the spectral’method will only produce confi- 

dence intervals for a steady-state simulation for the mean 
queueing time and points on the queueing time distribution. 
The method of independent replications would be necessary 
to perform a transient analysis or if the analyst needs confi- 
dence intervals for other performance measures. We com- 
plete the content specification information called for in the 
output analysis phase to calculate and display the following 
types of plots. For example, to determine the extent of the 
transient phase, we can produce a graph of individual 
queueing times averaged over all replications. A moving 
average calculation can be performed on this data to give 
an indication of the end of the transient phase. As was 
shown for the regenerative method, an estimate of the run 
length of a replication can also be plotted. 

tives. As a result, the analyst can access all the functionality 
of RESQ and control all aspects of the modeling process 
within this one graphics-oriented environment. 

Our plans for extending this environment include tutorial 
facilities to guide the user in the model specification, confi- 
dence interval selection and output analysis phases. This 
facility would provide much assistance to new users in the 
form of a programmed learning environment. The ability to 
construct higher level icons to represent situations en- 
countered in certain application environments would aid the 
model specification process. An include facility to draw on 
stored portions of models would make model construction 
more flexible. Animation of the model diagram would be 
helpful for debugging a model and for demonstrating its 
credibility to decision makers who arc not necessarily fa- 
miliar with queueing networks. A data base and work unit 
manager is necessary to coordinate data from various runs, 
various models and to keep a history of each model. The 
conversion of models constructed with the older version of 
RESQ to the graphical format will be useful to people using 
the older version. Models arc frequently evaluated over a 
large parameter space in an attempt to approach an opti- 
mum solution. The new environment should provide some 
guidance in designing the parametric experiments and in 
employing some search techniques. The merging of the 
graphics with text in reports would be useful in preparing 
documents describing the model development. 

4. SUMMARY AND FUTURE DIRECTIONS 

We have discussed the use of the RESQ modeling envi- 
ronment for model specification, evaluation and output 
analysis. We have emphasized the use of the model diagram 
as the focus of all phases of model development. A scenario 
has been presented to illustrate the use of this modeling en- 
vironment to incorporate confidence interval methods and 
to estimate run lengths. The benefit of pilot runs to aid in 
the design of main experiments was also presented. 

We have shown how the graphical input and output are 
an integral part of the modeling process. RESQME pro- 
vides the necessary information about the structure of the 
queueing network and the resulting performance measures 
to solve the queueing problem and provides the information 
in an easy-to-use, easy-to-interpret graphical form. Fur- 
thermore, the user can directly specify and modify the 
graphics and the underlying attributes to evaluate alterna- 

500 



RESQME: Research Queueing Package Modeling Environment 

ACKNOWLEDGMENTS 

We would like to express our appreciation to Richard 
Gilbert for a number of fruitful discussions, which signif- 
icantly influenced our choice of the design features of the 
environment. We are particularly appreciative of the con- 
tributions of Charles Sauer to RESQ. His insights into 
modeling. the design of RESQ and his simulation program 
have made RESQ the popular tool that it is. We are grateful 
to the many colleagues and RESQ users who have helped 
improve RESQ over the years. 

REFERkNCES 

Browne, J. C., Neuse, D., Dutton, J. and Yu, K.-C. (1985). 
Graphical Programming for Simulation of Computer Sys- 
tems. Proceeding of the I&h Annual Simulation Sympo- 
sium, Tampa, FL, 109-126. 

Chow, W.-M., MacNair, E. A. and Sauer, C. H. (1985). 
Analysis of Manufacturing Systems by the Research 
Queuejug Package. IBM Journal of Research and Devel- 
opment 29, 330-342, 

Crane, M. A. and Lemoine, A. J. (1977). ,4n Introduction to 
the Regenerative Method for Simulation Analysis, Lecture 
Notes in Control and Information Sciences, ~01.4, 
Springer-Verlag, New York. 

Fishman, G. S. (1978). Principles of Discrete Event Simu- 

/ation, Wiley, New York. 

Gilbert, R. and Kleinoder, W. (1985). CNMGRAF - 
Graphical Presentation Services for Network Manage- 
ment. Proc. 9th Data Communications Symposium, 
Whistler Mountain, BC, 184-199. 

Healy, K. J. (1985). Cinema Tutorial. Proceedings Of fhe 
198.5 Winter Simulation Conference, San Francisco, 
94-100. 

Heidelberger, P. and Welch, P. D. (198Ia) A Spectral 
Method for Confidence Interval Generation and Run 
Length Control in Simulations. COmm. ASSOC. COmPUt. 
Mach. 24.233-245. 

Heidelberger, P. and Welch, P. D. (198 1 b). Adaptive SPec- 
tral Methods for Simulation Output Analysis. IBM J. Of 
Research and Development 25, 860-876. 

@]&art, D. L. and Shedlcr, G. S. (1980). RegenerQtive 
Simulation of Response Times in Networks of Queues, Let- 
ture Notes in Control and Information Sciences, VoI.26, 
Springer-Verlag, New York. 

Kurose, J. F., Gordon, K. J., Gordon, R. F., MacNair, E- A. 
and Welch, p. D. (1986). A Graphics-Oriented Modeler’s 
Workstation Environment for the RESearch Queuei% 
Package (RESQ). Accepted for publication in the 
A CM/IEEE Fall Joint Computer COnferetlee. 

Lavenberg, S. S. and Sauer, C. H. (1977). Sequential Stop- 
ping Rules for the Regenerative Method of Simulation. 
IBM J. of Research and Development 21,545-S%. 

Lavenberg, S. S. and Slutz, D. R. (1975). Introduction to 
Regenerative Simulation. IBM J. of Research and Devel- 
opment 19, 458-462. 

Law, A. M. (1983). Statistical Analysis of Simulation 
Output Data. Operations Research 31, 983- 1029. 

Law, A. M. and Kelton, W. D. (1982). Simulation Modeling 
and Analysis, McGraw-Hill, Inc. 

MacNair, E. A. (1985). An Introduction to the Research 
Queueing Package. Proceedings of the 198.5 Winter Simu- 
lation Conference, San Francisco, 257-262. 

MacNair, E. A. and Sauer, C. H. (198.5) Elements of Procti- 
cal Performance Modeling, Prentice-Hall, Englewood 
Cliffs. N.J. 

Meketon, M. S. and Heidelberger, P. (1982). A Renewal 
Theoretic Approach to Bias Reduction in Regenerative 
Simulations. Manogement Science 28, 173-l 81. 

Melamed, B. and Morris, R. J. T. (1985). Visual Simu- 
lation: The Performance Analysis Workstation. IEEE 
Computer i&87-94. 

Pegden, L. A., Miles, T. I. and Diaz, G. A. (1985). Graph- 
ical Interpretation of Output Illustrated by a SIMAN 
Manufacturing System Simulation. Proceedings of rhe 
I985 Winter Simulation Conference, San Francisco, 
244-25 1. 

Sauer, C. H. and MacNair, E. A. (1982). The Research 
Queueing Package Version 2: Availability Notice. IBM 
Research Report RA-144, Yorktown Heights, New York. 

Sauer, C. H. and MacNair, E. A. (1983). Simulation of 
Computer Communication Systems, Prentice-Hall, 
Englewood Cliffs, N.J. 

Sauer, C. H., MacNair, E. A. and Kurose, J. F. (198’2.a). The 
Research Queueing Package Version 2: Introduction and 
Examples. IBM Research Report RA-138, Yorktown 
Heights. New York. 

Sauer, C. H., MacNair, E. A. and Kurose, J. F. (1982b). The 
Research Queueing Package Version 2: CMS Users Guide. 
IBM Research Report RA-I39, Yorktown Heights, New 
York. 

Sauer, C. H., MacNair, E. A. and Kurose, J. F. (1982~). The 
Research Queueing Package Version 2: TSO Users Guide. 
IBM Research Report RA-140, Yorktown Heights, New 
York. 

501 



It. F. Gordon ct al 

Sauer, C. H., MacNair, E. A. and Kurose, I. F. (1984). 
&cueing Network Simulations of Computer Communi- 
cation. IEEE Journal on Selected Areas in Communi- 
cations S&Z-2,203 -219. 

Sinclair, J. B., Doshi, K. A. and Madala, S. (1985). Com- 
puter Performance Evaluation with GIST: A Tool for 
Specifying Extended Queueing Network Models. Pro- 
ceedings of the 1985 Winter Simulation Con.ference, San 
Francisco, 290-300. 

Standridge, C. R., Vaughan, D. K. and Sale, M. L. (1985a). 
A Tutorial on TESS: The Extended Simulation System. 
Proceedings of the 1985 Winter Simulabon Conference, San 
Francisco, 73-79. 

Standridge, C. R., Vaughan, D. K. and Sale, M. L. (1985b). 
Presenting Simulation Results with TESS Graphics. Pru- 
ceedings of the 1985 Winter Simulation Conference, San 
Francisco, 231-243. 

Welch, P. D.(1983). The Statistical Analysis of Simulation 
Results. Chapter 6 in: Computer Performance Modeling 
Handbook, (S. S. Lavenberg ed.). Academic Press, New 
York. 

AUTHORS’ BIOGRAPHIES 

ROBERT F. GORDON is a research staff member in the 
modeling and analysis software systems group at the IBM 
Thomas I. Watson Research Center. He received a B.S. in 
mathematics and physics from the City College of New 
York in 1964, an MS. in mathematics from Carnegie Insti- 
tute of Technology in 1965 and Ph.D. in mathematics from 
Carnegie-Mellon University in 1969. From 1968 to 1974, 
he was Manager of Mathematics and Programming for 
Hoffmann-La Rochc, Inc., where he developed mathemat- 
ical models for marketing, production planning and distrib- 
ution. From 1974 to 1983, Dr. Gordon was Director of 
Information Management Services at Avis, where he headed 
the operations research, timesharing systems, and systems 
and programming groups. Dr. Gordon has been an adjunct 
professor at Hofstra University. He is a member of Phi Beta 
Kappa, Sigma Xi and ORSA. 

Robert F. Gordon 
IBM Thomas J. Watson Research Center 
P.O. Box 218 
Yorktown Heights, NY 10598 
(914) 789-7170 

EDWARD A. MACNAIR joined IBM in 1965. He has 
been o-n the research staff in the Computer Science Depart- 
ment at the IBM Thomas J. Watson Research Center since 
1973. He is currently on the modeling and analysis software 
systems group dfeveloping modeling programs to solve ex- 
tended queueing networks. In addition, he has been an ad- 
junct staff member at the IBM Systems Research Institute, 
where he taught courses related to performance modeling. 
He is one of the developers of the Research Queueing 
Package (RESQ), a tool for Ihe solution of generalized 
queueing networks. He is a coauthor with Charles H. Sauer 
of Simulation of Computer Communication Systems, 
Prentice-Hall, 1983 and Elements of Practical Perfonnonce 
Modeling, Prentice-Hall, 1985. He received a B.A. in 
mathe.matics from Hofstra University in 1965, and an M.S. 
in Operations Research from New York University in 1972. 
He is a member of ACM and ORSA. 

Edward A. MacNair 
IBM Thomas J. Watson Research Center 
P.O. Box 218 
Yorktown Heights, NY 10598 
(914) 789-7561 

PETER D. WELCH did his undergraduate work al the 
Universities of Wisconsin and Chicago. He received an 
MS. in mathematics from the U. of Wisconsin in 1951. 
From 1951-56 he worked on radar signal processing at the 
Physical Science Laboratory of New Mexico State Univer- 
sity. He received his M.S. in Physics from New Mexico 
State in 1956. He joined IBM Research in 1956 and has 
worked and published in the arcas of speech recognition, 
queueing theory, pattern recognition, seismic signal proc- 
essing, spectral estimation, Fourier analysis, system per- 
formance modeling, simulation output analysis and 
statistical graphics. He received his Ph.D. in Mathematical 
Statistics from Columbia University in 1963. He is an Ad- 
junct Professor of Mathematical Statistics at Columbia and 
Area Editor of Operations Research for Simulation, Imple- 
mentation and Validation of Stochastic Models. 

Peter D. Welch 
IBM Thomas J. Watson Research Center 
P.O. Box 218 
Yorktown Heights, NY 10598 
(914) 789-7560 



RESQME: Research Queueing Package Modeling Environment 

KURTISS J. GORDON received his B.S. in Physics from 
Antioch College in 1964, his M.A. and Ph.D. in Astronomy 
from the University of Michigan in 1966 and 1969, and his 
M.S.E.C.E. in Computer Systems from the University of 
Massachusetts in 1985. Until 1984, he taught in the Five- 
College Astronomy Department. Currently, he i$ a Senior 
Posldoctoral Research Associate in the Department of 
Computer and Information Science at the University of 
Massachusetts in Amherst. Dr. Gordm’s interests include 
the display and interpretation of large bodies of data, mod- 
eling and performance evaluation, and graphical user inter- 
faces. He is a member of the American Astronomical 
Society, Sigma Xi, ACM, and IEEE. 

Kurtiss J. Gordon 
Department of Computer and Information Science 
University of Massachusetts 
Amherst, MA 01003 
(413) 545-4207 

JAMES F. KUROSE received a BA degree in Physics 
from Wesleyan University in Middletown, Conn. in 1978 
and an MS and PhD degree in Computer Science from 
Columbia University in 1980 and 1984, respectively. Since 
1984, he has been an Assistant Professor in the Department 
of Computer and Information Science at the University of 
Massachusetts, Amherst, MA., where he currently leads se- 
veral research efforts in the areas of computer communi- 
cation networks, distributed systems, and modeling and 
performance evaluation. He has also been associated with 
the performance modeling methodology group at the IBM 
T.J. Watson Research Center as a consultant since 1980 and 
has served as a consultant for various other companies as 
well. Professor Kurose is a member of Phi Beta Kappa, 
Sigma Xi, IEEE, and ACM and the IEEE Technical Com- 
mittees on Computer Communications, Distributed Sys- 
tems, and Computer-Aided Modeling of Communication 
Systems. 

James F. Kurose 
Department of Computer and information Science 
University of Massachusetts 
Amherst, MA 01003 
(413) 545-1585 

503 


