
Poster — Unit Tests and Component Tests
do Make a Difference on Fault Localisation Effectiveness

Gulsher Laghari
Universiteit Antwerpen, België
University of Sindh, Pakistan

gulsher.laghari@uantwerpen.be

Serge Demeyer
Universiteit Antwerpen, België

Flanders Make, België — INRIA Lille, France
serge.demeyer@uantwerpen.be

ABSTRACT
Agile testers distinguish between unit tests and component tests
as a way to automate the bulk of the developer tests. Research
on fault localisation largely ignores this distinction, evaluating
the effectiveness of these techniques irrespective of whether the
fault is exposed by unit tests—where the search space to locate the
fault is constrained to the unit under test— or by component tests—
where the search space expands to all objects involved in the test.
Based on a comparison of sixteen spectrum based fault localisation
techniques, we show that there is indeed a big difference in perfor-
mance when facing unit tests and component tests. Consequently,
researchers should distinguish between easy and difficult to locate
faults when evaluating new fault localisation techniques.

KEYWORDS
Spectrum based fault localisation; Component tests; Unit tests.

ACM Reference Format:
Gulsher Laghari and Serge Demeyer. 2018. Poster — Unit Tests and Com-
ponent Tests do Make a Difference on Fault Localisation Effectiveness. In
ICSE ’18 Companion: 40th International Conference on Software Engineering
Companion, May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3183440.3194970

1 INTRODUCTION
Software testing is the activity of executing a program with the
intent of finding a defect. A software test brings the implementation
under test in a given state, then administers a sequence of stimuli
and subsequently verifies whether the resulting state corresponds
with the expectations. Once a software test exposes a defect, a soft-
ware engineer still has to search for its root cause —the fault— and
fix it accordingly. To minimise the search space, testing handbooks
distinguish between unit tests and component tests [2]. A unit test
isolates the implementation under test (typically a method or a
class) from the rest of the system so that the tester can be confident
that the defect is located within the unit. A component test, on
the other hand, exercises the interactions between objects; when a
component test exposes a defect, the defect should be in the code
that manipulates the interface. Unfortunately, one cannot entirely
rule out the code in the constituting objects (even with the presence

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3194970

of stubs and mock objects), thus the search space for locating the
defect comprises all the objects involved in the component test.

To help software engineers locate the root cause of a defect,
the research community has forwarded fault localisation heuristics,
which produce a ranked list of program elements, indicating the
likelihood of a program element being at fault [6]. A particular
branch in this research is spectrum based fault localisation which
analyses program traces generated by failing and passing tests to
deduce the location of the fault [1, 4, 6].

Given that unit tests and component tests represent different
strategies to pinpoint the fault, one would expect that the research
on fault localisation also makes this distinction. However, none
of the currently published evaluations do so: all of them rely on
datasets such as the Siemens set, the Software-Artifact Infrastruc-
ture Repository (SIR), iBugs and themost recentDefects4J [3]. None
of these datasets distinguish between unit tests and component
tests, hence it is currently unknown how fault localisation heuris-
tics deal with the more challenging faults involving a larger search
space.

To illustrate the differences, we showcase two examples from De-
fects4J. An easy case for fault localisation is fault 3 in project Math.
The unit test testLinearCombinationWithSingleElementArray in test
class MathArraysTest calls only a single method (the one contain-
ing the fault) —linearCombination(double[], double[]) in class Math-
Arrays. The test fails because of an ArrayIndexOutOfBoun- dsEx-
ception, which is immediately visible in the stack trace and read-
ily points to the location of the fault. In such cases, any fault
localisation technique —even the most naive one— should have
an accuracy of 100%. In contrast, one of the most difficult faults
to locate is fault 74 in project Math. The test case polynomial in
class AdamsMoultonIntegratorTest exposes a fault in method in-
tegrate(FirstOrderDifferentialEquations, double, double- [], double,
double[]) within class EmbeddedRungeKuttaIntegra- tor. The test
fails because one assertion fails: the returned value does not match
the expected value because of some erroneous state manipulation
earlier in the implementation under test. The faulty method does
not appear in the stack trace, so one needs to search through all
the 264 project methods indirectly called by the test case. Such
needle-in-a-haystack cases are real challenges for fault localisation
techniques because the search space of potential fault locations is
so large.

In this paper, we demonstrate with sixteen established spectrum
based fault localisation techniques that there is indeed a big differ-
ence in performance when facing faults revealed by unit tests or
component tests.

280

2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings

https://doi.org/10.1145/3183440.3194970
https://doi.org/10.1145/3183440.3194970

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Gulsher Laghari and Serge Demeyer

2 CASE STUDY SETUP
Fault Localisation Techniques.We compare the performance of
two families of spectrum based fault localisation on the defects
exposed by unit tests and component tests. The first Basic family
(B), is the standard implementation based on what is named the
Basic Hit-Spectrum [1]. The second Extended family (E) employs
an Extended Hit-Spectrum, which is a recent improvement using
frequent itemset mining [4]. Each family is parameterised with the
eight best performing fault locators as known today, thus resulting
in sixteen different spectrum based fault localisation heuristics.
Dataset.We use the Defects4J dataset for our evaluation but extend
the dataset to account for faults exposed by unit tests or compo-
nent tests. To that extent, we adopt the definitions by Crispin and
Gregory [2]: a unit test isolates the implementation under test (typ-
ically a method or a class), whereas a component test, exercises the
interactions between objects (classes). Since we have the call traces
anyway, we adopt a dynamic analysis heuristic, inspired by the one
of Weijers [5].
Evaluation metrics. We use the most commonly adopted metrics
acc@n (n ∈ {1, 3, 5}),mean average precision (MAP), andmean wasted
effort (MWE) to evaluate the results.

3 RESULTS
Search space. Figure 1 illustrates that the search space differs quite
a lot for unit tests versus component tests. The figure shows a violin
plot, with the left side (red) the total number of project methods
executed in failing tests categorised as component tests (red) and
the right side (blue) in failing tests categorised as unit tests (blue).
The graph for component tests is top heavy, indicating that these
indeed call a lot more methods than their unit tests counterpart. A
t-testwith p-value less than 2.2e-16 and Cohen’s dwith 1.2, confirm
that the search space is indeed significantly larger for component
tests.
Unit tests. Given that the search space is smaller for defects ex-
posed by unit tests, the fault localisation techniques are expected
to perform better and this is confirmed by the results: for both of
the families, there are very good scores for the metrics. Table 1
summarises the results. Overall, the top performing heuristics from
Extended family successfully localise 45/73 (≈ 62%) defects, with
mean average precision 0.70 and mean wasted effort ≈ 4. Similarly,
those in the Basic family, successfully localise 35/73 (≈ 48%) de-
fects, with mean average precision 0.64 and mean wasted effort ≈
2 (2 methods to search in vain before reaching the faulty method).

1

10

100

1000

Component tests Unit tests

Failing Test Category

#
 m

e
th

o
d
s
 e

xe
c
u
te

d
 (

lo
g
 s

c
a
le

)

Failing Test Category : Component tests Unit tests

Figure 1: Assessment of the size of the search space (exe-
cuted methods) for unit tests and component tests.

Table 1: Comparisons of the Two Families for Defects Re-
vealed by Unit Tests (UT) and Component Tests (CT).

Family T acc@1 acc@3 acc@5 MAP MWE

E
UT 45 58 64 0.7021061 3.85
CT 53 95 123 0.2851449 39.44

B
UT 35 61 67 0.6440786 2.44
CT 30 65 80 0.1913367 120.58

Component tests. For the defects exposed by component tests,
the performance of the techniques from both families has decreased
compared to the results for unit tests. The very same top perform-
ing techniques for the Extended family, now successfully localise
53/273 (≈ 19%) defects. Also the mean average precision 0.29 is
lower and the mean wasted effort ≈ 39 is higher. Likewise, the Basic
family only localises 30/273 (≈ 11%) defects successfully. Here as
well, the mean average precision 0.19 is lower and the mean wasted
effort ≈ 121 is higher. This observation indicates that when the
techniques are evaluated on whole dataset without distinction of
test types, the better performance of fault localisation techniques
can be attributed to the easy-to-localise defects exposed by unit
tests.
4 CONCLUSION
In this paper, we measured the size of the search space in the
Defects4J dataset to be considered for fault localisation techniques.
We demonstrated that it is rather small for defects exposed by unit
tests (such tests call fewer methods), hence the spectrum based fault
localisation heuristics perform rather well. However, the search
space is considerably larger for defects exposed by component tests,
which results in a decrease in performance.

This has an important consequence for future research in fault
localisation: the best result depends a lot on the presence of unit
tests or component tests. Consequently, researchers should distin-
guish between easy and difficult to locate faults when evaluating
new spectrum based fault localisation techniques.
Acknowledgments. This work is sponsored by (a) theHigher Education
Commission of Pakistan under a project titled “Strengthening of University
of Sindh (Faculty Development Program)"; (b) Flanders Make vzw, the
strategic research centre for the manufacturing industry; (c) the Conseil
Régional Hauts-De-France; Nord Pas de Calais — Picardie.

REFERENCES
[1] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. 2012. GZoltar: An

Eclipse Plug-in for Testing and Debugging. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2012). ACM,
New York, NY, USA, 378–381. https://doi.org/10.1145/2351676.2351752

[2] Lisa Crispin and Janet Gregory. 2009. Agile Testing: A Practical Guide for Testers
and Agile Teams. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[3] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(ISSTA 2014). ACM, New York, NY, USA, 437–440. https://doi.org/10.1145/2610384.
2628055

[4] Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. 2016. Fine-tuning
SpectrumBased Fault Localisationwith FrequentMethod Item Sets. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE 2016). ACM, New York, NY, USA, 274–285. https://doi.org/10.1145/2970276.
2970308

[5] Joep Weijers. 2012. Extending Project Lombok to improve JUnit tests. Master’s
thesis. Delft University of Technology, the Netherlands. http://repository.tudelft.
nl/islandora/object/uuid:1736d513-e69f-4101-8995-4597c2a4df50/datastream/
OBJ/download

[6] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. 2016. A Survey on Software
Fault Localization. IEEE Transactions on Software Engineering 42, 8 (Aug 2016),
707–740. https://doi.org/10.1109/TSE.2016.2521368

281

https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2970276.2970308
https://doi.org/10.1145/2970276.2970308
http://repository.tudelft.nl/islandora/object/uuid:1736d513-e69f-4101-8995-4597c2a4df50/datastream/OBJ/download
http://repository.tudelft.nl/islandora/object/uuid:1736d513-e69f-4101-8995-4597c2a4df50/datastream/OBJ/download
http://repository.tudelft.nl/islandora/object/uuid:1736d513-e69f-4101-8995-4597c2a4df50/datastream/OBJ/download
https://doi.org/10.1109/TSE.2016.2521368

