FERMILAB-CONF-17-659-CD

Neuromorphic Computing for Temporal Scientific Data

Classification”
Catherine D. Schuman, Gabriel Perdue Gangotree Chakma, Austin
Thomas E. Potok, Steven Fermi National Accelerator Wyer, Garrett S. Rose
Young, Robert Patton Lab.orato.ry . University of Tennessee
Oak Ridge National Laboratory Batavia, Illinois Knoxville, Tennessee
Oak Ridge, Tennessee perdue@fnal.gov [gchakma,awyer]@vols.utk.edu,

[schumancd,potokte,pattonrm,
p p
youngsr]@ornl.gov

ABSTRACT

In this work, we apply a spiking neural network model and an
associated memristive neuromorphic implementation to an appli-
cation in classifying temporal scientific data. We demonstrate that
the spiking neural network model achieves comparable results to
a previously reported convolutional neural network model, with
significantly fewer neurons and synapses required.

CCS CONCEPTS

« Computing methodologies — Neural networks; Genetic al-
gorithms; « Hardware — Neural systems; Emerging technolo-
gies; « Applied computing — Physics;

ACM Reference Format:

Catherine D. Schuman, Thomas E. Potok, Steven Young, Robert Patton,
Gabriel Perdue, and Gangotree Chakma, Austin Wyer, Garrett S. Rose. 2017.
Neuromorphic Computing for Temporal Scientific Data Classification. In
NCS °17: Neuromorphic Computing Symposium, July 17-19, 2017, Knoxville,
TN, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3183584.
3183612

1 INTRODUCTION

Neuromorphic architectures are non-von Neumann computer ar-
chitectures science that are inspired by biological brains. They
are typically made up of many simple processing elements (neu-
rons) that operate in parallel, are connected (via synapses), and
that communicate with very simple messages (usually spikes). Key
properties of neuromorphic systems include relatively low power
consumption, real time performance, and the ability to be deployed

*This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-
000R22725 with the U.S. Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

NCS ’17, July 17-19, 2017, Knoxville, TN, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-6442-3/17/07...$15.00
https://doi.org/10.1145/3183584.3183612

garose@utk.edu

in real environments (i.e., they usually do not require special oper-
ating conditions). Spiking neural networks are one common model
that is implemented for neuromorphic computing. Spiking neu-
ral networks (SNNs) can be implemented in an event-driven way,
which can result in lower power consumption. A key component
of SNN is that they include a notion of temporal processing by
including recurrent connections and/or delay components on the
synapse or neuron implementations. As such, they can be natural
platforms for data that has a temporal component.

A key question associated with the field of neuromorphic comput-
ing is: what are the applications for which neuromorphic computers
are especially suited? In addressing this question, it is worth consid-
ering several factors beyond just accuracy on a task. For example,
for certain applications, it might be the case that a neuromorphic
architecture achieves good but not state-of-the-art performance,
but that it is able to achieve this performance on a significantly
smaller power budget and footprint than a state-of-the-art solu-
tion on other, more conventional hardware. Additionally, there are
also potential applications to data sets that contain a significant
temporal component. State-of-the-art machine learning techniques
such as deep learning often convert temporal data into a repre-
sentation that they can understand — usually some sort of image
representation. Because of their native temporal processing capa-
bilities, temporal data may be represented natively in SNNs, which
may result in a better and more efficient usage of the data than an
adapted version of the data.

In this work, we present a SNN model and an associated mixed
analog/digital hardware implementation that utilizes memristors
as applied to temporal scientific data. We apply these spiking and
neuromorphic systems to a scientific data set, namely neutrino
interaction location identification data from Fermi National Accel-
erator Laboratory. The data we utilized was created in simulation,
but it is representative of the type of data that is collected using
their neutrino detector. Though we are training on simulated data, a
trained network could be deployed on or near the detector in order
to process and classify data as it is being collected in real-time. As
such, this application could benefit from a neuromorphic hardware
implementation that is small and requires little power to operate,
in addition to potentially being a natural type of data for neuro-
morphic hardware to process. In the following sections, we provide
some context for the background of spiking and neuromorphic
systems. We also describe the SNN architecture, the memristive
neuromorphic architecture, and the training method for both that
we apply to the neutrino interaction data. We present preliminary

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department
of Energy, Office of Science, Office of High Energy Physics.

https://doi.org/10.1145/3183584.3183612
https://doi.org/10.1145/3183584.3183612
https://doi.org/10.1145/3183584.3183612

NCS ’17, July 17-19, 2017, Knoxville, TN, USA

results on the application of these systems to the neutrino interac-
tion data set and show that the results are comparable with those
achieved by convolutional neural networks.

2 BACKGROUND AND RELATED WORK

Spiking neural networks (SNNs) have previously been described as
the “third generation” of artificial neural networks, following net-
works the first generation (networks with threshold units) and the
second generation (networks with activation functions such as sig-
moid in the neurons) [19]. Basic SNN models that are not attempting
to model biological systems tend to use forms of integrate-and-fire
neurons, though more complex models such as the Izhikevich spik-
ing model have also been used [14]. Training or learning for SNNs
is more difficult than the traditional feed-forward neural network
with sigmoid activation function because of the additional complex-
ity of the neuron models and/or the topology of the network. There
have been back-propagation-like algorithms developed for SNNs
[6, 36], but these require relatively restricted network topologies
(feed-forward neural networks). Unsupervised learning techniques
including both Hebbian learning and spike-timing-dependent plas-
ticity (STDP) have been used to determine weight values in a net-
work [13, 32], but these approaches are somewhat limited in train-
ing for more complex tasks. Evolutionary algorithms have also
been used to train SNNs [20, 22, 34]. They have the advantage
that they can train a variety of aspects of the network, including
network topology, to suit a given task. In this work, we utilize an
evolutionary approach for training two similar SNN models.

Many neuromorphic computing systems implement SNNs. One
of the popular components included in today’s neuromorphic sys-
tems are memory-resistors, or memristors, because they can operate
with low energy and have the potential for high density [15]. More-
over, memristors are typically used in synapse implementations
because of their behavioral similarity to biological synapses [18].
In particular, the resistive switching characteristics of memristors
allows the “weight" value of the memristive synapse to change as
a result of a learning process such as STDP [30]. Memristors can
be made from a variety of materials, including metal oxides [25],
polymers [7], and organic materials [12].

In this work, we apply SNNs and neuromorphic networks to
temporal data. This is a natural use of SNNs because of their inher-
ent temporal processing capabilities. SNNs have previously been
applied to spatiotemporal data such as object recognition in video
[2, 3, 16, 21] and spatiospectral data such as EEGs [17, 24, 31]. It
is also worth noting that neuromorphic systems have been ap-
plied to high energy physics problems in the past, including par-
ticle collision detection [9, 35]. Both of these implementations
are for non-spiking multi-layer perceptrons implemented on field-
programmable gate arrays (FPGAs), primarily to achieve the speed
required for particle collision detection tasks.

3 SPIKING NEURAL NETWORK MODEL:
NIDA

The spiking neural network (SNN) model that we first tested with

the neutrino detector data is the Neuroscience-Inspired Dynamic

Architecture (NIDA) spiking neural network model [27]. This model
uses very simple neuron and synapse models and thus is well-suited

C. Schuman et al.

to implementations in hardware. Implementations in hardware that
are based on the NIDA model include an FPGA-based model [10], a
forthcoming fully digital custom chip implementation [8], and an
implementation that includes memristors in the synapses, which
is discussed further in Section 4. We perform initial experiments
with NIDA because it can give a good idea of what the performance
characteristics will be for the system, but with a faster simulation
time than is possible for some of our hardware implementations. It
also allows us to explore the capabilities of a spiking model when
the connectivity in the network is not restricted due to physical
hardware limits. However, it is worth noting that, if the resulting
networks are relatively sparse, it is likely that an equivalent model
can be built using additional neurons in hardware with connectivity
restrictions. The only restriction on the topology of NIDA networks
is that they must be simple directed graphs; that is, loops (a synapse
connecting a neuron to itself) are not allowed, nor are multiple
synapses with the same pre- and post-synaptic neurons.

NIDA neurons have two parameters: a threshold and a refrac-
tory period. The threshold value of the neurons in the network
governs how much charge is required for the neuron to fire, and the
refractory period of the neuron defines the period of time after that
neuron has fired during which it cannot fire again. In this work,
we train the threshold value for the neurons, but the refractory
period is fixed to a single value for all neurons in the network. NIDA
synapses have two parameters: weight and delay. NIDA networks
are embedded into a three-dimensional Euclidean space, and cur-
rently, the distance between the pre- and post-synaptic neurons in
the 3D space defines the delay between two neurons. As such, the
delay value is not explicitly programmed, except in the placement
of the pre- and post-synaptic neuron. The weight value, however, is
trained in two ways. First, weights can be set using the evolution-
ary optimization training method that is used to train the rest of
the characteristics of the network (described in Section 5). Second,
weights can be refined using long-term potentiation and long-term
depression mechanisms, which adjust the weight values based on
the firing activity of the post-synaptic neuron. An example of a
NIDA network is shown in Figure 1.

4 MEMRISTIVE HARDWARE
IMPLEMENTATION

The memristive hardware implementation is synchronous in na-
ture, and it has digital peripheral circuits whereas the core com-
putation is analog in nature. This mixed-signal implementation is
more power and area efficient because we are leveraging nano-scale
memristive devices to hold synaptic weights and analog neurons to
compute integration of charges. The memristive implementation
of the synapse utilizes a twin memristor architecture, which helps
to achieve both positive and negative synaptic weights. Here, the
synaptic weight is proportional to the current flowing through the
memristors and hence depends on the memristance of the twin
memristors. The synapses are also capable of online learning. The
synapse control block generates driving voltage for the memristors
and also controls the online learning based on long term plasticity.
The online learning is based on the NIDA learning rule. According
to the potentiation and depression rule, the synapses contribut-
ing to the post-synaptic fire would be potentiated and the rest of

Neuromorphic Computing for Temporal Scientific Data Classification

Figure 1: An example NIDA network. Hidden neurons are
shown in teal, input neurons are shown in yellow, and
output neurons are shown in red. Excitatory synapses are
shown in dark blue, and inhibitory synapses are shown in
red. The visualization tool used to display the network is de-
scribed in [11].

synapses arriving immediately after the post synaptic fires would be
depressed. The neuron model used in the mrDANNA architecture
is based on a leaky integrate and fire neuron model. The neurons
work in two different phases: the accumulation phase and the firing
phase. When the neuron is in the accumulation phase, it acts as an
integrator and accumulates charge based on the supplied current
through the synaptic weights. On the firing phase the neuron gen-
erates a post-synaptic fire if the accumulated charge is higher than
a specified threshold. The neuron also resets itself after generating
post synaptic fire and starts from the initial condition.

For the simulation of mrDANNA, we use two types of simula-
tors: a high-level C++ simulator and a low-level Spectre simulator.
The high-level simulator takes a network generated using evolu-
tionary optimization (described below) and the components of the
high-level simulator are built following the transistor-level neuron
and synapses. The low-level simulator is used to build circuit com-
ponents and simulate in real time. Since it is time consuming to
simulate the neural networks in the low-level simulator, we have
used the high-level simulator to help build network in a time effi-
cient way. The high-level simulator has also been helpful to verify
the functionality of the Spectre simulator.

5 TRAINING METHOD: EVOLUTIONARY
OPTIMIZATION

For both NIDA and mrDANNA, we utilize a training method that
is based on evolutionary optimization (EO) [29]. The EO method
determines the topology of the network (the number and connec-
tivity of the neurons and synapses), as well as the parameters of the
network (i.e., weights and delays of the synapses and thresholds of
the neurons). The basic EO method utilized begins with a randomly
initialized population of networks for both NIDA and mrDANNA,
where each network in the population has the same input and out-
put neurons. Each network in the population is evaluated using a
fitness function. The fitness function for the classification of the

NCS 17, July 17-19, 2017, Knoxville, TN, USA

data in this work is given in Section 6. Higher performing networks
are preferentially selected to serve as parent networks using tour-
nament selection. Once two parent networks have been selected,
crossover and mutation operations are probabilistically applied.
Both crossover and mutation are custom operations created for the
representations of NIDA and mrDANNA. Crossover relies on the
spatial structure of the direct representation of the NIDA network
in the three-dimensional Euclidean space and the two-dimensional
spatial layout of mrDANNA networks. Mutation operations are
similar for both NIDA and mrDANNA, and they include updating
parameter values, inserting or deleting neurons, and inserting or
deleting synapses.

There are several key properties for why EO was selected as the
training method. The first is that it is model and topology agnos-
tic. In other words, EO can be applied to any network model and
any hardware implementation; this differentiates EO from an algo-
rithm like back-propagation, which relies on a particular network
structure and model. We take advantage of this characteristic by
employing a very similar EO method for both NIDA and mrDANNA,
which are similar in model but have different operating character-
istics. The second is that it can deal with and optimize temporal
processing components (such as delay values on the synapses) in
the network, which is an important factor for training SNNs. The
third reason for utilizing EO as a training method is that it can be
parallelized and scaled. We have previously implemented a parallel
EO framework and demonstrated that utilizing a larger number of
nodes can allow for a shorter time-to-solution [28]. In this work,
we will discuss scaling this parallel EO framework to a very large
number of nodes (18,000 nodes) on the application described below.
Though this application (and applications in general) tend to benefit
from scaling up to a larger number of nodes, in general we have
found that simply utilizing as few as between 10 and 100 nodes
over a longer period of time can give similarly good results.

6 APPLICATION: NEUTRINO DATA

The data used in this work is neutrino scattering data that was
collected at Fermi National Accelerator Laboratory using the MIN-
ERvVA detector [4]. The MINERVA detector collects a variety of
information, including energy levels and the times at which certain
events occur. This data may be analyzed to discover at point in
space neutrino interactions occurred (vertex reconstruction). In a
previous work, convolutional neural networks have been applied
to some of this data for vertex reconstruction by converting energy
level information into images, which are then classified [33]. There
are three “views” provided in the MINERVA detector: an X view (in
this work, we use 127x50 measurements from the X view, though ad-
ditional measurements are taken), a U view (127x25 measurements
in this work), and a V view (127x25 measurements in this work).
There are also additional measurements taken in the outer region
of the detector. We restrict our attention to the X view to reduce
input size for our neuromorphic systems, but we plan to expand
to include the U and V views in future work. The physical space
that is being analyzed is divided into segments labeled from 0 to 10
(inclusive). The goal is to take information from the X view and to
determine in which segment the neutrino interaction occurred (the
vertex).

NCS ’17, July 17-19, 2017, Knoxville, TN, USA

In [33], the input data to the convolutional neural network is an
image, where every pixel in the image represents the mean value
of the energy at that location. In this work, we utilize a different
aspect of the data. In particular, part of the data collected by the
detector is the time at which energy value at each location exceed a
very low threshold. These times are recorded for each of the 127x50
measurements for the X-view.

We utilize a training set of 10,000 instances generated by the
GENIE Neutrino Monte Carlo Generator[5] and the Geant4 toolkit
[1], so ground-truth information is available. This is a relatively
small subset of the overall number of instances (over 1,000,000), so
we utilize another 90,000 instances for the testing set. However, we
keep the training set small in order to keep the fitness evaluation
time relatively short. The number of training and testing instances
for each label are shown in Figure 2. As can be seen in this figure,
a majority of the instances are label 10. This label is applied to
instances that fall within the physical segment labeled 10, but it is
also applied to instances in which interactions occur downstream.

One of the key factors that must be addressed in order to utilize
neuromorphic systems for applications is how the input information
is encoded. In our data set, each instance is a 127x50 array of values
A, where each value in the array corresponds to a time offset from a
specific event occurring. We normalize the temporal values so they
are greater than or equal to 0, and set all values for which no events
were measured to -1 to create a matrix B. We initialize our networks
to have 50 inputs neurons (corresponding to the dimension of 50
in the input data), and eleven output neurons (one corresponding
to each possible segment label). Then, for each value i = 1, ..., 127
and for each value j = 1,...,50, if B; ; is non-negative we create
a fire event at time B; j on input neuron j. Thus, input neuron j
may have up to 127 input fire events for any given input instance,
assuming all of the events for that dimension occurred at unique
times. We count the number of times all 11 output neurons fire over
the course of simulation, and the output neuron that fires the most
defines the label. If none of the output neurons fire, the decision
for the network is set as label 10, which also applies to instances
where the interaction occurs downstream.

7 PRELIMINARY RESULTS

In this section, we present preliminary results of applying both
NIDA and mrDANNA networks to classifying MINERVA data. These
networks were trained using both the basic EO, which is meant to
be run on a multi-core, shared memory device, and the large-scale
parallel EO, which is meant to be run on a multi-node, distributed
memory supercomputer or cluster. For the large-scale parallel EO
method, we used Oak Ridge Leadership Computing Facility’s Ti-
tan!, which has 18,688 compute nodes and 299,008 CPU cores. The
basic EO method utilizes a single population, while the parallel
EO method utilizes subpopulations on each node with communi-
cation between nodes in a hierarchical master-slave configuration,
described in [28].

Table1 shows the maximum fitness value achieved by a NIDA net-
work for the training set when training using the basic EO method
on a single node of Titan for one hour as compared with the per-
formance of one hour of evolution with 100 nodes, 1,000 nodes

Ihttps://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/

C. Schuman et al.

Distribution of Distribution of

S Im .
7000 Training Instances © 104Tra|n|ng Instances (Log-Scale)
2
§ 6000 o
E 5000 % 103
@ 4000 4
- v
= 3000 S
£ ‘2 10°
'€ 2000 E
£ 1000 o
0 £ 10!
012345678910 & 012345678910
Label = Label

Distribution of
1osTesting Instances (Log-Scale)

Distribution of
Testing Instances

70000 2
»» 60000 3
S g
2 50000 = 10
Z 40000 o
o
30000 =
2 2 10°
2 20000 2
2 <
= 10000 2
0 2 102
0123456780910 012345678910
Label Label

Figure 2: Breakdown of training (top) and testing (bottom)
instances per label, with the log-scale plot shown on the
right of both.

Table 1: Parallel EO training after one hour

Number of Nodes | Maximum Fitness Value
1 69.05%
100 70.82%
1000 72.6%
10000 79.11%

and 10,000 nodes for one hour utilizing the parallel EO method.
Obviously, the best result was achieved by the 10,000 node method.
It also produced the best result to date for our method. Addition-
ally, we tested a 3,750 node run for 24 hours, which produced a
network that achieves 81.57 percent classification accuracy on the
training set. We used that network to seed several 50 nodes runs
to further train the networks. The resulting best network achieved
81.06 percent accuracy on the 100,000 data instances of the com-
bined training and testing set, with 81 percent accuracy only on the
testing set. The results reported in [33] for a convolutional neural
network using just the X-view produced 80.42 percent classification
accuracy on the full data set. The convolutional neural network
is made up of four convolution layers, four pooling layers, three
fully-connected layers, and two dropout layers. In contrast, the
resulting NIDA network (shown in Figure 1) only contained 90
neurons (including inputs and outputs) and 86 synapses. There are
fewer synapses than neurons, thus, there are some input and/or
output neurons that are ignored. It is worth noting that we utilize a
high performance computer to quickly get to a good solution using
the EO distributed method. The EO benefits both from massively
parallel simulation and a large population size, but similar results
can be achieved on a desktop, though they require significantly
longer to train.

Figure 3 shows the guessed labels from the best performing NIDA
network. As can be seen, the NIDA network never guessed the labels

https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/

Neuromorphic Computing for Temporal Scientific Data Classification

‘Guefss‘ed vs. A‘ctu‘al !_a pels

18 [| B
8 [
o 7 10°
g 6]
3] | e
3
2 10t
1
0 10°

012 345¢67 80910
Actual

Figure 3: Heatmap showing the labels guessed by the NIDA
network and the actual labels in the data set. Note that the
colorbar is shown on a log-scale (because of the skewed
instances towards label 10). White on the heatmap corre-
sponds to no values.

0, 4, 6, 7, or 9. In Figure 2, we can see that those are the classes
with the fewest instances in both the training and testing set. This
result shows that the EO process has favored networks that focus
on categorizing as many training instances as possible correctly (as
specified by the fitness function), and since those labels have the
fewest instances in the training set, the EO focuses on optimizing
classifying the most frequently used labels. To overcome this in the
future, we can adjust the fitness function to favor networks that
better cover all of the different labels.

We also trained mrDANNA networks for the neutrino task, us-
ing just the basic EO method on a desktop. The fitness function
evaluation for mrDANNA requires more time than the NIDA evalu-
ation time, and thus requires longer to evolve. The current resulting
mrDANNA network achieved approximately 76.14 percent classifi-
cation accuracy on the training set and 73.59 percent classification
accuracy on the combined training and testing set, but its train-
ing trajectory was similar to that of NIDA network training on
a desktop. We expect that allowing additional training time for
mrDANNA will yield a network with similar performance as the
NIDA network shown above. We are able to estimate the energy
usage of the mrDANNA network using our combination of low-
and high-level simulators. This network requires approximately
1.66 pJ per calculation. To calculate the energy per calculation we
determined the energy per neuron in accumulation, fire and idle
phase and the energy per synapse in active and passive phase using
the low level simulator. We utilized our high level simulator to
simulate neural networks and to get an estimation of the number of
neurons and synapses in different phases. Then we multiplied each
energy number with the total number of neurons and synapses to
get an estimated energy per calculation.

8 DISCUSSION AND FUTURE WORK

There is much work left to do on the neutrino interaction data
discussed in this work. There are two other views of data (U view

NCS 17, July 17-19, 2017, Knoxville, TN, USA

and V view) that can also be used in classifying where interactions
occur. The best results for the convolutional neural network (=90
percent accuracy) were achieved using a combination of the three
views. There are two ways to approach this: include all three views
as input to one network or build three different networks (one for
each view) and combine the results to produce the output label.
Our previous experience indicates that the latter will be the better
approach, so we intend to pursue that approach moving forward.

We are encouraged by the results on the neutrino interaction
data, and we intend to explore other scientific data applications,
including other high energy physics data, materials science data,
and medical data where there is a temporal component that maps
well to spike-based systems. We also plan to explore how to combine
convolutional neural networks (which do very well at processing
spatial data) and SNNs in order to understand how we may leverage
the strengths of each system as applied to scientific data sets.

We utilize evolutionary algorithms as a way to train spiking neu-
romorphic systems. We plan to explore other training algorithms
and/or network models that can leverage spiking neuromorphic
systems as well, including liquid state machines, which have been
shown to perform well on temporal data analysis [26]. Liquid state
machines leave the spiking neuromorphic component “untrained”,
and rely on training a readout layer using back-propagation or
some other gradient descent approach.

We also intend to explore other neuromorphic device imple-
mentations. The EO, our models (NIDA and mrDANNA), and the
neutrino interaction data are implemented in a single software
framework [23]. This framework allows us to easily include a new
neuromorphic device model (e.g., a digital neuromorphic device or
a non-memristive analog or mixed analog/digial neuromorphic de-
vice), and to compare performance across different implementations.
It also allows us to easily incorporate in new applications (such as
other temporal scientific data applications discussed above).

9 CONCLUSION

In this work, we present preliminary results on the application of
spiking neuromorphic systems to temporal scientific data. We show
that spiking neuromorphic systems can achieve a comparable result
to a convolutional neural network applied to the same “view” of
a neutrino interaction data set, but with a much smaller network.
The goal of this work is to demonstrate that by utilizing a spike-
based encoding of temporal information (which is a “native" data
type for spiking neuromorphic systems), we can achieve similar
results to other, state-of-the-art machine learning systems, such as
convolutional neural networks.

We also show that the memristive implementation requires less
than 2 yJ per classification, indicating that this network may be
realistically deployed in an energy efficient device. We expect that
the best results for processing scientific data will use multiple ma-
chine learning techniques, including both convolutional neural net-
works and other deep learning techniques such as long short-term
memory network. We seek to emphasize that SNNs and spiking
neuromorphic systems have the potential to process temporal data
in an efficient and accurate way and that they should be considered
in the landscape of machine learning mechanisms for processing
scientific data.

NCS ’17, July 17-19, 2017, Knoxville, TN, USA

ACKNOWLEDGEMENTS

This material is based upon work supported in part by the U.S. De-
partment of Energy, Office of Science, Office of Advanced Scientific
Computing Research, under contract number DE-AC05-000R22725.
Research sponsored in part by the Laboratory Directed Research
and Development Program of Oak Ridge National Laboratory, man-
aged by UT-Battelle, LLC, for the U. S. Department of Energy. This
research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC05-000R22725. We would like to thank the
MINERVA collaboration for the use of their simulated data and for
many useful and stimulating conversations. MINERVA is supported
by the Fermi National Accelerator Laboratory under US Depart-
ment of Energy contract No. DE-AC02-07CH11359 which included
the MINERVA construction project. MINERVA construction support
was also granted by the United States National Science Foundation
under Award PHY-0619727 and by the University of Rochester. Sup-
port for participating MINERvVA physicists was provided by NSF and
DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico),
by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGIUNI
(Peru), and by Latin American Center for Physics (CLAF).

REFERENCES

[1] S. Agostinelli et al. 2003. GEANT4: A Simulation toolkit. NuclInstrum.Meth.
A506 (2003), 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8

[2] Himanshu Akolkar, Cedric Meyer, Xavier Clady, Olivier Marre, Chiara Bartolozzi,
Stefano Panzeri, and Ryad Benosman. 2015. What can neuromorphic event-driven
precise timing add to spike-based pattern recognition? Neural computation (2015).

[3] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John
Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam,
et al. 2015. TrueNorth: Design and Tool Flow of a 65mW 1 Million Neuron
Programmable Neurosynaptic Chip. (2015).

[4] L Aliaga, L Bagby, B Baldin, A Baumbaugh, A Bodek, R Bradford, WK Brooks,
D Boehnlein, S Boyd, H Budd, et al. 2014. Design, calibration, and performance
of the MINERVA detector. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 743
(2014), 130-159.

[5] Costas Andreopoulos, A Bell, D Bhattacharya, F Cavanna,] Dobson, S Dytman,
H Gallagher, P Guzowski, R Hatcher, P Kehayias, et al. 2010. The GENIE neutrino
monte carlo generator. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 614, 1
(2010), 87-104.

[6] Sander M Bohte, Joost N Kok, and Han La Poutre. 2002. Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomputing 48, 1 (2002),
17-37.

[7] Yu Chen, Gang Liu, Cheng Wang, Wenbin Zhang, Run-Wei Li, and Luxing Wang.
2014. Polymer memristor for information storage and neuromorphic applications.
Materials Horizons 1, 5 (2014), 489-506.

[8] Mark E Dean and Christopher Daffron. 2016. A VLSI Design for Neuromorphic

Computing. In VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium on.

IEEE, 87-92.

Bruce Denby, Patrick Garda, Bertrand Granado, Christian Kiesling, Jean-

Christophe Prévotet, and Andreas Wassatsch. 2003. Fast triggering in high-energy

physics experiments using hardware neural networks. Neural Networks, IEEE

Transactions on 14, 5 (2003), 1010-1027.

Adam Disney, John Reynolds, Catherine D Schuman, Aleksander Klibisz, Aaron

Young, and James S Plank. 2016. DANNA: A neuromorphic software ecosystem.

Biologically Inspired Cognitive Architectures 17 (2016), 49-56.

[11] Margaret Drouhard, Catherine D Schuman, J Douglas Birdwell, and Mark E
Dean. 2014. Visual analytics for neuroscience-inspired dynamic architectures. In
Foundations of Computational Intelligence (FOCI), 2014 IEEE Symposium on. IEEE,
106-113.

[12] Victor Erokhin, Tatiana Berzina, Anteo Smerieri, Paolo Camorani, Svetlana

Erokhina, and Marco P Fontana. 2010. Bio-inspired adaptive networks based on

organic memristors. Nano Communication Networks 1, 2 (2010), 108-117.

Stefano Fusi. 2002. Hebbian spike-driven synaptic plasticity for learning patterns

of mean firing rates. Biological cybernetics 87, 5 (2002), 459-470.

[14] Eugene M Izhikevich. 2003. Simple model of spiking neurons. IEEE Transactions
on neural networks 14, 6 (2003), 1569-1572.

=

[10

[13

[15

[16

[17

[18

=
)

[20

[21

[22

[24

[25]

[26

[27]

™
&,

[29

[30

@
=

[32

(33]

[34

[35

[36]

C. Schuman et al.

Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B Bhadviya, Pinaki
Mazumder, and Wei Lu. 2010. Nanoscale memristor device as synapse in neuro-
morphic systems. Nano letters 10, 4 (2010), 1297-1301.

Nikola Kasabov, Kshitij Dhoble, Nuttapod Nuntalid, and Giacomo Indiveri. 2013.
Dynamic evolving spiking neural networks for on-line spatio-and spectro-
temporal pattern recognition. Neural Networks 41 (2013), 188-201.

Dhireesha Kudithipudi, Qutaiba Saleh, Cory Merkel, James Thesing, and Bryant
Wysocki. 2015. Design and Analysis of a Neuromemristive Reservoir Computing
Architecture for Biosignal Processing. Frontiers in Neuroscience 9 (2015), 502.
Bernabé Linares-Barranco and Teresa Serrano-Gotarredona. 2009. Memristance
can explain spike-time-dependent-plasticity in neural synapses. (2009).
Wolfgang Maass. 1997. Networks of spiking neurons: the third generation of
neural network models. Neural networks 10, 9 (1997), 1659-1671.

Liam P Maguire, T Martin McGinnity, Brendan Glackin, Arfan Ghani, Ammar
Belatreche, and Jim Harkin. 2007. Challenges for large-scale implementations of
spiking neural networks on FPGAs. Neurocomputing 71, 1 (2007), 13-29.
Garrick Orchard, Xavier Lagorce, Christoph Posch, Steve B Furber, Ryad Benos-
man, and Francesco Galluppi. 2015. Real-time event-driven spiking neural net-
work object recognition on the SpiNNaker platform. In Circuits and Systems
(ISCAS), 2015 IEEE International Symposium on. IEEE, 2413-2416.

NG Pavlidis, OK Tasoulis, Vassilis P Plagianakos, G Nikiforidis, and MN Vrahatis.
2005. Spiking neural network training using evolutionary algorithms. In Neural
Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International Joint Conference
on, Vol. 4. IEEE, 2190-2194.

J. S. Plank, G. S. Rose, M. E. Dean, and C. D. Schuman. 2017. A CAD System
for Exploring Neuromorphic Computing with Emerging Technologies. In 42nd
Annual GOMACTech Conference. Reno, NV.

Anvesh Polepalli, Nicholas Soures, and Dhireesha Kudithipudi. 2016. Digital
neuromorphic design of a Liquid State Machine for real-time processing. In
Rebooting Computing (ICRC), IEEE International Conference on. IEEE, 1-8.
Mirko Prezioso, Farnood Merrikh-Bayat, BD Hoskins, GC Adam, Konstantin K
Likharev, and Dmitri B Strukov. 2015. Training and operation of an integrated
neuromorphic network based on metal-oxide memristors. Nature 521, 7550 (2015),
61-64.

Benjamin Schrauwen, Michiel DAAZHaene, David Verstraeten, and Jan Van Camp-
enhout. 2008. Compact hardware liquid state machines on FPGA for real-time
speech recognition. Neural networks 21, 2 (2008), 511-523.

Catherine D Schuman,] Douglas Birdwell, and Mark E Dean. 2014. Spatiotempo-
ral classification using neuroscience-inspired dynamic architectures. Procedia
Computer Science 41 (2014), 89-97.

Catherine D Schuman, Adam Disney, Susheela P Singh, Grant Bruer, J Parker
Mitchell, Aleksander Klibisz, and James S Plank. 2016. Parallel evolutionary
optimization for neuromorphic network training. In Proceedings of the Workshop
on Machine Learning in High Performance Computing Environments. IEEE Press,
36-46.

Catherine D Schuman, James S Plank, Adam Disney, and John Reynolds. 2016.
An evolutionary optimization framework for neural networks and neuromorphic
architectures. In Neural Networks (IJCNN), 2016 International Joint Conference on.
IEEE, 145-154.

Teresa Serrano-Gotarredona, Timothée Masquelier, Themistoklis Prodromakis,
Giacomo Indiveri, and Bernabe Linares-Barranco. 2013. STDP and STDP varia-
tions with memristors for spiking neuromorphic learning systems. Frontiers in
neuroscience 7 (2013), 2.

Juncheng Shen, De Ma, Zonghua Gu, Ming Zhang, Xiaolei Zhu, Xiaogiang Xu,
Qi Xu, Yangjing Shen, and Gang Pan. 2016. Darwin: a neuromorphic hardware
co-processor based on Spiking Neural Networks. Science China Information
Sciences (2016), 1-5.

Sen Song, Kenneth D Miller, and Larry F Abbott. 2000. Competitive Hebbian
learning through spike-timing-dependent synaptic plasticity. Nature neuroscience
3, 9 (2000), 919-926.

Adam M. Terwilliger, Gabriel N. Perdue, David Isele, Robert M. Patton, and
Steven R. Young. 2017. Vertex Reconstruction of Neutrino Interactions using
Deep Learning. In Neural Networks (IJCNN), 2017 International Joint Conference
on. In Press.

Andres Upegui, Carlos Andrés Pena-Reyes, and Eduardo Sanchez. 2005. An
FPGA platform for on-line topology exploration of spiking neural networks.
Microprocessors and microsystems 29, 5 (2005), 211-223.

Salvatore Vitabile, Vincenzo Conti, Fulvio Gennaro, and Filippo Sorbello. 2005.
Efficient MLP digital implementation on FPGA. In Digital System Design, 2005.
Proceedings. 8th Euromicro Conference on. IEEE, 218-222.

Jianguo Xin and Mark J Embrechts. 2001. Supervised learning with spiking neural
networks. In Neural Networks, 2001. Proceedings. [JCNN 01. International Joint
Conference on, Vol. 3. IEEE, 1772-1777.

https://doi.org/10.1016/S0168-9002(03)01368-8

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Spiking Neural Network Model: NIDA
	4 Memristive Hardware Implementation
	5 Training Method: Evolutionary Optimization
	6 Application: Neutrino Data
	7 Preliminary Results
	8 Discussion and Future Work
	9 Conclusion
	References

