
Poster: Static Detection of API Call Vulnerabilities in iOS

Executables
∗

Chun-Han Lin
National Chengchi University, Taiwan

john.lin0420@gmail.com

Fang Yu
National Chengchi University, Taiwan

yuf@nccu.edu.tw

Jie-Hong Roland Jiang
National Taiwan University, Taiwan

jhjiang@ntu.edu.tw

Tevfik Bultan
University of California, Santa Barbara, CA

bultan@cs.ucsb.edu

ABSTRACT

We propose a static analysis technique for iOS executables for

checking API call vulnerabilities that can cause 1) app behaviors

to be altered by malicious external inputs, and 2) sensitive user

data to be illegally accessed by apps with stealthy private API calls

that use string obfuscation. We identify sensitive functions that

dynamically load classes/frameworks, and, for each parameter that

corresponds to a dynamically loaded class/framework, we construct

a dependency graph that shows the set of values that flow to that

parameter. A sensitive function that has its class name or frame-

work path parameter depending on external inputs is considered

to contain a vulnerability. We further conduct string analysis on

these dependency graphs to determine all potential string values

that these parameters can take, which identifies the set of dynami-

cally loaded classes/frameworks. Taking the intersection of these

values with patterns that characterize Apple’s API policies (such

as restricted use of private/sensitive APIs), we are able to detect

potential policy violations and vulnerabilities.

CCS CONCEPTS

• Security and privacy→ Logic and verification;

KEYWORDS

String analysis, iOS mobile application, API call vulnerability

ACM Reference Format:

Chun-Han Lin, Fang Yu, Jie-Hong Roland Jiang, and Tevfik Bultan. 2018.

Poster: Static Detection of API Call Vulnerabilities in iOS Executables. In

Proceedings of 40th International Conference on Software Engineering Com-

panion, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE ’18 Companion),

2 pages.

https://doi.org/10.1145/3183440.3195024

∗This project is funded in part by MOST 106-2221-E-004 -002 -, MOST 105-2923-E-002-
016-MY3, NSF CCF-1548848 and DARPA FA8750-15-2-0087.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3195024

1 API CALL VULNERABILITY

Most malicious behaviors and violations of security policies, such

as IDFA abuse and private API usage, are related to the loaded

classes and invoked methods of mobile applications. Due to the

flexibility of Objective-C (actually most modern programming lan-

guages, such as PHP, Java reflections), developers can use string

variables to load classes and invoke methods dynamically. This

hinders effective program analysis and verification and detection

of potential policy violations. Furthermore, mobile applications

downloaded as executables are not available with source code. This

requires significant work to rebuild program flows at the assembly

level. The closed system nature makes the iOS mobile applications

even harder to analyze.

Listing 1: Load a class dynamically

1 NSBundle ∗ b = [NSBundle bundleWithPath :@" / System / L i b r a r y /
Frameworks / AdSupport . framework "] ;

2 [b l o ad] ;

3 C l a s s c = NSClas sF romSt r ing (@" AS I d en t i f i e rManag e r ") ;

4 id s i = [c va lueForKey :@" sharedManager "] ;

Listing 2: Load a class with string manipulations

1 NSS t r ing ∗ name = [NSS t r ing s t r i ngWi thFo rma t :@"%c%c%c%c%c%
c%c%c%c%c%c%c%c%c%c%c%c%c%c " , 'A ' , ' S ' , ' I ' , ' d ' , ' e
' , ' n ' , ' t ' , ' i ' , ' f ' , ' i ' , ' e ' , ' r ' , 'M ' , ' a ' , ' n ' , ' a ' , '
g ' , ' e ' , ' r '] ;

2 C l a s s c = NSClas sF romSt r ing (name) ;

We start from a simple code in listing 1 that would be caught by

Apple’s app review process for loading the ASIdentifierManager

class with the class name (a string value) by calling a C-function

called NSClassFromString. After the class was loaded, it then gets

the value of a static field named sharedManager to access users’

private information. Note that the class is loaded dynamically via

the NSClassFromString function. While the loaded class depends on

the value of the parameter that can be manipulated through string

operations, the dynamism could lead to a loophole in Apple’s app

review process. In fact, one could load the class ASIdentifierMan-

ager without having any class associated with ASIdentifierManager

at compile time, and bypass the check on IDFA abuse.

Listing 2 is a modified version of dynamically loading the ASI-

dentifierManager class. The parameter of NSClassFromString is

no longer a literal but a string variable called name. As the list-

ing shows, the value of name is synthesized at runtime via con-

catenating 19 characters (by calling stringWithFormat function in

NSString). In this case, resolving static methods [3, 5] or searching

constants appearing in assembly [6] would fail to find the correct

394

2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3183440.3195024&domain=pdf&date_stamp=2018-05-27

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lin et al.

class ASIdentifierManager associated with the app. Constant prop-

agation techniques [1, 4] could be used to reveal the loaded classes.

However, since the loaded classes depend on the values of string

variables, there are various ways to obfuscate the loaded classes

and invoked methods by manipulating string values with advanced

string operations such as replacement, by composing string opera-

tions with branch and loop structures, and by using external calls

to get string values from Internet or user inputs.

Listing 3 shows a code snippet that has such a vulnerability,

where the developer embeds a backdoor to invoke APIs, including

private APIs, from specific inputs. The app first loads 3 payload

strings from a remote server. The backdoor is triggered while the

first payload string p1 is equal to the keyword "fire". The value

of p2 specifies the bundle path. Then an obfuscation with string

replacement operation is applied to the third payload p3 to generate
the invoked class name. With the string manipulation, an input

string that contains no harmful strings may result in an attack. For

instance, by replacing all characters "x" with "p", an input value "FT-

DeviceSuxxort" of string p3 results in the string "FTDeviceSupport",
and is then used to invoke the class. Note that FTDeviceSupport

that enables app to access device information is one of the private

classes that shall not be invoked in any apps published in Apple’s

app store.

Such a vulnerability may bypass Apple’s app review process.

Note that, detecting such a vulnerability with runtime analysis [2]

may not be possible since it requires specific inputs to trigger the

backdoor. Second, with string manipulation, an input that contains

no harmful strings may result in an attack. Pre-screening of user

inputs (using a blacklist) cannot detect such a violation. In fact, we

have successfully embedded this type of back-door code into an

app that has been published in Apple’s app store.

Listing 3: Load a class with external inputs

1 NSS t r ing ∗ p1 , ∗ p2 , ∗ p3 = some pay load s t r i n g s from a
remote s e r v e r ;

2 i f ([p1 i s E q u a l T o S t r i n g :@" f i r e "]) {
3 NSBundle ∗ b = [NSBundle bundleWithPath : p2] ;
4 [b l o ad] ;
5 NSS t r ing ∗ name = [p3 s t r i n gByRep l a c i n gOc cu r r e n c e sO f S t r i n g

:@" x " w i t h S t r i n g :@" p "] ;
6 C l a s s c = NSClas sF romSt r ing (name) ; . . . }

2 STATIC VULNERABILITY DETECTION

We propose a sound static analysis for systematic API vulnerability

checking in iOS executables. It is necessary to determine the pos-

sible string values for the name parameters of the functions that

dynamically load classes/frameworks.

App fetching and decryption.We first download and install on-

line apps fromApple’s app store into a jail-broken iOS device, where

we can access the file system directly to fetch the target binary.

The binary is encrypted and it is decrypted by the device with

authentication upon execution.The decrypted binary can then be

analyzed with disassembler toolsto generate the plain text format

assembly code.

Segment information extraction and control flowgraph (CFG)

construction. An iOS app’s binary is a Mach Object (Mach-O),

and its assembly is split into multiple segments containing var-

ious meta information such as subroutine entries, external calls,

constant strings, mapping tables, etc., in addition to the assembly

body of its subroutines. We extract needed information from as-

sembly segments to construct the control flow graph (CFG) for

each subroutine, and resolve register values of indirect jumps to

link these routines. During the CFG construction, we also mark

dependency relations of registers for each assembly statement. To

identify sensitive functions, we find call-external-C-function-node

or call-external-method-node and resolve their register values to

identify which ones are relevant to the target (sensitive) function.

When a sensitive function is identified, we then build the depen-

dency graphs for its parameters. This can be done by traversing

the dependency relations from the corresponding register (sink)

backwards up to constants or external inputs.

Dependency graph construction and string analysis. For each

sink, we build its string dependency graph that specifies how in-

put values flow to the sink. The sink values define the values of

the parameters of target functions. For each dependency graph, if

it contains an external input, we report a vulnerability. For pol-

icy checking, we conduct forward string analysis on the graph to

characterize all potential string values at the sink node. We adopt

automata-based string analysis where the automata associated with

the sink node accepts all possible string values that can reach the

sink node. We start from constants and arbitrary values of external

inputs and propagate string values through string operations using

automata constructions until a fixpoint is reached at the sink node

of the dependency graph. The automata are then used to determine

all the dynamic loaded classes and invoked methods.

Property checking.We check property violations using automata

operations. In our current implementation, we check whether the

automata that characterize the set of dynamically loaded classes has

a non-empty intersection with automata that characterize policy

violations (specified as regular expressions).

3 EXPERIMENTS

We have built an end-to-end tool called BinFlow and used it to

analyze more than one thousand popular apps from Apple’s App-

Store. We identified 435 apps having around 38000 calls in total

using dynamically loaded classes/frameworks. We identified 243

apps that contain 385 potential vulnerabilities due to call values

constructed from external inputs at run time. We found 18 apps

that exploit string obfuscation and illegally use private/sensitive

APIs for stealthy user data access.

REFERENCES
[1] Paulo Barros, Rene Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo

dAmorim, and Michael D. Ernst. 2015. Static Analysis of Implicit Control Flow:
Resolving Java Reflection and Android Intents (T). In ASE. 669–679.

[2] Zhui Deng, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2015.
iris: Vetting private api abuse in ios applications. In CCS. ACM, 44–56.

[3] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011. PiOS:
Detecting Privacy Leaks in iOS Applications. In NDSS.

[4] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA:
taming reflection to support whole-program analysis of Android apps. In ISSTA.
318–329.

[5] Tim Werthmann, Ralf Hund, Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten
Holz. 2013. PSiOS: bring your own privacy & security to iOS devices. In ASIACCS.
ACM, 13–24.

[6] Fang Yu, Yuan-Chieh Lee, Steven Tai, and Wei-Shao Tang. 2013. AppBeach:
Characterizing App Behaviors via Static Binary Analysis. InMobile Services. IEEE
Computer Society, 86.

395

