
We Don’t Need Another Hero?
The Impact of “Heroes” on Software Development

Amritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran* and Tim Menzies
Computer Science, NCSU, USA; IBM Corp*, Research Triangle, North Carolina

[aagrawa8,aarahman,rkrish11]@ncsu.edu,asobran@us.ibm.com,tim@menzies.us

ABSTRACT
A software project has “Hero Developers” when 80% of contribu-
tions are delivered by 20% of the developers. Are such heroes a
good idea? Are too many heroes bad for software quality? Is it
better to have more/less heroes for different kinds of projects? To
answer these questions, we studied 661 open source projects from
Public open source software (OSS) Github and 171 projects from
an Enterprise Github.

We find that hero projects are very common. In fact, as projects
grow in size, nearly all projects become hero projects. These find-
ings motivated us to look more closely at the effects of heroes on
software development. Analysis shows that the frequency to close
issues and bugs are not significantly affected by the presence of
heroes or project type (Public or Enterprise). Similarly, the time
needed to resolve an issue/bug/enhancement is not affected by
heroes or project type. This is a surprising result since, before look-
ing at the data, we expected that increasing heroes on a project
will slow down how fast that project reacts to change. However,
we do find a statistically significant association between heroes,
project types, and enhancement resolution rates. Heroes do not
affect enhancement resolution rates in Public projects. However,
in Enterprise projects, heroes increase the rate at which projects
complete enhancements.

In summary, our empirical results call for a revision of a long-
held truism in software engineering. Software heroes are far more
common and valuable than suggested by the literature, particularly
for medium to large Enterprise developments. Organizations should
reflect on better ways to find and retain more of these heroes.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment;

KEYWORDS
Issue, Bug, Commit, Hero, Core, Github, Productivity
ACM Reference Format:
Amritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran*
and Tim Menzies. 2018. We Don’t Need Another Hero?: The Impact of
“Heroes” on Software Development . In ICSE-SEIP ’18: 40th International

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5659-6/18/05. . . $15.00
https://doi.org/10.1145/3183519.3183549

Conference on Software Engineering: Software Engineering in Practice Track,
May 27-June 3, 2018, Gothenburg, Sweden.ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3183519.3183549

1 INTRODUCTION
Many projects are initiated by a project leader who stays in that
project for the longest duration [40]. These leaders are the ones
who moderate the projects, contributes the most, and stays the
most active throughout the software development life cycle. Such
developers are sometimes called Hero/ Core/ lone contributors [24].
In the literature [17, 35, 36, 39], it is usual to define a hero project
as one where 80% of the contributions are made by 20% of the
developers.

In the literature, it is usual to deprecate heroes [4, 7, 19, 28,
38] since they can become a bottleneck that slows down project
development. That said, looking through the literature, we cannot
see any large scale studies on the effect of heroes in Enterprise
projects. Accordingly, to better understand the positive or negative
impact of heroes in software development, we mined 661 Public
open source software (OSS) projects and 171 Enterprise Github
projects (we say that enterprise software are in-house proprietary
projects that used public Github Enterprise repositories to manage
their development). After applying statistical tests to this data, we
found some surprises:
• Hero projects are exceedingly common in both Public and En-
terprise projects, and the ratio of hero programmers in a project
does not affect the development process, at least for the metrics
we looked, with two exceptions;

• Exception #1: in larger projects, heroes are far more common,
that is, large projects need their heroes;

• Exception #2: heroes have a positive impact on Enterprise projects,
specifically, themore heroes, the faster the enhancement resolution
rates to those kinds of projects.

This was surprising since, before mining the data, our expectation
was that heroes have a large negative effect on software develop-
ment, particularly for Public projects where the work is meant to
be spread around a large community.

The rest of this paper explains how we made and justified these
findings. This investigation is structured around the following re-
search questions:
• RQ1: How common are heroes?
From this analysis, we found:

Result 1
Over 77% projects exhibit the pattern that 20% of the total contrib-
utors complete 80% of the contributions. This holds true for both
Public and Enterprise projects .

ar
X

iv
:1

71
0.

09
05

5v
2

 [
cs

.S
E

]
 2

0
Fe

b
20

18

https://doi.org/10.1145/3183519.3183549
https://doi.org/10.1145/3183519.3183549

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, SwedenAmritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran* and Tim Menzies

• RQ2: How does team size affect the prevalence of hero
projects?
After dividing teams into small, medium and large sizes, we
found that:

Result 2
As team size increased, an increasing proportion of projects become
hero projects. This is true for both Public and Enterprise projects.

• RQ3: Are hero projects associated with better software
quality?
We extracted 6 quality measures, namely number of issues, bugs
and enhancements being resolved, and the time taken to resolve
these issues, bugs and enhancements.
– a: Does having a hero programmer improves the num-
ber of issues, bugs and enhancements being resolved?

Result 3
For both Public and Enterprise projects, there is no statistical
difference between the percent of issues and bugs being resolved
within hero and non-hero projects. However, for enhancement
issues, Enterprise/Pubic hero projects closed statistically more/less
issues (respectively).

– b: Does having a hero programmer improves the time
to resolve issues, bugs and enhancements?

Result 4
There was no statistically difference found in the resolution times
of issues, bugs and enhancements among non-hero and hero
projects in either cases (Public or Enterprise).

Based on the above, we say that our empirical results call for a
revision of a long-held truism in software engineering. Software
heroes are far more common and valuable than suggested by the
literature, particularly formedium to large Enterprise developments.
Organizations should reflect on better ways to find and retain more
of these heroes.

The rest of this paper is structured as follows. Following this
introduction, Section 2 gives a literature review regarding Hero
programmers in OSS then Section 3 describes the data extraction
process and the experimentation details. The research questions are
answered in Section 4 and the implications of these results are dis-
cussed in Section 5. Finally, we discuss the validity and conclusion
of our results.

2 BACKGROUND AND RELATEDWORK
2.1 Project Roles
Following on from Ye and Martinez et al. [24, 40], we say that there
are many developer roles within a Public or Enterprise software
project:
• Project leaders, who initiate a project;
• Core members, who work on the project and make many con-
tributions over an extended time periods;

• Active developers, who contributes regularly for new enhance-
ments and bug fixes;

• Peripheral developers, who occasionally contributes to new en-
hancement;

• Bug fixers;

• Bug reporters;
• Bug readers;
• Passive users.
Of the above, Core developers can be project leaders or core mem-
bers. Core developers are the few central developers who imple-
ment most of the code changes and make important project direc-
tion decisions, whereas the other peripheral developers being the
“many eyes” of the project that make small changes such as bug
fixes [26, 37]

Core developers are said to contribute roughly 80% of the code
who are just about 20% of their project team size [17, 35, 36, 39].
These contributions can be recorded in terms of howmany commits
they made or how many lines of code (loc) they changed. Research
studies [23, 31] suggested that most work/contributions are done
by lone developer. A core committer is also the one who has write
access to a project’s repository [30]. These developers are also called
Hero Programmers.

Pinto et al. [32] studied 275 OSS projects and found that about
48% of the developers population committed only 1.73% of the total
number of commits (which we are calling peripheral developers).
Even in these contributions, about 28.6% contributions are done
simply to fix typos, grammar and issues, 30.2% tried fixing bugs,
8.9% contributions were to refactor code and while only 18.7% was
used to contribute for new features. Yamashita et al. [39] also found
different proportions of contribution activity among the core and
peripheral developers.

Since the work in projects is not evenly divided, this motivates
our research on the overall effects on the projects of different levels
of contributions by different developers.

2.2 Related Work
To the best of our knowledge, the research of this paper is the largest
study on the effects of heroes in Public and Enterprise projects. The
rest of this section describes some of the other related work we have
found in this area but it should be noted that none of the following
studies (a) explore as many projects as we do and (b) compare effects
across Public and Enterprise projects.

The benefits and drawbacks of heroes are widely discussed in
the literature. Bach [3] notes that such heroes are enlisted to (e.g.,)
speed the delivery of late projects [11]. On the other hand, hero-
based projects have their drawbacks. In hero projects, there is less
collaboration between team members since there are few active
teammembers. Such collaborations can be highly beneficial. Studies
that analyzed the distributed software development on social coding
platforms like Github and Bitbucket [10, 12] commented on how
social collaborations can reduce the cost and efforts of software
development without degrading the quality of software.

Distributed coding effort gives rise to agile community-based
programming practices which can in turn have higher customer
satisfaction, lower defect rates, and faster development times [27,
33]. Such practices can lead to increased customer satisfaction when
faster development leads to:
• Lowering the issues/bugs/enhancements resolution times [2, 6,
18, 20, 26, 34];

• Increasing the number of issues/bugs/enhancements being re-
solved [20].

We Don’t Need Another Hero? ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

More specifically, as to issues related to heroes, Bier et al. [4] warn
that as project become more and more complex, teams should be
communities of experts specialized in niche domains rather than
being lead by “cowboy programmers” (a.k.a. heroes) [28]. Such hero
programmers are often associatedwith certain process anti-patterns
such as poorly documented systems (when heroes generate code
more than documents about that code [19]) or all-night hackathons
to hastily patch faulty code to meet deadlines, thus introducing
more bugs into the system and decreasing the number of people
who understand the whole system [7]. Also,Wood et al. [38] caution
that heroes are often code-focused but software development needs
workers acting as more than just coders (testers, documentation
authors, user-experience analysts).

Our summary of the above is as follows: with only isolated ex-
ceptions, most of the literature deprecates heroes even though the
value (or otherwise) of heroes in Enterprise software developments
has rarely been investigated. Accordingly, in this paper, we com-
pare and contrast the effects of heroes in Public and Enterprise
development.

3 DATA AND EXPERIMENTATION
3.1 Data
To perform our experiments we used OSS projects from public
and Enterprise Github. Of the publicly available projects hosted on
public Github, a selected set of projects are marked as “showcases”,
to demonstrate how a project can be developed in certain domain
such as game development, and music [16]. By selecting these
Github projects we can ensure we are using an interesting and
representative set of open source projects. Examples of popular
projects included in the Github showcases that we used for our
analysis are: Javascript libraries such as ‘AngularJS’1 and ‘npm’2,
and programming languages such as ‘Go’3, ‘Rust’4, and ‘Scala’5.

Not all projects hosted on Github are good for the analysis. Stud-
ies done by [5, 21, 29] advice that researchers should filter out the
projects which will not be suitable for analysis. Such unsuitable
projects might record only minimal development activity, are used
only for personal purposes, and not even be related to software
development at all. Accordingly, we apply the following filtering
rules.

We started off with 1,108 Public and 538 Enterprise Github
projects. Following the advice of others [21] [5], we pruned as
follows:
• Collaboration: Number of pulls requests are indicative of how
many other peripheral developers work on this project. Hence,
a project must have at least one pull request.

• Commits: The project must contain more than 20 commits.
• Duration: The project must contain software development activ-
ity of at least 50 weeks.

• Issues: The project must contain more than 10 issues.
• Personal Purpose: The project must not be used and maintained
by one person. The project must have at least eight contributors.

1https://github.com/angular/angular.js
2https://github.com/npm/npm
3https://github.com/golang/go
4https://github.com/rust-lang/rust
5https://github.com/scala/scala

Table 1: Filtering criteria. Starting with 1108+538 pub-
lic+enterprise projects, we discard projects that fail any of
the LHS tests to arrive at 661+171 projects.

Sanity check Discarded project count
Enterprise Public

No. of Commits > 20 68 96
No. of Issues > 10 60 89

Personal purpose (# programmers > 8) 47 67
SW development only 9 51
Duration > 50 weeks 12 46
No. of Releases > 0 136 44

Collaboration (# Pull requests > 0) 35 54
Projects left after filtering 171 661

• Releases: The project must have at least one release.
• Software Development: The project must only be a placeholder
for software development source code.
After applying these criteria we obtained 661 open source and

171 proprietary projects.We report howmany of the projects passed
each sanity check in Table 1. The projects are discarded when the
steps given in Table 1 are applied sequentially, from top to bottom,
we are left with 661 open-source and 171 proprietary projects. We
used the Github API to extract necessary information from these
projects and tested each criteria stated above. Upon completion, we
obtained a list of projects from which we extract metrics to answer
our research questions. We repeated the procedure for both our
Public and Enterprise Github data sources.

3.2 Metric Extraction
To answer our research questions, we extracted the number of com-
mits made by individual developers, and if the number of commits
made by 20% of developers is more than 80% of the commits, they
are classified as Hero Projects and all the others were classified into
Non-Hero projects (these thresholds were selected based on the
advice of Yamashita et al [39]).

Note that Github allows you to merge the pull requests from
external developers and when merged, these contributions gets
included in the merger contributor as well. These merges could
introduce more contributions to the Hero Developer so to over-inflate
the “Hero effect”, hence, we did not include those pull merge requests.

We next divided each project based on the team size. After ap-
plying the advice of Gautam et al. [14], we use 3 team sizes:
• Small teams: number of developers > 8 but less than 15
• Medium teams: number of developers > 15 but less than 30;
• Large teams: number of developers > 30 .
We then defined 6 metrics, namely,

Ir _It =
Total number of issues closed
Total number of issues created

(1)

Br _Bt =
Total number of Bug tagged issues closed
Total number of Bug tagged issues created

(2)

Er _Et =
Total number of Enhancement tagged issues closed
Total number of Enhancement tagged issues created

(3)

I Rt = Median time taken to resolve issues (4)
BRt = Median time taken to resolve Bug tagged issues (5)
ERt = Median time taken to resolve Enhanced tagged issues (6)

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, SwedenAmritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran* and Tim Menzies

3.3 Statistical Tests
When comparing the results between Hero and Non-hero, we used
a statistical significance test and an effect size test. Significance test
are useful for detecting if two populations differ merely by random
noise. Also, effect sizes are useful for checking that two populations
differ by more than just a trivial amount.

For the significance test, we use the Scott-Knott procedure recom-
mended at TSE’13 [25] and ICSE’15 [15]. This technique recursively
bi-clusters a sorted set of numbers. If any two clusters are statisti-
cally indistinguishable, Scott-Knott reports them both as one group.
Scott-Knott first looks for a break in the sequence that maximizes
the expected values in the difference in the means before and after
the break. More specifically, it splits l values into sub-listsm and
n in order to maximize the expected value of differences in the
observed performances before and after divisions. For e.g., lists l ,m
and n of size ls,ms and ns where l =m ∪ n, Scott-Knott divides the
sequence at the break that maximizes:

E(∆) =ms/ls ∗ abs(m.µ − l .µ)2 + ns/ls ∗ abs(n.µ − l .µ)2

Scott-Knott then applies some statistical hypothesis test H to check
if m and n are significantly different. If so, Scott-Knott then re-
curses on each division. For this study, our hypothesis test H was a
conjunction of the A12 effect size test (endorsed by [1]) and non-
parametric bootstrap sampling [13], i.e., our Scott-Knott divided
the data if both bootstrapping and an effect size test agreed that
the division was statistically significant (90% confidence) and not a
“small” effect (A12 ≥ 0.6).

4 RESULTS
4.1 RQ1: How common are heroes?
Recall that we define a project to be heroic when 80% of the contri-
butions are done by about 20% of the developers [39]. To assess the
prevalence of such projects, we extracted the above features and
classified these projects into hero and non-hero.

As shown in Figure 1, 77% and 78% projects are driven by hero
or core developers in Public and Enterprise projects respectively.
This trend was also observed by Pinto et al. [32].

Why so many heroes? One explanation is that our results may be
incorrect and they are merely a result of the “build effect” reported
by Kocaguneli et al. [22]. In their work with Microsoft code files,
Kocaguneli et al. initially found an effect that seems similar to
heroes. Specifically, in their sample, most of the files were most
often updated by a very small number of developers. It turns out
that those “heroes” were in fact, build engineers who had the low-
level, almost clerical task of running the build scripts and committed
the auto-generated files. If our results were conflated in the same
say then all the results of this paper would be misleading.

We say that our results do not suffer from Kocaguneli build effect,
for two reasons:

• Kocaguneli reported an extremely small number of build engi-
neers (dozens, out of a total population of thousands of engi-
neers). The heroes found in this study are far more frequent
than that.

• As mentioned before, we did remove any pull merge requests
from the commits to remove any extra contributions added to
the hero programmer. This means that the contributions aggre-
gated by many developers would not contribute to a few build
engineers in our sample.

If the build effect does not explain these results, what does? We
think the high frequency of heroes can be explained by the nature of
software development. For example, consider Github OSS projects,
they are often started by a project leader [40] who is responsible for
maintaining and moderating that project. Until the project becomes
popular only the leader would be responsible to make major code
contributions [37]. Once the project has become stable and popular,
the on-going issues/bugs/enhancement fixes are just few lines of
code done by peripheral developers [32]. Note that such a track
record would naturally lead to heroes.

Whatever the reason, the pattern is very clear. The ratio of hero
projects in Figure 1 is so large that it motivates the rest of this paper.

Figure 1: Distribution of Hero and Non Hero projects in Public and Enterprise projects. Note that these hero projects are very
common.

We Don’t Need Another Hero? ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 2: Public projects: Hero and Non Hero projects for different team sizes. The percentages shown within the histogram
bars show that, as team size grows, the ratio of hero project increases.

Figure 3: Enterprise projects: Hero and Non Hero projects for different team sizes. As before, when the team size grows, hero
projects dominate our sample.

Accordingly, we move in to study the impact of heroes on software
quality.

4.2 RQ2: How does team size affect the
prevalence of hero projects?

Figure 2 and 3 show the distribution of Hero and non-hero projects
across different team sizes in Public and Enterprise respectively. The
clear pattern in those results is that as teams grow larger, they are
more dependent on heroes. In fact, for large projects, non-heroes
almost disappear.

That is, contrary to established wisdom in the field [4], what
we see here is most projects make extensive use of heroes. We
conjecture that the benefits of having heroes, where a small group
handles the complex communications seen in large projects, out-
weighs the theoretical drawbacks of heroes.

4.3 RQ3: Are hero projects associated with
better software quality ?

We divide this investigation into two steps: RQ3a and RQ3b. RQ3a
explores the ratio of issues/bugs/enhancements successfully closed.
Next, RQ3b explores the time required to close those issues.

4.3.1 RQ3a: Does having a hero programmer improves the number
of issues, bugs and enhancements being resolved? Figure 4 and 5 show
boxplots of each of metrics reporting the ratio of closed issue, bugs,
and enhancements denoted by Ir _It , Br _Bt and Er _Et respectively.
Note that larger numbers are better.

In these figures, the x-axis separates our Hero and Non-hero
projects (found using the methods of RQ1). On the x-axis, each
label is further labelled with “Rk:1” or “Rk:2” which is the result of a
statistical comparison of the two populations using the Scott-knott
test explained in Section 3.3. Note that in Figure 4 and 5, for the

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, SwedenAmritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran* and Tim Menzies

Figure 4: Public projects: Hero and Non-hero values of Ir _It , Br _Bt and Er _Et (which is the ratio of issue, bug, enhancement
reports being closed over the total issue, bug, enhancement reports created, respectively). Of these distributions, only the
enhancement rates are different between hero and non-hero projects.

Figure 5: Enterprise projects: Hero and Non-hero values of Ir _It , Br _Bt and Er _Et (which is the ratio of issue, bug, enhancement
reports being closed over the total issue, bug, enhancement reports created, respectively). As before, only the enhancement
rates are different between hero and non-hero projects.

issue and bug closed ratios, the two distributions have the same
rank, i.e., “Rk:1”. This means that these populations are statistically
indistinguishable.

On the other hand, the ratio of closing enhancement issues in
Public and Enterprise projects is statistically distinguishable, as
shown by the “Rk:1” and “Rk:2” labels on those plots. Interestingly,
the direction of change is different in Public and Enterprise projects:
• In Public projects, heroes close the fewest enhancement issues;
• But in Enterprise projects, heroes close the most enhancement
issues;

• Further, in Enterprise projects, the variance in the percentage of
closed enhancements is much smaller with heroes than other-
wise. That is, heroes in Enterprise development result in more
control of that project.

Hence, while we should depreciate hero projects for open source
projects, we should encourage them for Enterprise projects. Note
that this is very much the opposite of conventional wisdom [4].
That said, our reading of the literature is that heroes have been
studied much more in OSS projects than in proprietary Enterprise
projects. Hence, this finding (that proprietary Enterprise projects
benefit from heroes) might have existed undetected for some time.

4.3.2 RQ3b: Does having a hero programmer improves the time to
resolve issues, bugs and enhancements? Figure 6 and 7 show boxplots

of reporting the time required to close issues, bugs, and enhance-
ments denoted by IRt , BRt and ERt respectively. Note that for these
figures, smaller numbers are better.

Like before, the x-labels are marked with the results of a statisti-
cal comparison of these pairs of distributions. Note that all these
statistical ranks are “Rk:1”, i.e., all these pairs of distributions are
statistically indistinguishable. That is, there is no effect to report
here about effect of heroes or non-heroes on the time required to
close issues, bugs and enhancements.

5 DISCUSSION
What’s old is new. Our results (that heroes are important) echo a
decades old concept. In 1975, Fred Brooks wrote of “surgical teams”
and the “chief programmer” [8]. He argued that:

• Much as a surgical team during surgery is led by one surgeon
performing the most critical work, while directing the team to
assist with less critical parts,

• Similarly, software projects should be led by one “chief program-
mer” to develop critical system components while the rest of a
team provides what is needed at the right time.

Brooks conjecture that “good” programmers are generally five to ten
times as productive as mediocre ones. We note that our definition
of “hereos” (80% of the work done by 20% of the developers) is

We Don’t Need Another Hero? ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 6: Public projects: Hero and Non-hero values of IRt , BRt and ERt (which is the median time taken to resolve issue, bugs,
enhancement reports respectively). Y-axis shown is in hours.

Figure 7: Enterprise projects: Hero and Non-hero values of IRt , BRt and ERt (which is the median time taken to resolve issue,
bugs, enhancement reports respectively). Y-axis shown is in hours.

consistent with the Brooks’s conjecture that heroes are five times
more productive than the other team members.

Prior to this research, we had thought that in the era of open
source and agile, all such notions of “chief programmers” and
“heroes” were historical relics, and that development teams would
now be distributing the workload across the whole project.

But based on the results of this paper, we have a different view.
Projects are written by people of various levels of skills. Some of
those people are so skilled that they become the project heroes. Or-
ganizations need to acknowledge their dependency on such heroes,
perhaps altering their human resource policies. Specifically, organi-
zations need to recruit and retain more heroes (perhaps by offering
heroes larger annual bonuses).

6 THREATS TO VALIDITY
As with any large scale empirical study, biases can affect the final
results. Therefore, any conclusions made from this work must be
considered with the following issues in mind:

• Internal Validity
– Sampling Bias: Our conclusions are based on the 1,108+538
Public+Enterprise Github projects that started this analysis.
It is possible that different initial projects would have lead
to different conclusions. That said, our initial sample is very
large so we have some confidence that this sample represents
an interesting range of projects. As evidence of that, we note

that our sampling bias is less pronounced than other Github
studies since we explored both Public and Enterprise projects
(and many prior studies only explored Public projects.

– Evaluation Bias: In RQ3b, we said that there is no difference
between heroes or non-heroes on the time required to close
issues, bugs and enhancements. While that statement is true,
that conclusion is scoped by the evaluationmetrics we used to
write this paper. It is possible that, using other measurements,
there may well be a difference in these different kinds of
projects. This is a matter that needs to be explored in future
research.

• Construct Validity: At various places in this report, we made
engineering decisions about (e.g.) team size and what consti-
tutes a “hero” project. While those decisions were made using
advice from the literature (e.g. [14]), we acknowledge that other
constructs might lead to different conclusions.

• External Validity: We have relied on issues marked as a ‘bug’
or ‘enhancement’ to count bugs or enhancements, and bug or
enhancement resolution times. In Github, a bug or enhancement
might not be marked in an issue but in commits. There is also a
possibility that the team of that project might be using different
tag identifiers for bugs and enhancements. To reduce the impact
of this problem, we did take precautionary step to (e.g.,) include
various tag identifiers from Cabot et al. [9]. We also took pre-
caution to remove any pull merge requests from the commits to
remove any extra contributions added to the hero programmer.

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, SwedenAmritanshu Agrawal, Akond Rahman, Rahul Krishna, Alexander Sobran* and Tim Menzies

• Statistical Validity: To increase the validity of our results, we
applied two statistical tests, bootstrap and the a12. Hence, any-
time in this paper we reported that “X was different from Y”
then that report was based on both an effect size and a statistical
significance test.

7 CONCLUSION
The established wisdom in the literature is to depreciate “heroes”,
i.e., a small percentage of the staff responsible for most of the
progress on a project. After mining 661 Public and 171 Enterprise
Github projects, we assert that it is time to revise that wisdom:
• Overwhelmingly, most projects are hero projects, particularly
when we look at medium to large projects. That is, discussions
about the merits of avoiding heroes is really relevant only to
smaller projects.

• Heroes do not significantly affect the rate at which issues or
bugs are closed.

• Nor do they influence the time required to address issues, bugs
or enhancements.

• Heroes positively influence the rate at which enhancement re-
quests are managed within Enterprise project.

The only place where our results agree with established wisdom
is for the enhancement rates for non-hero Public projects. In this
particular case, we saw that non-hero projects are enhanced fastest.
That said, given the first point listed above, that benefit for non-hero
projects is very rare.

In summary, our empirical results call for a revision of a long-
held truism in software engineering. Software heroes are far more
common and valuable than suggested by the literature, particularly
for medium to large Enterprise developments. Organizations should
reflect on better ways to find and retain more of these heroes.

8 ACKNOWLEDGEMENTS
The first and second authors conducted this research study as part
of their internship at the industry in Summer, 2017. We also ex-
press our gratitude to our industrial partner for providing us the
opportunity to mine hundreds of their Enterprise projects. Also,
special thanks to our colleagues and mentors at the industry for
their valuable feedback.

REFERENCES
[1] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical tests

to assess randomized algorithms in software engineering. In Software Engineering
(ICSE), 2011 33rd International Conference on. IEEE, 1–10.

[2] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. 2014.
Test code quality and its relation to issue handling performance. IEEE Transactions
on Software Engineering 40, 11 (2014), 1100–1125.

[3] James Bach. 1995. Enough about process: what we need are heroes. IEEE Software
12, 2 (1995), 96–98.

[4] Norman Bier, Marsha Lovett, and Robert Seacord. 2011. An online learning
approach to information systems security education. In Proceedings of the 15th
Colloquium for Information Systems Security Education.

[5] Christian Bird, Peter C Rigby, Earl T Barr, David J Hamilton, Daniel M German,
and Prem Devanbu. 2009. The promises and perils of mining git. In Mining
Software Repositories, 2009. MSR’09. 6th IEEE International Working Conference on.
IEEE, 1–10.

[6] Tegawendé F Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillere, Jacques
Klein, and Yves Le Traon. 2013. Got issues? who cares about it? a large scale
investigation of issue trackers from github. In Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium on. IEEE, 188–197.

[7] Barry Boehm. 2006. A view of 20th and 21st century software engineering. In
Proceedings of the 28th international conference on Software engineering. ACM,
12–29.

[8] Frederick P Brooks Jr. 1975. The Mythical Man-Month: Essays on Software Engi-
neering, Anniversary Edition, 1/E. Pearson Education India.

[9] Jordi Cabot, Javier Luis Cánovas Izquierdo, Valerio Cosentino, and Belén Rolandi.
2015. Exploring the use of labels to categorize issues in open-source software
projects. In Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE
22nd International Conference on. IEEE, 550–554.

[10] Valerio Cosentino, Javier L Cánovas Izquierdo, and Jordi Cabot. 2017. A System-
atic Mapping Study of Software Development With GitHub. IEEE Access 5 (2017),
7173–7192.

[11] Charmayne Cullom and Richard Cullom. 2006. Software Development: Cowboy
or Samurai. Communications of the IIMA 6, 2 (2006), 1.

[12] Luiz Felipe Dias, Igor Steinmacher, Gustavo Pinto, Daniel Alencar da Costa, and
Marco Gerosa. 2016. How Does the Shift to GitHub Impact Project Collaboration?.
In SoftwareMaintenance and Evolution (ICSME), 2016 IEEE International Conference
on. IEEE, 473–477.

[13] Bradley Efron and Robert J Tibshirani. 1994. An introduction to the bootstrap.
Chapman and Hall, London.

[14] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. 2017. An empirical
study of activity, popularity, size, testing, and stability in continuous integration.
In Proceedings of the 14th International Conference on Mining Software Repositories.
IEEE Press, 495–498.

[15] Baljinder Ghotra, Shane McIntosh, and Ahmed E Hassan. 2015. Revisiting the im-
pact of classification techniques on the performance of defect prediction models.
In 37th ICSE-Volume 1. IEEE Press, 789–800.

[16] Github. 2017. Github Showcases. https://github.com/showcases. (2017). [Online;
accessed 13-October-2017].

[17] Mathieu Goeminne and Tom Mens. 2011. Evidence for the pareto principle in
open source software activity. In the Joint Porceedings of the 1st International
workshop on Model Driven Software Maintenance and 5th International Workshop
on Software Quality and Maintainability. 74–82.

[18] Monika Gupta, Ashish Sureka, and Srinivas Padmanabhuni. 2014. Process mining
multiple repositories for software defect resolution from control and organi-
zational perspective. In Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 122–131.

[19] Gregory W Hislop, Michael J Lutz, J Fernando Naveda, W Michael McCracken,
Nancy R Mead, and Laurie A Williams. 2002. Integrating agile practices into
software engineering courses. Computer science education 12, 3 (2002), 169–185.

[20] Oskar Jarczyk, Błażej Gruszka, Szymon Jaroszewicz, Leszek Bukowski, and Adam
Wierzbicki. 2014. Github projects. quality analysis of open-source software. In
International Conference on Social Informatics. Springer, 80–94.

[21] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining github. In
Proceedings of the 11th working conference on mining software repositories. ACM,
92–101.

[22] E. Kocaguneli, T. Zimmermann, C. Bird, N. Nagappan, and T. Menzies. 2013.
Distributed development considered harmful?. In 2013 35th International Confer-
ence on Software Engineering (ICSE). 882–890. https://doi.org/10.1109/ICSE.2013.
6606637

[23] Sandeep Krishnamurthy. 2002. Cave or community?: An empirical examination
of 100 mature open source projects. (2002).

[24] M Rocío Martínez-Torres and María del Carmen Diaz-Fernandez. 2014. Current
issues and research trends on open-source software communities. Technology
Analysis & Strategic Management 26, 1 (2014), 55–68.

[25] Nikolaos Mittas and Lefteris Angelis. 2013. Ranking and clustering software cost
estimation models through a multiple comparisons algorithm. IEEE Transactions
on software engineering 39, 4 (2013), 537–551.

[26] Audris Mockus, Roy T Fielding, and James D Herbsleb. 2002. Two case studies of
open source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11, 3 (2002), 309–346.

[27] ABM Moniruzzaman and Dr Syed Akhter Hossain. 2013. Comparative study
on agile software development methodologies. arXiv preprint arXiv:1307.3356
(2013).

[28] Stefan Morcov. 2012. Complex IT Projects in Education: The Challenge. Interna-
tional Journal of Computer Science Research and Application 2 (2012), 115–125.

[29] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineering
(2017), 1–35. https://doi.org/10.1007/s10664-017-9512-6

[30] Rohan Padhye, Senthil Mani, and Vibha Singhal Sinha. 2014. A study of external
community contribution to open-source projects on GitHub. In Proceedings of
the 11th Working Conference on Mining Software Repositories. ACM, 332–335.

[31] Kevin Peterson. 2013. The github open source development process. Technical
Report. Technical report, Technical report, Mayo Clinic.

[32] Gustavo Pinto, Igor Steinmacher, and Marco Aurélio Gerosa. 2016. More common
than you think: An in-depth study of casual contributors. In Software Analysis,
Evolution, and Reengineering (SANER), 2016 IEEE 23rd International Conference
on, Vol. 1. IEEE, 112–123.

https://github.com/showcases
https://doi.org/10.1109/ICSE.2013.6606637
https://doi.org/10.1109/ICSE.2013.6606637
https://doi.org/10.1007/s10664-017-9512-6

We Don’t Need Another Hero? ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

[33] Ayushi Rastogi, Nachiappan Nagappan, and Pankaj Jalote. 2017. Empirical analy-
ses of software contributor productivity. Ph.D. Dissertation. IIIT-Delhi.

[34] Arturo Reyes López. 2017. Analyzing GitHub as a Collaborative Software Devel-
opment Platform: A Systematic Review. (2017).

[35] Gregorio Robles, Jesus M Gonzalez-Barahona, and Israel Herraiz. 2009. Evolution
of the core team of developers in libre software projects. In Mining Software
Repositories, 2009. MSR’09. 6th IEEE International Working Conference on. IEEE,
167–170.

[36] MR Martinez Torres, SL Toral, M Perales, and F Barrero. 2011. Analysis of the
core team role in open source communities. In Complex, Intelligent and Software
Intensive Systems (CISIS), 2011 International Conference on. IEEE, 109–114.

[37] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In Proceedings of the 36th

international conference on Software engineering. ACM, 356–366.
[38] Trevor Wood-Harper and Bob Wood. 2005. Multiview as social informatics in

action: past, present and future. Information Technology & People 18, 1 (2005),
26–32.

[39] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, Ahmed E Hassan, and
Naoyasu Ubayashi. 2015. Revisiting the applicability of the pareto principle to
core development teams in open source software projects. In Proceedings of the
14th International Workshop on Principles of Software Evolution. ACM, 46–55.

[40] Yunwen Ye and Kouichi Kishida. 2003. Toward an understanding of the motiva-
tion Open Source Software developers. In Proceedings of the 25th international
conference on software engineering. IEEE Computer Society, 419–429.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Project Roles
	2.2 Related Work

	3 Data and Experimentation
	3.1 Data
	3.2 Metric Extraction
	3.3 Statistical Tests

	4 Results
	4.1 RQ1: How common are heroes?
	4.2 RQ2: How does team size affect the prevalence of hero projects?
	4.3 RQ3: Are hero projects associated with better software quality ?

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	8 Acknowledgements
	References

