
Metamorphic Testing 20 Years Later: A Hands-on Introduction

Sergio Segura
Department of Computer Languages and Systems

Universidad de Sevilla

Seville, Spain

sergiosegura@us.es

Zhi Quan Zhou
Institute of Cybersecurity and Cryptology

School of Computing and Information Technology

University of Wollongong

Wollongong, NSW 2522, Australia

zhiquan@uow.edu.au

ABSTRACT

Two of the key challenges in software testing are the automated gen-
eration of test cases, and the identification of failures by checking
test outputs. Both challenges are effectively addressed by meta-
morphic testing (MT), a software testing technique where failures
are not revealed by checking an individual concrete output, but
by checking the relations among the inputs and outputs of mul-
tiple executions of the software under test. Two decades after its
introduction, MT is becoming a fully-fledged testing paradigm
with successful applications in multiple domains including, among
others, big data engineering, simulation and modeling, compilers,
machine learning programs, autonomous cars and drones, and cy-
bersecurity. This technical briefing will provide an introduction to
MT from a double perspective. First, we will present the technique
and the results of a novel survey outlining its main trends and
lessons learned. Then, we will go deeper and present some of the
successful applications of the technique, as well as challenges and
opportunities on the topic. The briefing will be complemented with
practical exercises on testing real web applications and APIs.

CCS CONCEPTS

• Software and its engineering → Software testing and de-
bugging;

KEYWORDS

Metamorphic testing,

tutorial

1 METAMORPHIC TESTING (MT)

As pointed out by Dijkstra, testing can only show the presence of
faults, not their absence. In many situations, successful test cases
(those that did not detect any failure) were regarded as useless
and, therefore, discarded or retained merely for the purpose of

regression testing. In contrast to this perspective, MT observes that

successful test cases carry useful, but implicit, information about

the software under test (SUT), and that such information can be

used to test the SUT further.

To perform MT, we need to first identify some metamorphic re-

lations (MRs), which are necessary properties among the inputs

and outputs of multiple executions of the intended program’s func-

tionality. An MR can transform existing (source) test cases into

new (follow-up) test cases. If the actual outputs of these test cases

violate the MR, the SUT must be faulty. Because the detection of

MR violations does not require the existence of a test oracle for the

individual test cases, MT is widely recognized as a mechanism that

can effectively address the test oracle problem [1].

As an example, consider an algorithm f that calculates the short-
est path between two nodes in an undirected graph G. Let p be a
program implementing f . For any two nodes a and b in a large G,
it may not be easy to verify whether the output of p is indeed a
shortest path from a to b. Despite this difficulty, many MRs can be
identified. For example, if we swap a andb, the length of the shortest
path will remain the same, that is, | f (G, a, b)| = | f (G, b, a)|. Using
this MR, we can run p twice, first on a source test case (G, a, b) and
then on a follow-up test case (G, b, a). Instead of focusing on the
correctness of each single output of p (which is difficult to decide
due to the lack of an oracle), MT will check whether the relation

|p(G, a, b)| = |p(G, b, a)| is satisfied. If a violation is detected, p
must be faulty.

For the shortest path problem, many different MRs can be iden-

tified to conduct MT. As a real-life example, Fig. 1 shows a bug of

Google Maps detected using MT, where the starting and ending

points were only two meters apart from each other but Google

Maps returned a route of 4.3 miles [2]. This finding might indicate

a weakness of Google Maps navigation when the starting or ending

point was in a car park. This bug has been reported to Google, and

the company is currently investigating its root cause.

In addition to addressing the oracle problem, MT is effective at

fault detection, even for very intensively studied programs. For ex-

ample, MT detected three previously unknown bugs in three out of

seven programs in the Siemens suite [5], a benchmark widely used

by the research community for the evaluation of various software

testing techniques. Given that the Siemens programs are small and

had been so extensively tested by different research groups in the

previous two decades, the detection of the previously unknown

bugs clearly demonstrates that MT complements existing software

testing strategies. This is not to say that MT is necessarily superior

to the other techniques, but rather testing should be conducted

from diverse perspectives: The success of MT is due to its test case

generation strategy that is based on a perspective different from

Figure 1: MT detected a real-life bug in Google Maps [2].

those used before (looking at relations among multiple executions

of the SUT) [5].

MT has been found to be useful not only for verification but

also for validation. Furthermore, it has been found to be useful for

the assessment of different types of software quality characteris-

tics, such as functional correctness, capacity, operability, user error

protection, maturity, effectiveness, and context completeness [12].

MT has thus been developed into a unified framework for software

verification, validation, and quality assessment [12]: In verification,

MRs are derived by testers based on software specifications; in

validation, MRs can be defined by users based on their expectations;

and in quality assessment, different MRs can be defined by differ-

ent stakeholders who are interested in different types of software

quality characteristics.

In addition to addressing the oracle problem in testing, MT has

also been applied to alleviate similar problems in other areas of

computing. This is because other areas, such as debugging, analy-

sis, proving, fault tolerance, and automated program repair, often

assume the existence of an oracle, and therefore the integration

with MT extends their applicability [3].

2 POTENTIAL INTEREST IN THE TOPIC

MT is simple in concept and straightforward in implementation.

There exist strong evidence of a rapidly growing interest in this

topic from both the research community and industry.

(1) Research impact. The growing interest in MT from the re-

search community is reflected in the nearly 150 publications

on the topic in major publication venues (the majority of

which were published in recent years). The state of the art,

challenges and opportunities of MT have been reviewed in

two notable survey papers recently published in the IEEE

Transactions on Software Engineering [10], and theACMCom-

puting Surveys [3].

(2) Industrial impact. MT is also receiving a significant atten-

tion from industry, as revealed in published results of suc-

cessful applications in companies and organizations such as

NASA [8] and Adobe [6]. Also, there exists strong evidence

of real bugs being detected in real-world systems such as

the search engines Google and Bing [12], open-source and

commercial code obfuscators as well as the popular GCC and

LLVM compilers [4, 7], the machine learning system Rapid-

Miner [9], and the Web APIs of Spotify and YouTube [11].

(3) Related events. In 2016, Upulee Kanewala, Laura L. Pullum,

Sergio Segura, Dave Towey, and Zhi Quan Zhou co-founded

the first ICSE International Workshop on Metamorphic Test-

ing (ICSE MET ’16). The third edition of the workshop, orga-

nized by Laura L. Pullum, Pak Lok Poon, and Xiaoyuan Xie, is

held in conjunction with the 40th International Conference

on Software Engineering (2018).

(4) Recent ACM SIGSOFT Webinar. The authors were recently

invited to give an ACM SIGSOFT Webinar on metamorphic

testing 1. A total of 316 people watched it live, and within

one week, 250 people watched it on demand.

ACKNOWLEDGMENTS

This work was supported in part by the Spanish Government CICYT

project BELI (project ID: TIN2015-70560-R), the Andalusian Gov-

ernment project COPAS (project ID: P12-TIC-1867), and a linkage

grant of the Australian Research Council (project ID: LP160101691).

REFERENCES
[1] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. 2015. The Oracle

Problem in Software Testing: A Survey. IEEE Transactions on Software Engineering
41, 5 (May 2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[2] J. Brown, Z. Q. Zhou, and Y.-W. Chow. 2018. Metamorphic Testing of Navi-
gation Software: A Pilot Study with Google Maps. In Proceedings of the 51st
Annual Hawaii International Conference on System Sciences (HICSS-51). 5687–5696.
Available: http://hdl.handle.net/10125/50602.

[3] T. Y. Chen, F.-C. Kuo, H. Liu, P. L. Poon, D. Towey, T. H. Tse, and Z. Q. Zhou.
2018. Metamorphic Testing: A Review of Challenges and Opportunities. ACM
Computing Surveys 51, 1 (2018), 4:1–4:27. https://doi.org/10.1145/3143561

[4] T. Y. Chen, F.-C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, and Z. Q. Zhou. 2016.
Metamorphic Testing for Cybersecurity. Computer 49, 6 (June 2016), 48–55.
https://doi.org/10.1109/MC.2016.176

[5] T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Q. Zhou. 2015. A Revisit of Three Studies
Related to Random Testing. Science China Information Sciences 58, 5 (2015),
052104:1–052104:9. https://doi.org/10.1007/s11432-015-5314-x Springer-Verlag.

[6] D. C. Jarman, Z. Q. Zhou, and T. Y. Chen. 2017. Metamorphic Testing for
Adobe Data Analytics Software. In Proceedings of the IEEE/ACM 2nd Interna-
tional Workshop on Metamorphic Testing (MET ’17), in conjunction with the
39th International Conference on Software Engineering (ICSE ’17). 21–27. https:
//doi.org/10.1109/MET.2017.1

[7] V. Le, M. Afshari, and Z. Su. 2014. Compiler Validation via Equivalence Modulo
Inputs. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’14). 216–226. https://doi.org/10.1145/
2594291.2594334

[8] M. Lindvall, D. Ganesan, R. Ardal, and R. E. Wiegand. 2015. Metamorphic Model-
Based Testing Applied on NASA DAT – An Experience Report. In Proceedings of
the IEEE/ACM 37th International Conference on Software Engineering (ICSE ’15),
Vol. 2. 129–138. https://doi.org/10.1109/ICSE.2015.348

[9] C. Murphy, K. Shen, and G. Kaiser. 2009. Using JML Runtime Assertion Checking
to Automate Metamorphic Testing in Applications without Test Oracles. In
Proceedings of the 2nd International Conference on Software Testing, Verification
and Validation (ICST ’09). 436–445. https://doi.org/10.1109/ICST.2009.19

[10] S. Segura, G. Fraser, A. Sanchez, and A. Ruiz-Cortés. 2016. A Survey on Meta-
morphic Testing. IEEE Transactions on Software Engineering 42, 9 (Sept 2016),
805–824. https://doi.org/10.1109/TSE.2016.2532875

[11] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés. 2017. Metamorphic Testing
of RESTful Web APIs. IEEE Transactions on Software Engineering (2017). https:
//doi.org/10.1109/TSE.2017.2764464 In press.

[12] Z. Q. Zhou, S. Xiang, and T. Y. Chen. 2016. Metamorphic Testing for Software
Quality Assessment: A Study of Search Engines. IEEE Transactions on Software En-
gineering 42, 3 (March 2016), 264–284. https://doi.org/10.1109/TSE.2015.2478001

1https://event.on24.com/wcc/r/1451736/8B5B5925E82FC9807CF83C84834A6F3D

