

Edinburgh Research Explorer

Incremental View Maintenance with Triple Lock Factorization
Benefits

Citation for published version:
Nikolic, M & Olteanu, D 2018, Incremental View Maintenance with Triple Lock Factorization Benefits. in
Proceedings of the 2018 International Conference on Management of Data. SIGMOD '18, ACM, New York,
NY, USA, pp. 365-380, 2018 ACM SIGMOD/PODS International Conference on Management of Data,
Houston, Texas, United States, 10/06/18. https://doi.org/10.1145/3183713.3183758

Digital Object Identifier (DOI):
10.1145/3183713.3183758

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2018 International Conference on Management of Data

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1145/3183713.3183758
https://doi.org/10.1145/3183713.3183758
https://www.research.ed.ac.uk/en/publications/0d7401f6-6838-4d9a-aa8e-d00a27aebe29

Incremental View Maintenance
with Triple Lock Factorization Benefits

Milos Nikolic and Dan Olteanu

Department of Computer Science, University of Oxford, UK

ABSTRACT
We introduce F-IVM, a unified incremental viewmaintenance (IVM)

approach for a variety of tasks, including gradient computation for

learning linear regression models over joins, matrix chain multipli-

cation, and factorized evaluation of conjunctive queries.

F-IVM is a higher-order IVM algorithm that reduces the main-

tenance of the given task to the maintenance of a hierarchy of

increasingly simpler views. The views are functions mapping keys,

which are tuples of input data values, to payloads, which are ele-

ments from a task-specific ring. Whereas the computation over the

keys is the same for all tasks, the computation over the payloads

depends on the task. F-IVM achieves efficiency by factorizing the

computation of the keys, payloads, and updates.

We implemented F-IVM as an extension of DBToaster. We show

in a range of scenarios that it can outperform classical first-order

IVM, DBToaster’s fully recursive higher-order IVM, and plain re-

computation by orders of magnitude while using less memory.

1 INTRODUCTION
Supporting modern applications that rely on the availability of accu-

rate and real-time analytics computed over large and continuously

evolving databases is a challenging data management problem [6].

Special cases are the classical problems of incremental view main-

tenance (IVM) [12, 25] and stream query processing [4, 29].

Recent efforts studied the problem of computing machine learn-

ing (ML) models over static databases, with the predominant ap-

proach loosely integrating the database systems with the statistical

packages [20, 27, 30, 39, 40]: First, the database system computes

the input to the statistical package by joining the database relations.

It then exports the join result, which is ingested by the statistical

package and used for training ML models. This approach precludes

real-time analytics due to the expensive export/import steps.

Real-time analytics would benefit from a much tighter integra-

tion of the two systems. This is provided by Morpheus and F that

learn ML models over normalized data. Morpheus decomposes the

task of learning generalized linear models into subtasks that are

pushed down past the joins to the input database tuples [28]. F goes

further and factorizes the join computation [23, 42]. This factoriza-

tion may significantly lower the complexity of joins by avoiding the

computation of their constituent Cartesian products [7, 38]. This

performance improvement caries over to learning classification and

regression models over factorized joins.

In this paper, we introduce F-IVM, a unified IVM approach for

analytics over normalized data. Analytical tasks are expressed as

views on joins with group-by aggregates over relations that map

keys to payloads. We exemplify the power of F-IVM for matrix

chain multiplication, factorized evaluation of conjunctive queries,

and gradient computation used for learning linear regression mod-

els. Although these applications achieve different outcomes, they

only differ in the specification of the sum and product operations

over payloads. These payload operations can be: arithmetic addition

and multiplication for queries with joins and group-by aggregates;

relational union and join for listing and factorized representation

of conjunctive query results; matrix addition and multiplication for

gradient computation; in general, sum and product in an appropri-

ate ring. The mechanisms for maintenance and computation over

keys stay the same. F-IVM is thus highly extensible: efficient main-

tenance for new analytics over normalized data is readily available

as long as they come with appropriate sum and product operations.

F-IVM has two ingredients. First, it leverages higher-order IVM

to reduce the maintenance of the input view to the maintenance

of a tree of simpler views. In contrast to classical (first-order) IVM,

which does not use extra views and computes changes in the query

result on the fly, F-IVM can tremendously speed up themaintenance

task and lower its complexity by using carefully chosen extra views.

Nevertheless, F-IVMmay use substantially fewer and cheaper views

than fully-recursive IVM, which is the approach taken by the state-

of-the-art IVM system DBToaster [25].

Second, it is the first approach to employ factorized computa-

tion for three aspects of incremental maintenance for queries with

aggregates and joins: (1) it exploits insights from query evaluation

algorithms with best known complexity and optimizations that

push aggregates past joins [5, 7, 38]; (2) it can process bulk up-

dates expressed as low-rank decompositions [26, 44]; and (3) it can

maintain compressed representation of query results.

F-IVM is implemented on top of DBToaster’s open-source back-

end, which can generate optimized C++ code from high-level update

trigger specifications. In a range of applications, F-IVM outperforms

DBToaster and classical first-order IVM by up to two orders of mag-

nitude in both time and space.

Example 1.1. Consider the following SQL query over a database

D with relations R(A,B), S(A,C,E), and T (C,D):

Q := SELECT S.A, S.C, SUM(R.B * T.D * S.E)

FROM R NATURAL JOIN S NATURAL JOIN T

GROUP BY S.A, S.C;

Let us consider two different evaluation strategies for this query. A

naïve approach first computes the join result and then the aggregate.

This can take time cubic in the size of D. An alternative strategy

exploits the distributivity of the SUM operator over multiplication

to partially push the aggregate past joins and later combine these

partial aggregates to produce the query result. For instance, one

such partial sum over S can be expressed as the view VS:

VS := SELECT A, C, SUM(E) AS SE FROM S GROUP BY A, C;

Q = SUM(SB* SC)
GROUP BY A,C

S

VS = SUM(E) AS SE
GROUP BY A,C

T

VR = SUM(B) AS SB
GROUP BY A

R

⋈A

𝛿VT

𝛿T

𝛿VST

𝛿Q

𝛿VST

𝛿S

𝛿Q

⋈C

VST = SUM(SD *SE) AS SC
GROUP BY A,C

VT = SUM(D) AS SD
GROUP BY C

𝛿VS

Figure 1: View tree for the query in Example 1.1. Delta prop-
agations for updates to S (right red) and to T (left blue).

In the view VS, we distinguish keys, which are tuples over (A,C),
and payloads, which are aggregate values SE. Similarly, we can

compute partial sums over R and T as views VR and VT. These views

are joined as depicted by the view tree in Figure 1, which is akin

to a query plan with aggregates pushed past joins. This view tree

computes the query result is time linear in the size of D.

Consider the problem of learning a linear function f with param-

eters θ0, θD and θE that predicts the label B given the features D
and E, where the training dataset is the natural join of our relations:

f (D,E) = θ0 + θD · D + θE · E

Our insight is that the same above view tree can also compute the

gradient vector used for learning f ! The only needed adjustment is

the replacement of the SQL SUM and * operators with appropriate

new sum and product operators. We next explain the case of one

model f for each pair of values (A,C); the case of one model for

the entire dataset is similar.

As detailed in Section 6.2, the gradient of the square loss objective

function requires the computation of three types of aggregates:

the scalar c that is the count aggregate SUM(1); the vector s of

linear aggregates SUM(B), SUM(D), and SUM(E); and the matrixQ
of quadratic aggregates SUM(B*D), SUM(B*E), SUM(D*D), SUM(D*E),
and SUM(E*E). These aggregates represent sufficient statistics to

capture the correlation between the features and the label. If we

compute them over each (A,C) group, then we learn one model for

each such group; if we compute them over the entire dataset, we

then learn one model only.

We treat these aggregates as one compound aggregate (c, s,Q) so

we can share computation across them. This compound aggregate

can be partially pushed past joins similarly to the SUM aggregate

discussed before. Its values are carried in the payloads of keys of

the views in the view tree from Figure 1. For instance, the partial

compound aggregate (cT, sT,QT) at the view VT computes for each

C-value the count, sum, and sum of squares of the D-values in T .
Similarly, the partial aggregate (cS, sS,QS) at the view VS computes

for each pair (A,C) the count, sum, and sum of squares of E-values
in S . In the view VST that is the join of VT and VS, each key (a, c)
is associated with the multiplication of the payloads for the keys

c in VT and (a, c) in VS. This multiplication is however different

from SQL’s * as it works on compound aggregates: The scalar cST
is the arithmetic multiplication of cT and cS; the vector of linear
aggregates sST is the sum of the scalar-vector products cTsS and

sTcS; finally, thematrixQST of quadratic aggregates is the sum of the

scalar-matrix products cTQS andQTcS, and of the outer products

of the vectors sT and the transpose of sS and also of sS and the

transpose of sT. Our approach significantly shares the computation

across the aggregates: The scalar aggregates are used to scale up

the linear and quadratic ones, while the linear aggregates are used

to compute the quadratic ones.

We now turn to incremental view maintenance. F-IVM operates

over view trees. Whereas for non-incremental computation we

only materialize the top view in the tree and the input relations,

for incremental computation we may materialize additional views

to speed up the maintenance task. Our approach is an instance of

higher-order delta-based IVM, since an update to one relation may

trigger the maintenance for several views.

Figure 1 shows the leaf-to-root paths taken to maintain the view

result under changes to S and to T. For updates δS to S, each delta

view δVS, δVST, and δQ, is computed using delta rules:

δVS := SELECT A, C, SUM(E) AS SE FROM δS GROUP BY A, C;

δVST := SELECT A, C, SUM(SD * SE) AS SC

FROM VT NATURAL JOIN δVS GROUP BY A, C;

δQ := SELECT A, C, SUM(SB * SC)

FROM VR NATURAL JOIN δVST GROUP BY A, C;

The update δS may consist of both inserts and deletes, which are

encoded as keys with positive and respectively negative payloads.

In our example, a negative payload is -1 for the SUM aggregate and

(−1, 05×1, 05×5) for the compound aggregate, where 0n×m is the

n-by-m matrix with all elements 0.

F-IVMmaterializes andmaintains views depending on the update

workload. For updates to all input relations, it materializes the

view at each node in the view tree. For updates to R only, it only

materializes VST; for updates to S only, it materializes VR and VT; for

updates to T only, it materializes VR and VS. F-IVM takes constant

time for updates to S and linear time for updates to R and T; these
complexities are in the number of distinct keys in the views. In

contrast, the first-order version of F-IVM does not create extra

views and takes linear time for updates to any of the three relations.

The fully-recursive version of F-IVM would further materialize the

join of VR and VS as it may consider more than one view tree.

The above analysis holds for our query with one SUM aggregate.

For the learning example with the nine SUM aggregates, F-IVM still

needs the same views. Classical first-order IVM algorithms would

however need to compute a distinct delta query for each of the nine

aggregates – nine in total for updates to any of the three relations.

DBToaster, which is the state-of-the-art fully recursive IVM, would

need to compute 28 views, nine top views and 19 auxiliary ones.

Whereas F-IVM shares the computation across the nine aggregates,

the classical IVM and DBToaster do not. This significantly widens

the performance gap between F-IVM and its competitors.

2 DATA MODEL AND QUERY LANGUAGE
Data Model. A schema S is a set of variables (or attributes). For

a variable X ∈ S, let Dom(X) denote its domain. A tuple t over
schema S has the domain Dom(S) =

∏
X ∈S Dom(X). The empty

tuple () is the tuple over the empty schema.

2

A ring (D,+, ∗, 0, 1) is a set with two binary operations, + and

∗, which generalize the arithmetic operations of addition and mul-

tiplication, the additive identity 0, the multiplicative identity 1,
and an additive inverse for each element of D (cf. Appendix A for

definition). Examples of rings are Z, Q, R, R2, R3, and matrix ring.

Let (D,+, ∗, 0, 1) be a ring. A relation R over schema S and the

ring D is a function R : Dom(S) → D mapping tuples over schema

S to values in D such that R[t] , 0 for finitely many tuples t. The
tuple t is called a key, while its mapping R[t] is the payload of t in R.
We use sch(R) to denote the schema of R. The statement t ∈ R tests

if R[t] , 0. The size |R| of R is the size of the set {t | t ∈ R}, which
consists of all keys with non-0 payloads. We materialize R as a hash

map or a multi-dimensional array. A database D is a collection of

relations over the same ring. Its size |D| is the sum of the sizes of its

relations. This data model is in line with prior work on K-relations
over provenance semirings [17], generalized multiset relations [24],

and factors over semirings [5].

Query Language. In this paper we consider incremental main-

tenance for queries with joins and group-by aggregates:

SELECT X1, ..., Xf , SUM(дf +1(Xf +1) ∗ ... ∗ дm (Xm))

FROM R1 NATURAL JOIN ... NATURAL JOIN Rn
GROUP BY X1, ..., Xf

The group-by variables X1, . . . ,Xf are also called free, while the
other variables Xf +1, . . . ,Xm are bound. The values of the SUM
aggregate are from a ring (D,+, ∗, 0, 1). The lifting functions дk :

Dom(Xk) → D, for f < k ≤ m, map (lift) variable values to

elements in D. The SUM operator uses the addition + from D. More

complex aggregates can be expressed using the sum and product

operations from the ring.

Instead of the SQL notation, we use the following encoding:

Q[X1, . . . ,Xf] =
⊕

Xf +1
· · ·

⊕
Xm

⊗
i ∈[n] Ri[Si],

where ⊗ is the join operator,

⊕
Xf +1

is the aggregation operator that

marginalizes over the variableXf +1, and each relation Ri maps keys

over schema Si to payloads in D. We also need a union operator ⊎

to express updates (insert/delete) to relations.

Given a ring (D,+, ∗, 0, 1), relations R and S over schema S1 and

relation T over schema S2, a variable X ∈ S1, and a lifting function

дX : Dom(X) → D, we define the operators as follows:
union:

∀t ∈ D1: (R ⊎ S)[t] = R[t] + S[t]
join:

∀t ∈ D2: (S ⊗ T)[t] = S[πS1
(t)] ∗ T[πS2

(t)]
aggregation by marginalization:

∀t ∈ D3: (
⊕

X R)[t] =
∑
{ R[t1] ∗ дX (πX (t1)) | t1 ∈ D1,

t = πS1\{X }(t1)}

where D1 = Dom(S1); D2 = Dom(S1 ∪ S2); D3 = Dom(S1 \ {X });

πX (t1) and πS1\{X }(t1) are tuples representing the projection of

tuple t1 on X and respectively on S1 \ {X }.

Example 2.1. Consider the relations over a ring (D,+, ∗, 0, 1):
A B → R[A, B]

a1 b1 → r1
a2 b1 → r2

A B → S[A, B]

a2 b1 → s1
a3 b2 → s2

B C → T[B, C]

b1 c1 → t1
b2 c2 → t2

The values r1, r2, s1, s2, t1, t2 are non-0 values fromD. The operators
⊎, ⊗, ⊕ are akin to classical union, join, and aggregation:

A B → (R ⊎ S)[A, B]

a1 b1 → r1
a2 b1 → r2 + s1
a3 b2 → s2

A B C →
(
(R ⊎ S) ⊗ T

)
[A, B, C]

a1 b1 c1 → r1 ∗ t1
a2 b1 c1 → (r2 + s1) ∗ t1
a3 b2 c2 → s2 ∗ t2

B C →
(⊕

A(R ⊎ S) ⊗ T
)
[B, C]

b1 c1 → r1 ∗ t1 ∗ дA(a1) + (r2 + s1) ∗ t1 ∗ дA(a2)
b2 c2 → s2 ∗ t2 ∗ дA(a3)

where дA : Dom(A) → D is the given lifting function for A. □

Example 2.2. We show how to encode the following SQL query

over tables R(A,B), S(A,C,E), and T (C,D) into our formalism:

Q = SELECT SUM(1) FROM R NATURAL JOIN S NATURAL JOIN T;

Assuming the ring Z, we encode the table R as a relation R :

Dom(A) ×Dom(B) → Z that maps tuples (a,b) to their multiplicity

in R; similarly, we encode the tables S and T as relations S and T.
Our SQL query is then translated into:

Q[] =
⊕

A
⊕

B
⊕

C
⊕

D
⊕

E R[A,B] ⊗ S[A,C, E] ⊗ T[C,D]

where the lifting functions used in marginalization map all values

to 1. Remember that by definition R, S, and T are finite relations.

The relation Q maps the empty tuple () to the count. □

Example 2.3. Let us consider the SQL query from Example 1.1,

which computes SUM(R.B * T.D * S.E) and assume that B, C , and
D take values from Z. We model the tables R, S , and T as relations

mapping tuples to their multiplicity, as in Example 2.2. The variables

A and C are free while B, D, and E are bound. When marginalizing

over the bound variables, we apply the same lifting function to

all variables: ∀x ∈ Z : дB (x) = дD (x) = дE (x) = x . Now, the SQL
query can be expressed in our formalism as follows:

Q[A,C] =
⊕

B
⊕

D
⊕

E R[A,B] ⊗ S[A,C, E] ⊗ T[C,D]

The computation of the aggregate SUM(R.B * T.D * S.E) now hap-

pens over payloads. □

One key benefit of using relations over rings is avoiding the

intricacies of incremental computation under classical multiset se-

mantics caused by non-commutativity of inserts and deletes. Our

data model simplifies delta processing by representing both inserts

and deletes as tuples, with the distinction that they map to posi-

tive and respectively negative ring values. This uniform treatment

allows for simple delta rules for our three operators.

3 FACTORIZED RING COMPUTATION
In this section, we introduce a static query evaluation framework

based on factorized computation and data rings. In the next section,

we adapt it to incremental maintenance.

Variable Orders. Classical query evaluation uses query plans

that dictate the order in which the relations are joined. We use

slightly different plans, which we call variable orders, that dictate

the order in which we solve each join variable. They may require

to join several relations at the same time if these relations have the

same variable. Our choice is motivated by the complexity of join

evaluation: standard (relation-at-a-time) query plans are provably

suboptimal, whereas variable orders can be optimal [31].

3

A

B C

D E

R

T S

dep(A) = ∅

dep(B) = {A}

dep(C) = {A}

dep(D) = {C }

dep(E) = {A, C }

(a) Variable order ω

V@A
RST[]

V@B
R [A] V@C

ST [A]

V@D
T [C] V@E

S [A, C]
R[A, B]

S[A, C, E]T[C, D]

V@A
RST[] =

⊕
A
(
V@B
R [A] ⊗ V@C

ST [A]
)

V@B
R [A] =

⊕
B R[A, B]

V@C
ST [A] =

⊕
C
(
V@D
T [C] ⊗ V@E

S [A, C]
)

V@D
T [C] =

⊕
D T[C, D]

V@E
S [A, C] =

⊕
E S[A, C, E]

(b) View tree over ω and F = ∅

A B → R[A, B]

a1 b1 → p1
a1 b2 → p2
a2 b3 → p3
a3 b4 → p4

A C E → S[A, C, E]

a1 c1 e1 → p4
a1 c1 e2 → p5
a1 c2 e3 → p6
a2 c2 e4 → p7

C D → T[C, D]

c1 d1 → p9
c2 d2 → p10
c2 d3 → p11
c3 d4 → p12

(c) Database D

()→ V@A
RST[]

()→ 10

A →V@B
R [A]

a1 → 2

a2 → 1

a3 → 1

A →V@C
ST [A]

a1 → 4

a2 → 2

C →V@D
T [C]

c1→ 1

c2→ 2

c3→ 1

A C →V@E
S [A, C]

a1 c1→ 2

a1 c2→ 1

a2 c2→ 1

(d) COUNT query over D

()→V@A
RST[]

()→

A
a1→8

a2→2

()→ V@A
RST[]

()→

A B C D
a1 b1 c1 d1→2

a1 b1 c2 d2→1

a1 b1 c2 d3→1

a1 b2 c1 d1→2

a1 b2 c2 d2→1

a1 b2 c2 d3→1

a2 b3 c2 d2→1

a2 b3 c2 d3→1

A →V@C
ST [A]

a1→
C
c1 → 2

c2 → 2

a2→
C
c2 → 2 A → V@C

ST [A]

a1→

C D
c1 d1 → 2

c2 d2 → 1

c2 d3 → 1

a2→
C D
c2 d2 → 1

c2 d3 → 1

A C →V@E
S [A, C]

a1 c1→ ()→ 2

a1 c2→ ()→ 1

a2 c2→ ()→ 1

A →V@B
R [A]

a1→
B
b1 → 1

b2 → 1

a2→
B
b3 → 1

a3→
B
b4 → 1

C →V@D
T [C]

c1 →
D
d1→ 1

c2 →
D
d2→ 1

d3→ 1

c3 →
D
d4→ 1

(e) Conjunctive query over D

Figure 2: (a) Variable orderω of the natural join of R, S, T. (b) View tree τ overω andwithout free variables. (c) DatabaseD over a
ring D, where {pi }i ∈[12] ⊆ D. (d) Computing COUNT using τ and the Z ring, where ∀i ∈ [12] : pi = 1. (e) Computing the query from
Example 6.5 using τ and the relational ring, where ∀i ∈ [12] : pi = {() → 1}. The red views (rightmost column) have payloads
storing the listing representation of the intermediate and final query results. The blue views (middle) encode a factorized
representation of these results distributed over their payloads. The black views remain the same for both representations.

τ (variable order ω, free variables F)

switch ω:

R R[sch(R)]

X

ω1
. . . ωk

V@X
rels[keys]

τ (ω1,F) . . . τ (ωk ,F)

, where

let
V@ωi
relsi

[keysi] = root of τ (ωi ,F),∀i ∈ [k],

keys = dep(X) ∪ (F ∩
⋃
i ∈[k] keysi),

rels =
⋃
i ∈[k] relsi ,

V [keys] =
⊗

i ∈[k] V
@ωi
relsi

[keysi],

in

V@X
rels[keys] =

{
V [keys] , if X ∈ F⊕

X V [keys], otherwise.

Figure 3: Creating a view tree τ (ω,F) for a variable order ω
and a set of free variables F .

Given a join query Q , a variable X depends on a variable Y if

both are in the schema of a relation in Q .

Definition 3.1 (adapted from [38]). A variable order ω for a join

query Q is a pair (F ,dep), where F is a rooted forest with one node

per variable in Q , and dep is a function mapping each variable X to

a set of variables in F . It satisfies the following constraints:

• For each relation in Q , its variables lie along the same root-to-

leaf path in F .
• For each variable X , dep(X) is the subset of its ancestors in F
on which the variables in the subtree rooted at X depend.

Figure 2a gives a variable order for the natural join of three

relations. Variable D has ancestors A and C , yet it only depends

on C since C and D appear in the same relation T and D does not

occur in any relation together with A. Thus, dep(D) = {C}. Given
C , the variables D and E are independent of each other. In case Q
has free variables, then we prefer variable orders for Q that have

all free variables on top of the bound variables.

View Trees. Our framework relies on a variable order ω for

the input query Q to describe the structure of computation and

indicate which variable marginalizations are pushed past joins. At

each variable in ω we define a view that is a query over its children.

The view at the root variable corresponds to the entire query Q .
The tree of these views is called a view tree, which plays the role of

a query plan in our framework.

Figure 3 gives an algorithm that constructs a view tree τ for a

variable orderω of the input queryQ and the set of free variables F

of Q . The input variable order is extended with relations at leaves

under their lowest variable (as children or further below). The views

in the view tree are defined over the input relations or the views at

children. We use the notation V@X
rels[keys] to state that the view V is

recursively defined over the input relations rels, has free variables
keys , and is at the variable X in ω; in case of a view for an input

relation R, we use the simplified notation R[sch(R)].
The base case (leaf in the extended variable order) is that of an

input relation: We construct a view that is the relation itself. At a

variable X (inner node), we distinguish two cases: If X is a bound

variable, we construct a view that marginalizes out X in the natural

join of the child views; we thus first join onX , then apply the lifting

function for X on its values, and aggregate X away. If X is a free

variable, however, we retain it in the view schema without applying

the lifting function to its values. The schema of the view consists

of those ancestor variables of X in ω on which it depends and the

free variables already present at its children.

4

δ (view tree τ , update δR)

switch τ :

R[sch(R)] δR[sch(R)]

V@X
rels[keys]

τ1 . . . τk

δV@X
rels[keys]

τ1 . . . δ (τj ,δR) . . . τk
, where

let
V@τi
relsi

[keysi] be root of τi ,∀i ∈ [k],

j ∈ [k] be such that R ∈ relsj ,

δV [keys] = δV
@τj
relsj

[keysj]
⊗

i ∈[k],i,j
V@τi
relsi

[keysi],

in

δV@X
rels[keys] =

{
δV [keys] , if X ∈ F

Optimize(
⊕

X δV [keys]), otherwise.

Figure 4: Creating a delta view tree δ (τ ,δR) for a view tree τ
to accommodate an update δR to a relation R.

Example 3.2. Figure 2 gives the view tree constructed by our

algorithm for the given variable order and the empty set of free vari-

ables. The figure also shows the contents of the views computing

the COUNT query over the database D. □

By default, the algorithm constructs one view per variable in the

variable order ω. A wide relation (with many variables) leads to

long branches inω with variables that are only local to this relation.

This is, for instance, the case of our retailer dataset used in Section 7.

Such long branches create long chains of views, where each view

marginalizes one bound variable over its child view in the chain.

For practical reasons, we compose such long chains into a single

view that marginalizes several variables at a time.

4 FACTORIZED HIGHER-ORDER IVM
We introduce incremental view maintenance in our factorized ring

computation framework. In contrast to evaluation, the incremental

maintenance of the query result may require thematerialization and

maintenance of views. An update to a relation R triggers changes

in all views from the leaf R to the root of the view tree.

Updates. The insertion (deletion) of a tuple t into (from) a re-

lation R is expressed as a delta relation δR that maps t to 1 (and

respectively −1). In general, δR can be a relation, thus a collection

of tuples mapped to payloads. The updated relation is then the

union of the old relation and the delta relation: R := R ⊎ δR.

Delta Views. For each view V affected by an update, a delta
view δV defines the change in the view contents. In case the view

V represents a relation R, then δV = δR if there are updates to R
and δV = ∅ otherwise. In case the view is defined using operators

on other views, δV is derived using the following delta rules:

δ (V1 ⊎ V2) = δV1 ⊎ δV2
δ (V1 ⊗ V2) = (δV1 ⊗ V2) ⊎ (V1 ⊗ δV2) ⊎ (δV1 ⊗ δV2)

δ (
⊕

X V) =
⊕

X δV

The correctness of the rules follows from the associativity of ⊎

and the distributivity of ⊗ over⊎;
⊕

X is equivalent to the repeated

application of⊎ for the possible values ofX . The derived delta views

are subject to standard simplifications: If V is not defined over the

updated relation R, then its delta view δV is empty, and then we

propagate this information using the identities ∅ ⊎ V = V ⊎ ∅ = V
and ∅ ⊗ V = V ⊗ ∅ = ∅.

Delta Trees. Under updates to one relation, a view tree becomes

a delta tree where the affected views become delta views. The

algorithm in Figure 4 traverses the view tree τ top-down along

the path from the root to the updated relation and replaces the

views on that path with delta views. The Optimize method rewrites

delta view expressions to exploit factorized updates by avoiding the

materialization of Cartesian products and pushing marginalization

past joins; we explain this optimization in Section 5.

Example 4.1. Consider the query from Example 2.2 and its view

tree from Figure 2b. The update δT triggers delta computation at

each view from the leaf T to the root of the view tree:

δV@D
T [C] =

⊕
D δT[C,D]

δV@C
ST [A] =

⊕
C δV@D

T [C] ⊗ V@E
S [A,C]

δV@A
RST[] =

⊕
A V@B

R [A] ⊗ δV@C
ST [A]

Let us consider the ring Z and the lifting functions that map all

values to 1, and let δT[C,D] = {(c1,d1) → −1, (c2,d2) → 3}. Given

the contents of V@E
S and V@B

R from Figure 2, we now have:

C → δV@D
T [C]

c1 → −1

c2 → 3

A → δV@C
ST [A]

a1 → 1

a2 → 3

() → δV@A
RST

() → 5

A single-tuple update to T fixes the values for C and D and

computing δV@D
T takes constant time. The delta view δV@C

ST iterates

over all possible A-values for a fixed C-value, which takes linear

time; δV@A
RST incurs the same linear-time cost. A single-tuple update

to either R or S, however, fixes all variables on a leaf-to-root path

in the delta view tree, giving a constant view maintenance cost. □

In contrast to classical (first-order) IVM that only requires main-

tenance of the query result [12], our approach is higher-order IVM

as updates may trigger maintenance of several interrelated views.

The fully-recursive IVM scheme of DBToaster [24, 25] creates one

materialization hierarchy per relation in the query, whereas we

use one view tree for all relations. This view tree relies on vari-

able orders to decompose the query into views and factorize its

computation and maintenance.

Which Views to Materialize and Maintain? The answer to
this question depends on which relations may change. Let U be

the (multi)set of the updatable relations; if a relation occurs several

times in the query, then it has several instances inU.

Propagating changes along a leaf-to-root path is computationally

most effective if each delta view joins with sibling views that are

already materialized. Figure 5 depicts an algorithm that reflects this

idea: Given a view tree τ and a set of relations U, the algorithm

builds a materialization tree µ(τ ,U) that has the same structure as

τ and where each node is a Boolean value indicating whether the

corresponding view from τ should be materialized. The root view

5

µ (view tree τ , updatable relationsU)

switch τ :

V@X
rels

τ1 . . . τk

(par = null) or (rels(par) \ rels) ∩ U , ∅

µ(τ1,U) . . . µ(τk ,U)

where par is the parent of V@X
rels in τ and

rels(par) are the relations of par.

Figure 5: Which views in a view tree τ need to be material-
ized to accommodate updates to a multiset of relationsU.

is always stored as it represents the query result, that is, it has no

parent: par = null; every other view V is stored only if it is used to

compute the delta of its parent for updates to a relation over which

V is not defined, that is, there are updatable relations for the parent

and not for V itself: (rels(par) \ rels) ∩ U , ∅.

Example 4.2. We continue with our query from Example 4.1. For

updates to T only, that is, U = {T}, we store the root V@A
RST and the

views V@E
S and V@B

R used to compute the deltas δV@C
ST and δV@A

RST.

Only the root view is affected by these changes and maintained as:

V@A
RST[] = V@A

RST[] ⊎ δV@A
RST[]

It is not necessary to maintain other views. If we would like to

also support updates to both R and S, then we would also need to

materialize V@C
ST and V@D

T .

If no updates are supported, then only the root view is stored. □

For queries with free variables, several views in their (delta)

view trees may be identical: This can happen when all variables in

their keys are free and thus cannot be marginalized. For instance,

a variable order ω for the query from Example 2.3 may have the

variables A and C above all other variables, in which case their

corresponding views are the same in the view tree for ω. We then

only store the top view out of these identical views.

IVM Triggers. For each updatable relation R, our framework

constructs a trigger procedure that takes as input an update δR and

implements the maintenance schema of the corresponding delta

view tree. This procedure also maintains all materialized views

needed for the given update workload.

A bulk of updates to distinct relations is handled as a sequence of

updates, one per relation. Update sequences can also happen when

updating a relation R that occurs several times in the query. The

instances representing the same relation are at different leaves in

the delta tree and lead to changes along multiple leaf-to-root paths.

5 FACTORIZABLE UPDATES
Our focus so far has been on supporting updates represented by

delta relations. We next consider an alternative approach that de-

composes a delta relation into a union of factorizable relations. The

cumulative size of the decomposition relations can be much less

than the size of the original delta relation. Also, the complexity of

propagating a factorized update can be much lower than that of its

unfactorized (listing) representation, since the factorization makes

explicit the independence between query variables and enables

optimizations of delta propagation such as pushing marginaliza-

tion past joins. Besides the factorized view computation, this is the

second instance where our IVM approach exploits factorization.

Factorizable updates arise in many domains such as linear alge-

bra and machine learning. Section 6 demonstrates how our frame-

work can be used for the incremental evaluation of matrix chain

multiplication, subsuming prior work on this [33]. Matrix chain

computation can be phrased in our language of joins and aggregates,

where matrices are binary relations. Changes to one row/column

in an input matrix may be expressed as a product of two vectors. In

general, an arbitrary update matrix can be decomposed into a sum

of rank-1 matrices, each of them expressible as products of vectors,

using low-rank tensor decomposition methods [26, 44].

Example 5.1. Arbitrary relations can be decomposed into a union

of factorizable relations. The relation R[A,B] = {(ai ,bj) → 1 |

i ∈ [n], j ∈ [m]} can be decomposed as R1[A] ⊗ R2[B], where
R1[A] = {(ai) → 1 | i ∈ [n]} and R2[B] = {(bj) → 1 | j ∈ [m]}. We

thus reduced a relation of sizenm to two relations of cumulative size

n +m. If R were a delta relation, the delta views on top of it would

now be expressed over R1[A] ⊗ R2[B] and their computation can be

factorized as done for queries in Section 3. Product decomposition

of relations can be done in linearithmic time in both the number of

variables and the size of the relation [35].

Consider now the relation R′[A,B] = R[A,B] ⊎ {(an+1,bj) →
1 | j ∈ [m− 1]} with R as above. We can decompose each of the two

terms in R′
similarly to R, yielding an overall n + 2m values instead

ofnm+m−1. A different decompositionwithn+m+3 values is given
by a factorizable over-approximation of R′

compensated by a small

product with negative payload: {(ai) → 1 | i ∈ [n + 1]} ⊗ {(bj) →
1 | j ∈ [m]} ⊎ {(an+1) → 1} ⊗ {(bm) → −1}. □

The Optimize method in the algorithm from Figure 4 exploits

the distributivity of ⊗ over

⊕
X to push the latter over those views

with variable X . This optimization is reminiscent of pushing aggre-

gates past joins in databases and variable elimination in probabilistic

graphical models. It has been recently revisited for functional aggre-

gate queries [5]. In case the delta views express Cartesian products,

then they are not materialized and instead kept factorized.

Example 5.2. Consider our query from Example 4.1 under up-

dates to relation S . Using the delta view tree derived for updates to

S , the top-level delta is computed as follows:

δV@A
RST[] =

⊕
A V@B

R [A] ⊗
(⊕

C V@D
T [C] ⊗

(⊕
E δS[A,C, E]

)︸ ︷︷ ︸
δV@E

S [A,C]

)
︸ ︷︷ ︸

δV@C
ST [A]

A single-tuple update δS binds variablesA,C , and E, and computing

δV@A
RST requires O(1) lookups in V@D

T and V@B
R . An arbitrary-sized

update δS can then be processed in O(|δS|) time.

Assume now that δS is factorizable as δS[A,C, E] = δSA[A] ⊗
δSC[C]⊗δSE[E]. In the construction of the delta view tree, the Opti-

mize method exploits this factorization to push the marginalization

past joins at each variable; for example, the delta at E becomes:

δV@E
S [A,C] =

⊕
E δSA[A] ⊗ δSC[C] ⊗ δSE[E]

= δSA[A] ⊗ δSC[C] ⊗
⊕

E δSE[E]

6

We also transform the top-level delta into a product of three views:

δV@A
RST[] =

(⊕
A V@B

R [A] ⊗ δSA[A]
)
⊗(⊕

C V@D
T [C] ⊗ δSC[C]

)
⊗
(⊕

E δSE[E]
)

Computing this delta takes time proportional to the sizes of the

three views: O(min(|V@B
R |, |δSA |) +min(|V@D

T |, |δSC |) + |δSE |). □

6 APPLICATIONS
Our IVM framework supports a wide range of application scenarios.

In this section, we highlight two scenarios, matrix chain computa-

tion and gradient computation for learning linear regression models

over joins, in which the payloads have sizes independent of the

input relation sizes. We also highlight two distinct scenarios, where

the payloads may have arbitrarily large sizes: they can be entire

relations under either listing or factorized representations. All these
scenarios behave identically in the key space of the views and are
treated uniformly using delta view trees. They differ however in the
rings used to define the view payloads.

6.1 Matrix Chain Multiplication
Consider the problem of computing a product of a series of matrices

A1, . . . ,An over some ring D, where matrix Ai [xi ,xi+1] has the
size of pi × pi+1, i ∈ [n]. The product A = A1 · · ·An is a matrix of

size p1 × pn+1 and can be formulated as follows:

A[x1,xn+1] =
∑

x2∈[p2]

· · ·
∑

xn ∈[pn]

∏
i ∈[n]

Ai [xi ,xi+1]

We model a matrixAi as a relation Ai[Xi,Xi+1] with the payload

carrying matrix values. The query that computes the matrix A is:

A[X1,Xn+1] =
⊕

X2

· · ·
⊕

Xn

⊗
i ∈[n] Ai[Xi,Xi+1]

where each of the lifting functions {дX j }j ∈[2,n] maps any key value

to payload 1 ∈ D.
Different variable orders lead to different evaluation plans for

matrix chain multiplication. The optimal variable order corresponds

to the optimal sequence of matrix multiplications that minimizes

the overall multiplication cost, which is the textbook Matrix Chain

Multiplication problem [13].

Example 6.1. Consider a multiplication chain of 4 matrices of

equal size p × p represented as relations Ai[Xi,Xi+1]. Let F =

{X1,X5} be the set of free variables and ω be the variable order

X1 −X5 −X3 − {X2,X4}, with the matrix relations placed below the

leaf variables in ω. Then, the view tree τ (ω,F) has the following

views (from bottom to top):

V@X2
A1A2

[X1,X3] =
⊕

X2

A1[X1,X2] ⊗ A2[X2 ,X3]

V@X4
A3A4

[X3,X5] =
⊕

X4

A3[X3,X4] ⊗ A4[X4,X5]

V@X3
A1A2A3A4

[X1,X5] =
⊕

X3

V@X2
A1A2

[X1,X3] ⊗ V@X4
A3A4

[X3,X5]

The views at X5 and X1 are equivalent to the view at X3, and

recomputing them from scratch takes O(p3) time. A single-value

change in any input matrix causes changes in one row or column

of the parent view, and propagating them to compute the final delta

view takes O(p2) time. Updates to A2 and A3 change every value in

A. In case of a longer matrix chain, further propagating δA would

require O(p3) matrix multiplications, same as re-computation.

We exploit factorization to contain the computational effect of

such changes. For instance, if δA2 is a factorizable update (see

Section 5) expressible as δA2[X2 ,X3] = u[X2] ⊗ v[X3], then we can

propagate deltas more efficiently, as products of subexpressions:

δV@X2
A1A2

[X1,X3] =
(⊕

X2

A1[X1,X2] ⊗ u[X2]
)

︸ ︷︷ ︸
u2[X1]

⊗v[X3]

δV@X3
A1A2A3A4

[X1,X5] = u2[X1] ⊗
(⊕

X3

v[X3] ⊗ V@X4
A3A4

[X3,X5]
)

Using such factorizable updates enables IVM in O(p2) time. The

final delta is also in factorized form, suitable for further propagation.

In general, for a chain of k matrices of size p × p, using a binary

view tree of the lowest depth, incremental maintenance with fac-

torizable updates takes O(p2 logk) time, while re-evaluation takes

O(p3k) time. The space needed in both cases is O(p2k). □

The above example recovers the main idea of LINVIEW [33]:

exploit factorization for incremental computation of linear algebra

programs when matrix changes are expressed as vector outer prod-

ucts, δA = uvT. This so-called rank-1 updates can capture many

practical update patterns such as perturbations of one complete row

or column in a matrix, or even changes of the whole matrix when

the same vector is added to every row or column. Our framework

generalizes this idea to arbitrary join-aggregate queries.

6.2 Gradient Computation
We introduce a ring that captures the data-dependent computation

of the gradient for training linear regression models over joins.

Consider a training dataset that consists of k examples with

(Xi)i ∈[m−1] features/variables and a label Xm arranged into a de-

sign matrix M of size k × m; in our setting, this design matrix

is the result of a join query. The goal of linear regression is to

learn the model parameters θ = [θ1 . . . θm]T of a linear function
1

f (X1, . . . ,Xm−1) =
∑
i ∈[m] θiXi best satisfying Mθ ≈ 0k×1, where

0k×1 is the k-by-1 matrix with all elements 0.

We can solve this optimization problem using batch gradient

descent. This method iteratively updates the model parameters in

the direction of the gradient to decrease the squared error loss and

eventually converge to the optimal value. Each convergence step

iterates over the entire training dataset to update the parameters,

θ := θ − αMTMθ , where α is an adjustable step size. The com-

plexity of each step is O(mk). The cofactor matrix MTM quantifies

the degree of correlation for each pair of features (or label). Its

computation is dependent on the data and can be executed once

for all convergence steps [42]. This is crucial for performance in

casem ≪ k as each iteration step now avoids processing the entire

training dataset and takes time O(m2).

We next show how to incrementally maintain the cofactor matrix.

We can factorize its computation over training datasets defined by

results to arbitrary join queries [42]. The idea is to compute a triple

of regression aggregates (c, s,Q), where c is the number of tuples

in the training dataset (size k of the design matrix), s is anm × 1

matrix (or vector) with one sum of values per variable, and Q is

1
We consider wlog: θ1 is the bias parameter and then X1 = 1 for all tuples in the input

data; θm remains fixed to −1 and corresponds to the label/response Xm in the data.

7

an m ×m matrix of sums of dot products of values for any two

variables. Their incremental computation can be captured by a ring.

Definition 6.2. For a fixedm ∈ N, let D denote the set of triples

(Z,Rm ,Rm×m), 0 = (0, 0m×1, 0m×m) and 1 = (1, 0m×1, 0m×m).

For a = (ca , sa ,Qa) ∈ D and b = (cb , sb ,Qb) ∈ D, define the

operations +D and ∗D over D as:

a +D b = (ca + cb , sa + sb ,Qa +Qb)

a ∗D b = (cacb , cbsa + casb , cbQa + caQb + sas
T

b + sbs
T

a)

The structure (D,+D, ∗D, 0, 1) forms a degree-m matrix ring.

We next show how to use this ring to compute the cofactor

matrix over a training dataset defined by a join query with relations

(Ri)i ∈[n] over variables (X j)j ∈[m]. The payload of each tuple in a

relation is the identity 1 from the degree-m matrix ring. The query

expressing the computation of the cofactor matrix is:

Q =
⊕

X1

· · ·
⊕

Xm

⊗
i ∈[n] Ri[sch(Ri)]

For eachX j -value x , the lifting function is дX j (x) = (1, s,Q), where

s is anm × 1 vector with all zeros except the value of x at position

j, i.e., sj = x , and Q is anm ×m matrix with all zeros except the

value x2 at position (j, j):Q(j, j) = x2.

Example 6.3. We show how to compute the cofactor matrix over

the join, database, and view tree from Figure 2b. We assume alpha-

betical order over the five variables. The leaves R, S, and T are the

input relations that map tuples to 1 from the degree-5 matrix ring.

In the view V@D
T each D-value d is lifted to a triple (1, s,Q),

where s is a 5×1 vector with one non-zero element s4 = d , andQ is

a (5× 5)matrix with one non-zero elementQ(4,4) = d
2
. Then, those

regression triples with the same key c are summed up, yielding

V@D
T [c1] = (1, s4 = d1,Q(4,4) = d2

1
), V@D

T [c2] = (2, s4 = d2 +

d3,Q(4,4) = d2
2
+ d2

3
), and V@D

T [c3] = (1, s4 = d4,Q(4,4) = d2
4
). The

views V@B
R and V@E

S are computed similarly.

The view V@C
ST joins the views V@D

T and V@E
S and then marginal-

izesC . For instance, the payload for the key V@C
ST [a2] is as follows:

V@C
ST [a2] = V@D

T [c2] ∗ V
@E
S [a2 , c2] ∗ дC (c2)

=

©­­­­­«
2,


0

0

0

d2+d3
0


,


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 d2
2
+d2

3
0

0 0 0 0 0


ª®®®®®¬
∗

©­­­­­«
1,


0

0

0

0

e4


,


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 00 0 0

0 00 0 e2
4


ª®®®®®¬
∗

©­­­­­«
1,


0

0

c2
0

0


,


0 0 0 0 0

0 0 0 0 0

c2
2
0 0 0 0

0 0 0 0 0

0 0 0 0 0


ª®®®®®¬

=

©­­­­­«
2,


0

0

2c2
d2 + d3
2e4


,


0 0 0 0 0

0 0 0 0 0

0 0 2c2
2

c2(d2 + d3) 2c2e4
0 0 c2(d2 + d3) d2

2
+ d2

3
(d2 + d3)e4

0 0 2c2e4 (d2 + d3)e4 2e2
4


ª®®®®®¬

The root view V@A
RST maps the empty tuple to the ring element∑

l ∈[2] V
@B
R [al] ∗V

@C
ST [al] ∗дA(al). This payload carries aggregates

for the entire join result: the count of tuples in the result, the vector

with one sum of values per variable, and the cofactor matrix. □

For performance reasons, in practice we only store as payloads

blocks of matrices with non-zero values and assemble larger matri-

ces as the computation progresses towards the root. We can further

exploit the symmetry of the cofactor matrix to compute only the

entries above and including the diagonal.

6.3 Factorized Representation of Query Results
Our framework can also support scenarios where the view pay-

loads are themselves relations representing results of conjunctive

queries, or even their factorized representations. Factorized repre-

sentations can be arbitrarily smaller than the listing representation

of a query result [38], with orders of magnitude size gaps reported

in practice [42]. They nevertheless remain lossless and support

constant-delay enumeration of the tuples in the query result as

well as subsequent aggregate processing in one pass. Besides the

factorized view computation and the factorizable updates, this is

the third instance where our framework exploits factorization.

We first introduce the relational data ring that allows us to store

entire relations as payloads.We then show how to encode factorized

representation of relations in payloads. By using a relational data

ring, we can create payloads that hold relations. When marginaliz-

ing a variable, we move its values from the key space to the payload

space. The payloads of the tuples of a view are now relations over

the same schema. These relations have themselves payloads in the

Z ring used to maintain the multiplicities of their tuples.

Definition 6.4. Let F[Z] denote the set of relations over the Z
ring, the zero 0 in F[Z] is a relation that maps every tuple to 0 ∈ Z,
while the identity 1 is a relation that maps the empty tuple to 1 ∈ Z
and all other tuples to 0 ∈ Z, denoted as {() → 1}. The structure

(F[Z],⊎, ⊗, 0, 1) forms a ring called the relational data ring.
2

We model conjunctive queries as count queries that marginalize

every variable but use different lifting functions for the free and

bound variables. For a variable X and any of its values x , дX (x) =
{(x) → 1} if X is a free variable and дX (x) = 1 = {() → 1} if

X is bound; here, (x) is a singleton relation over schema {X }. We

have relational operations occurring at two levels: for keys, we join

views from different branches and marginalize variables as before;

for payloads, we interpret multiplication and addition of payloads

as join and respectively union of relations.

Example 6.5. Consider the conjunctive query

Q(A,B,C,D) = R(A,B), S(A,C,E),T (C,D)

over the three relations from Figure 2, where each tuple gets the

identity payload {() → 1} ∈ F[Z]. The corresponding view is:

Q[] =
⊕

A
⊕

B
⊕

C
⊕

D
⊕

E R[A,B] ⊗ S[A,C, E] ⊗ T[C,D]

The lifting function for E maps each value to {() → 1}, while the

lifting functions for all other variables map value x to {(x) → 1}.

Figure 2 shows a view tree for this query and the contents of

its views with relational data payloads (in black and red) for the

given database. The view keys gradually move to payloads as the

computation progresses towards the root. The view definitions are

identical to those of the COUNT query (but under a different ring!).

The view V@D
T lifts each D-value d from T to the relation {(d) → 1}

over schema {D}, multiplies (joins) it with the payload 1 of each
2
To form a proper ring, we would need a generalization [24] of our relations and

join and union operators, where: tuples have their own schemas; union may apply

to tuples with possibly different schemas; join accounts for multiple derivations of

output tuples. For our practical needs this generalization is not necessary.

8

tuple, and sums up (union) all payloads with the same c-value. The

views at V@B
R and V@E

S are computed similarly, except the latter

lifts e-values to {() → 1} since E is a bound variable. The view

V@C
ST assigns to each A-value a payload that is a union of Cartesian

products of the payloads of its children and the lifted C-value. The

root view V@A
RST similarly computes the payload of the empty tuple,

which represents the query result (both views are at the right). □

We next show how to construct a factorized representation of

the query result. In contrast to the scenarios discussed above, this

representation is not available as one payload at the root view,

but distributed over the payloads of all views. This hierarchy of

payloads, linked via the keys of the views, becomes the factorized

representation. A further difference lies with the multiplication

operation. For the listing representation, the multiplication is the

Cartesian product. For a given view, it is used to concatenate pay-

loads from its child views. For the factorized representation, we

further project away values for all but the marginalized variable.

More precisely, for each view V@X
rels[S] and each of its keys aS , let

P[T] = V@X
rels[aS] be the corresponding payload relation. Then,

instead of computing this payload, we compute

⊕
Y ∈T−{X } P[T]

by marginalizing the variables in T − {X } and summing up the

multiplicities of the tuples in P[T] with the same X -value.

Example 6.6. We continue Example 6.5. Figure 2e shows the

contents of the views with factorized payloads (in black and blue).

Each view stores relational payloads that have the schema of the

marginalized variable. Together, these payloads form a factorized

representation over the variable orderω used to define the view tree

in Figure 2. At the top of the factorization, we have a union of twoA-
values: a1 and a2. This is stored in the payloads of (middle) VARST[].

The payloads of (middle) V@C
ST [A] store a union of C-values c1 and

c2 under a1, and a singleton union of c2 under a2. The payloads of

V@B
R [A] store a union of B-valuesb1 andb2 under a1 and a singleton

union of b3 under a2. Note the (conditional) independence of the
variables B and C given a value for A. This is key to succinctness

of factorization. In contrast, the listing representation explicitly

materializes all pairings of B and C-values for each A-value, as
shown in the payload of (right) VARST[]. Furthermore, the variableD
is independent of the other variables givenC . This is a further source
of succinctness in the factorization: Even though c2 occurs under
botha1 anda2, the relations under c2, in this case the union ofd2 and

d3, is only stored once in V@D
T [C]. Each value in the factorization

keeps a multiplicity, that is, the number of its derivations from the

input data. This is necessary for maintenance.

This factorization is over a variable order that can be used for all

queries with same body and different free variables: As long as their

free variables sit on top of the bound variables, the variable order is

valid and so is the factorization over it. For instance, if the variable

D were not free, then the factorization for the new query would be

the same except that we now discard the unions of D-values. □

7 EXPERIMENTS
We compare F-IVM (factorized IVM) against 1-IVM (first-order

IVM) and DBT (DBToaster’s fully recursive higher-order IVM). Our

experimental results can be summarized as follows:

• Factorized updates lead to two orders of magnitude speedup

for F-IVM over competitors for matrix chain multiplication by

propagating factorized deltas and avoiding matrix multiplication.

• For cofactor matrices in regression models, F-IVM exhibits the

lowest memory utilization and up to two orders of magnitude

better performance than 1-IVM and DBT.

• For conjunctive query evaluation, factorized payloads can both

speed up view maintenance and reduce memory by up to two

orders of magnitude compared to using listing representation.

Due to lack of space, details on the workload and experimental

setup, as well as further experiments, are deferred to Appendix C.

Runtime. 1-IVM and DBT are supported by DBToaster [25], a

system that compiles a given SQL query into code that maintains

the query result under updates to input relations. The generated

code represents an in-memory stream processor that is standalone

and independent of any database system. DBToaster’s performance

on decision support and financial workloads can be several orders

of magnitude better than state-of-the-art commercial databases and

stream processing systems [25]. We implemented F-IVM as a pro-

gram that maintains a set of materialized views for a given variable

order and a set of updatable relations. We use the intermediate

language of DBToaster to encode this program and then feed it into

DBToaster’s code generator. We modified the backend of DBToaster

v2.2 to enable arbitrary ring payloads and limit the amount of mem-

ory over-provisioning to at most one million records. Unless stated

otherwise, all the benchmarked approaches use the same runtime

environment and materialize views as multi-indexed maps with

memory-pooled records. The algorithms and record types used in

these approaches, however, can differ greatly.

Workload. We use a real-world dataset Retailer used for busi-

ness decision support and forecasting user demands, a synthetic

dataset Housing modeling a house price market [42], and dense

matrices with random double-precision values from (−1, 1). We run

the systems over data streams synthesized from these datasets by

interleaving updates to the input relations in a round-robin fashion

and grouping them into into batches of fixed size.

Matrix Chain Multiplication with Factorized Updates.We

consider the problem ofmaintaining themultiplicationA = A1A2A3

of three (n × n) matrices under changes to A2. We compare F-

IVM with factorized updates, 1-IVM that re-computes the delta

δA = A1 δA2A3 from scratch (same as DBT in this particular ex-

ample), and RE-EVAL that re-computes the entire product from

scratch on every update. We consider two different implementa-

tions of these maintenance strategies: The first uses DBToaster’s

hash maps to store matrices, while the second uses Octave, a nu-

merical tool that stores matrices in dense arrays and offers highly-

optimized BLAS routines for matrix multiplication [45]. In both

cases, matrix-matrix multiplication takes O(nα) for α > 2; for

instance, α = 2.8074 for Strassen’s algorithm.

We first consider updates to one row in A2. For 1-IVM, the delta

δA12 = A1 δA2 might contain non-zero changes to all n2 matrix

entries, thus computing δA = δA12A3 requires full matrix-matrix

multiplication. RE-EVAL updates A2 first before computing two

matrix-matrix multiplications. F-IVM factorizes δA2 into a product

of two vectors δA2 = uvT, which are used to compute δA12 =

(A1 u)v
T = u1v

T
and δA = u1 (v

TA3) = u1v1. Both deltas involve

9

1E-04
1E-03
1E-02
1E-01

1E+00
1E+01
1E+02

1E+03
1E+04

256 512 1024 2048 4096 8192 16384

Ti
m

e
pe

r R
ow

-U
pd

at
e

(s
ec

)

Matrix Dimension (n)

 F-IVM 1-IVM RE-EVAL
 OCTAVE F-IVM OCTAVE 1-IVM OCTAVE RE-EVAL

A = A1 A2 A3
Ai = (n x n)

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1 2 4 8 16 32 64 128 256

Ti
m

e
pe

r R
an

k-
r U

pd
at

e
(s

ec
)

Tensor Rank (r)

 F-IVM OCTAVE F-IVM
 RE-EVAL (once) OCTAVE RE-EVAL (once)

A = A1 A2 A3
Ai = (4K x 4K)

Figure 6: Incremental maintenance and re-evaluation of the product of three (n × n) matrices, A = A1A2A3: (left) one-row
updates in A2; (right) rank-r updates in A2 for n = 4, 096 using the DBToaster and Octave runtimes.

onlymatrix-vectormultiplications computed inO(n2) time. Figure 6

(left) shows the average time needed to process an update to one

randomly selected row in A2 for different matrix sizes. RE-EVAL

performs two matrix-matrix multiplications, while 1-IVM performs

only one. In the hash-based implementation, the gap between F-

IVM and 1-IVM grows from 28x for n = 256 to 92x for n = 4, 096;

similarly, in the Octave implementation, the same gap grows from

16x for n = 256 to 236x for n = 16, 384. This confirms the difference

in the asymptotic complexity of these strategies.

Our next experiment considers rank-r updates to A2, which can

be decomposed into a sum of r rank-1 tensors, δA2 =
∑
i ∈[r] uiv

T

i .

F-IVM processes δA2 as a sequence of r rank-1 updates in O(rn2)
time, while both RE-EVAL and 1-IVM take as input one full matrix

δA2 and maintain the product in O(n3) time per each rank-r update
(1-IVM is omitted from the plot). Figure 6 (right) shows that the

average time F-IVM takes to process a rank-r update for different
r values and the matrix size 4, 096 is linear in the tensor rank r .
Under both implementations in DBToaster and Octave, incremental

computation is faster than re-evaluation for updates with rank

r ≤ 96. With larger matrix sizes, the gap between re-evaluation

and incremental computation increases, which enables incremental

maintenance for updates of higher ranks.

Cofactor Matrix Computation. We benchmark the perfor-

mance of maintaining a cofactor matrix for learning regression

models over a natural join. We compute the cofactor matrix over

all variables of the join query (i.e., over all attributes of the input

database), which suffices to learn linear regression models over any
label and set of features that is a subset of the set of variables [36].
This is achieved by specializing the convergence step to the rele-

vant restriction of the cofactor matrix. In end-to-end learning of

regression models over factorized joins in the Retailer and Housing
datasets, the convergence step takes orders of magnitude less time

compared to the data-dependent cofactor matrix computation [42].

In addition to the three incremental strategies from before, we

now also benchmark DBT-RING, DBToaster’s recursive IVM strat-

egy with payloads from the degree-m ring (cf. Section 6.2) instead

of scalars, and SQL-OPT, an optimized SQL encoding of cofactor

matrix computation. The latter arranges regression aggregates –

recall there are quadratically many such aggregates in the number

of query variables – into a single aggregate column indexed by the

degree of each query variable. This encoding takes as input a vari-

able order and constructs one SQL query that intertwines join and

aggregate computation by pushing (partial) regression aggregates

(counts, sums, and cofactors) past joins [37].

We consider updates to all relations in the Retailer and Housing
datasets. In the Retailer schema, F-IVM and SQL-OPT rely on a given

variable order. These two strategies store 9 views each: five views

over the input relations, three intermediate views, and the top-level

view; DBT-RING stores four additional views, 13 in total. These

views are identical to those used for maintaining a sum aggregate

(see Appendix C) but have different payloads. DBToaster’s recursive

higher-order IVM and first-order IVM use scalar payloads and

fail to effectively share the computation of regression aggregates,

materializing linearly many views in the size of the cofactor matrix:

DBT and 1-IVM use 3, 814 and respectively 995 views to maintain

990 aggregates. In the Housing schema, where all relations join on

one variable, F-IVM and SQL-OPT materialize one view per relation

and the root view, 7 in total, while DBT and 1-IVM use 702 and

412 views to maintain 406 aggregates. F-IVM and DBT-RING use

identical strategies for the Housing dataset.
Figure 7 shows the throughput of these techniques as they pro-

cess an increasing fraction of the stream of tuple inserts. The Retailer
stream consists of inserts into the largest relation mostly, and since

the variables of this relation form a root-to-leaf path in the vari-

able order, processing a single-tuple update takes O(1) time for

F-IVM and SQL-OPT. The former outperforms the latter due to

efficient encoding of triples of aggregates (c, s,Q) as payloads con-

taining vectors and matrices. DBT-RING’s additional views cause

non-constant update times to the largest relation, which means

8.7x lower average throughput than F-IVM. The two approaches

with scalar payloads, DBT and 1-IVM, need to maintain too many

views and fail to process the entire stream within a one-hour limit.

The query for Housing is a star join with all relations joining on

the common variable, which is the root in our variable order. Thus,

F-IVM and SQL-OPT can process a single tuple in O(1) time. DBT-

RING and F-IVM use the same strategy in this case. DBT exploits

the conditional independence in the derived deltas to materialize

each input relation separately such that all non-join variables are

aggregated away. Although each materialized view has O(1) main-

tenance cost per update tuple, the large number of such views in

DBT is the main reason for its poor performance. In contrast, 1-

IVM stores entire tuples of the input relations including non-join

variables. On each update, 1-IVM recomputes an aggregate on top

of the join of these input relations and the update. Since an update

10

64

256

1024

4096

16384

65536

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Al
lo

ca
te

d
M

em
or

y
(M

B)

Fraction of Stream Trace Processed

1E+03

1E+04

1E+05

1E+06

1E+07

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

 F-IVM SQL-OPT DBT DBT-RING
 F-IVM ONE SQL-OPT ONE DBT ONE 1-IVM

2

4
8

16

32

64
128

256

512

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Al
lo

ca
te

d
M

em
or

y
(M

B)

Fraction of Stream Trace Processed

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

 F-IVM SQL-OPT DBT 1-IVM

Figure 7: Incremental maintenance of the cofactor matrix over the Retailer dataset (left) and Housing dataset (right) under
updates of size 1, 000 to all relations with a one-hour timeout. The ONE plots consider updates to the largest relation only.

tuple binds the value of the common join variable, the delta query

consists of disconnected components. DBToaster optimizes such a

delta query by placing an aggregate around each component, which

means that re-computing a delta means on-the-fly pre-aggregation

over each relation followed by a join. Thus, 1-IVM takes linear time,

which explains its poor performance.

Memory Consumption. Figure 7 shows that F-IVM achieves

the lowest memory utilization on both datasets while providing

orders of magnitude better performance than its competitors! The

reason behind the memory efficiency of our approach is twofold.

First, it uses complex aggregates and factorization structures to

express the cofactor matrix computation over a smaller set of views

compared to DBT-RING and, even more, to DBT and 1-IVM. Second,

it encodes regression aggregates implicitly using vectors and matri-

ces rather than explicitly using variable degrees, like in SQL-OPT.

The occasional throughput hiccups in the plot are due to expansion

of the underlying data structures used for storing views.

The Effect of Update Workload. Our next experiment stud-

ies the effect of different update workloads on performance. We

consider the Retailer dataset and two possible update scenarios:

(1) all relations can change, in which case every view in the view

tree needs to be materialized; (2) only the largest relation changes,

while all others are static (denoted as ONE in Figure 7). In the

latter scenario, we can precompute the views that are unaffected

by changes and avoid materialization of those views that do not

directly join with the updated relation. Thus, restricting updates to

only one relation leads to materializing fewer views, which in turn

reduces the maintenance overhead. Figure 7 shows the throughput

of processing updates for the incremental maintenance of the co-

factor matrix in these two scenarios. If we restrict updates only to

a relation, we can avoid materializing all the views on the leaf-to-

root path covered by that relation. This corresponds to a streaming

scenario where we compute a continuous query and do not store

the stream. Restricting updates to only one relation improves the

average throughput, 3.2x in F-IVM and 1.3x in SQL-OPT, and also

decreases memory consumption (note the log y-axis). The latter
also reflects in smoother throughput curves for the ONE variants.

In DBT, restricting updates brings constant time maintenance per

view, yet the number of views is still large. F-IVM and DBT-RING

use identical materialization strategies in this scenario.

Factorized Computation of Conjunctive Queries. We ana-

lyze F-IVM on queries whose results are stored as keys with in-

teger multiplicities using listing representation (List keys) and
as relational payloads using factorized and listing representations

(Fact payloads and List payloads). Figure 8 (left) considers the
natural join of Retailer under updates to the largest relation. The

factorized payloads reduce the memory consumption by 4.4x, from

34GB to 7.8GB, and improve the average throughput by 2.8x and

3.7x compared to using the two listing encodings. Figure 8 (right)

considers the natural join of Housing under updates to all input

relations. The number of tuples in the dataset varies from 150, 000

(scale 1) to 1, 400, 000 (scale 20), while the size of the listing (factor-

ized) representation of natural join grows cubically (linearly) with

the scale factor. The two listing encodings blow up the memory

consumption and computation time for large scales. Storing tuples

in the listing representation using payloads instead of keys avoids

the need for hashing wide keys, which makes the joins slightly

cheaper. For Housing and factorized representation, the root view

stores 25, 000 values of the join variable regardless of the scale. The

root’s children map these values to relational payloads for each re-

lation. For the largest scale, Fact payloads is 481x faster and takes
548x less memory than List payloads (410ms vs. 197s, 195MB vs.

104GB), and List keys exceeds the available memory.

11

1
2
4
8
16
32

64
128
256

1E+03

1E+04

1E+05

1E+06

1E+07

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

U
se

d
M

em
or

y
(G

B)

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

Fraction of Stream Trace Processed

 Fact payloads (time) List payloads (time) List keys (time)
 Fact payloads (mem) List payloads (mem) List keys (mem)

0.06

0.25

1

4

16

64

256

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
se

d
M

em
or

y
(G

B)

Ru
nn

in
g

Ti
m

e
(s

ec
)

Scale

 Fact payloads (time) List payloads (time) List keys (time)
 Fact payloads (mem) List payloads (mem) List keys (mem)

Figure 8: Incremental maintenance using relational and factorized payloads for the natural joins of the Retailer (left) and of
the Housing (right) datasets under updates of size 1, 000 to the largest relation (Retailer) and all input relations (Housing).

8 RELATEDWORK
To the best of our knowledge, ours is the first approach to propose

factorized IVM for a range of distinct applications. It extends non-

trivially two lines of prior work: higher-order delta-based IVM and

factorized computation of in-database analytics.

Our view language is modeled after functional aggregate queries

over semirings [5] and generalizedmultiset relations over rings [25];

the latter allowed us to adapt DBToaster to factorized IVM.

IVM. IVM is a well-studied area spanning more than three deca-

des [12]. Prior work extensively studied IVM for various query lan-

guages and showed that the time complexity of IVM is lower than of

re-computation. We go beyond prior work on higher-order IVM for

queries with joins and aggregates, as realized in DBToaster [25], and

propose a unified approach for factorized computation of aggregates

over joins [7], factorized incremental computation of linear alge-

bra [33], and learning regression models over factorized joins [42].

DBToaster uses one materialization hierarchy per relation in the

query, whereas we use one view tree for all relations. DBToaster

can thus have much larger space requirements and update times.

DBToaster does not target the maintenance of many complex ag-

gregates that share computation (e.g., cofactor matrices), which we

observe experimentally. IVM over array data [47] targets scientific

workloads but without exploiting data factorization.

Our approach with the relational payload ring strictly subsumes

previous work on factorized IVM for acyclic joins [21] as it can

support cyclic joins (see Appendix B). The so-called q-hierarchical
join queries (such as the Housing query in our experiments) are

exactly those self-join-free conjunctive queries that admit constant

time update [8]. Recent work on in-database maintenance of lin-

ear regression models shows how to compute such models using

previously computed models over distinct sets of features [19]. Its

contribution is complementary to ours and shares a similar goal

with prior work on reusing gradient computation to efficiently

explore the space of possible regression models [36]. Exploiting

key attributes to enable succinct delta representations and acceller-

ate maintenance complements our approach [22]. Our framework

generalizes the main idea of the LINVIEW approach [33] to main-

tenance of matrix computation over arbitrary join queries.

Most commercial databases, e.g., Oracle [3] and SQLServer [1],

support IVM for restricted classes of queries. LogicBlox supports

higher-order IVM for Datalog (meta)programs [6, 18]. Trill is a

streaming engine that supports incremental processing of relational-

style queries but no complex aggregates like cofactor matrices [10].

Static In-DB analytics. The emerging area of in-database ana-

lytics has been recently overviewed in two tutorials [27, 39]. Several

systems support complex analytics over normalized data via a tight

integration of databases and machine learning [20, 27, 30, 39, 40].

Others integrate with R to enable in-situ data processing using

domain-specialized routines [9, 46]. The closest in spirit to our ap-

proach is work on learning models over factorized joins [23, 36,

41, 42], pushing ML tasks past joins [16] and on in-database linear

algebra [11, 14], yet they do not consider incremental maintenance.

Learning. There is a wealth of work in the ML community on

incremental or online learning over arbitrary relations [43]. Our ap-
proach learns over joins and crucially exploits the join dependencies
in the underlying training dataset to improve the performance.

9 CONCLUSION
This paper introduces a unified IVM approach for analytics over

normalized data and shows its applicability for three seemingly

disparate analytical asks: matrix chain multiplication, query eval-

uation with listing/factorized result representation, and gradient

computation used for learning linear regressionmodels. These tasks

use the same computation paradigm that factorizes the representa-

tion and the computation of the keys, the payloads, and the updates.

Their differences are factored out in the definition of the sum and

product operations in a suitable ring. This approach has been imple-

mented as an extension of DBToaster, a state-of-the art system for

incremental maintenance, and shown to outperform competitors by

up to two orders of magnitude in both time and space. An extended

version of this paper discusses the computational complexities of

this approach and its competitors and explains analytically the

reason for the performance gap [34].

Going forward, we would like to apply this approach to further

tasks such as inference in probabilistic graphical models and more

complex machine learning tasks.

Acknowledgments. This project has received funding from the Eu-

ropean Union’s Horizon 2020 research and innovation programme

under grant agreement No 682588. The authors also acknowledge

awards from Microsoft Azure via The Alan Turing Institute and

from Fondation Wiener Anspach.

If You Liked It, Then You Should Put A Ring On It.
– Beyoncé.

12

REFERENCES
[1] Create Indexed Views. http://msdn.microsoft.com/en-us/library/ms191432.aspx.

[2] Higgs Twitter Dataset. https://snap.stanford.edu/data/higgs-twitter.html.

[3] Materialized View Concepts and Architecture. http://docs.oracle.com/cd/B28359_

01/server.111/b28326/repmview.htm.

[4] D. J. Abadi, Y. Ahmad, M. Balazinska, et al. The Design of the Borealis Stream

Processing Engine. In CIDR, volume 5, pages 277–289, 2005.

[5] M. Abo Khamis, H. Q. Ngo, and A. Rudra. FAQ: Questions Asked Frequently. In

PODS, pages 13–28, 2016.
[6] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, et al. Design and Implementation

of the LogicBlox System. In SIGMOD, pages 1371–1382, 2015.
[7] N. Bakibayev, T. Kociský, D. Olteanu, and J. Závodnỳ. Aggregation and Ordering

in Factorised Databases. PVLDB, 6(14):1990–2001, 2013.
[8] C. Berkholz, J. Keppeler, and N. Schweikardt. Answering Conjunctive Queries

under Updates. In PODS, pages 303–318, 2017.
[9] P. G. Brown. Overview of SciDB: Large Scale Array Storage, Processing and

Analysis. In SIGMOD, pages 963–968, 2010.
[10] B. Chandramouli, J. Goldstein, et al. Trill: A high-performance Incremental Query

Processor for Diverse Analytics. PVLDB, 8(4):401–412, 2014.
[11] L. Chen, A. Kumar, J. F. Naughton, and J. M. Patel. Towards linear algebra over

normalized data. CoRR, abs/1612.07448, 2016. To appear in PVLDB 2017.

[12] R. Chirkova and J. Yang. Materialized Views. Found. & Trends in DB, 4(4):295–405,
2012.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, 2009.

[14] A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss, and B. Reinwald. Compressed

linear algebra for large-scale machine learning. PVLDB, 9(12):960–971, 2016.
[15] R. Fagin, A. O. Mendelzon, and J. D. Ullman. A simplied universal relation

assumption and its properties. ACM Trans. Database Syst., 7(3):343–360, 1982.
[16] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a Unified Architecture for

In-RDBMS Analytics. In SIGMOD, pages 325–336, 2012.
[17] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance Semirings. In PODS,

pages 31–40, 2007.

[18] T. J. Green, D. Olteanu, and G. Washburn. Live programming in the LogicBlox

system: A MetaLogiQL approach. PVLDB, 8(12):1782–1791, 2015.
[19] P. Gupta, N. Koudas, E. Shang, R. Johnson, and C. Zuzarte. Processing Analytical

Workloads Incrementally. CoRR, abs/1509.05066, 2015.
[20] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, et al. The MADlib

Analytics Library or MAD Skills, the SQL. PVLDB, 5(12):1700–1711, 2012.
[21] M. Idris, M. Ugarte, and S. Vansummeren. The Dynamic Yannakakis Algorithm:

Compact and Efficient Query Processing Under Updates. In SIGMOD, pages
1259–1274, 2017.

[22] Y. Katsis, K. W. Ong, Y. Papakonstantinou, and K. K. Zhao. Utilizing IDs to

Accelerate Incremental View Maintenance. In SIGMOD, pages 1985–2000, 2015.
[23] M. A. Khamis, H. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. In-Database

Learning with Sparse Tensors. In PODS, 2018.
[24] C. Koch. Incremental Query Evaluation in a Ring of Databases. In PODS, pages

87–98, 2010.

[25] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli, D. Lupei, et al. DBToaster:

Higher-order Delta Processing for Dynamic, Frequently Fresh Views. VLDB J.,
23(2):253–278, 2014.

[26] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Rev.,
51(3):455–500, 2009.

[27] A. Kumar, M. Boehm, and J. Yang. Data management in machine learning:

Challenges, techniques, and systems. In SIGMOD, pages 1717–1722, 2017.
[28] A. Kumar, J. F. Naughton, and J. M. Patel. Learning Generalized Linear Models

Over Normalized Data. In SIGMOD, pages 1969–1984, 2015.
[29] S. R. Madden et al. TinyDB: An Acquisitional Query Processing System for

Sensor Networks. TODS, 30(1):122–173, 2005.
[30] X. Meng et al. MLlib: Machine Learning in Apache Spark. J. Mach. Learn. Res.,

17(1):1235–1241, 2016.

[31] H. Q. Ngo, C. Ré, and A. Rudra. Skew Strikes Back: New Developments in the

Theory of Join Algorithms. SIGMOD Record, 42(4):5–16, 2013.
[32] M. Nikolic, M. Dashti, and C. Koch. How to win a hot dog eating contest:

Distributed incremental view maintenance with batch updates. In SIGMOD,
pages 511–526, 2016.

[33] M. Nikolic, M. Elseidy, and C. Koch. LINVIEW: Incremental View Maintenance

for Complex Analytical Queries. In SIGMOD, pages 253–264, 2014.
[34] M. Nikolic and D. Olteanu. Incremental view maintenance with triple lock

factorization benefits. CoRR, abs/1703.07484, 2017.
[35] D. Olteanu, C. Koch, and L. Antova. World-set decompositions: Expressiveness

and efficient algorithms. Theor. Comput. Sci., 403(2-3):265–284, 2008.
[36] D. Olteanu and M. Schleich. F: Regression Models over Factorized Views. PVLDB,

9(13):1573–1576, 2016.

[37] D. Olteanu and M. Schleich. Factorized Databases. SIGMOD Rec., 45(2):5–16,
2016.

[38] D. Olteanu and J. Závodnỳ. Size Bounds for Factorised Representations of Query

Results. TODS, 40(1):2:1–2:44, 2015.
[39] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich. Data management challenges

in production machine learning. In SIGMOD, pages 1723–1726, 2017.
[40] C. Qin and F. Rusu. Speculative Approximations for Terascale Distributed Gradi-

ent Descent Optimization. In DanaC, pages 1–10, 2015.
[41] S. Rendle. Scaling Factorization Machines to Relational Data. PVLDB, 6(5):337–

348, 2013.

[42] M. Schleich, D. Olteanu, and R. Ciucanu. Learning Linear Regression Models

over Factorized Joins. In SIGMOD, pages 3–18, 2016.
[43] S. Shalev-Shwartz et al. Online Learning and Online Convex Optimization. Found.

& Trends in ML, 4(2):107–194, 2012.
[44] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and

C. Faloutsos. Tensor decomposition for signal processing and machine learning.

Trans. Sig. Proc., 65(13):3551–3582, 2017.
[45] C. Whaley and J. Dongarra. Automatically tuned linear algebra software. In

PPSC, 1999.
[46] M. Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for

In-Memory Cluster Computing. In NSDI, pages 15–28, 2012.
[47] W. Zhao, F. Rusu, B. Dong, K. Wu, and P. Nugent. Incremental View Maintenance

over Array Data. In SIGMOD, pages 139–154, 2017.

A RINGS
We recall the definition of rings.

Definition A.1. A ring (D,+, ∗, 0, 1) is a set D with closed binary

operations + and ∗, the additive identity 0, and the multiplicative

identity 1 satisfying the axioms (∀a,b, c ∈ D):
(1) a + b = b + a.
(2) (a + b) + c = a + (b + c).
(3) 0 + a = a + 0 = a.
(4) ∃ − a ∈ D : a + (−a) = (−a) + a = 0.
(5) (a ∗ b) ∗ c = a ∗ (b ∗ c).
(6) a ∗ 1 = 1 ∗ a = a.
(7) a ∗ (b + c) = a ∗ b + a ∗ c and (a + b) ∗ c = a ∗ c + b ∗ c .

A semiring (D,+, ∗, 0, 1) satisfies all of the above properties except
the additive inverse property and adds the axiom that 0∗a = a ∗0 =
0. A (semi)ring for which a ∗ b = b ∗ a is commutative.

Example A.2. The number sets Z, Q, R, and C with arithmetic

operations + and · and numbers 0 and 1 form commutative rings.

The set M of (n × n) matrices forms a non-commutative ring

(M, ·,+, 0n,n , In), where 0n,n and In are the zero matrix and the

identity matrix of size (n×n). The setN of natural numbers is a com-

mutative semiring but not a ring because it has no additive inverse.

Further examples are the max-product semiring (R+,max,×, 0, 1),

the Boolean semiring ({true, false},∨,∧, false, true), and the set

semiring (2U ,∪,∩, ∅,U) of all possible subsets of a given setU . □

B IVM VARIANT FOR CYCLIC QUERIES
Our framework supports arbitrary conjunctive queries. Whereas for

(α)acyclic join queries the size of each view is asymptotically upper

bounded by the size of the factorized join, for a cyclic join views

may be larger in size than the (factorized) join result. This increase

in space may however enable faster incremental view maintenance.

Example B.1. We consider the triangle query over the ring Z:

Q△[] =
⊕

A
⊕

B
⊕

C R[A,B] ⊗ S[B,C] ⊗ T[C,A]

Figure 9 shows the hypergraph ofQ△ and the view tree constructed

for the variable order A − B −C by placing each relation directly

under its lowest variable. We assume all relations are of size O(N).

13

http://msdn.microsoft.com/en-us/library/ms191432.aspx
https://snap.stanford.edu/data/higgs-twitter.html
http://docs.oracle.com/cd/B28359_01/server.111/b28326/repmview.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28326/repmview.htm

R T

S

A

B C

V@A
RST[]

V@B
RST[A]

V@C
ST [A,B] R[A,B]

S[B,C] ∃
A,B

R[A,B] T[C,A]

Figure 9: (left) Hypergraph of the triangle query Q△; (right)
View tree for the variable order {A−B−C} with an indicator
projection ∃A,BR.
Computing the triangle query from scratch using a worst-case

optimal join algorithm takes O(N 3/2) time [31].

In the given view tree (without the view in red), we first join S
and T and then marginalize out C in the join result. This view at

node C may contain O(N 2) pairs of (A,B) values, which is larger

than the worst-case size O(N 3/2). However, by materializing the

view at C , we enable single-tuple updates to R in constant time;

single-tuple updates to other relations take O(N) time.

To avoid this large intermediate result, we can change the view

tree by placing the relation R under variable C . Then, joining all

three relations at node C takes O(N 3/2) time. Updates to any rela-

tion now cause re-computation of a 3-way join, like in first-order

IVM. For single-tuple updates, recomputing deltas takes O(N) as

only two of the three variables are bound to constants. In contrast,

the first approach trades off space for time: We need O(N 2) space

but then support O(1) updates to one of the three relations. □

The above example demonstrates how placing a relation under

a different node in a view tree can create a cycle of relations and

constrain the size of a view. This strategy, however, might not be

always feasible or efficient: One relation might form multiple cycles

of relations in different parts of a view tree – for example, in a

loop-4 cyclic query Ql with a chord, the chord relation is part of

two triangle subqueries. Since this relation cannot be duplicated in

multiple subtrees (for correctness reasons so as to avoid multiplying

the same payload several times instead of using it once), one would

have to evaluate these subqueries in sequence, which yields a view

tree that is higher and more expensive to maintain.

Indicator Projections. Instead of moving relations in a view

tree, we extend the tree with indicator projections that identify

the active domains of these relations [5]. Such projections have no

effect on the query result but can constrain view definitions (e.g.,

create cycles) and bring asymptotic savings in both space and time.

We define a new unary operation∃A R that, given a relation R
over schema S with payloads from a ring (D,+, ∗, 0, 1), and a set

of attributes A ⊆ S, projects tuples from R with non-0 payload on

A and assigns to these tuples the payload 1. We define∃A R as:

∀t ∈ Dom(A) :
(∃A R

)
[t] =

{
1 ∃s ∈ Dom(S), s ∈ R, t = πA (s)
0 otherwise

Indicator projections may change with updates to input relations.

For instance, adding a tuple with a unique A-value to R enlarges

the result of∃A R; similarly, deleting the last tuple with the given

I (view tree τ)

switch τ :

V@X
rels[keys]

τ1 . . . τk

V@X
rels[keys]

I (τ1) . . . I (τk) π1 . . . πl
where

let R be the set of all relation symbols

inds = {∃pk R | R ∈ R \ rels,

pk = sch(R) ∩ keys, pk , ∅ }

incycle = GYO(inds ∪ {τ1, . . . ,τk })

{π1, . . . ,πl } = incycle \ {τ1, . . . ,τk }

Figure 10: Adding indicator projections to a view tree τ .

A-value reduces the result. Notice that one change in the input may

cause at most one change in the output, that is, |δ (∃A R)| ≤ |δR|.
To facilitate the computation of δ (∃A R), we keep track of how

many tuples with non-0 payloads project on each A-value. For

updating the payload of a tuple in R from 0 to non-0 (or vice versa),
we increase (decrease) the count corresponding to the given A-

value. If this count changes from 0 to 1 (meaning the A-value is

unique) or from 1 to 0 (meaning there are no more tuples with

the A-value), then δ (∃A R) contains a tuple of A-values with the

payload of 1 or −1, respectively; otherwise, the delta is empty.

Example B.2. Consider a relation R over the schema {A,B} with
payloads from a ring (D,+, ∗, 0, 1). We want to maintain the result

of the query Q[A] = ∃A R[A,B]. To compute δQ[A] for updates
to R efficiently, we count tuples from R with non-0 payloads for

each A-value, denoted by CNTQ [A]. For example:

R A B

a1 b1 → r1
a1 b2 → r2
a2 b3 → r3

CNTQ A

a1 → 2

a2 → 1

Q A

a1 → 1
a2 → 1

where r1, r2, and r3 are non-0 payloads from D. An update δR =
{(a1,b2) → −r2} removes the tuple (a1,b2) from R, which in turn

decreases CNTQ [a1] by 1. Since there is still a tuple in R that

projects on a1, the result of Q remains unchanged. A subsequent

update {(a1,b1) → −r1} from R drops the count for a1 to 0, which

triggers a change in the output, δQ = {(a1) → −1}. □

View Trees with Indicator Projections. Figure 10 gives an

algorithm that traverses a given view tree bottom-up and extends

each view definition with indicator projections. At each view, the

algorithm computes a set of relations inds that could be used as

indicator projections, restricting to only those relations that share

common variables with that view and that do not appear in its

definition. From this set of candidates, only those relations that form

a cycle with the children of the given view are used as indicator

projections. The algorithm uses the GYO reduction (Fagin et al

variant) [15] to determine this set of relations, denoted by incycle,
and extends the view definition with the indicator projections of

the candidate relations from this set.

In a view tree with indicator projections, changes in one relation

may propagate along multiple leaf-to-root paths. We propagate

14

them in sequence, i.e., updates to one relation are followed by a

sequence of updates to its indicator projections.

Example B.3. The algorithm from Figure 10 extends the view

tree of the triangle query with an indicator projection∃A,B R[A,B]
placed below the view V@C

ST . This view at C is now a cyclic join of

the three relations, which can be computed in O(N 3/2) time. The

indicator projection also reduces the size of this view to O(N).

Single-tuple updates to S and T still take linear time; however,

bulk updates of size O(N) can now be processed in O(N 3/2) time,

same as re-evaluation. Updates to R might affect the indicator pro-

jection: If a single-tuple update δR causes no change in the projec-

tion, then incremental maintenance takes constant time; otherwise,

joining a tuple δ (∃A,B R) with S and T at node C takes linear time.

Bulk updates δR of size O(N) can also be processed in O(N 3/2)

time. Thus, using indicator projections in this query takes the best

of both approaches from Example B.1, namely faster incremental

maintenance and more succinct view representation. □

C EXPERIMENTS
C.1 Experimental Setup
Workload. We run experiments over three datasets:

• Retailer is a real-world dataset from an industrial collaborator

and used by a retailer for business decision support and forecasting

user demands. The dataset has a snowflake schema with one fact

relation Inventory with 84M records, storing information about

the inventory units for products in a location, at a given date. The

Inventory relation joins along three dimension hierarchies: Item
(on product id), Weather (on location and date), and Location (on

location) with its lookup relation Census (on zip code). The natural

join of these five relations is acyclic and has 43 attributes. We

consider a view tree in which the variables of each relation form a

distinct root-to-leaf path, and the partial order on join variables is:

location - { date - { product id }, zip }.

• Housing is a synthetic dataset modeling a house price mar-

ket [42]. It consists of six relations: House, Shop, Institution,
Restaurant, Demographics, and Transport, arranged into a star

schema and with 1.4M tuples in total (scale factor 20). The natu-

ral join of all relations is on the common attribute (postcode) and

has 27 attributes. We consider an optimal view tree that has each

root-to-leaf path consisting of query variables for one relation.

• Higgs Twitter represents friends/followers relationships among

users who were active on Twitter during the discovery of Higgs

boson [2]. We split the first 3M records from the dataset into three

equally-sized relations, R(A,B), S(B,C), and T (C,A), and consider

the triangle query over them and the variable order A-B-C.

We run the systems over data streams synthesized from the above

datasets by interleaving insertions to the input relations in a round-

robin fashion. We group insertions into batches of different sizes

and place no restriction on the order of records in input relations.

In all experiments, we use payloads defined over rings with additive

inverse, thus processing deletions is similar to that of insertions.

Queries.We next detail the queries used in the experiments.

Matrix Chain Multiplication: The query in standard SQL is over

relations A1(X ,Y , P1), A2(Y ,Z , P2), A3(Z ,U , P3):

F-IVM DBT 1-IVM F-RE DBT-RE

Retailer 2, 955, 045 1, 250, 262 2, 925, 828 3, 785∗ 3, 491∗

Housing 22, 857, 143 17, 834, 395 2, 403, 433 79, 226 364
∗

Figure 11: The average throughput (tuples/sec) of re-
evaluation and incrementalmaintenance of a sumaggregate
under updates of size 1, 000 to all relations of theRetailer and
Housing datasets with a one-hour timeout (∗).

SELECT A1.X, A3.U, SUM(A1.P1 * A2.P2 * A3.P3)

FROM A1 NATURAL JOIN A2 NATURAL JOIN A3

GROUP BY A1.X, A3.U;

In our formalism, each relation maps pairs of indices to matrix

values, all lifting functions map values to 1, and the query is:

Q[X ,U] =
⊕

Y
⊕

Z A1[X , Y] ⊗ A2[Y ,Z] ⊗ A3[Z ,U].

Cofactor Matrix Computation: For the Retailer schema, the query

has one regression aggregate over the natural join of its relations:

SELECT SUM(g1(X1) * ... * g43(X43))

FROM Inv NATURAL JOIN It NATURAL JOIN W

NATURAL JOIN L NATURAL JOIN C;

where {Xi }i ∈[43] are all the variables from the Retailer schema,

the SUM operator uses + and ∗ from the degree-43 matrix ring,

and each function дi maps a value x to дi (x) = (ci = 1, si =
x ,Q(i,i) = x2) (see Example 6.3). Similarly, the queries over Housing
and Twitter use the degree-27 and respectively degree-3 matrix ring.

The experiments consider all variables to be continuous; categorical

variables can be treated using group-by queries as explained in

related work [23].

Factorized Computation of Conjunctive Queries: We consider the

natural join queries of all relations in the Retailer and respectively

Housing databases.
Experimental setup. We run all experiments on a Microsoft

Azure DS14 instance, Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz,

112GB RAM, with Ubuntu Server 14.04. We use DBToaster v2.2 for

the IVM competitors and code generation in our approach. The

generated C++ code is single-threaded and compiled using g++ 6.3.0

with the -O3 flag. We set a one-hour timeout on query execution

and report wall-clock times by averaging three best results out

of four runs. We profile memory utilization using gperftools, not

counting the memory used for storing input streams.

C.2 Further Experiments
Maintenance of sum aggregates.We analyze different strategies

for maintaining a sum of one variable on top of a natural join. We

measure the average throughput of re-evaluation and incremental

maintenance under updates of size 1, 000 to all the relations of Re-
tailer and Housing. For the former dataset, we sum the inventory

units for products in Inventory; for the latter, we sum over the

common join variable. We also benchmark two re-evaluation strate-

gies that recompute the results from scratch on every update: F-RE

denotes reevaluation using variable orders and DBT-RE denotes

re-evaluation using DBToaster. Table 11 summarizes the results.

F-IVM achieves the highest average throughput in both cases.

For Retailer, the maintenance cost is dominated by the update on

Inventory. DBT’s recursive delta compilationmaterializes 13 views

15

1E+04

1E+05

1E+06

1E+07

F-IVM SQL-OPT DBT-RING F-IVM SQL-OPT DBT F-IVM 1-IVM DBT-RING

Av
g

Th
ro

ug
hp

ut
 (M

 tu
pl

es
/s

ec
)

Retailer

 BS = 100 BS = 1,000

 BS = 10,000 BS = 100,000

Housing Twitter

Figure 12: Incremental maintenance of the cofactor matrix
under batch updates of different sizes to all input relations.

representing connected sub-queries: five group-by aggregates over

the input relations, Inv, It, W, L, and C; one group-by aggregate

joining L and C; six views joining Inv with subsets of the others,

namely {It}, {It, W}, {It, W, L}, {W}, {W, L}, and {W, L, C}; and the final

aggregate. The two views joining Inv with { W, L } and { It, W, L }

require linear maintenance for a single-tuple change in Inventory.
1-IVM recomputes deltas from scratch on each update using only

the input relations with no aggregates on top of them. Updates to

Inventory are efficient due to small sizes of the other relations.

F-IVM uses the given variable order to materialize 9 views, four of

them over Inventory, {Inv}, {Inv, It}, { Inv, It, W }, and the final

sum, but each with constant maintenance for single-tuple updates

to this relation. In contrast to 1-IVM, our approach materializes

pre-computed views in which all non-join variables are aggregated

away. In the Housing schema, both F-IVM and DBT benefit from

this pre-aggregation, and since the query is a star join, both materi-

alize the same views. DBT computes SUM(1) and SUM(postcode)
for each postcode in the delta for Inventory, although only the

count suffices. Figure 11 also shows that the re-evaluation strategies

significantly underperform the incremental approaches.

The effect of batch size on IVM. This experiment evaluates

the performance of maintaining a cofactor matrix for batch updates

of different sizes. Figure 12 shows the throughput of batched in-

cremental processing for batch sizes varying from 100 to 100, 000

on the Retailer, Housing, and Twitter datasets for updates to all

relations. We show only the best three approaches for each dataset.

We observe that using very large or small batch sizes can have

negative performance effects: Iterating over large batches inval-

idates previously cached data resulting in future cache misses,

whereas using small batches cannot offset the overhead associ-

ated with processing each batch. Using batches with 1, 000− 10, 000

tuples delivers best performance in most cases, except when needed

to incrementally maintain a large number of views. This conclusion

about cofactor matrix computation is in line with similar findings

on batched delta processing in decision support workloads [32].

Batched incremental processing is also beneficial for one-off

computation of the entire cofactor matrix. Using medium-sized

updates can bring better performance, cf. Figure 12, but can also

lower memory requirements and improve cache locality during

query processing. For instance, incrementally processing the Re-
tailer dataset in chunks of 1, 000 tuples can bring up to 2.45x better

performance compared to processing the entire dataset at once.

16

64

256

1024

4096

16384

65536

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Al
lo

ca
te

d
M

em
or

y
(M

B)

Fraction of Stream Trace Processed

1E+03

1E+04

1E+05

1E+06

1E+07

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

 F-IVM DBT DBT-RING 1-IVM F-IVM ONE

Figure 13: The performance of incremental maintenance of
the cofactor matrix on top of the triangle query over the
Twitter dataset for updates of size 1, 000 to all input relations.

Cofactor matrix computation over the triangle query.We

analyze the cofactor matrix computation over the triangle query

on the Higgs Twitter dataset and updates of size 1, 000 to all the

relations. F-IVM uses the view tree from Figure 9 (right) without

the indicator projection and materializes the join of S and T of

size O(N 2). Its time complexity for a single-tuple update to R is

O(1), but updating the join of S and T takes O(N). DBT-RING uses

payloads from the degree-3 ring and materializes all three such

pairwise joins, each requiring linear time maintenance. DBT uses

scalar payloads andmaterializes 21 views (to maintain 6 aggregates),

out of which 12 views are over two relations. Its time complexity

for processing single-tuple updates to either of the three relations

is also O(N). The 1-IVM strategy maintains just the input relations

and recomputes the delta upon each update in linear time.

The throughput rate of the strategies that materialize views of

quadratic size declines sharply as the input stream progresses. DBT

exhibits the highest processing and memory overheads caused by

storing 12 auxiliary views of quadratic size. DBT-RING underper-

forms F-IVM due to maintaining two extra views of quadratic size,

which contribute to 2.3x higher peak memory utilization. 1-IVM

exhibits a 42% decline in performance after processing the entire

trace due to its linear time maintenance. The extent of this decrease

is much lower compared to the other approaches with the qua-

dratic space complexity. For updates to R only, F-IVM-ONE and

DBT-RING require one lookup in the materialized join of S and

T per update. This strategy has two orders of magnitude higher

throughput than 1-IVM at the cost of using 23x more memory.

Clique queries like triangles provide no factorization opportu-

nities. Materializing auxiliary views to speed up incremental view

maintenance increases memory and processing overheads. How-

ever, F-IVM can exploit indicator projections to bound the size of

such materialized views, as described in Section B.

16

	Abstract
	1 Introduction
	2 Data Model and Query Language
	3 Factorized Ring Computation
	4 Factorized Higher-Order IVM
	5 Factorizable Updates
	6 Applications
	6.1 Matrix Chain Multiplication
	6.2 Gradient Computation
	6.3 Factorized Representation of Query Results

	7 Experiments
	8 Related Work
	9 Conclusion
	References
	A Rings
	B IVM Variant for Cyclic Queries
	C Experiments
	C.1 Experimental Setup
	C.2 Further Experiments

