
SmartUnit: Empirical Evaluations for Automated Unit Testing of
Embedded Software in Industry

Chengyu Zhang1, Yichen Yan1, Hanru Zhou1, Yinbo Yao2
Ke Wu2, Ting Su3∗, Weikai Miao1∗, Geguang Pu1∗

1School of Computer Science and Software Engineering, East China Normal University, China
2National Trusted Embedded Software Engineering Technology Research Center, China

3School of Computer Science and Engineering, Nanyang Technological University, Singapore
dale.chengyu.zhang@gmail.com,sei_yichen@outlook.com,hanruzh@gmail.com,snowingsea@gmail.com

bukawu@126.com,suting@ntu.edu.sg,wkmiao@sei.ecnu.edu.cn,ggpu@sei.ecnu.edu.cn

ABSTRACT
In this paper, we aim at the automated unit coverage-based testing
for embedded software. To achieve the goal, by analyzing the in-
dustrial requirements and our previous work on automated unit
testing tool CAUT, we rebuild a new tool, SmartUnit, to solve the
engineering requirements that take place in our partner companies.
SmartUnit is a dynamic symbolic execution implementation, which
supports statement, branch, boundary value and MC/DC coverage.

SmartUnit has been used to test more than one million lines of
code in real projects. For confidentiality motives, we select three
in-house real projects for the empirical evaluations. We also carry
out our evaluations on two open source database projects, SQLite
and PostgreSQL, to test the scalability of our tool since the scale of
the embedded software project is mostly not large, 5K-50K lines of
code on average. From our experimental results, in general, more
than 90% of functions in commercial embedded software achieve
100% statement, branch and MC/DC coverage, more than 80% of
functions in SQLite and more than 60% of functions in PostgreSQL
achieve 100% statement and branch coverage. Moreover, SmartUnit
is able to find the runtime exceptions at the unit testing level. We
also have reported exceptions like array index out of bounds and
divided-by-zero in SQLite. Furthermore, we analyze the reasons
of low coverage in automated unit testing in our setting and give
a survey on the situation of manual unit testing with respect to
automated unit testing in industry.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Dynamic analysis; Empirical software validation;

KEYWORDS
Dynamic Symbolic Execution, Automated Unit Testing, Embedded
System
∗Geguang Pu, Weikai Miao and Ting Su are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5659-6/18/05. . . $15.00
https://doi.org/10.1145/3183519.3183554

ACM Reference Format:
Chengyu Zhang, Yichen Yan, Hanru Zhou, Yinbo Yao, Ke Wu, Ting Su,
Weikai Miao, Geguang Pu. 2018. SmartUnit: Empirical Evaluations for Au-
tomated Unit Testing of Embedded Software in Industry. In Proceedings of
40th International Conference on Software Engineering: Software Engineer-
ing in Practice Track (ICSE-SEIP ’18). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3183519.3183554

1 INTRODUCTION
Embedded software widely exists in various control systems, which
is mostly specialized for the particular hardware it runs on and
have different constraints, like time or memory. Manufacturers
have broadly developed all sorts of embedded software in the elec-
tronics, e.g. cellphones, robots, digital TV etc. . Moreover, most of
the equipments in industrial infrastructure extensively use embed-
ded software, for instance, control systems in cars, trains, power
plants, satellites, and so on. Thus, how to ensure the reliability and
dependability of embedded software is an ongoing challenge for
the safety-critical embedded systems.

Software testing is one of the most common ways to ensure
the software quality. Many developers and researchers concentrate
on how to improve the effectiveness and efficiency of the testing
methods to achieve higher coverage and find more faults. Unit
testing is an important step to ensure the software quality during the
stage of software development [3, 28]. For example, 79% ofMicrosoft
developers use unit testing in their daily work [41]. Meanwhile,
unit testing is a mandatory task required in various international
standards for different industrial systems, e.g. , IEC 61508, ISO26262,
RTCA DO-178B/C etc. . For instance, IEC61508, which is intended
to be designed as a basic functional safety standard applicable to all
kinds of industry specifications, such as Safety Integrity Level (SIL),
to provide a target to attain with respect to a system’s development.
If the software is up to level SIL 3/SIL4, both branch and MC/DC
coverages have to be achieved to 100% during the unit testing stage.
If not achieved, engineers are required to explore the software codes
and find the reasons.

In general, the main objective in unit testing is twofold. One is
to verify that the functionality is correct at the function level and
the other is to ensure the function is fully tested and all possible
branches and paths are taken. We call the former functionality test-
ing and the latter coverage-based testing. Functionality testing is
carried out in almost every software company as the basic quality
assurance means. Software engineers design the test cases manually
in regards to the software design specification and then run the

ar
X

iv
:1

80
2.

08
54

7v
2

 [
cs

.S
E

]
 1

7
Ju

n
20

18

https://doi.org/10.1145/3183519.3183554
https://doi.org/10.1145/3183519.3183554

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, G. Pu

test cases to check the final results by specification or assertion.
For coverage-based testing, software engineers may go through
the codes and compute the conditions on branches/paths to obtain
the test cases. During those activities, they usually utilize the com-
mercial unit testing tools like Testbed1, VectorCAST2 etc. , to help
them accelerate the task of test data design. Whatever functionality
testing or coverage-based testing is involved, the work of test data
design almost depends on manpower, which is a tedious job for
software engineers.

In this paper, we aim at the unit coverage-based testing, and we
believe that with the great advance achieved in the field of auto-
mated testing [1, 13, 32], especially in symbolic execution [7, 16, 31,
35] and decision procedure [4], we are capable of fully automatiz-
ing coverage-based testing in order to largely save manpower. To
achieve this goal, firstly, we have elaborately investigated the real
unit testing requirements from selected ten partner companies in
China Mainland, covering main safety-critical fields like railway,
aerospace, nuclear plant, and automobile. Secondly, by analyzing
the collected requirements and based on our previous work on
automated unit testing tool CAUT [33, 35, 36], we rebuild a new
tool, SmartUnit, to meet the real engineering requirements that take
place in those companies.

We observed that most of the companies bought kinds of com-
mercial unit testing tools like Testbed or Tessy3, which can support
different chip platforms. They totally design test data by hand. In
these ten companies, no one has used the automated testing tool
in their production departments, but two of them have tried test
data generation tools. The main reason for not adopting them is
that existing commercial automated testing tools have achieved
very low coverage but large test suites, since most of the existing
tools are based on the random testing technology or simple branch
analysis while ignoring the path analysis. We will discuss this more
in section 5. For the tools from academia, like KLEE [7] or Otter [23]
are far from mature in industry. In a word, it is quite surprising that
NONE of the visited ten companies has adopted tools to help test
data design, they still use the most traditional approach, manpower,
to test the design for the safety-critical systems while the symbolic
execution technique has already achieved great success in other
fields like security and verification.

SmartUnit still follows the principle of symbolic execution ap-
proach [21] but has its novelty in the following points especially in
the aspect of practice engineering.

(1) It is a dynamic symbolic execution (DSE) implementation.
Based on the experience of developing CAUT [35], we elabo-
rately design the execution engine of SmartUnit and make it
robust enough since, in practice, an embedded project involv-
ing 20K lines of code on average cannot stop abnormally. We
also design a new heuristic search strategy for speeding up
automated unit testing, which supports statement, branch,
boundary value, and MC/DC coverage.

(2) It can generate all the stubs automatically. One tedious work
for unit testing is to design stubs to replace the existing
function calls or global variables etc., the same in using

1http://ldra.com/industrial-energy/products/ldra-testbed-tbvision/
2https://www.vectorcast.com/
3https://www.razorcat.com/en/product-tessy.html

commercial tools as well. SmartUnit makes it simpler. It
also provides the options to leave the decisions for software
engineers in case of adapting different application scenes.

(3) It is deployed as a private cloud-platform. Since the symbolic
execution engine consumes computing resources heavily,
it is designed as a private cloud-platform for internal use.
Users only need to update the software project package by
the web browser to the server, which will make the whole
analysis automatically including stubs generation, symbolic
execution, test data report generation etc. .

(4) It can be seamlessly integrated into the existent development
environment, especially connecting to these commercial unit
testing tools. Developers get used to the tools at hand, so
one of the design philosophies for SmartUnit is to make the
existent testing process as short as possible. To this end,
SmartUnit can generate the test data input files for commer-
cial tools like Testbed and Tessy. Once the test data suite
is generated, it can be used by users directly in their unit
testing tool at hand.

SmartUnit has been successfully applied in our four partner com-
panies at the first stage from May to September 2017. For instance,
our partners include China Academy of Space Technology, which is
the main spacecraft production agency in China (like NASA in the
United States); CASCO Signal Ltd., which is the best railway signal
corporation in China; and Guangzhou Automobile Group, which is
one of biggest car manufacturers in China.

SmartUnit has been used to test over one million lines of code in
real projects. For confidentiality motives, we select three in-house
projects for the empirical evaluations, but we still cannot present
the code example for the same reason. Thus, we carry out our
evaluations on two open source database projects SQLite and Post-
greSQL. We did not select open-source embedded software because
we would like to test the scalability of our tool since the scale of the
embedded software project is mostly not large, around 5K-50K lines
of code. On the other hand, database projects are more complex
than embedded software. From our experimental results, in gen-
eral, more than 90% of functions in commercial embedded software
achieve 100% statement, branch and MC/DC coverage, more than
80% of functions in SQLite and more than 60% of functions in Post-
greSQL achieve 100% statement and branch coverage. Moreover,
SmartUnit has the ability to find the runtime exceptions at the unit
testing level. We have also reported exceptions like array index out
of bounds and divided-by-zero in SQLite.

The organization of the paper is as follows. Section 2 intro-
duces the background of our tools and techniques, Section 3 shows
the overview and the implementation details of our DSE-based
C program unit test generation framework and its private cloud-
platform, Sections 4 and 5 set up our evaluation and analyze the
results, Section 6 discusses some related work, and Section 7 gives
the conclusion.

2 BACKGROUND
2.1 Industry Situation
Unit testing is an important engineering activity to ensure the
quality of software in industry, especially for the manufacturers
of safety-critical systems, e.g. , the aerospace and railway signal

SmartUnit: Empirical Evaluations for Automated Unit Testing
of Embedded Software in Industry ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

1 int checkSign(int x){

2 if (x > 0)

3 return 1;

4 else if (x == 0)

5 return 0;

6 else
7 return -1;

8 }

1: input x

2: x > 0

3: return 1 4: x == 0

5: return 0 7: return -1

T F

T F

Figure 1: An example: checkSign function.

control companies. Although unit testing is a compulsory engineer-
ing activity requested by the standards, its application in industry
is still suffering from low coverage and low efficiency due to the
lack of automated tool. In most cases, test cases are first manually
generated by engineers and then executed on the program code
by some commercial third-party tools (e.g. Testbed, Tessy) to run
the program code. Since manual test generation is time-consuming,
the companies usually spend a lot of costs to employ test engineers
or outsource in producing the test case. According to our indus-
trial partners’ experience, a trained test engineer can produce test
case for 5-8 functions per day. One of our industrial partner spend
over $10,000 per month for hiring a group of unit testing engineers
while still suffers from the low efficiency and low fault detection.
To tackle these challenges, a powerful tool that can automatically
derive test cases of high coverage is highly desirable. Further, such
a tool needs to be seamlessly integrated with mainstream third-
party test execution tools. That is, the generated test data can be
recognized by these tools to perform testing. It is inefficient and
expensive, so they need efficient automatic tools to generate the
test case for third-party tools.

2.2 Dynamic Symbolic Execution
Symbolic executionwas first proposed by James C. King [21] in 1976.
Due to the limited computing resource and SMT constraint solver,
symbolic execution was not a practical technique in those years.
Thanks to the recent computing resource improvement and a series
of fantastic SMT solvers, such as Z3 [11], STP [8, 14], CVC4 [5],
etc. , many symbolic execution engines have come into existence [9]
(e.g. KLEE [7, 8], DART [16], CAUT [35] for C, JPF-SE [2] for Java).
Researchers have also applied symbolic execution to software test-
ing, including automatically generating test cases [22, 35].

Symbolic execution uses symbolic values as programs inputs to
simulate the execution of programs. When dealing with a control-
flow fork, symbolic execution engine collects the conditional ex-
pressions along the path as path constraint. When reaching the
terminal of the program, SMT solver solves all the path constraint
to get a result. The result is a test case that follows the path. The
symbolic execution stops when all program paths are explored.

Dynamic Symbolic Executive (DSE) is a variant symbolic exe-
cution, which was proposed in 2005 [16, 31], also called Concolic
Execution. DSE uses concrete randomly generated values as input
to execute the program while collecting path constraints during

1

2

3

1

2

3 4

5 7

1

2

3 4

7

T F

F

F

T

step: 1 step: 2

step: 3

Randomly generated input: 11

Conjunction constraint: x<=0

New input: -7

Conjunction constraint: x<=0 & x==0

New input: 0

Conjunction constraint: none

New input: none

New input: -7

New input: 0

Figure 2: Process of dynamic symbolic execution.

the execution. Then SMT solver solves a variant of the conjunction
of these symbolic constraints to output a new input value. The new
input value will be used to execute a new program path.

Figure 1 is an illustrative example to explain the symbolic execu-
tion. The code is a function named checkSign for checking signals,
with its control-flow graph. If the input variable x is a positive
number, the function returns value 1; if x is a negative number,
the function returns value -1; otherwise 0;. The right side part of
Figure 1 is the control-flow graph of the function.

Figure 2 describes the process of adopting the DSE. The goal
is to cover line 7. DSE engine first randomly generates an input
value, e.g. 11. Using this input value, the program reaches line 3.
Then DSE engine negates the constraint collected from line 2 to
solve a new input value, e.g. -7. Therefore the statement of line
7 is triggered. The DSE engine further negates the conjunction
constraint collected from line 2 and line 4, generating another new
input value, e.g. 0. Ultimately DSE engine can use value 0 as input
to reach the statement of line 5.

Recently, a variety of DSE-based tools have been proposed [6–
8, 16, 18, 24, 31, 38]. There are still some challenges for the DSE,
e.g. exponential growth paths, symbolic pointer, guided execution,
etc. . Section 3 will describe the implementation of our SmartUnit
DSE-based engine and explain how these problems are solved.

2.3 Coverage Criteria
SmartUnit is a coverage-driven unit testing tool. One of its major
goals is to generate the test suite towards a high coverage of code.
In this subsection, we will introduce some commonly used coverage
criteria in the industry.

2.3.1 Statement Coverage. Statement coverage requires all the
statements in the program code under test be executed at least once
by the test cases. Such coverage is easy to measure and the 100%
statement coverage is also easy to achieve. Statement coverage is
the most common used coverage criterion. For example, we can use
it to detect the statements that are never executed. Since a large
number of faults may not be detected by the criterion, it is usually
not used alone.

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, G. Pu

.c

.h
Parser

CFG (graph, expression)

AST

Memory modelSearcher Executor

CFG

Constraint solver

Constraint Expression

Test cases

Executor Module

Figure 3: The architecture of SmartUnit.

2.3.2 Branch Coverage. Branch coverage is a stronger coverage
criterion than statement coverage [45]. It needs to confirm all of
the possible branches from each decision are executed at least once.
The branch coverage is also easy to achieve the 100% coverage.

2.3.3 MC/DC coverage. MC/DC is the abbreviation of Modified
Condition/Decision Coverage. It is a stronger coverage criterion
than the branch coverage. In general, each decision is an atomic
condition or combined with more than one atomic condition. When
test cases satisfy each decision with value true and false, it obvi-
ously achieves branch coverage. However, MC/DC coverage further
demands that test cases satisfying an atomic condition should affect
decision independently with truth-value true and false, it is called
Modified Condition/Decision Coverage. In practice, MC/DC-based
unit test is usually difficult for the test engineer to write manually
because of the complex logic in decision condition. But MC/DC
coverage criterion is required in a variety of industrial standards.
Therefore, test engineers always spend a huge amount of costs and
time in designing the MC/DC test cases manually.

3 FRAMEWORK IMPLEMENTATION
3.1 Framework Architecture
Figure 3 shows the core framework of SmartUnit. The basic process
of generating test cases in our approach is as follows:

SmartUnit accepts the .c and .h files as its input. To deal with
macros and make sure some external symbols can be introduced
into the source file, we use libclang4 as preprocessor to generate
processed .c file. Then libclang is also used to parse the processed
file to generate the AST (abstract syntax tree).

We establish the CFG (Control Flow Graph) model based on the
abstract syntax tree generated in the previous step. It consists of
the control flow graphs generated from the proceeded files and the
information of variables, expressions, functions etc. . Each node in
the control flow graph represents a statement block in the source
code. The sequential node contains exactly one incoming edge and
one outgoing edge. The branch node contains one incoming edge

4http://clang.llvm.org/doxygen/group__CINDEX.html

and more than one outgoing edge and indicates the condition of
the branch. The branch node usually represents if-else statement,
while statement and switch statement etc. .

3.2 Executor Module
Executor module consists of the memory model, executor, and
searcher. This part mainly processes the CFG model given by the
previous steps.

3.2.1 Executor. Executor executes the statement expressions
in the current node and drives the searcher to select next edge to
explore. The executor does not really execute the C statements, it
actually transforms the C statement into blocks, declarations or ex-
pressions structures that are stored inside SmartUnit. The executor
updates information in the CFG model and adds the constraints to
a path, after gathering them from the node statement. When the
executor reaches the end node, it collects all the constraints on the
path, and solves them by the constraint solver such as Z3.

3.2.2 Searcher and Search Strategy. To perform the search on
control flow graph, we propose a new search strategy, named flood-
search policy. Algorithm 1 describes the search algorithm. In our
CFG model, each node in the model represents a basic statement
block. The branch edges of the branch node record the branch
condition and their truth values. If the input is G(edges, nodes)
which is a CFG model. There are two execution state lists, open and
close list. At the beginning, the algorithm starts with the initialized
node into the open list, while the close list is empty. Then the
algorithm executes the execution states in the open list in order.
For each execution state, the algorithm will execute the shortest
way from the current executed node to the exit node, and make
sure the constraints in this path will be collected. In order to cover
all branch edges in the graph, flood-search policy forks a copy of
current execution state when it meets a fork, and adds the new
execution state to the list corresponding to open or close. If all
the succeeding nodes of a execution state have been visited, the
execution state will be added to the close list. Comparing with other
search algorithms such as breadth-first search (BFS) and depth-first
search (DFS), flood-search is more suitable for dynamic symbolic
execution, since flood-search in order to trigger the unvisited edges
and nodes as quick as possible, meanwhile, BFS or DFS may fall in
the loops.

3.2.3 Memory model. The memory model is the key module to
track execution states and gather constraints, by simulating whole
memory allocation. Basically, memory model stores all variables of
basic types, such as int, char, including their names and values.
Dealing with complex types, such as pointers, is a challenge for
analysis tools. Our solution is below. For the array of basic types,
in addition to memory space needed by the variable in the array,
the total size of the array will also be stored, to perform plus/minus
on pointers, and check if the pointer is out of memory bound. Fur-
thermore, to deal with the member of struct, union or enum, the
total data structure and the start location in memory are recorded
to locate the variable by start location and the memory offset.

SmartUnit: Empirical Evaluations for Automated Unit Testing
of Embedded Software in Industry ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Algorithm 1: Flood-search for Control Flow Graph
Input: G(edдes, nodes): a control flow graph

1 open← {State(Root(G))}, close ← {}
2 repeat
3 SearchShortestToExit(Pop(open));
4 if open.size = 0 then
5 Discharge();

6 until open.size = 0

7 Procedure SearchShortestToExit(State s)
8 if s is on the end node of the graph then
9 return

10 next_state ← Next(s);
11 if s has unvisited edge then
12 open ← open ∪ {s }
13 else if s has visited edge then
14 close ← close ∪ {s }
15 else
16 close ← close ∪ {s }
17 return

18 SearchShortestToExit(next_state);
19

20 Procedure Discharge()
21 repeat
22 open← open ∪ {Next(Pop(close))}
23 until close .size = 0

Web UI

Server

Operation

Master &

File System

MongoDB

Redis

Upload archive

Worker

Fork Test case

Communication

Return test case

SmartUnitCore

Figure 4: The workflow of the cloud-based platform.

3.3 Cloud-based Testing Service
The SmartUnit service contains all the other features, including
web frontend UI, backend master process for handling web requests,
worker process for performing analysis actions, database module
for storing test results. The SmartUnit system architecture diagram
is shown in Figure 4. The Web UI is designed to manage projects
to be tested and get the results. The project under test needs to
be uploaded to the server after archived, and will be passed to
master process for further operations. The master process extracts
the uploaded archive, creates a record in the database, and forks a

worker process to call SmartUnit analysis engine (see Figure 3) to
generate test cases for the project.

After SmartUnit finishes its analysis, worker process updates the
status and saves generated test cases in the database. The status of
Web UI is also updated, and then users could download test cases
in specific formats, for example, .tcf format (for Testbed). When
the master process receives a request for a specific test case, it will
check if the test case is already prepared. If not, master process will
generate a test case file according to test case data in the database
and the required file format. When finished, the test case is returned
to the Web UI, and could be downloaded.

3.4 Challenges and Solutions
3.4.1 Pointer. The symbolizing of the pointer variable is a chal-

lenge, because the pointer operations need to access the real value
of the pointer and the variable that pointer points to. The real value
of the pointer is hard to access as it is regarded as a symbolic value
that means we must maintain a pointer array of pointer owner to
execute a pointer operation, and the length of this array may be
infinite because the pointer execution could be arbitrary. SmartU-
nit can support pointer operations, while a pointer memory must
include the array memory of its owner which the pointer belongs
to, the offset to address the position of the pointer, and some other
marks such as null pointer mark. For the array of basic types, in
addition to memory space needed by the variable in the array, the
size of array will also be stored, to perform plus/minus operations
on pointers, and check if pointer is out of memory bound.

3.4.2 void*. In most embedded C programs, (void*) is a special
data type treated as a type thatmeans nothing and used to transform
datawithout data type. InMemorymodel, each pointer typed (void*)
will be stored with its original type. SmartUnit implements this
by maintaining a void memory type and saves the alias of the
memory in it. When executor comes to the (void*), it will create
a voidmemory type, and record its type information to the aliased
memory of the voidmemory. It will update the aliased memory
when executing to the assignment of void*, and look up to its alias
memory rather than voidmemory itself, so that we can get the type
and memory information of the void* type.

3.4.3 Complex data structure. Complex data structures like struct,
union or enum type are hard to handle, for they do not have a fixed
length. To deal with the members of the struct, union or enum
type, the total data structure and the start location in memory are
needed to locate the variable by start location and the memory off-
set. For a struct memory, the difficulty is to do operations related
to the index. Thus, in addition to storing all variable declaration,
the start and end memory location and relation between previous
and next memory block are also needed to be stored.

4 EVALUATION SETUP
4.1 Research Questions
To evaluate our system, SmartUnit, we set up some research ques-
tions to guide our evaluation. The research questions are described
as follows:
• RQ1: How about the performance of automated unit test gen-
eration framework, SmartUnit, on both commercial embedded

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, G. Pu

Table 1: Subjects of Evaluation Benchmark Repository.

Subject # Files # Functions # LOC
aerospace software 8 54 3,769
automotive software 4 330 31,760

subway signal software 108 874 37,506
SQLite 2 2046 126,691

PostgreSQL 906 6105 279,809
Total 1028 9,409 479,535

software and open-source database software? We use statement
coverage, branch coverage, and MC/DC as evaluation indicators.
• RQ2: What factors make dynamic symbolic execution get low
coverage?
• RQ3: Can SmartUnit find the potential runtime exceptions in
real-world software?
• RQ4: What is the difference in terms of time, cost and quality
between automatically generated test cases and manually written
test cases?
We package the code under test and submit them to the SmartU-

nit cloud platform. SmartUnit can start dynamic symbolic execution
automatically. After the execution, a series of packaged .tcf files
(the test cases for Testbed) for the codes can be downloaded from
the platform. We import the test cases into Testbed to get the cov-
erage and detect the runtime error. Testbed will generate a detailed
testing report after running the generated unit test cases. Statement,
branch and MC/DC coverage and runtime errors (e.g. divided-by-
zero, array index out of boundary) are provided by the report.

The statement, branch and MC/DC coverage of each function
will be recorded as the performance indicator for RQ1. We turn
our attention to the functions which get low coverage in the three
coverage criteria above, to answer RQ2. The runtime errors will be
classified into a several of categories, so that we can obtain some
insights from them, in RQ3. We will select some representative
codes to answer RQ4.

4.2 Benchmark
This paper selects two kinds of C program benchmarks for Smar-
tUnit: commercial embedded software and open-source database
software. Table 1 gives the list of benchmarks for the evaluation.
Due to the confidentiality agreement, we hide the commercial soft-
ware names in this paper.

The commercial embedded software comes from aerospace,
automotive, subway signal companies. Up to now, SmartUnit has al-
ready tested millions of code for a number of commercial embedded
software. For example, in the aerospace company, SmartUnit has
cumulatively tested more than 100,000 LOC. Over 70% functions
have achieved more than 90% statement coverage. In this paper,
to conduct an intensive study, we selected three benchmarks from
different areas to ensure their diverse characteristics. All of them
come from real-world industrial systems.

The open-source database software used in this paper are
SQLite5 and PostgreSQL6. Due to security demand of the commer-
cial embedded software, we mainly use the open-source database
software to explain. We chose SQLite because it is an embedded
5https://www.sqlite.org/
6https://www.postgresql.org/

SQL database engine, usually used in embedded software systems. It
is a good sample for us to find some insights when using SmartUnit
on the embedded system, which has nearly 130,000 LOC. The Post-
greSQL is a representative object-relation database system, usually
used as the enterprise-class database. We chose PostgreSQL as a
benchmark in order to evaluate performance and expandability of
SmartUnit on the enterprise-class system.

For each subject, we put all of the .c and .h files into one folder to
make it easier for Smartunit to get the dependent header files for the
functions under test. We divided each subject into an independent
.zip package so that we can calculate coverage respectively.

4.3 Evaluation Environment
SmartUnit was run on a virtual machine with three processorsïĳŇ
3GB memory, and CentOS 7.3 operating system. Testbed (version
8.2.0) was run on a virtual machine with two processors (2.70GHz
Intel(R) Core(TM) i5-2500S CPU) 1GB memory and 32bit Microsoft
Windows XP Professional Service Pack 3 operating system.

5 RESULTS AND ANALYSIS
RQ1: How about the performance of automated unit test
generation framework SmartUnit in both commercial em-
bedded software and open-source database software? Table 2
shows the coverage information of the benchmarks. In Column
Subject, the items represent the name of the programs in our bench-
mark. The Column #Test cases represents the number of test cases
generated by SmartUnit for the corresponding benchmark. We
separated PostgreSQL into the divided modules. Thus, we used
PostgreSQL plus module names as the benchmark names in Table 2.
The numbers in Statement Coverage, Branch Coverage, andMC/DC
Coverage represent the number of functions in the corresponding
range. The number of functions which achieve 100% coverage is
highlighted in gray. N/Ameans the number of functions that cannot
be tested by SmartUnit or do not apply to the corresponding cover-
age criterion. Our partner companies only concern those branches
that have more than one conditions, when considering MC/DC
coverage. Therefore, the functions that do not have branches or
only have one-condition branches are counted as N/A in MC/DC
coverage. In general, more than 90% of functions in commercial
embedded software achieve 100% statement, branch and MC/DC
coverage, more than 80% of functions in SQLite and more than 60%
of functions in PostgreSQL achieve 100% statement and branch
coverage.

From the data, the conclusion is SmartUnit have a good per-
formance on commercial embedded software and SQLite which is
used in embedded systems. The performance on PostgreSQL not
as good as commercial embedded software and SQLite, but is also
well enough. It means SmartUnit is more suitable for embedded
software and also have a well performance on common software.

RQ2:What factors make dynamic symbolic execution get
low coverage? In Table. 2, although SmartUnit has the high state-
ment, branch, and MC/DC coverage, there are some function units
has a low coverage (e.g. 0%-10%). We found the low coverage func-
tions, read the source code and analysis manually to find out why
SmartUnit get the low coverage in these functions. We categorized
the main reasons as follows:

SmartUnit: Empirical Evaluations for Automated Unit Testing
of Embedded Software in Industry ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Performance of SmartUnit on Statement , Branch, and MC/DC coverage

Subject #Test cases Statement Coverage (#Functions) Branch Coverage (#Functions) MC/DC Coverage (#Functions)
N/A 0%-10% 10%-50% 50%-90% 90%-100% 100% N/A 0%-10% 10%-50% 50%-90% 90%-100% 100% N/A 0%-10% 10%-50% 50%-90% 90%-100% 100%

aerospace software 368 1 - 3 6 4 41 1 - 5 5 3 41 45 2 - - - 8
automotive software 965 1 - 3 9 2 315 1 - 6 8 - 315 274 2 3 1 - 50

subway signal software 3617 6 - 1 24 26 817 6 - 2 29 26 811 558 6 5 11 - 294
SQLite 6945 86 6 80 147 59 1668 86 9 110 135 70 1636 1426 56 64 140 9 351

PostgreSQL bootstrap 4 18 - 1 1 - 1 18 - 2 - - 1 19 2 - - - -
PostgreSQL catalog 1023 50 2 79 117 7 170 50 6 128 69 13 159 207 151 30 8 - 29
PostgreSQL initdb 317 - - 2 2 5 63 - - 2 8 12 50 30 2 - 7 1 32

PostgreSQL pg_dump 1661 14 2 25 57 22 386 14 5 34 57 37 359 345 22 21 30 2 86
PostgreSQL pg_resetxlog 58 - - 1 1 1 8 - - 1 1 1 8 6 - 1 1 - 3
PostgreSQL pg_rewind 252 4 - 1 - 6 53 4 - 1 1 6 52 48 - - 4 - 12
PostgreSQL pg_upgrade 312 6 - 2 5 4 83 6 - 4 3 10 77 68 2 2 9 1 18
PostgreSQL pg_xlogdump 69 3 - 2 2 - 11 3 - 2 3 - 10 15 - 1 - - 2

PostgreSQL pgtz 9226 589 15 588 704 69 2454 589 42 861 484 51 2392 2982 817 236 147 7 230
PostgreSQL psql 1438 3 - 12 14 16 383 3 - 14 16 19 376 336 7 12 23 3 47

PostgreSQL scripts1 197 - - - 7 4 30 - - - 7 6 28 27 - 2 6 - 6

Environment variable and Environment function: In the
benchmarks, there is a variety of environment variable and envi-
ronment function in the code. For example, the current time is an
environment variable, it comes from the system and is difficult to
be symbolized. Environment function are usually standard library
calls, such as sizeof(). Listing. 1 is an example from PostgreSQL. It
is difficult to covert the condition in line 4 to a constraint, because
symbolic execution engine is hard to comprehend the semantic of
the environment functions. Therefore, the coverage can not achieve
100% in this situation.

1 static void handle_sigint(SIGNAL_ARGS)
2 {
3 ...
4 if (PQcancel(cancelConn, errbuf, sizeof(errbuf)))
5 {
6 CancelRequested = true;
7 fprintf(stderr, _("Cancel request sent\n"));
8 }
9 else
10 fprintf(stderr, _("Could not send cancel request: %s"),

errbuf);
11 ...
12 }

Listing 1: An example of environment function.

Complex operation: Although we have a solution to deal with
the variable pointer, the complex operation is difficult to deal with.
Listing. 2 comes from SQLite. There is a complex pointer operation
in line 4 which combines variable pointers and function pointers.
Due to the limit of the memory model, it can not handle these
complex operations. Execution will be terminated by this kind of
statement and get a low coverage.

1 static void callFinaliser(sqlite3 *db, int offset){
2 ...
3 int (*x)(sqlite3_vtab *);
4 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
5 if(x) x(p);
6 ...
7 }

Listing 2: An example of complex operation.

limitation of SMT solver: In SmartUnit, Z3 Solver is the main
SMT solver to solve the constraint. Although Z3 is one of the best
SMT solvers, it still has some limitation. Here is an example. y !=

0 && (((x-1) * y) % y) == 1 is a constraint collected by SmartUnit
in the commercial software. Although it is a legal constraint and
there is no divided by zero faults, the Z3 solver can not deal with it.
The Z3 solver developer said that Z3 could not deal with nonlinear
constraints, such as this constraint. It is the common reason for
getting the low coverage. Thus the coverage of symbolic execution
is sometimes affected by the SMT solver.

RQ3: Can SmartUnit find the potential runtime exception
in real-world software? From RQ1, we found that SmartUnit has
a high coverage on the real world software. During the execution,
there are also some of the potential runtime exceptions in this
software. Except the factors discussed in RQ2, we found more than
5,000 number of test cases with runtime exceptions. Due to the time
limit, we have not checked every test case manually, we sampled
from the test cases to analysis the runtime exceptions. Generally,
we divided the runtime exceptions found by SmartUnit into three
categories: array index out of bounds, fixed memory address and
divided by zero.

Array index out of bounds: As the introduction in Section 3,
SmartUnit use memory model to simulate whole memory alloca-
tion. if there is an array index out of bounds, SmartUnit will throw
a runtime exception. Listing. 3 is an example comes from SQLite.
Obviously, in this function, there is an out of bounds runtime ex-
ception in line 10, when i <argc. Although the caller of this function
ensure i <= argc in SQLite, it has a potential runtime exceptions if
other callers not ensure i <= argc. There is even no precondition in
the comment. It is quite serious if a programmer wants to call it, but
doesn’t know the precondition. We have found much of runtime
exceptions in this category from all of the benchmarks.

1 /*

2 ** Get the argument to an --option. Throw an error and die if

3 ** no argument is available.

4 */

5 static char *cmdline_option_value(int argc, char **argv, int i) {
6 if (i == argc) {
7 utf8_printf(stderr, "%s: Error: missing argument to %s\n",

argv[0], argv[argc - 1]);
8 exit(1);
9 }
10 return argv[i];
11 }

Listing 3: An example of array index out of bounds.

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, G. Pu

Fixed memory address: Fixed memory address is a problem in
dealing with the variable pointer. In the embedded system, there are
many pointer operations with the fixed memory address. It is hard
for memorymodel to simulate a fixedmemory address. For example,
the operations like (*0X00000052) or (* (symbolic variable + 12))
will cause runtime exceptions. It usually gets NULL when referring
from a fixed memory address. Thus symbolic execution will throw
runtime exception with fixed memory address operations.

Divided by zero: Divided by zero is also a common runtime
exception in the benchmarks. It usually appears in numerical cal-
culation of program. SmartUnit will generate boundary value to
check if the program exists divided by zero runtime exception. We
select a brief example from SQLite to discuss this runtime exception.
Listing. 4 is the function which has the potential runtime exception
in line 19. When nUsable == 4, the expression (nTotal - nMinLocal)
% (nUsable - 4) will throw a divided by zero runtime exception.
we read the source code manually and found that it is difficult to
comfirm whether nUsable could be 4 or not. The comment of the
function does not contain the precondition of nUsable. It’s horrible
if the programmer who calls this function in a new function and
do not know the implicit prediction.

1 static void getLocalPayload(
2 int nUsable, /* Usable bytes per page */

3 u8 flags, /* Page flags */

4 int nTotal, /* Total record (payload) size */

5 int *pnLocal /* OUT: Bytes stored locally */

6){
7 int nLocal;
8 int nMinLocal;
9 int nMaxLocal;
10
11 if(flags==0x0D){ /* Table leaf node */

12 nMinLocal = (nUsable - 12) * 32 / 255 - 23;
13 nMaxLocal = nUsable - 35;
14 }else{ /* Index interior and leaf nodes */

15 nMinLocal = (nUsable - 12) * 32 / 255 - 23;
16 nMaxLocal = (nUsable - 12) * 64 / 255 - 23;
17 }
18
19 nLocal = nMinLocal + (nTotal - nMinLocal) % (nUsable - 4);
20 if(nLocal>nMaxLocal) nLocal = nMinLocal;
21 *pnLocal = nLocal;
22 }

Listing 4: An example of divided by zero.

In summary, SmartUnit could find the potential runtime excep-
tions in real-world software.We categorized and analyzed the poten-
tial runtime exceptions. Most of these potential runtime exceptions
existed, due to there is no protection for input values. At the same
time, there is no clear precondition specification for the functions.
Although there are protection codes in the caller of the function, the
potential runtime exceptions may cause the real faults in real-world
software.

RQ4:What is the difference between automatically gener-
ated test cases and manually written test cases? In RQ4, we
compare automatically generated test cases and manually written
test cases in the following aspect: time, cost and quality.

Time & Cost: Table 3 shows the test set generated time for each
benchmark. The column Subject list all of the benchmark we used.
As Table 2, we separate PostgreSQL into the individual module, and
name with PostgreSQL plus module name. The second column #

Table 3: Test set generated time for each benckmark.

Subject # Functions Time (s) Average (s/func)
aerospace software 54 318 6
automotive software 330 329 1

subway signal software 874 2,476 3
SQLite 2046 13,482 6

PostgreSQL bootstrap 21 48 2
PostgreSQL catalog 425 1,350 3
PostgreSQL initdb 72 548 7

PostgreSQL pg_dump 506 3,428 7
PostgreSQL pg_resetxlog 11 71 6
PostgreSQL pg_rewind 64 352 5
PostgreSQL pg_upgrade 100 465 5
PostgreSQL pg_xlogdump 18 130 7

PostgreSQL pgtz 4419 10,478 2
PostgreSQL psql 428 1,676 4

PostgreSQL scripts1 41 311 7
Total 9,409 35,462 3.77

Functions represents the number of functions in the benchmark. The
column Time means the test set generated time for the correspond-
ing benchmark. The column Average represents the average test set
generated time for the corresponding benchmark per function, in
other words, it means the average time of SmartUnit generates test
set for a function. Deserve to be mentioned, we use Total# Function
and Total Time to calculate Total Average.

In Table 3, it is obvious that the average time ranges from 1s
to 7s and total average time is 3.77s for all of the benchmarks. It
means that SmartUnit spends nearly 4s to generate test cases for a
function, and in the best situation, more than 90% of the functions
can achieve 100% statement, branch, and MC/DC coverage. How
about the test engineer? In our survey from companies, a trained
test engineer can product test case for 5-8 functions per day. Thus
using automated unit test generation framework can cost less time
than employing test engineers.

Themain cost of automatically generated test cases andmanually
written test cases are both the salary paid for the employee. We
assume a developer costs twice salary higher than a test engineer.
SmartUnit has cost 24 man-month to release. For manually testing,
a test engineer could write the test case for about 160 functions per
month. Thus 24 man-month cost could support test engineers write
about 8,000 functions. In summary, if you have a large number of
function units (e.g. more than 10,000), automatically generated test
cases are cheaper. On the contrary, manual test cases are cheaper
for the little scale of projects.

Quality: From RQ1, we have the conclusion that more than
90% of functions in commercial embedded software can achieve
100% statement, branch and MC/DC coverage; more than 80% of
functions in SQLite and more than 60% of functions in PostgreSQL
achieve 100% statement and branch coverage. According to our
survey in the companies, the test engineers need to achieve 100%
coverage for each function. If we use coverage as a quality indicator,
automatically generated test case has overwhelming superiority on
cost and time though manual test case has higher coverage in some
cases. Meanwhile, the automatically generated test cases could find
runtime exception in time.

Discussion
Traditional automated unit testing tools focus on the automated

random testing, e.g. , test cases are randomly derived as the input

SmartUnit: Empirical Evaluations for Automated Unit Testing
of Embedded Software in Industry ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden

to invoke the program code under test. Although the random test
data generation algorithm is quite easy to be implemented, it is
obviously that the expected coverage criteria (e.g., the branch and
the statement coverage) cannot be guaranteed. The DART (Directed
Automated Random Testing) is a classical unit testing tool that sup-
ports the directed random test data generation [16]. One unique
characteristic of the DART is its complete automation for unit test-
ing. Since its underlying approach is random testing, the DART
focuses on detecting standard errors such as program crashes, as-
sertion violations, and non-termination while it is not deliberately
designed for certain coverage criteria requested by the industrial
standards. Our SmartUnit framework can handle the automated
testing and support various coverage criteria of the industrial stan-
dards.

PEX is a famous unit testing tool that automatically generates
test suites with high code coverage [38]. It is a Visual Studio add-
in for testing .NET Framework applications. In practice, the PEX
tool is adapted to testing the C# code. Similarly the IntelliTest7
also automatically generates test data for the unit test of C#. The
basic idea of the IntelliTest is to generate test data to execute each
statement of the target code and then analyze the coverage of
the conditional branch. The Microsoft Security Risk Detection is
a unique fuzz testing service for finding security critical bugs in
software. These three tools significantly improve the unit testing
in bug detection and time efficiency. However, since these tools are
designed as general solutions for unit testing, it cannot be directly
applied in the domain of real-time control software testing. They
fall short in supporting the unit testing of the control software
since some unique features such as the high coverage request of
particular criteria requested by the industrial standards have not
been deliberately considered. The SmartUnit framework focuses on
the request of current industry standards and offers a completely
automated solution for the unit testing of the real-time software.

Although there is a plug-in of Testbed called LDRA TBrun8
which can automatically generate driver program and test harness
without manual script, SmartUnit is quite different from it. LDRA
TBrun uses data dictionary to generate the test cases, it combines
several values in the data dictionary, usually considering up bound
and low bound of variables. This strategy is not able to deal with
memory calculation, while SmartUnit can easily catch memory
change constraints by DSE. LDRA TBrun generates unit test suite
based-on boundary value (e.g. , maximum value, minimum value,
median value, etc.), while SmartUnit is a coverage-driven tool,
it can satisfy statement, branch, MC/DC coverage criteria from
industrial requirements. SmartUnit can avoid repetitive test cases,
while LDRA TBrun has many repetitive test cases in its test set.
LDRA TBrun can not give the expectative output value for each test
case, but SmartUnit can expect output value by executing test cases
automatically after generation. SmartUnit can not only generate
the test cases for function parameters and global variables which
support in LDRA TBrun, it can also generate the test cases for
instrument function parameters and instrument function return
value. In summary, LDRA TBrun is suitable for critical testing and

7https://msdn.microsoft.com/en-us/library/dn823749.aspx
8http://ldra.com/industrial-energy/products/tbrun/

robustness testing, while SmartUnit is suitable for coverage-driven
testing.

6 RELATEDWORK
This section discusses related work in two aspects: symbolic execu-
tion and automated unit test generation.

Symbolic execution is a classic software testing technique, and
recently enhanced with the dynamic symbolic execution (also called
concolic testing) technique [9, 10, 29]. There are several symbolic
execution tool, such as Pex [38] for .NET, Java PathFinder [2],
jCUTE [30] for Java, KLEE [7, 8], DART [16], CAUT [35], CUTE [30,
31], CREST [6] for C.

There is also much work on automated test generation. Some
of them are based on Java. RANDOOP [26], EVOSUITE [12], AGI-
TARONE9 are usually used to generate test cases and evaluate on
real-world software [1, 13, 32]. Some of them focus on unit test gen-
eration [15, 27, 42–44]. SmartUnit has a good performance on unit
test generation, but also is evaluated on real-world software and
used in practice. In the future, we will implement more advanced
coverage criteria, e.g. , data-flow coverage [37], to further improve
its fault detection ability; and extend SmartUnit to support other
types of software (e.g. , mobile applications [34]) and scenarios (e.g. ,
requirement testing [25]).

In industry, Microsoft developed Unit Meister for parameterized
unit tests [39] and SAGE for whitebox fuzzer testing [17]. Fujitsu
tried to use symbolic execution to generate test [40], while Samsung
used CREST and KLEE on mobile platform programs [19, 20]. The
benchmarks they chose were all from their software. While We
chose the benchmarks from a variety of embedded software systems
and open-source software.

7 CONCLUSION
In this paper, we propose an automated unit coverage-based testing
tool for embedded software called SmartUnit. It comprises of a
dynamic symbolic execution engine, a unit test generator, and a
private cloud-based service. It has been used in a series of real-
world embedded software projects such as aerospace, airborne and
ground-based systems. This tool has been developed and improved
collaboratively with several top companies in China. The companies
have used the SmartUnit in their daily testing process and improved
their software reliability. We show a general pattern of how to use
symbolic execution in practice with the example of SmartUnit.

The performance of SmartUnit is evaluated by testing with both
commercial embedded software and open-source software. Besides,
some runtime exceptions detected by our tool are collected and
classified as guidance for potential users to avoid such runtime
exceptions in software developing process. Challenges in using
dynamic symbolic execution in the industrial environment have
also been discussed.

In summary, although there are some challenges, it is possible to
use dynamic symbolic execution technique on real-world software
and get a high performance on coverage criteria. It is also practicable
to build automated unit test generation tool as a cloud service to
make unit testing easier to be adopted.

9http://www.agitar.com/solutions/products/agitarone.html

ICSE-SEIP ’18, May 27-June 3, 2018, Gothenburg, Sweden C. Zhang, Y. Yan, H. Zhou, Y. Yao, K. Wu, T. Su, W. Miao, G. Pu

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valu-
able feedback. Ting Su is partially supported by NSFC Projects
No. 61572197 and No. 61632005. Geguang Pu is partially supported
by MOST NKTSP Project 2015BAG19B02 and STCSM Project No.
16DZ1100600. Chengyu Zhang is partially supported by China HGJ
Project (No. 2017ZX01038102-002).

REFERENCES
[1] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Jānis Bene-

felds. 2017. An industrial evaluation of unit test generation: Finding real faults
in a financial application. In Proceedings of the 39th International Conference on
Software Engineering: Software Engineering in Practice Track. IEEE Press, 263–272.

[2] Saswat Anand, Corina Păsăreanu, and Willem Visser. 2007. JPF–SE: A symbolic
execution extension to java pathfinder. Tools and Algorithms for the Construction
and Analysis of Systems (2007), 134–138.

[3] IEEE Standards Association et al. 1990. Standard glossary of software engineering
terminology. lEEE Std (1990), 610–12.

[4] Clark Barrett. 2013. âĂĲDecision Procedures: An Algorithmic Point of View,âĂİ
by Daniel Kroening and Ofer Strichman, Springer-Verlag, 2008. Journal of Auto-
mated Reasoning 51, 4 (2013), 453–456.

[5] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. Cvc4. In
International Conference on Computer Aided Verification. Springer, 171–177.

[6] Jacob Burnim and Koushik Sen. 2008. Heuristics for scalable dynamic test gen-
eration. In Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM
International Conference on. IEEE, 443–446.

[7] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs..
In OSDI, Vol. 8. 209–224.

[8] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R
Engler. 2008. EXE: automatically generating inputs of death. ACM Transactions
on Information and System Security (TISSEC) 12, 2 (2008), 10.

[9] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S Păsăreanu, Koushik
Sen, Nikolai Tillmann, and Willem Visser. 2011. Symbolic execution for software
testing in practice: preliminary assessment. In Proceedings of the 33rd International
Conference on Software Engineering. ACM, 1066–1071.

[10] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:
three decades later. Commun. ACM 56, 2 (2013), 82–90.

[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. Tools
and Algorithms for the Construction and Analysis of Systems (2008), 337–340.

[12] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. ACM,
416–419.

[13] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated
unit test generation using evosuite. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 2 (2014), 8.

[14] Vijay Ganesh and David L Dill. 2007. A decision procedure for bit-vectors and
arrays. In CAV, Vol. 4590. Springer, 519–531.

[15] Pranav Garg, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta.
2013. Feedback-directed unit test generation for C/C++ using concolic execution.
In Proceedings of the 2013 International Conference on Software Engineering. IEEE
Press, 132–141.

[16] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed auto-
mated random testing. In ACM Sigplan Notices, Vol. 40. ACM, 213–223.

[17] Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE: whitebox
fuzzing for security testing. Queue 10, 1 (2012), 20.

[18] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. 2008. Automated
whitebox fuzz testing.. In NDSS, Vol. 8. 151–166.

[19] Yunho Kim, Moonzoo Kim, and Yoonkyu Jang. 2011. Concolic testing on embed-
ded software-case studies on mobile platform programs. In European Software
Engineering Conference/Foundations of Software Engineering (ESEC/FSE) Industrial
Track, Vol. 29. 30.

[20] Yunho Kim, Moonzoo Kim, Young Joo Kim, and Yoonkyu Jang. 2012. Industrial
application of concolic testing approach: A case study on libexif by using CREST-
BV and KLEE. In Software Engineering (ICSE), 2012 34th International Conference
on. IEEE, 1143–1152.

[21] James C King. 1976. Symbolic execution and program testing. Commun. ACM 19,
7 (1976), 385–394.

[22] Guodong Li, Indradeep Ghosh, and Sreeranga Rajan. 2011. KLOVER: A symbolic
execution and automatic test generation tool for C++ programs. In Computer
Aided Verification. Springer, 609–615.

[23] Kin-Keung Ma, Khoo Yit Phang, Jeffrey Foster, and Michael Hicks. 2011. Directed
symbolic execution. Static Analysis (2011), 95–111.

[24] RupakMajumdar and Ru-Gang Xu. 2009. Reducing Test Inputs Using Information
Partitions.. In CAV, Vol. 9. Springer, 555–569.

[25] Weikai Miao, Geguang Pu, Yinbo Yao, Ting Su, Danzhu Bao, Yang Liu, Shuohao
Chen, and Kunpeng Xiong. 2016. Automated Requirements Validation for ATP
Software via Specification Review and Testing. In Formal Methods and Software
Engineering - 18th International Conference on Formal Engineering Methods, ICFEM
2016, Tokyo, Japan, November 14-18, 2016, Proceedings. 26–40.

[26] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random
testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion. ACM, 815–816.

[27] Brian Robinson, Michael D Ernst, Jeff H Perkins, Vinay Augustine, and Nuo Li.
2011. Scaling up automated test generation: Automatically generating maintain-
able regression unit tests for programs. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering. IEEE Computer
Society, 23–32.

[28] Per Runeson. 2006. A survey of unit testing practices. IEEE software 23, 4 (2006),
22–29.

[29] Koushik Sen. 2006. Scalable automated methods for dynamic program analysis.
Technical Report.

[30] Koushik Sen and Gul Agha. 2006. CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools. In CAV, Vol. 6. Springer, 419–423.

[31] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing
engine for C. InACM SIGSOFT Software Engineering Notes, Vol. 30. ACM, 263–272.

[32] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do automatically generated unit tests find real faults?
an empirical study of effectiveness and challenges (t). In Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on. IEEE, 201–
211.

[33] Ting Su, Zhoulai Fu, Geguang Pu, Jifeng He, and Zhendong Su. 2015. Combining
symbolic execution and model checking for data flow testing. In Proceedings of
the 37th International Conference on Software Engineering-Volume 1. IEEE Press,
654–665.

[34] Ting Su, GuozhuMeng, Yuting Chen, KeWu,Weiming Yang, Yao Yao, Geguang Pu,
Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI Testing
of Android Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 245–256.

[35] Ting Su, Geguang Pu, Bin Fang, Jifeng He, Jun Yan, Siyuan Jiang, and Jianjun
Zhao. 2014. Automated coverage-driven test data generation using dynamic
symbolic execution. In Software Security and Reliability, 2014 Eighth International
Conference on. IEEE, 98–107.

[36] Ting Su, Geguang Pu,Weikai Miao, Jifeng He, and Zhendong Su. 2016. Automated
coverage-driven testing: combining symbolic execution and model checking.
SCIENCE CHINA Information Sciences 59, 9 (2016), 98101.

[37] Ting Su, KeWu,Weikai Miao, Geguang Pu, Jifeng He, Yuting Chen, and Zhendong
Su. 2017. A Survey on Data-Flow Testing. ACM Comput. Surv. 50, 1, Article 5
(March 2017), 35 pages.

[38] Nikolai Tillmann and Jonathan De Halleux. 2008. Pex–white box test generation
for. net. Tests and Proofs (2008), 134–153.

[39] Nikolai Tillmann and Wolfram Schulte. 2005. Parameterized unit tests with unit
meister. In ACM SIGSOFT Software Engineering Notes, Vol. 30. ACM, 241–244.

[40] Susumu Tokumoto, Tadahiro Uehara, Kazuki Munakata, Haruyuki Ishida, Toru
Eguchi, and Masafumi Baba. 2012. Enhancing symbolic execution to test the com-
patibility of re-engineered industrial software. In Software Engineering Conference
(APSEC), 2012 19th Asia-Pacific, Vol. 1. IEEE, 314–317.

[41] Gina Venolia, Robert DeLine, and Thomas LaToza. 2005. Software development
at microsoft observed. Microsoft Research, TR (2005).

[42] Tao Xie and David Notkin. 2003. Tool-assisted unit test selection based on
operational violations. In Automated Software Engineering, 2003. Proceedings. 18th
IEEE International Conference on. IEEE, 40–48.

[43] Sai Zhang, David Saff, Yingyi Bu, and Michael D Ernst. 2011. Combined static
and dynamic automated test generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis. ACM, 353–363.

[44] Wujie Zheng, Qirun Zhang, Michael Lyu, and Tao Xie. 2010. Random unit-test
generation with MUT-aware sequence recommendation. In Proceedings of the
IEEE/ACM international conference on Automated software engineering. ACM,
293–296.

[45] Hong Zhu, Patrick AV Hall, and John HR May. 1997. Software unit test coverage
and adequacy. Acm computing surveys (csur) 29, 4 (1997), 366–427.

	Abstract
	1 Introduction
	2 background
	2.1 Industry Situation
	2.2 Dynamic Symbolic Execution
	2.3 Coverage Criteria

	3 Framework Implementation
	3.1 Framework Architecture
	3.2 Executor Module
	3.3 Cloud-based Testing Service
	3.4 Challenges and Solutions

	4 Evaluation Setup
	4.1 Research Questions
	4.2 Benchmark
	4.3 Evaluation Environment

	5 results and analysis
	6 related work
	7 conclusion
	Acknowledgments
	References

