
The Data Calculator∗: Data Structure Design and Cost Synthesis
from First Principles and Learned Cost Models

Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, Demi Guo
Harvard University

ABSTRACT
Data structures are critical in any data-driven scenario, but they
are notoriously hard to design due to a massive design space and
the dependence of performance on workload and hardware which
evolve continuously. We present a design engine, the Data Cal-
culator, which enables interactive and semi-automated design of
data structures. It brings two innovations. First, it o�ers a set of
�ne-grained design primitives that capture the� rst principles of
data layout design: how data structure nodes lay data out, and
how they are positioned relative to each other. This allows for a
structured description of the universe of possible data structure
designs that can be synthesized as combinations of those primi-
tives. The second innovation is computation of performance using
learned cost models. These models are trained on diverse hardware
and data pro�les and capture the cost properties of fundamental
data access primitives (e.g., random access). With these models, we
synthesize the performance cost of complex operations on arbi-
trary data structure designs without having to: 1) implement the
data structure, 2) run the workload, or even 3) access the target
hardware. We demonstrate that the Data Calculator can assist data
structure designers and researchers by accurately answering rich
what-if design questions on the order of a few seconds or minutes,
i.e., computing how the performance (response time) of a given
data structure design is impacted by variations in the: 1) design, 2)
hardware, 3) data, and 4) query workloads. This makes it e�ortless
to test numerous designs and ideas before embarking on lengthy
implementation, deployment, and hardware acquisition steps. We
also demonstrate that the Data Calculator can synthesize entirely
new designs, auto-complete partial designs, and detect suboptimal
design choices.

Let us calculate. —Gottfried Leibniz

ACM Reference Format:
Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester,
Demi Guo. 2018. The Data Calculator: Data Structure Design and Cost
Synthesis from First Principles and Learned Cost Models. In Proceedings of
2018 International Conference on Management of Data (SIGMOD’18). ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3183713.3199671

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the� rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3199671

Key
partitioning

Random
Access

Serial
Scan

Zone-map
filters

Key order

Fanout

Immediate
node links

Binary
Search

data layout
primitives

po
ss

ib
le

de

sig
n primitive combinations

data access
primitives

Data
Structures

New
designHash

Table

design primitive
combinations

design & cost synthesi
s

Trie
B-Tree

Figure 1: The concept of the Data Calculator: computing
data access method designs as combinations of a small set
of primitives. (Drawing inspired by a� gure in the Ph.D. the-
sis of Gottfried Leibniz who envisioned an engine that cal-
culates physical laws from a small set of primitives [52].)

1 FROMMANUAL TO INTERACTIVE DESIGN
The Importance of Data Structures. Data structures are at the
core of any data-driven software, from relational database sys-
tems, NoSQL key-value stores, operating systems, compilers, HCI
systems, and scienti�c data management to any ad-hoc program
that deals with increasingly growing data. Any operation in any
data-driven system/program goes through a data structure when-
ever it touches data. Any e�ort to rethink the design of a speci�c
system or to add new functionality typically includes (or even
begins by) rethinking how data should be stored and accessed
[1, 9, 33, 38, 51, 75, 76]. In this way, the design of data structures
has been an active area of research since the onset of computer
science and there is an ever-growing need for alternative designs.
This is fueled by 1) the continuous advent of new applications that
require tailored storage and access patterns in both industry and
science, and 2) new hardware that requires speci�c storage and
access patterns to ensure longevity and maximum utilization. Every
year dozens of new data structure designs are published, e.g., more
than� fty new designs appeared at ACM SIGMOD, PVLDB, EDBT
and IEEE ICDE in 2017 according to data from DBLP.
A Vast and Complex Design Space. A data structure design con-
sists of 1) a data layout to describe how data is stored, and 2) al-
gorithms that describe how its basic functionality (search, insert,
etc.) is achieved over the speci�c data layout. A data structure can
be as simple as an array or arbitrarily complex using sophisticated
combinations of hashing, range and radix partitioning, careful data
placement, compression and encodings. Data structures may also
be referred to as “data containers” or “access methods” (in which
case the term “structure” applies only to the layout). The data layout

∗The name “Calculator” pays tribute to the early works that experimented with the
concept of calculating complex objects from a small set of primitives [52].

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

535

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3183713.3199671&domain=pdf&date_stamp=2018-05-27

design itself may be further broken down into the base data layout
and the indexing information which helps navigate the data, i.e., the
leaves of a B+tree and its inner nodes, or buckets of a hash table and
the hash-map. We use the term data structure design throughout
the paper to refer to the overall design of the data layout, indexing,
and the algorithms together as a whole.

We de�ne “design” as the set of all decisions that characterize
the layout and algorithms of a data structure, e.g., “Should data
nodes be sorted?”, “Should they use pointers?”, and “How should
we scan them exactly?”. The number of possible valid data structure
designs explodes to� 1032 even if we limit the overall design to
only two di�erent kinds of nodes (e.g., as is the case for B+trees). If
we allow every node to adopt di�erent design decisions (e.g., based
on access patterns), then the number of designs grows to� 10100.1
We explain how we derive these numbers in Section 2.
The Problem: Human-Driven Design Only. The design of data
structures is a slow process, relying on the expertise and intuition of
researchers and engineers who need to mentally navigate the vast
design space. For example, consider the following design questions.

(1) We need a data structure for a speci�c workload: Should we
strip down an existing complex data structure? Should we
build o� a simpler one? Or should we design and build a new
one from scratch?

(2) We expect that the workload might shift (e.g., due to new
application features): How will performance change? Should
we redesign our core data structures?

(3) We add� ash drives with more bandwidth and also add more
system memory: Should we change the layout of our B-tree
nodes? Should we change the size ratio in our LSM-tree?

(4) We want to improve throughput: How bene�cial would it
be to buy faster disks? more memory? or should we invest
the same budget in redesigning our core data structure?

This complexity leads to a slow design process and has severe
cost side-e�ects [12, 22]. Time to market is of extreme importance,
so new data structure design e�ectively stops when a design “is
due” and only rarely when it “is ready”. Thus, the process of design
extends beyond the initial design phase to periods of reconsidering
the design given bugs or changes in the scenarios it should support.
Furthermore, this complexity makes it di�cult to predict the impact
of design choices, workloads, and hardware on performance. We
include two quotes from a systems architect with more than two
decades of experience with relational systems and key-value stores.

(1) “I know from experience that getting a new data structure into
production takes years. Over several years, assumptions made about
the workload and hardware are likely to change, and these changes
threaten to reduce the bene�t of a data structure. This risk of change
makes it hard to commit to multi-year development e�orts. We need
to reduce the time it takes to get new data structures into production.”

(2) “Another problem is the limited ability we have to iterate. While
some changes only require an online schema change, many require
a dump and reload for a data service that might be running 24x7.
The budget for such changes is limited. We can overcome the limited
budget with tools that help us determine the changes most likely to be
useful. Decisions today are frequently based on expert opinions, and
these experts are in short supply.”

1For comparison, the estimated number of stars in the universe is 1024 .

Vision Step 1: Design Synthesis from First Principles.We pro-
pose a move toward the new design paradigm captured in Figure 1.
Our intuition is that most designs (and even inventions) are about
combining a small set of fundamental concepts in di�erent ways
or tunings. If we can describe the set of the� rst principles of data
structure design, i.e., the core design principles out of which all
data structures can be drawn, then we will have a structured way
to express all possible designs we may invent, study, and employ as
combinations of those principles. An analogy is the periodic table of
elements in chemistry. It classi�es elements based on their atomic
number, electron con�guration, and recurring chemical properties.
The structure of the table allows one to understand the elements
and how they relate to each other but crucially it also enables argu-
ing about the possible design space; more than one hundred years
since the inception of the periodic table in the 18th century, we
keep discovering elements that are predicted (synthesized) by the
“gaps” in the table, accelerating science.
Our vision is to build the periodic table of data structures so
we can express their massive design space. We take the� rst step in
this paper, presenting a set of� rst principles that can synthesize
orders of magnitude more data structure designs than what has
been published in the literature. It captures basic hardware con-
scious layouts and read operations; future work includes extending
the table for additional parts of the design space, such as updates,
concurrency, compression, adaptivity, and security.
Vision Step 2: Cost Synthesis from Learned Models. The sec-
ond step in our vision is to accelerate and automate the design
process. Key here, is being able to argue about the performance
behavior of the massive number of designs so we can rank them.
Even with an intuition that a given design is an excellent choice,
one has to implement the design, and test it on a given data and
query workload and onto speci�c hardware. This process can take
weeks at a time and has to be repeated when any part of the envi-
ronment changes. Can we accelerate this process so we can quickly
test alternative designs (or di�erent combinations of hardware, data,
and queries) on the order of a few seconds? If this is possible, then
we can 1) accelerate design and research of new data structures,
and 2) enable new kinds of adaptive systems that can decide core
parts of their design, and the right hardware.

Arguing formally about the performance of diverse designs is a
notoriously hard problem [13, 58, 72, 75, 77, 78] especially as work-
load and hardware properties change; even if we can come up with
a robust analytical model it may soon be obsolete [43]. We take
a hybrid route using a combination of analytical models, bench-
marks, and machine learning for a small set of fundamental access
primitives. For example, all pointer based data structures need to
perform random accesses as operations traverse their nodes. All
data structures need to perform a write during an update operation,
regardless of the exact update strategy. We synthesize the cost of
complex operations out of models that describe those simpler more
fundamental operations inspired by past work on generalized mod-
els [58, 75]. In addition, our models start out as analytical models
since we know how these primitives will likely behave. However,
they are also trained across diverse hardware pro�les by running
benchmarks that isolate the behavior of those primitives. This way,
we learn a set of coe�cients for each model that capture the subtle
performance details of diverse hardware settings.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

536

What If

Auto-
completion

Locate
Bad Design

De
si

gn
 Q

ue
st

io
ns

?

What If

Auto-
completion

Locate
Bad Design

?

next
choices

- Structure Layout Spec.
- Data & Query Workload
- Hardware Profile

 - Latency
 - Full Design: Layout
 & Access (AST)

Hardware Profiles

Serial Scan

Sorted Search

Random Probe

Equality Scan

Range Scan

…
…

Sec3: Data Access PrimitivesSec2: Data Layout Primitives

Data Node (Element) Library

B-Tree
Internal Data Page

B+Tree
Internal

Linked List Trie Skip
List

Array
…

Micro-benchmarks train
models on different hardware
profiles.

Machine Learning

f(x)
�
i

ci

1+e�ki(x�xi)

f(x) = ax + b…

Element
Generator

Zone MapsPart
itio

nin
g Bloom Filter

46 primitives

Fu
nc

. 1
 -

Fu
nc

. 2
 -

True -
False -

Min -Max -
Both -

…

parallelization

Operation Synthesis
Operation Synthesis (Level 1) Hardware Conscious Synthesis (Level 2)

Cost Synthesis with Learned Models

Binary Search

…

Equality Scan

Binary Search

Range Scan

M
ic

ro
-b

en
ch

m
ar

ks

?
?

…

Le
ve

l 1
Le

ve
l 2

Level 1 to
Level 2
translation

Get Range

…

Bulk Load Get Range

…

Bulk Load

Sec4: What-if Design

Combination
Validity Rules best design

so far

Auto-complete

performance

Pruning
Memoization

Rules

iterative search

next
node/cost
evaluation

Figure 2: The architecture of the Data Calculator: From high-level layout speci�cations to performance cost calculation.

The Data Calculator: Automated What-if Design.We present
a “design engine” – the Data Calculator – that can compute the
performance of arbitrary data structure designs as combinations of
fundamental design primitives. It is an interactive tool that acceler-
ates the process of design by turning it into an exploration process,
improving the productivity of researchers and engineers; it is able to
answer what-if data structure design questions to understand how
the introduction of new design choices, workloads, and hardware
a�ect the performance (latency) of an existing design. It currently
supports read queries for basic hardware conscious layouts. It al-
lows users to give as input a high-level speci�cation of the layout
of a data structure (as a combination of primitives), in addition to
workload, and hardware speci�cations. The Data Calculator gives
as output a calculation of the latency to run the input workload
on the input hardware. The architecture and components of the
Data Calculator are captured in Figure 2 (from left to right): (1) a
library of� ne-grained data layout primitives that can be combined
in arbitrary ways to describe data structure layouts; (2) a library of
data access primitives that can be combined to generate designs of
operations; (3) an operation and cost synthesizer that computes the
design of operations and their latency for a given data structure
layout speci�cation, a workload and a hardware pro�le, and (4) a
search component that can traverse part of the design space to sup-
plement a partial data structure speci�cation or inspect an existing
one with respect to both the layout and the access design choices.
Inspiration. Our work is inspired by several lines of work across
many� elds of computer science. John Ousterhout’s project Magic
in the area of computer architecture allows for quick veri�cation of
transistor designs so that engineers can easily test multiple designs
[62]. Leland Wilkinson’s “grammar of graphics” provides structure
and formulation on the massive universe of possible graphics one
can design [74]. Mike Franklin’s Ph.D. thesis explores the possible
client-server architecture designs using caching based replication as
the main design primitive and proposes a taxonomy that produced
both published and unpublished (at the time) cache consistency
algorithms. Joe Hellerstein’s work on Generalized Search Indexes
[6, 7, 38, 47–50] makes it easy to design and test new data structures
by providing templates that signi�cantly minimize implementation
time. S. Bing Yao’s work on generalized cost models [75] for data-
base organizations, and Stefan Manegold’s work on generalized
cost models tailored for the memory hierarchy [57] showed that it

is possible to synthesize the costs of database operations from basic
access patterns and based on hardware performance properties.
Work on data representation synthesis in programming languages
[15, 18–21, 24–27] enables selection and synthesis of representa-
tions out of small sets of (3-5) existing data structures. The Data
Calculator can be seen as a step toward the Automatic Programmer
challenge set by Jim Gray in his Turing award lecture [35], and
as a step toward the “calculus of data structures” challenge set by
Turing award winner Robert Tarjan [71]: “What makes one data
structure better than another for a certain application? The known
results cry out for an underlying theory to explain them.”

Contributions. Our contributions are as follows:
(1) We introduce a set of data layout design primitives that cap-

ture the� rst principles of data layouts including hardware
conscious designs that dictate the relative positioning of data
structure nodes (§2).

(2) We show how combinations of the design primitives can
describe known data structure designs, including arrays,
linked-lists, skip-lists, queues, hash-tables, binary trees and
(Cache-conscious) b-trees, tries, MassTree, and FAST (§2).

(3) We show that in addition to known designs, the design prim-
itives form a massive space of possible designs that has only
been minimally explored in the literature (§2).

(4) We show how to synthesize the latency cost of basic opera-
tions (point and range queries, and bulk loading) of arbitrary
data structure designs from a small set of access primitives.
Access primitives represent fundamental ways to access data
and come with learned cost models which are trained on
diverse hardware to capture hardware properties (§3).

(5) We show how to use cost synthesis to interactively answer
complex what-if design questions, i.e., the impact of changes
to design, workload, and hardware (§4).

(6) We introduce a design synthesis algorithm that completes
partial layout speci�cations given a workload and hardware
input; it utilizes cost synthesis to rank designs (§4).

(7) We demonstrate that the Data Calculator can accurately
compute the performance impact of design choices for state-
of-the-art designs and diverse hardware (§5).

(8) We demonstrate that the Data Calculator can accelerate the
design process by answering rich design questions in a mat-
ter of seconds or minutes (§5).

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

537

2 DATA LAYOUT PRIMITIVES
AND STRUCTURE SPECIFICATIONS

In this section, we discuss the library of data layout design prim-
itives and how it enables the description of a massive number of
both known and unknown data structures.
Data Layout Primitives. The Data Calculator contains a small
set of design primitives that represent fundamental design choices
when constructing a data structure layout. Each primitive belongs
to a class of primitives depending on the high-level design concept it
refers to such as node data organization, partitioning, node physical
placement, and node metadata management. Within each class,
individual primitives de�ne design choices and allow for alternative
tunings. The complete set of primitives we introduce in this paper
is shown in Figure 11 in the appendix; they describe basic data
layouts and cache conscious optimizations for reads. For example,
“Key Order (none|sorted|k-ary)” de�nes how data is laid out in a
node. Similarly, “Key Retention (none|full|func)” de�nes whether
and how keys are included in a node. In this way, in a B+tree all
nodes use “sorted” for order maintenance, while internal nodes use
“none” for key retention as they only store fences and pointers, and
leaf nodes use “full” for key retention.

The logic we use to generate primitives is that each one should
represent a fundamental design concept that does not break down
into more useful design choices (otherwise, there will be parts of
the design space we cannot express). Coming up with the set of
primitives is a trial and error task to map the known space of design
concepts to an as clean and elegant set of primitives as possible.

Naturally, not all layout primitives can be combined. Most invalid
relationships stem from the structure of the primitives, i.e., each
primitive combines with every other standalone primitive. Only a
few pairs of primitive tunings do not combine which generates a
small set of invalidation rules. These are mentioned in Figure 11.
From Layout Primitives to Data Structures. To describe com-
plete data structures, we introduce the concept of elements . An
element is a full speci�cation of a single data structure node; it
de�nes the data and access methods used to access the node’s data.
An element may be “terminal” or “non-terminal”. That is, an el-
ement may be describing a node that further partitions data to
more nodes or not. This is done with the “fanout” primitive whose
value represents the maximum number of children that would be
generated when a node partitions data. Or it can be set to “terminal”
in which case its value represents the capacity of a terminal node.
A data structure speci�cation contains one or more elements. It
needs to have at least one terminal element, and it may have zero
or more non-terminal elements. Each element has a destination
element (except terminal ones) and a source element (except the
root). Recursive connections are allowed to the same element.
Examples. A visualization of the primitives can be seen at the left
side of Figure 3. It is a� at representation of the primitives shown in
Figure 11 which creates an entry for every primitive signature. The
radius depicts the domain of each primitive but di�erent primitives
may have di�erent domains, visually depicted via the multiple inner
circles in the radar plots of Figure 3. The small radar plots on the
right side of Figure 3 depict descriptions of nodes of known data
structures as combinations of the base primitives. Even visually
it starts to become apparent that state-of-the-art designs which

are meant to handle di�erent scenarios are “synthesized from the
same pool of design concepts”. For example, using the non-terminal
B+tree element and the terminal sorted data page element we can
construct a full B+tree speci�cation; data is recursively broken
down into internal nodes using the B+tree element until we reach
the leaf level, i.e., when partitions reach the terminal node size.
Figure 3 also depicts Trie and Skip-list speci�cations. Figure 11
provides complete speci�cations of Hash-table, Linked-list, B+tree,
Cache-conscious B-tree, and FAST.
Elements “Without Data”. For� at data structures without an
indexing layer, e.g., linked-lists and skip-lists, there need to be
elements in the speci�cation that describe the algorithm used to
navigate the terminal nodes. Given that this algorithm is e�ectively
a model, it does not rely on any data, and so such elements do not
translate to actual nodes; they only a�ect algorithms that navigate
across the terminal nodes. For example, a linked-list element in
Figure 11 describes that data is divided into nodes that can only be
accessed via following the links that connect terminal nodes. Simi-
larly, one can create complex hierarchies of non-terminal elements
that do not store any data but instead their job is to synthesize
a collective model of how the keys should be distributed in the
data structure, e.g., based on their value or other properties of the
workload. These elements may lead to multiple hierarchies of both
non-terminal nodes with data and terminal ones, synthesizing data
structure designs that treat parts of the data di�erently. We will see
such examples in the experimental analysis.
Recursive Design Through Blocks. A block is a logical portion
of the data that we divide into smaller blocks to construct an in-
stance of a data structure speci�cation. The elements in a speci-
�cation are the “atoms” with which we construct data structure
instances by applying them recursively onto blocks. Initially, there
is a single block of data, all data. Once all elements have been ap-
plied, the original block is broken down into a set of smaller blocks
that correspond to the internal nodes (if any) and the terminal
nodes of the data structure. Elements without data can be thought
of as if they apply on a logical data block that represents part of
the data with a set of speci�c properties (i.e., all data if this is the
�rst element) and partitions the data with a particular logic into
further logical blocks or physical nodes. This recursive construction
is used when we test, cost, and search through multiple possible
designs concurrently over the same data for a given workload and
hardware as we will discuss in the next two sections, but it is also
helpful to visualize designs as if “data is pushed through the design”
based on the elements and logical blocks.
Cache-Conscious Designs. One critical aspect of data structure
design is the relative positioning of its nodes, i.e., how “far” each
node is positioned with respect to its predecessors and successors in
a query path. This aspect is critical to the overall cost of traversing
a data structure. The Data Calculator design space allows to dictate
how nodes should be positioned explicitly: each non-terminal ele-
ment de�nes how its children are positioned physically with respect
to each other and with respect to the current node. For example,
setting the layout primitive “Sub-block physical layout” to BFS tells
the current node that its children are laid out sequentially. In ad-
dition, setting the layout primitive “Sub-blocks homogeneous” to
true implies that all its children have the same layout (and therefore
�xed width), and allows a parent node to access any of its children

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

538

bl
oc

kA
cc

es
s.

di
re

ct
blo

ck
Ac

ce
ss

.h
ea

dL
in

k
blo

ck
Ac

ce
ss

.ta
ilL

ink
blo

om
.ac

tiv
e

blo
om

.ha
sh

Fu
nc

tio
ns

Num

blo
om.numberOfBits

capacity.function

capacity.type

capacity.value

external.links.next

external.links.prev
fanout.fixedValuefanout.functionfanout.type

filters.filtersMemLayout

filters.zoneMaps.exact

filters.zoneMaps.max

filters.zoneMaps.min

indirectedPointers

keyRetention.function

keyRetention.type

links.linksM
em

Layout

lin
ks

.n
ex

t

lin
ks

.p
re

v

lin
ks

.sk
ipL

ink
s.p

ro
ba

bil
ity

lin
ks

.sk
ipL

ink
s.t

yp
e

log
.fil

ter
sP

erL
ev

el

log.filt
ersP

erRun

log.initialRunSize

log.maxRunsPerLevel
log.mergeFactororderMaintenance.type

partitioning.function

partitioning.type

recursionAllowed

retainedDataLayout

sub−block.phys.homog.

sub−block.phys.layout

sub−block.phys.location

utilization.constraint

utilization.function
valueRetention.function
valueRetention.type

zeroElem
entNullable

Node layout primitives

SKIP LIST
(NON−TERMINAL ELEMENT)

TRIE ELEMENT
(NON−TERMINAL ELEMENT)

LSM ELEMENT
(NON−TERMINAL ELEMENT)

LSM DATAPAGE
(TERMINAL ELEMENT)

RANGE PARTITIONING
(NON−TERMINAL ELEMENT)

HASH PARTITIONING
(NON−TERMINAL ELEMENT)

B+TREE ELEMENT
(NON−TERMINAL ELEMENT)

B−TREE ELEMENT
(NON−TERMINAL ELEMENT)

UNSORTED DATAPAGE
(TERMINAL ELEMENT)

SORTED DATAPAGE
(TERMINAL ELEMENT)

COMPRESSED DATAPAGE
(TERMINAL ELEMENT)

LINKED LIST
(NON−TERMINAL ELEMENT)

SORTED
DATA PAGE
ELEMENT

TRIE
ELEMENT

Tr
ie

B+
Tre

e

SKIP LIST
ELEMENT

Sk
ip

 L
ist

B+TREE
ELEMENT

Data layout primitives

Figure 3: The data layout primitives and examples of synthesizing node layouts of state-of-the-art data structures.

nodes directly with a single pointer and reference number. This, in
turn, makes it possible to� t more data in internal nodes because
only one pointer is needed and thus more fences can be stored
within the same storage budget. Such primitives allow specifying
designs such as Cache Conscious B+tree [67] (Figure 11 provides
the complete speci�cation), but also the possibility of generalizing
the optimizations made there to arbitrary structures.

Similarly, we can describe FAST [44]. First, we set “Sub-block
physical location” to inline, specifying that the children nodes are
directly after the parent node physically. Second, we set that the chil-
dren nodes are homogeneous, and� nally, we set that the children
have a sub-block layout of “BFS Layer List (Page Size / Cache Line
Size)”. Here, the BFS layer list speci�es that on a higher level, we
should have a BFS layout of sub-trees containing Page Size/Cache
Line Size layers; however, inside of those sub-trees pages are laid
out in BFS manner by a single level. The combination matches the
combined Page Level blocking and Cache Line level blocking of
FAST. Additionally, the Data Calculator realizes that all child node
physical locations can be calculated via o�sets, and so eliminates
all pointers. Figure 11 provides the complete speci�cation.
Size of the Design Space. To help with arguing about the possible
design space we provide formal de�nitions of the various constructs.

De�nition 2.1 (Data Layout Primitive). A primitive pi belongs
to a domain of values Pi and describes a layout aspect of a data
structure node.

De�nition 2.2 (Data Structure Element). AData Structure Element
E is de�ned as a set of data layout primitives: E = {p1, ...,pn } 2
Pi ⇥ ... ⇥ Pn , that uniquely identify it.

Given a set of In� (P) invalid combinations, the set of all possible
elements E, (i.e., node layouts) that can be designed as distinct
combinations of data layout primitives has the following cardinality.

|E | = Pi ⇥ ... ⇥ Pn � In� (P) =
Y

8Pi 2E
|Pi | � In� (P) (1)

De�nition 2.3 (Blocks). Each non-terminal element E 2 E, ap-
plied on a set of data entries D 2 D, uses function BE (D) =
{D1, ...,Df } to divide D into f blocks such that D1 [... [Df = D.

A polymorphic design where every block may be described by a
di�erent element leads to the following recursive formula for the
cardinality of all possible designs.

cpol� (D) = |E | +
X

8E2E

X

8Di 2BE (D)

cpol� (Di) (2)

Example: AVast Space of DesignOpportunities. To get insight
into the possible total designs we make a few simplifying assump-
tions. Assume the same fanout f across all nodes and terminal node
size equal to page size psize . Then N = d |D |psize e is the total number
of pages in which we can divide the data and h = dlo�f (N)e is
the height of the hierarchy. We can then approximate the result of
Equation 2 by considering that we have |E | possibilities for the root
element, and f ⇤ |E | possibilities for its resulting partitions which
in turn have f ⇤ |E | possibilities each up to the maximum level of
recursion h = lo�f (N). This leads to the following result.

cpol� (D) ⇡ |E | ⇤ (f ⇤ |E |) dlo�f (N)e (3)

Most sophisticated data structure designs use only two distinct
elements, each one describing all nodes across groups of levels of
the structure, e.g., B-tree designs use one element for all internal
nodes and one for all leaves. This gives the following design space
for most standard designs.

cstan (D) ⇡ |E |2 (4)

Using Equations 1, 3 and 4 we can get estimations of the possi-
ble design space for di�erent kinds of data structure designs. For
example, given the existing library of data layout primitives, and
by limiting the domain of each primitive as shown in Figure 11 in
appendix, then from Equation 1 we get |E | = 1016, meaning we can
describe data structure layouts from a design space of 1016 possible
node elements and their combinations. This number includes only

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

539

valid combinations of layout primitives, i.e., all invalid combina-
tions as de�ned by the rules in Figure 11 are excluded. Thus, we
have a design space of 1032 for standard two-element structures
(e.g., where B-tree and Trie belong) and 1048 for three-element
structures (e.g., where MassTree [59] and Bounded-Disorder [55]
belong). For polymorphic structures, the number of possible designs
grows more quickly, and it also depends on the size of the training
data used to� nd a speci�cation, e.g., it is > 10100 for 1015 keys.

The numbers in the above example highlight that data structure
design is still a wide-open space with numerous opportunities for
innovative designs as data keeps growing, application workloads
keep changing, and hardware keeps evolving. Even with hundreds
of new data structures manually designed and published each year,
this is a slow pace to test all possible designs and to be able to argue
about how the numerous designs compare. The Data Calculator is
a tool that accelerates this process by 1) providing guidance about
what is the possible design space, and 2) allowing to quickly test how
a given design� ts a workload and hardware setting. A technical
report includes a more detailed description of its primitives [23].

3 DATA ACCESS PRIMITIVES
AND COST SYNTHESIS

We now discuss how the Data Calculator computes the cost (la-
tency) of running a given workload on a given hardware for a
particular data structure speci�cation. Traditional cost analysis in
systems and data structures happens through experiments and the
development of analytical cost models. Both options are not scalable
when we want to quickly test multiple di�erent parts of the mas-
sive design space we de�ne in this paper. They require signi�cant
expertise and time, while they are also sensitive to hardware and
workload properties. Our intuition is that we can instead synthesize
complex operations from their fundamental components as we do
for data layouts in the previous section, and then develop a hybrid
way (through both benchmarks and models but without signi�cant
human e�ort needed) to assign costs to each component individu-
ally; The main idea is that we learn a small set of cost models for
�ne-grained data access patterns out of which we can synthesize
the cost of complex dictionary operations for arbitrary designs in
the possible design space of data structures.

The middle part of Figure 2 depicts the components of the Data
Calculator that make cost synthesis possible: 1) the library of data
access primitives, 2) the cost learning module which trains cost
models for each access primitive depending on hardware and data
properties, and 3) the operation and cost synthesis module which
synthesizes dictionary operations and their costs from the access
primitives and the learned models. Next, we describe the process
and components in detail.
Cost Synthesis fromData Access Primitives. Each access prim-
itive characterizes one aspect of how data is accessed. For example,
a binary search, a scan, a random read, a sequential read, a random
write, are access primitives. The goal is that these primitives should
be fundamental enough so that we can use them to synthesize oper-
ations over arbitrary designs as sequences of such primitives. There
exist two levels of access primitives. Level 1 access primitives are
marked with white color in Figure 2 and Level 2 access primitives
are nested under Level 1 primitives and marked with gray color.

For example, a scan is a Level 1 access primitive used any time an
operation needs to search a block of data where there is no order.
At the same time, a scan may be designed and implemented in
more than one way; this is exactly what Level 2 access primitives
represent. For example, a scan may use SIMD instructions for par-
allelization if keys are nicely packed in vectors, and predication
to minimize branch mispredictions with certain selectivity ranges.
In the same way, a sorted search may use interpolation search
if keys are arranged with uniform distribution. In this way, each
Level 1 primitive is a conceptual access pattern, while each Level 2
primitive is an actual implementation that signi�es a speci�c set of
design choices. Every Level 1 access primitive has at least one Level
2 primitive and may be extended with any number of additional
ones. The complete list of access primitives currently supported by
the Data Calculator is shown in Table 1 in appendix.
Learned Cost Models. For every Level 2 primitive, the Data Cal-
culator contains one or more models that describe its performance
(latency) behavior. These are not static models; they are trained
and� tted for combinations of data and hardware pro�les as both
those factors drastically a�ect performance. To train a model, each
Level 2 primitive includes a minimal implementation that captures
the behavior of the primitive, i.e., it isolates the performance e�ects
of performing the speci�c action. For example, an implementation
for a scan primitive simply scans an array, while an implementa-
tion for a random access primitive simply tries to access random
locations in memory. These implementations are used to run a
sequence of benchmarks to collect data for learning a model for
the behavior of each primitive. Implementations should be in the
target language/environment.

The models are simple parametric models; given the design deci-
sion to keep primitives simple (so they can be easily reused), we
have domain expertise to expect how their performance behavior
will look like. For example, for scans, we have a strong intuition
they will be linear, for binary searches that they will be logarithmic,
and that for random memory accesses that they will be smoothed
out step functions (based on the probability of caching). These sim-
ple models have many advantages: they are interpretable, they train
quickly, and they don’t need a lot of data to converge. Through the
training process, the Data Calculator learns coe�cients of those
models that capture hardware properties such as CPU and data
movement costs.

Hardware and data pro�les hold descriptive information about
data and hardware respectively (e.g., data distribution for data, and
CPU, Bandwidth, etc. for hardware). When an access primitive is
trained on a data pro�le, it runs on a sample of such data, and
when it is trained for a hardware pro�le, it runs on this exact
hardware. Afterward, though, design questions can get accurate
cost estimations on arbitrary access method designs without going
over the data or having to have access to the speci�c machine.
Overall, this is an o�ine process that is done once, and it can be
repeated to include new hardware and data pro�les or to include
new access primitives.
Example: Binary Search Model. To give more intuition about
how models are constructed let us consider the case of a Level 2
primitive of binary searching a sorted array as shown on the upper
right part of Figure 4. The primitive contains a code snippet that
implements the bare minimum behavior (Step 1 in Figure 4). We

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

540

Binary Search Primitive

1 11 17 37 51 66 80 94

if (data[middle] < search_val) {
 low = middle + 1;
} else {
 high = middle;
}
middle = (low + high)/2;

f(x)
�
i

ci

1+e�ki(x�xi)

Fitted Model

sum of si
gmoids

Benchmark Results

Ti
m

e
(s

)

Region Size (KB)

L1 L2 MemoryL3

2.8e-8

0.8e-8

1.3e-7

8 32 1.6e4

Ti
m

e
(s

)

Data Size (KB)

Benchmark Results

Log-Linear M
odel

Log-Linear M
odel

Fitted Model

f(x) = ax + b log x + c

User designs benchmark
and chooses model

System runs benchmark
and gathers data

Model trains and produces
function for cost prediction

for(int i=0; i<size; i++)
 probe(array[pos[i]])

Random Access Primitive

12 56 9 37 1 45 11 20

1 7 6 2 3 5 4 0pos

array

…

…

Scenario 1: Training Binary Search Level 2 Access Primitive

Scenario 2: Training Random Memory Access Level 2 Access Primitive

AP Binary Search

Interpolation Search

AP Sorted Search

AP

New Sorted SearchAP

Get Cost
(Sorted Search Level 1)

Data Access Primitives (Level 1)

AP

Scan

Sorted Search

Sequential
Memory Access

Bloom Filter
Probe

Hash Probe

Random
Memory Access AP

AP

AP

AP

AP

Codes Benchmark
for new Sorted

Search Alg.
Runs Benchmark
and Gathers Data

Cost: 180 ns
Algorithm:
New Sorted Search (Level 2)

Log-Linear M
odel

31

1 2 3

TrainRun

Run Train

2

Data Calculator
Fits Model to

Data

1 2
extending library
with a new
level 2 access
primitive

3

new model

Level 2

2e-8

4e-8

8e-8

1e-7

2 4 86

Figure 4: Training and� tting models for Level 2 access primitives and extending the Data Calculator.

observe that the benchmark results (Step 2 in Figure 4) indicate
that performance is related to the size of the array by a logarithmic
component. As expected there is also bias as the relationship for
small array sizes (such as just 4 or 8 elements) might not� t exactly
a logarithmic function. We additionally add a linear term to capture
some small linear dependency on the data size. Thus, the cost of
binary searching an array of n elements can be approximated as
f (n) = c1n + c2 logn + �0 where c1, c2, and �0 are coe�cients
learned through linear regression. The values of these coe�cients
help us translate the abstract model, f (n) = O (logn), into a realized
predictive model which has taken into account factors such as CPU
speed and the cost of memory accesses across the sorted array for
the speci�c hardware. The resulting� tted model can be seen in
Step 3 on the upper right part of Figure 4. The Data Calculator
can then use this learned model to query for the performance of
binary search within the trained range of data sizes. For example,
this would be used when querying a large sorted array as well as a
small node of a complex data structure that is sorted.

Certain critical aspects of the training process can be automated
as part of future research. For example, the data range for which
we should train a primitive depends on the memory hierarchy (e.g.,
size of caches, memory, etc.) on the target machine and what is the
target setting in the application (i.e., memory only, or also disk/�ash,
etc.). In turn, this also a�ects the length of the training process.
Overall, such parameters can eventually be handled through high-
level knobs, letting the system make the lower level tuning choices.
Furthermore, identi�cation of convergence can also be automated.
There exist primitives that require more training than others (e.g.,
due to more complex code, random access or sensitivity to outliers),
and so the number of benchmarks and data points we collect should
not be a� xed decision.
Synthesizing Latency Costs. Given a data layout speci�cation
and a workload, the Data Calculator uses Level 1 access primitives
to synthesize operations and subsequently each Level 1 primitive is
translated to the appropriate Level 2 primitive to compute the cost of
the overall operation. Figure 5 depicts this process and an example
speci�cally for the Get operation. This is an expert system, i.e., a
sequence of rules that based on a given data structure speci�cation

de�nes how to traverse its nodes.2 To read Figure 5 start from the
top right corner. The input is a data structure speci�cation, a test
data set, and the operation we need to cost, e.g., Get key x. The
process simulates populating the data structure with the data to
�gure out how many nodes exist, the height of the structure, etc.
This is because to accurately estimate the cost of an operation, the
Data Calculator needs to take into account the expected state of
the data structure at the particular moment in the workload. It does
this by recursively dividing the data into blocks given the elements
used in the speci�cation.

In the example of Figure 5 the structure contains two elements,
one for internal nodes and one for leaves. For every node, the
operation synthesis process takes into account the data layout
primitives used. For example, if a node is sorted it uses binary
search, but if the node is unsorted, it uses a full scan. The rhombuses
on the left side of Figure 5 re�ect the data layout primitives that
operation Get relies on, while the rounded rectangles re�ect data
access primitives that may be used. For each node the per-node
operation synthesis procedure (starting from the left top side of
Figure 5),� rst checks if this node is internal or not by checking
whether the node contains keys or values; if not, it proceeds to
determine which node it should visit next (left side of the� gure)
and if yes, it continues to process the data and values (right side of
the� gure). A non-terminal element leads to data of this block being
split into f new blocks and the process follows the relevant blocks
only, i.e., the blocks that this operation needs to visit to resolve.

In the end, the Data Calculator generates an abstract syntax tree
with the access patterns of the path it had to go through. This is
expressed in terms of Level 1 access primitives (bottom right part
of Figure 5). In turn, this is translated to a more detailed abstract
syntax tree where all Level 1 access primitives are translated to
Level 2 access primitives along with the estimated cost for each one
given the particular data size, hardware input, and any primitive
speci�c input. The overall cost is then calculated as the sum of all
those costs.

2Due to space restrictions Figure 5 is a subset of the expert system. The complete
version can be found in a technical report [23].

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

541

I2 I3

L2 L3 L4… …

…

query
target

h

co
nta
ins
dat
a

co
mp
res
se
d

sor
ted

ro
w-
wi
se
sto
rag
e

Serial
Scan
Keys

ro
w-
wi
se
sto
rag
e

Sorte
d

Searc
h

Keys

yes yes

no

no

yes

Decomp
ress
Data

Random
Probe
Value

no no

Serial
Scan
KV

pairs

yes

Sorted
Search
KV pairs

yes

blo
ck
s

no

par
titi
oni
ng
Fu
nct
ion

no

yes

Random
Probe

Partition

yes

zo
ne
ma
ps

no

par
titi
on
s

ac
ce
ss

no

sor
ted

yes

Serial Scan
Zone Maps

Sorted
Search Zone

Maps

yesno

Bloom
Filter
Acces

s

inli
ne
d

Random
Probe
Block

Block

D1

Dn

…

If this element partitions data
in blocks, go over each block

Try to prune some of the blocks using
filters such us zone maps and bloom filters

Only continue
for matching blocks

Materialize
sub-blocks

Partitioning?
 - Log structured
 - Function?
Capacity?
Fanout?

blo
om
flit
ers

Rando
m

Probe
Links

head/tail links

co
nta
ins
dat
a

co
mp
res
se
d

sor
ted

ro
w-
wi
se
sto
rag
e

Serial
Scan
Keys

ro
w-
wi
se
sto
rag
e

Sorte
d

Searc
h

Keys

yes yes

no

no

yes

Decomp
ress
Data

Random
Probe
Value

no no

Serial
Scan
KV

pairs

yes

Sorted
Search
KV pairs

yes

blo
ck
s

no

par
titi
oni
ng
Fu
nct
ion

no

yes

Random
Probe

Partition

yes

zo
ne
ma
ps

no

par
titi
on
s

ac
ce
ss

no

sor
ted

yes

Serial Scan
Zone Maps

Sorted
Search Zone

Maps

yesno

Bloom
Filter
Acces

s

inli
ne
d

Random
Probe
Block

Block

D1

Dn

…

If this element partitions data
in blocks, go over each block

Try to prune some of the blocks using
filters such us zone maps and bloom filters

Only continue
for matching blocks

Materialize
sub-blocks

Partitioning?
 - Log structured
 - Function?
Capacity?
Fanout?

blo
om
flit
ers

Rando
m

Probe
Links

head/tail links

I

L

h

Start
 contains

values and
keys

sorted

row-wise
storage

Serial Scan
Keys

row-wise
storage

Sorted Search
Keys

true

false

true

Random Probe
Value

false false

Serial Scan
KV pairs

true

Sorted Search
KV pairs

true

is element
terminal End

false

partitioning
function

true

false

Random Probe
Partition

true

zone maps
false

partitions
access

false

sorted

true

Serial Scan
Zone Maps

Sorted Search
Zone Maps

truefalse

Bloom Filter
AccessinlinedRandom Probe

Block

truefalse

direct
addressing

Block

D1

Df

…

other filter types

Only continue
for matching blocks

 Sub-block
 data distribution
1. Create blocks using:
 - Partitioning property
 - Capacity property
 - Fanout property
2. Distribute data in blocks

bloom fliters

Random Probe
Links

head/tail links

false
true

Serial Scan
Sorted Search

data access
primitive operation

synthesis

data layout
primitive checks

Internal Node

1. fanout.type = FIXED;
2. fanout.fixedVal = 20;
3. sorted = True;
4. zoneMaps.min = true;
5. zoneMaps.max = false;
6. retainsData = false;
…
46. capacity = BALANCED;

I

Leaf Node

1. fanout.type = FIXED;
2. fanout.fixedVal = 64;
3. sorted = True;
4. zoneMaps.min = false;
5. zoneMaps.max = false;
6. retainsData = true;
…
46. capacity = fixed;

L

I1

Data Access Operation
Synthesis

INPUTPer Node Access Operation Synthesis

Re
cu

rs
io

n

Recursion

LSM…
…

fixed
block size

variable
block size

variable number
of blocks

fixed number
of blocks

fixed number
of blocks

L1

Hardware
Profile

Data & Query
Workload

Structure
Layout

Specifications
+ +

R I2
h

L1

Sorted search
of zone-maps

Random probe
to fetch leaf

S I2Sorted search
of zone-maps

Sorted search
leaf data

Random probe
to fetch node

I1S

L1R

S

RP SIZE
h

64, KV

BinarySearch

RandomProbe

BS 20, KBinarySearch

BinarySearch

RandomProbe

10, KBS

SIZERP

BSO
pe

ra
tio

n
Sy

nt
he

si
s

O
ut

pu
t

C
os

t S
yn

th
es

is
 O

ut
pu

t

Materialize
sub-block data

Forward gets to the
correct sub-blocks

Try to filter
sub-blocks

sub-block
access cost
(function call
cost omitted)

sub-block
access cost

data access cost

comments

Figure 5: Synthesizing the operation and cost for dictionary operation Get, given a data structure speci�cation.

Calculating Random Accesses and Caching E�ects. A cru-
cial part in calculating the cost of most data structures is capturing
random memory access costs, e.g., the cost of fetching nodes while
traversing a tree, fetching nodes linked in a hash bucket, etc. If data
is expected to be cold, then this is a rather straightforward case, i.e.,
we may assign the maximum cost a random access is expected to
incur on the target machine. If data may be hot, though, it is a more
involved scenario. For example, in a tree-like structure internal
nodes higher in the tree are much more likely to be at higher levels
of the memory hierarchy during repeated requests. We calculate
such costs using the random memory access primitive, as shown in
the lower right part of Figure 4. Its input is a “region size”, which
is best thought of as the amount of memory we are randomly ac-
cessing into (i.e., we don’t know where in this memory region our
pointer points to). The primitive is trained via benchmarking access
to an increasingly bigger contiguous array (Step 1 in Figure 4). The
results (Step 2 in Figure 4) depict a minor jump from L1 to L2 (we
can see a small bump just after 104 elements). The bump from L2
to L3 is much more noticeable, with the cost of accessing memory
going from 0.1 ⇥ 107 seconds to 0.3 ⇥ 107 seconds as the memory
size crosses the 128 KB boundary. Similarly, we see a bump from
0.3⇥ 107 seconds to 1.3⇥ 107 seconds when we go from L3 to main
memory, at the L3 cache size of 16 MB3. We capture this behavior
as a sum of sigmoid functions, which are essentially smoothed step
functions, using

c (x) =
kX

i=1
f (x) =

kX

i=1

ci

1 + e�ki (log x�xi)
+ �0.

3These numbers are in line with Intel’s Vtune.

This primitive is used for calculating random access to any physical
or logical region (e.g., a sequence of nodes that may be cached
together). For example, when traversing a tree, the cost synthesis
operation, costs random accesses with respect to the amount of
data that may be cached up to this point. That is, for every node
we need to access at Level x of a tree, we account for a region size
that includes all data in all levels of the tree up to Level x . In this
way, accessing a node higher in the tree costs less than a node at
lower levels. The same is true when accessing buckets of a hash
table. We give a detailed step by step example below.
Example: Cache-aware Cost Synthesis. Assume a B-tree -like
speci�cation as follows: two node types, one for internal nodes
and one for leaf nodes. Internal nodes contain fence pointers, are
sorted, balanced, have a� xed fanout of 20 and do not contain any
keys or values. Leaf nodes instead are terminal; they contain both
keys and values, are sorted, have a maximum page size of 250
records, and follow a full columnar format, where keys and values
are stored in independent arrays. The test dataset consists of 105
records where keys and values are 8 bytes each. Overall, this means
that we have 400 full data pages, and thus a tree of height 2. The
Data Calculator needs two of its access primitives to calculate the
cost of a Get operation. Every Get query will be routed through
two internal nodes and one leaf node: within each node, it needs
to binary search (through fence pointers for internal nodes and
through keys in leaf nodes) and thus it will make use of the Sorted
Search access primitive. In addition, as a query traverses the tree it
needs to perform a random access for every hop.

Now, let us look in more detail how these two primitives are
used given the exact speci�cation of this data structure. The Sorted
Search primitive takes as input the size of the area over which we

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

542

will binary search and the number of keys. The Random Access
primitive takes as input the size of the path so far which allows us
to takes into account caching e�ects. Each query starts by visiting
the root node. The data calculator estimates the size of the path
so far to be 312 bytes. This is because the size of the path so far
is in practice equal to the size of the root node which containing
20 pointers (because the fanout is 20) and 19 values sums up at
root = internalnode = 20 ⇤ 8 + 19 ⇤ 8 = 312 bytes. In this way,
the Data Calculator logs a cost of RandomAccess (312) to access the
root node. Then, it calculates the cost of binary search across 19
fences, thus logging a cost of SortedSearch(RowStore, 19 ⇤ 8). It
uses the “RowStore” option as fences and pointers are stored as
pairs within each internal node. Now, the access to the root node
is fully accounted for, and the Data Calculator moves on to cost
the access at the next tree level. Now the size of the path so far
is given by accounting for the whole next level in addition to the
root node. This is in total le�el2 = root+fanout⇤internalnode =
312 + 20 ⇤ 312 = 6552 bytes (due to fanout being 20 we account
for 20 nodes at the next level). Thus to access the next node, the
Data Calculator logs a cost of RandomAccess (6552) and again a
search cost of SortedSearch(RowStore, 19 ⇤ 8) to search this node.
The last step is to search the leaf level. Now the size of the path
so far is given by accounting for the whole size of the tree which
is le�el2 + 400 ⇤ (250 ⇤ 16) = 1606552 bytes since we have 400
pages at the next level (20x20) and each page has 250 records of
key-value pairs (8 bytes each). In this way, the Data Calculator logs
a cost of RandomAccess (1606552) to access the leaf node, followed
by a sorted search of SortedSearch(ColumnStore, 250 ⇤ 8) to search
the keys. It uses the “ColumnStore” option as keys and values are
stored separately in each leaf in di�erent arrays. Finally, a cost of
RandomAccess (2000) is incurred to access the target value in the
values array (we have 8 ⇤ 250 = 2000 in each leaf).

Sets of Operations. The description above considers a single
operation. The Data Calculator can also compute the latency for a
set of operations concurrently in a single pass. This is e�ectively the
same process as shown in Figure 5 only that in every recursion we
may follow more than one path and in every step we are computing
the latency for all queries that would visit a given node.

Workload Skew and Caching E�ects. Another parameter
that can in�uence caching e�ects is workload skew. For exam-
ple, repeatedly accessing the same path of a data structure results
in all nodes in this path being cached with higher probability than
others. The Data Calculator� rst generates counts of how many
times every node is going to be accessed for a given workload. Us-
ing these counts and the total number of nodes accessed we get a
factor p = count/total that denotes the popularity of a node. Then
to calculate the random access cost to a node for an operation k , a
weightw = 1/(p ⇤sid) is used, where sid is the sequence number of
this operation in the workload (refreshed periodically). Frequently
accessed nodes see smaller access costs and vice versa.

Training Primitives.All access primitives are trained on warm
caches. This is because they are used to calculate the cost on a node
that is already fetched. The only special case is the Random Access
primitive which is used to calculate the cost of fetching a node.
This is also trained on warm data, though, since the cost synthesis
infrastructure takes care at a higher level to pass the right region
size as discussed; in the case this region is big, this can still result

in costing a page fault as large data will not� t in the cache which
is re�ected in the Random Access primitive model.

Limitations. For individual queries certain access primitives
are hard to estimate precisely without running the actual code on
an exact data instance. For example, a scan for a point Get may
abort after checking just a few values, or it may need to go all
the way to the end of an array. In this way, while lower or upper
performance bounds can be computed with absolute con�dence
for both individual queries and sets of queries, actual performance
estimation works best for sets.
More Operations. The cost of range queries, and bulk loading is
synthesized as shown in Figure 10 in appendix.
Extensibility and Cross-pollination. The rationale of having
two Levels of access primitives is threefold. First, it brings a level of
abstraction allowing higher level cost synthesis algorithms to oper-
ate at Level 1 only. Second, it brings extensibility, i.e., we can add
new Level 2 primitives without a�ecting the overall architecture.
Third, it enhances “cross-pollination” of design concepts captured
by Level 2 primitives across designs. Consider the following ex-
ample. An engineer comes up with a new algorithm to perform
search over a sorted array, e.g., exploiting new hardware instruc-
tions. To test if this can improve performance in her B-tree design,
where she regularly searches over sorted arrays, she codes up a
benchmark for a new sorted search Level 2 primitive and plugs it
in the Calculator as shown in Figure 4. Then the original B-tree
design can be easily tested with and without the new sorted search
across several workloads and hardware pro�les without having to
undergo a lengthy implementation phase. At the same time, the
new primitive can now be considered by any data structure design
that contains a sorted array such as an LSM-tree with sorted runs, a
Hash-table with sorted buckets and so on. This allows easy transfer
of ideas and optimizations across designs, a process that usually
requires a full study for each optimization and target design.

4 WHAT-IF DESIGN AND
AUTO-COMPLETION

The ability to synthesize the performance cost of arbitrary designs
allows for the development of algorithms that search the possible
design space. We expect there will be numerous opportunities in
this space for techniques that can use this ability to: 1) improve
the productivity of engineers by quickly iterating over designs and
scenarios before committing to an implementation (or hardware),
2) accelerate research by allowing researchers to easily and quickly
test completely new ideas, 3) develop educational tools that allow
for rapid testing of concepts, and 4) develop algorithms for o�ine
auto-tuning and online adaptive systems that transition between
designs. In this section, we provide two such opportunities for
what-if design and auto-completion of partial designs.
What-if Design. One can form design questions by varying any
one of the input parameters of the Data Calculator: 1) data structure
(layout) speci�cation, 2) hardware pro�le, and 3) workload (data
and queries). For example, assume one already uses a B-tree-like
design for a given workload and hardware scenario. The Data Cal-
culator can answer design questions such as “What would be the
performance impact if I change my B-tree design by adding a bloom

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

543

HW1	
point	gets
CPU: 64x2.3GHz
L3: 46MB
RAM: 256GB

HW2	
point	gets
CPU: 4x2.3GHz
L3: 46MB
RAM: 16GB

HW3	
point	gets
CPU: 64x2GHz
L3: 16MB
RAM: 1TB

HW3	
updates
CPU: 64x2GHz
L3: 16MB
RAM: 1TB

HW3	
range	gets
CPU: 64x2GHz
L3: 16MB
RAM: 1TB

● ●
●

●
●
●
●
●
●
●
●
●

● ●
●

●
●
●
●
●
●
●
●
●

● ●
●

●
●
●
●

●
●
●

●
●

● ●
●

●
●

●
●

●
●
●
●
●

● ●
●

●

●
●
●
●
●
●

●

●

● ●
●

●

●
●

●
●
●

●

●

●

● ●
●

●
●
●
●
●
●
●
●

●

● ●
●

●
●
●
●
●
●
●
●
●

105 105.5 106 106.5 107 105 105.5 106 106.5 107 105 105.5 106 106.5 107 105 105.5 106 106.5 107 105 105.5 106 106.5 107 105 105.5 106 106.5 107 105 105.5 106 106.5 107 105 105.5 106 106.5 107
0.0e+00
5.0e−02
1.0e−01
1.5e−01
2.0e−01

0.0e+00
1.0e−02
2.0e−02
3.0e−02
4.0e−02
5.0e−02

0.0e+00

2.0e−02

4.0e−02

6.0e−02

0.0e+00

3.0e−01

6.0e−01

9.0e−01

0.0e+00
1.0e−02
2.0e−02
3.0e−02
4.0e−02

0.0e+00

2.0e−02

4.0e−02

6.0e−02

0.0e+00

5.0e−02

1.0e−01

1.5e−01

0.0e+00
5.0e−02
1.0e−01
1.5e−01
2.0e−01

Number of entries (log scale)

La
te

nc
y

(s
ec

.)

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

● ●

0.0e+00
2.5e−07
5.0e−07
7.5e−07
1.0e−06

0.0e+00
2.5e−07
5.0e−07
7.5e−07
1.0e−06

0.0e+00

5.0e−07

1.0e−06

1.5e−06

0.0e+00

1.0e−06

2.0e−06

0.0e+00

2.0e−06

4.0e−06

0.0e+00

1.0e−04

2.0e−04

3.0e−04

0.0e+00
5.0e−03
1.0e−02
1.5e−02
2.0e−02

0.0e+00

1.0e−02

2.0e−02

3.0e−02

La
te

nc
y

(s
ec

.)

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●
●

●

●
●

●

0.0e+00
2.5e−07
5.0e−07
7.5e−07
1.0e−06

0.0e+00
2.5e−07
5.0e−07
7.5e−07
1.0e−06

0.0e+00

5.0e−07

1.0e−06

1.5e−06

0.0e+00

1.0e−06

2.0e−06

0.0e+00

2.0e−06

4.0e−06

0.0e+00

1.0e−04

2.0e−04

3.0e−04

0.0e+00
5.0e−03
1.0e−02
1.5e−02
2.0e−02

0.0e+00

1.0e−02

2.0e−02

3.0e−02

La
te

nc
y

(s
ec

.)

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●
●

● ●●
● ●

0.0e+00

2.0e−07

4.0e−07

0.0e+00
2.0e−07
4.0e−07
6.0e−07
8.0e−07

0.0e+00

3.0e−07

6.0e−07

9.0e−07

0.0e+00

5.0e−07

1.0e−06

1.5e−06

0.0e+00
1.0e−06
2.0e−06
3.0e−06
4.0e−06
5.0e−06

0.0e+00

5.0e−05

1.0e−04

1.5e−04

0.0e+00

5.0e−03

1.0e−02

1.5e−02

0.0e+00

5.0e−03

1.0e−02

1.5e−02

La
te

nc
y

(s
ec

.)

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

● ●●●
●

●
●● ●

●
●

●

LINKEDLIST ARRAY RANGE−PARTIT.
LINKED LIST SKIP−LIST TRIE B+TREE SORTED−ARRAY HASH−TABLE

0.0e+00

2.0e−07

4.0e−07

0.0e+00
2.0e−07
4.0e−07
6.0e−07
8.0e−07

0.0e+00

3.0e−07

6.0e−07

9.0e−07

0.0e+00

5.0e−07

1.0e−06

1.5e−06

0.0e+00
1.0e−06
2.0e−06
3.0e−06
4.0e−06

0.0e+00

5.0e−05

1.0e−04

1.5e−04

0.0e+00

5.0e−03

1.0e−02

1.5e−02

0.0e+00

5.0e−03

1.0e−02

1.5e−02

La
te

nc
y

(s
ec

.)

●

Data Calculator
Implementation

Figure 6: The Data Calculator can accurately compute the latency of arbitrary data structure designs across a diverse set of
hardware and for diverse dictionary operations.
�lter in each leaf?” The user simply needs to give as input the high-
level speci�cation of the existing design and cost it twice: once
with the original design and once with the bloom� lter variation. In
both cases, costing should be done with the original data, queries,
and hardware pro�le so the results are comparable. In other words,
users can quickly test variations of data structure designs simply
by altering a high level speci�cation, without having to implement,
debug, and test a new design. Similarly, by altering the hardware or
workload inputs, a given speci�cation can be tested quickly on alter-
native environments without having to actually deploy code to this
new environment. For example, in order to test the impact of new
hardware the Calculator only needs to train its Level 2 primitives
on this hardware, a process that takes a few minutes. Then, one can
test the impact this new hardware would have on arbitrary designs
by running what-if questions without having implementations of
those designs and without accessing the new hardware.
Auto-completion. The Data Calculator can also complete partial
layout speci�cations given a workload, and a hardware pro�le. The
process is shown in Algorithm 1 in the appendix: The input is a
partial layout speci�cation, data, queries, hardware, and the set of
the design space that should be considered as part of the solution,
i.e., a list of candidate elements. Starting from the last known point
of the partial speci�cation, the Data Calculator computes the rest of
the missing subtree of the hierarchy of elements. At each step the
algorithm considers a new element as candidate for one of the nodes
of the missing subtree and computes the cost for the di�erent kinds
of dictionary operations present in the workload. This design is kept
only if it is better than all previous ones, otherwise it is dropped
before the next iteration. The algorithm uses a cache to remember
speci�cations and their costs to avoid recomputation. This process
can also be used to tell if an existing design can be improved by
marking a portion of its speci�cation as “to be tested”. Solving the
search problem completely is an open challenge as the design space
drawn by the Calculator is massive. Here we show a� rst step which
allows search algorithms to select from a restricted set of elements
which are also given as input as opposed to searching the whole
set of possible primitive combinations.

5 EXPERIMENTAL ANALYSIS
We now demonstrate the ability of the Data Calculator to help with
rich design questions by accurately synthesizing performance costs.

Implementation. The core implementation of the Data Calcu-
lator is in C++. This includes the expert systems that handle layout
primitives and cost synthesis. A separate module implemented in
Python is responsible for analyzing benchmark results of Level 2
access primitives and generating the learned models. The bench-
marks of Level 2 access primitives are also implemented in C++
such that the learned models can capture performance and hard-
ware characteristics that would a�ect a full C++ implementation
of a data structure. The learning process for each Level 2 access
primitive is done each time we need to include a new hardware
pro�le; then, the learned coe�cients for each model are passed to
the C++ back-end to be used for cost synthesis during design ques-
tions. For learning we use a standard loss function, i.e., least square
errors, and the actual process is done via standard optimization
libraries, e.g., SciPy’s curve� t. For models which have non-convex
loss functions such as the sum of sigmoidsmodel, we algorithmically
set up good initial parameters.
Accurate Cost Synthesis. In our� rst experiment we test the abil-
ity to accurately cost arbitrary data structure speci�cations across
di�erent machines. To do this we compare the cost generated au-
tomatically by the Data Calculator with the cost observed when
testing a full implementation of a data structure. We set-up the
experiment as follows. To test with the Data Calculator, we manu-
ally wrote data structure speci�cations for eight well known access
methods 1) Array, 2) Sorted Array, 3) Linked-list, 4) Partitioned
Linked-list, 5) Skip-list, 6) Trie, 7) Hash-table, and 8) B+tree. The
Data Calculator was then responsible for generating the design
of operations for each data structure and computing their latency
given a workload. To verify the results against an actual implemen-
tation, we implemented all data structures above. We also imple-
mented algorithms for each of their basic operations: Get, Range
Get, Bulk Load and Update. The� rst experiment then starts
with a data workload of 105 uniformly distributed integers and a

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

544

0

20

40

60

TRIE

B+T
REE

SKIP−
LIS

T

SORTED−
ARRAY

RANGE PA
RT.

LIN
KED−

LIS
T

HASH−
TA

BLE

LIN
KED−

LIS
T

ARRAY

(a) Data Structure

To
ta

l L
at

en
cy

 (s
ec

.) Data Calculator
Implementation

0

25

50

75

100

HW1
HW2

HW3

(b) Hardware

Tr
ai

ni
ng

 T
im

e
(s

ec
.)

Figure 7: Computing Bulk-loading cost (left) and Training
cost across diverse hardware (right).

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

HW1 HW2 HW3

105 105.5 106 106.5 107105 105.5 106 106.5 107105 105.5 106 106.5 107
0.0

0.2

0.4

0.6

0.8

Number of entries (log scale)

La
te

nc
y

(m
ic

ro
se

c.
)

●Data Calculator Implementation

CSB+Tree B+TREE CSB+TREE

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
Zipf alpha parameter

Data Calculator

Implementation

HW1

Figure 8: Accurately computing the latency of cache con-
scious designs in diverse hardware and workloads.
sequence of 102 Get requests, also uniformly distributed. We incre-
mentally insert more data up to a total of 107 entries and at each
step we repeat the query workload.

The top row of Figure 6 depicts results using a machine with 64
cores and 264 GB of RAM. It shows the average latency per query
as data grows as computed by the Data Calculator and as observed
when running the actual implementation on this machine. For ease
of presentation results are ranked horizontally from slower to faster
(left to right). The Data Calculator gives an accurate estimation of
the cost across the whole range of data sizes and regardless of the
complexity of the designs both in terms of the data structure. It
can accurately compute the latency of both simple traversals in a
plain array and the latency of more complex access patterns such
as descending a tree and performing random hops in memory.
Diverse Machines and Operations. The rest of the rows in Fig-
ure 6 repeat the same experiment as above using di�erent hardware
in terms of both CPU and memory properties (Rows 2 and 3) and
di�erent operations (Rows 4 and 5). The details of the hardware are
shown on the right side of each row in Figure 6. Regardless of the
machine or operation, the Data Calculator can accurately cost any
design. By training its Level 2 primitives on individual machines
and maintaining a pro�le for each one of them, it can quickly test
arbitrary designs over arbitrary hardware and operations. Updates
here are simple updates that change the value of a key-value pair
and so they are e�ectively the same as a point query with an addi-
tional write access. More complex updates that involve restructures
are left for future work both in terms of the design space and cost
synthesis. Finally, Figure 7a) depicts that the Data Calculator can
accurately synthesize the bulk loading costs for all data structures.
Training Access Primitives. Figure 7b) depicts the time needed
to train all Level 2 primitives on a diverse set of machines. Overall,
this is an inexpensive process. It takes merely a few minutes to
train multiple di�erent combinations of data and hardware pro�les.

0.0

2.5

5.0

7.5

105 106 107

of inserts

Sy
nt

he
si

s
co

st
 (m

in
.)

0

10

20

30

105 106 107

of inserts

Sy
nt

he
si

s
co

st
 (m

in
.)

Hy
br

id
B+

Tre
e /

 H
as

h T
ab

le
/ A

rra
y

DATAPAGE

HASH
PARTITIONING

ELEMENT

B+TREE
ELEMENT

Hy
br

id
 H

as
h

Ta
bl

e/
B+

Tr
ee

(a) Scenario 1

B+TREE
ELEMENT

DATAPAGE
(system page size)

HASH
PARTITIONING

Point get
intensive

Only writes

DATAPAGE
 (large chunks)

Range
intensive

DATAPAGE
(system page size)

B+TREE
ELEMENT

DATAPAGE

(b) Scenario 2

Point get
intensive

Only
writes

Figure 9: TheData Calculator designs newhybrids of known
data structures to match a given workload.

Cache Conscious Designs and Skew. In addition, Figure 8
repeats our base� tting experiment using a cache-conscious design,
Cache Conscious B+tree (CSB). Figure 8a) depicts that the Data
Calculator accurately predicts the performance behavior across
a diverse set of machines, capturing caching e�ects of growing
data sizes and design patterns where the relative position of nodes
a�ects tree traversal costs. We use the “Full” design from Cache
Conscious B+tree [67]. Furthermore, Figure 8b) tests the�tting
when the workload exhibits skew. For this experiment Get queries
were generated with a Zip�an distribution: � = {0.5, 1.0, 1.5, 2.0}.
Figure 8b) shows that for the implementation results, workload
skew improves performance and in fact it improves more for the
standard B+tree. This is because the same paths aremore likely to be
taken by queries resulting in these nodes being cached more often.
Cache Conscious B+tree improves but at a much slower rate as it
is already optimized for the cache hierarchy. The Data Calculator
is able to synthesize these costs accurately, capturing skew and the
related caching e�ects.
Rich Design Questions. In our next, experiment we provide in-
sights about the kinds of design questions possible and how long
they may take, working over a B-tree design and a workload of
uniform data and queries: 1 million inserts and 100 point Gets. The
hardware pro�le used is HW1 (de�ned in Figure 6). The user asks
"What if we change our hardware to HW3?". It takes the Data Cal-
culator only 20 seconds (all runs are done on HW3) to compute
that the performance would drop. The user then asks: "Is there a
better design for this new hardware and workload if we restrict
search on a speci�c set of� ve possible elements?" (from the pool
of element on right side of Figure 3). It takes only 47 seconds for
the Data Calculator to compute the best choice. The user then asks
“Would it be bene�cial to add a bloom� lter in all B-tree leaves?”
The Data Calculator computes in merely 20 seconds that such a
design change would be bene�cial for the current workload and
hardware. The next design question is: "What if the query workload
changes to have skew targeting just 0.01% of the key space?" The
Data Calculator computes in 24 seconds that this new workload
would hurt the original design and it computes a better design in
another 47 seconds.

In two of the design phases the user asked “give me a better
design if possible”. We now provide more intuition for this kind of
design questions regarding the cost and scalability of computing
such designs as well as the kinds of designs the Data Calculator may
produce to� t a workload. We test two scenarios for a workload

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

545

of mixed reads and writes (uniformly distributed inserts and point
reads) and hardware pro�le HW3. In the� rst scenario, all reads
are point queries in 20% of the domain. In the second scenario,
50% of the reads are point reads and touch 10% of the domain,
while the other half are range queries and touch a di�erent (non
intersecting with the point reads) 10% of the domain. We do not
provide the Data Calculator with an initial speci�cation. Given the
composition of the workload our intuition is that a mix of hashing,
B-tree like indexing (e.g., with quantile nodes and sorted pages), and
a simple log (unsorted pages) might lead to a good design, and so we
instruct the Data Calculator to use those four elements to construct
a design (this is done using Algorithm 1 but starting with an empty
speci�cation. Figure 9 depicts the speci�cations of the resulting
data structures For the� rst scenario (left side of Figure 9) the Data
Calculator computed a design where a hashing element at the upper
levels of the hierarchy allows to quickly access data but then data
is split between the write and read intensive parts of the domain to
simple unsorted pages (like a log) and B+tree -style indexing for
the read intensive part. For the second scenario (right side of Figure
9), the Data Calculator produces a design which similarly to the
previous one takes care of read and writes separately but this time
also distinguishes between range and point gets by allowing the
part of the domain that receives point queries to be accessed with
hashing and the rest via B+tree style indexing. The time needed
for each design question was in the order of a few seconds up
to 30 minutes depending on the size of the sample workload (the
synthesis costs are embedded in Figure 9 for both scenarios). Thus,
the Data Calculator quickly answers complex questions that would
normally take humans days or even weeks to test fully.

6 RELATEDWORK
To the best of our knowledge this is the� rst work to discuss the
problem of interactive data structure design and to compute the
impact on performance. However, there are numerous areas from
where we draw inspiration and with which we share concepts.
Interactive Design. Conceptually, the work on Magic for layout
on integrated circuits [62] comes closest to our work. Magic uses
a set of design rules to quickly verify transistor designs so they
can be simulated by designers. In other words, a designer may
propose a transistor design and Magic will determine if this is
correct or not. Naturally, this is a huge step especially for hardware
design where actual implementation is extremely costly. The Data
Calculator pushes interactive design one step further to incorporate
cost estimation as part of the design phase by being able to estimate
the cost of adding or removing individual design options which
in turn also allows us to build design algorithms for automatic
discovery of good and bad designs instead of having to build and
test the complete design manually.
Generalized Indexes.One of the stronger connections is the work
on Generalized Search Tree Indexes (GiST) [6, 7, 38, 47–50]. GiST
aims to make it easy to extend data structures and tailor them to
speci�c problems and data with minimal e�ort. It is a template, an
abstract index de�nition that allows designers and developers to
implement a large class of indexes. The original proposal focused on
record retrieval only but later work added support for concurrency
[48], a more general API [6], improved performance [47], selectivity

estimation on generated indexes [7] and even visual tools that help
with debugging [49, 50]. While the Data Calculator and GiST share
motivation, they are fundamentally di�erent: GiST is a template to
implement tailored indexes while the Data Calculator is an engine
that computes the performance of a design enabling rich design
questions that compute the impact of design choices before we start
coding, making these two lines of work complementary.
Modular/Extensible Systems and System Synthesizers. A key
part of the Data Calculator is its design library, breaking down a
design space in components and then being able to use any set of
those components as a solution. As such the Data Calculator shares
concepts with the stream of work on modular systems, an idea that
has been explored in many areas of computer science: in databases
for easily adding data types [31, 32, 60, 61, 70] with minimal im-
plementation e�ort, or plug and play features and whole system
components with clean interfaces [11, 14, 17, 45, 53, 54], as well as
in software engineering [63], computer architecture [62], and net-
works [46]. Since for every area the output and the components are
di�erent, there are particular challenges that have to do with de�n-
ing the proper components, interfaces and algorithms. The concept
of modularity is similar in the context of the Data Calculator. The
goal and application of the concept is di�erent though.
Additional Topics. Appendix B discusses additional related topics
such as auto-tuning systems and data representation synthesis in
programming languages.

7 SUMMARY AND NEXT STEPS
Through a new paradigm of� rst principles of data layouts and
learned cost models, the Data Calculator allows researchers and
engineers to interactively and semi-automatically navigate complex
design decisions when designing or re-designing data structures,
considering new workloads, and hardware. The design space we
presented here includes basic layout primitives and primitives that
enable cache conscious designs by dictating the relative positioning
of nodes, focusing on read only queries. The quest for the�rst
principles of data structures needs to continue to� nd the primi-
tives for additional signi�cant classes of designs including updates,
compression, concurrency, adaptivity, graphs, spatial data, version
control management, and replication. Such steps will also require
innovations for cost synthesis. For every design class added (or
even for every single primitive added), the knowledge gained in
terms of the possible data structures designs grows exponentially.
Additional opportunities include full DSLs for data structures, com-
pilers for code generation and eventually certi�ed code [66, 73],
new classes of adaptive systems that can change their core design
on-the-�y, and machine learning algorithms that can search the
whole design space.

8 ACKNOWLEDGMENTS
We thank the reviewers for valuable feedback and direction. Mark
Callaghan provided the quotes on the importance of data structure
design. Harvard DASlab members Yiyou Sun, Mali Akmanalp and
Mo Sun helped with parts of the implementation and the graph-
ics. This work is partially funded by the USA National Science
Foundation project IIS-1452595.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

546

REFERENCES
[1] Daniel J. Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel Madden. 2013.

The Design and Implementation of Modern Column-Oriented Database Systems. Foundations
and Trends in Databases 5, 3 (2013), 197–280.

[2] Dana Van Aken, Andrew Pavlo, Geo�rey J Gordon, and Bohan Zhang. 2017. Automatic Data-
base Management System Tuning Through Large-scale Machine Learning. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. 1009–1024.

[3] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. 2014. H2O: A Hands-free Adap-
tive Store. In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 1103–1114.

[4] Victor Alvarez, Felix Martin Schuhknecht, Jens Dittrich, and Stefan Richter. 2014. Main Mem-
ory Adaptive Indexing for Multi-Core Systems. In Proceedings of the International Workshop
on Data Management on New Hardware (DAMON). 3:1—-3:10.

[5] Michael R. Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael J. Cafarella,
Arun Kumar, Feng Niu, Yongjoo Park, Christopher Ré, and Ce Zhang. 2013. Brainwash: A
Data System for Feature Engineering. In Proceedings of the Biennial Conference on Innovative
Data Systems Research (CIDR).

[6] Paul M Aoki. 1998. Generalizing "Search" in Generalized Search Trees (Extended Abstract).
In Proceedings of the IEEE International Conference on Data Engineering (ICDE). 380–389.

[7] PaulMAoki. 1999. How toAvoid BuildingDataBlades That Know the Value of Everything and
the Cost of Nothing. In Proceedings of the International Conference on Scienti�c and Statistical
Database Management (SSDBM). 122–133.

[8] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging the Archipelago between
Row-Stores and Column-Stores for Hybrid Workloads. In Proceedings of the ACM SIGMOD
International Conference on Management of Data.

[9] ManosAthanassoulis, Michael S. Kester, LukasM.Maas, Radu Stoica, Stratos Idreos, Anastasia
Ailamaki, and Mark Callaghan. 2016. Designing Access Methods: The RUM Conjecture. In
Proceedings of the International Conference on Extending Database Technology (EDBT). 461–
466.

[10] Shivnath Babu, Nedyalko Borisov, Songyun Duan, Herodotos Herodotou, and Vamsidhar
Thummala. 2009. Automated Experiment-Driven Management of (Database) Systems. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems (HotOS).

[11] Don S Batory, J R Barnett, J F Garza, K P Smith, K Tsukuda, B C Twichell, and T E Wise.
1988. GENESIS: An Extensible Database Management System. IEEE Transactions on Software
Engineering (TSE) 14, 11 (1988), 1711–1730.

[12] Philip A. Bernstein and David B. Lomet. 1987. CASE Requirements for Extensible Database
Systems. IEEE Data Engineering Bulletin 10, 2 (1987), 2–9.

[13] Alfonso F. Cardenas. 1973. Evaluation and Selection of File Organization - A Model and
System. Commun. ACM 16, 9 (1973), 540–548.

[14] Michael J Carey and David J DeWitt. 1987. An Overview of the EXODUS Project. IEEE Data
Engineering Bulletin 10, 2 (1987), 47–54.

[15] M.J. Steindorfer, and J.J. Vinju. 2016. Towards a software product line of trie-based collections.
In Proceedings of the ACM SIGPLAN International Conference on Generative Programming: Con-
cepts and Experiences.

[16] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An E�cient Cost-Driven Index Selection
Tool for Microsoft SQL Server. In Proceedings of the International Conference on Very Large
Data Bases (VLDB). 146–155.

[17] Surajit Chaudhuri and Gerhard Weikum. 2000. Rethinking Database System Architecture:
Towards a Self-Tuning RISC-Style Database System. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB). 1–10.

[18] C. Loncaric, E.Torlak, and M.D Ernst. 2016. Fast synthesis of fast collections. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation.

[19] D. Cohen and N. Campbell. 1993. Automating Relational Operations on Data Structures. IEEE
Software 10, 3 (1993), 53–60.

[20] E. Schonberg, J.T. Schwartz and Sharir. 1979. Automatic Data Structure Selection in SETL. In
Proceedings of the ACM Symposium on Principles of Programming Languages.

[21] E. Schonberg, J.T. Schwartz and Sharir. 1981. An Automatic Technique for Selection of Data
Representations in SETL Programs. ACM Transactions on Programming Languages and Sys-
tems 3, 2 (1981), 126–143.

[22] Alvin Cheung. 2015. Towards Generating Application-Speci�c Data Management Systems.
In Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR).

[23] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Mike Kester, Demi Guo. 2018. The
Internals of the Data Calculator. Harvard Data Systems Laboratory, Technical Report (2018).

[24] O. Shacham, M. Vechev, and E. Yahav. 2009. Chameleon: Adaptive Selection of Collections.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation.

[25] P. Hawkins, A. Aiken, K. Fisher, M.C. Rinard and M. Sagiv. 2011. Data representation syn-
thesis. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation.

[26] P. Hawkins, A. Aiken, K. Fisher, M.C. Rinard, and M. Sagiv. 2012. Concurrent data represen-
tation synthesis. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation.

[27] Y. Smaragdakis, and D. Batory. 1997. DiSTiL: A Transformation Library for Data Structures. In
Proceedings of the Conference on Domain-Speci�c Languages on Conference on Domain-Speci�c
Languages (DSL).

[28] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-
Value Store. In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 79–94.

[29] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. 1997. A Re-
liable Randomized Algorithm for the Closest-Pair Problem. J. Algorithms (1997).

[30] Jens Dittrich and Alekh Jindal. 2011. Towards a One Size Fits All Database Architecture. In
Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR). 195–198.

[31] David Goldhirsch and Jack A Orenstein. 1987. Extensibility in the PROBE Database System.
IEEE Data Engineering Bulletin 10, 2 (1987), 24–31.

[32] Goetz Graefe. 1994. Volcano - An Extensible and Parallel Query Evaluation System. IEEE
Transactions on Knowledge and Data Engineering (TKDE) 6, 1 (feb 1994), 120–135.

[33] Goetz Graefe. 2011. Modern B-Tree Techniques. Foundations and Trends in Databases 3, 4
(2011), 203–402.

[34] Goetz Graefe, Felix Halim, Stratos Idreos, Harumi Kuno, and Stefan Manegold. 2012. Concur-
rency control for adaptive indexing. Proceedings of the VLDB Endowment 5, 7 (2012), 656–667.

[35] Jim Gray. 2000. What Next? A Few Remaining Problems in Information Technlogy. ACM
SIGMOD Digital Symposium Collection 2, 2 (2000).

[36] Richard AHankins and JigneshMPatel. 2003. DataMorphing: AnAdaptive, Cache-Conscious
Storage Technique. In Proceedings of the International Conference on Very Large Data Bases
(VLDB). 417–428.

[37] Max Heimel, Martin Kiefer, and Volker Markl. 2015. Self-Tuning, GPU-Accelerated Kernel
Density Models for Multidimensional Selectivity Estimation. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data. 1477–1492.

[38] Joseph M. Hellerstein, Je�rey F. Naughton, and Avi Pfe�er. 1995. Generalized Search Trees
for Database Systems. In Proceedings of the International Conference on Very Large Data Bases
(VLDB). 562–573.

[39] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking. In Proceed-
ings of the Biennial Conference on Innovative Data Systems Research (CIDR).

[40] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2009. Self-organizing Tuple Recon-
struction in Column-Stores. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 297–308.

[41] Yannis E Ioannidis and Eugene Wong. 1987. Query Optimization by Simulated Annealing. In
Proceedings of the ACM SIGMOD International Conference on Management of Data. 9–22.

[42] Oliver Kennedy and Lukasz Ziarek. 2015. Just-In-Time Data Structures. In Biennial Conference
on Innovative Data Systems Research (CIDR).

[43] Michael S. Kester, Manos Athanassoulis, and Stratos Idreos. 2017. Access Path Selection in
Main-Memory Optimized Data Systems: Should I Scan or Should I Probe?. In Proceedings of
the ACM SIGMOD International Conference on Management of Data. 715–730.

[44] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D Nguyen, Tim
Kaldewey, Victor W Lee, Scott A Brandt, and Pradeep Dubey. 2010. FAST: Fast Architec-
ture Sensitive Tree Search on Modern CPUs and GPUs. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 339–350.

[45] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Cha�. 2014. Building E�cient
Query Engines in a High-Level Language. Proceedings of the VLDB Endowment 7, 10 (2014),
853–864.

[46] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek. 2000. The
Click Modular Router. ACM Transactions on Computer Systems (TOCS) 18, 3 (2000), 263–297.

[47] Marcel Kornacker. 1999. High-Performance Extensible Indexing. In Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB). 699–708.

[48] Marcel Kornacker, C Mohan, and Joseph M. Hellerstein. 1997. Concurrency and Recovery
in Generalized Search Trees. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 62–72.

[49] Marcel Kornacker, Mehul A. Shah, and Joseph M. Hellerstein. 1998. amdb: An Access Method
Debugging Tool. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. 570–571.

[50] Marcel Kornacker, Mehul A. Shah, and Joseph M. Hellerstein. 2003. Amdb: A Design Tool for
Access Methods. IEEE Data Engineering Bulletin 26, 2 (2003), 3–11.

[51] Tobin J Lehman and Michael J Carey. 1986. A Study of Index Structures for Main Memory
Database Management Systems. In Proceedings of the International Conference on Very Large
Data Bases (VLDB). 294–303.

[52] GottfriedWilhelm Leibniz. 1666. Dissertation on the Art of Combinations. PhD Thesis, Leipzig
University (1666).

[53] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. LLAMA: A Cache/Storage
Subsystem for Modern Hardware. Proceedings of the VLDB Endowment 6, 10 (2013), 877–888.

[54] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree: A B-tree for
New Hardware Platforms. In Proceedings of the IEEE International Conference on Data Engi-
neering (ICDE). 302–313.

[55] Witold Litwin and David B. Lomet. 1986. The Bounded Disorder Access Method. In Proceed-
ings of the IEEE International Conference on Data Engineering (ICDE). 38–48.

[56] Zezhou Liu and Stratos Idreos. 2016. Main Memory Adaptive Denormalization. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. 2253–2254.

[57] Stefan Manegold. 2002. Understanding, modeling, and improving main-memory database
performance. Ph.D. Thesis. University of Amsterdam (2002).

[58] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2002. Generic Database Cost Models
for Hierarchical Memory Systems. In Proceedings of the International Conference on Very Large
Data Bases (VLDB). 191–202.

[59] YandongMao, Eddie Kohler, and Robert TappanMorris. 2012. Cache Craftiness for Fast Multi-
core Key-value Storage. In Proceedings of the ACM European Conference on Computer Systems
(EuroSys). 183–196.

[60] John McPherson and Hamid Pirahesh. 1987. An Overview of Extensibility in Starburst. IEEE
Data Engineering Bulletin 10, 2 (1987), 32–39.

[61] Sylvia L Orborn. 1987. Extensible Databases and RAD. IEEE Data Engineering Bulletin 10, 2
(1987), 10–15.

[62] John K Ousterhout, Gordon T Hamachi, Robert N Mayo, Walter S Scott, and George S Taylor.
1984. Magic: A VLSI Layout System. In Proceedings of the Design Automation Conference (DAC).
152–159.

[63] David Lorge Parnas. 1979. Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering (TSE) 5, 2 (1979), 128–138.

[64] Eleni Petraki, Stratos Idreos, and Stefan Manegold. 2015. Holistic Indexing in Main-memory
Column-stores. In Proceedings of the ACM SIGMOD International Conference on Management
of Data.

[65] Holger Pirk, Eleni Petraki, Stratos Idreos, Stefan Manegold, and Martin L. Kersten. 2014. Data-
base cracking: fancy scan, not poor man’s sort!. In Proceedings of the International Workshop
on Data Management on New Hardware (DAMON). 1–8.

[66] Xiaokang Qiu and Armando Solar-Lezama. 2017. Natural synthesis of provably-correct data-
structure manipulations. PACMPL 1 (2017), 65:1–65:28.

[67] Jun Rao and Kenneth A. Ross. 2000. Making B+-trees Cache Conscious in Main Memory. In
Proceedings of the ACM SIGMOD International Conference on Management of Data. 475–486.

[68] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. 2013. The Uncracked Pieces in
Database Cracking. Proceedings of the VLDB Endowment 7, 2 (2013), 97–108.

[69] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-Adjusting Binary Search Trees.
J. ACM 32, 3 (1985), 652–686.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

547

P

U U U UU U

S

U U U UU U

U

U U U UU U

S

S S SS

U

S S SP

distribute query to all sub-blocks
setting provenience mark to “unsorted”

P

P S S

distribute query only to intersecting sub-
blocks (setting provenience mark as “sorted”)

Current element is sorted Current element is unsorted

C
ur

re
nt

 q
ue

ry
 m

ar
ke

d
as

“p

ro
be

”
(P

)
C

ur
re

nt
 q

ue
ry

 m
ar

ke
d

as

“s
or

te
d”

 (S
)

C
ur

re
nt

 q
ue

ry
 m

ar
ke

d
as

“u

ns
or

te
d”

 (U
)

mark first block as
probe for costing

internal nodes

mark first block as
probe for costing

internal nodes

distribute query to all sub-blocks
setting provenience mark to “unsorted”

distribute query to all sub-blocks
setting provenience mark to “unsorted”

distribute query only to intersecting sub-
blocks (setting provenience mark as “sorted”)

distribute query only to intersecting sub-
blocks (setting provenience mark as “sorted”)

(a) Range Gets

P

U

S

previous element
was unsorted

previous element
was sorted

left-most part
of range query

don’t cost
intermediate nodes

row-wise
storage

Serial Scan
Keys

Serial Scan
Values

Serial Scan
KV pairs

true

is element
terminal

false

sub-block data
distribution
(Appendix)

query marked
“probe” (P)Start Block

End

true

true

estimate a single
point get cost (Fig 7)

distribute in sub-blocks
and mark provenience
state of sub-queries recursion

contains
data

false true

false

false

we only cost intermediate nodes for left-most parts of
range queries (to find first leaves) and only when previous

 element was unsorted and current sorted (thus provides structure)

Legend

per block recursion

sorted Sortpartitioning
function

Function Call
Cost

Start

accumulate data in
multiple distinct blocks

Memory
Allocation Memory Write

is terminal

true

false
End

true

falsetrue

false

(b) Bulk Loading

Figure 10: Cost synthesis Range Gets and Bulk Loading.
[70] Michael Stonebraker, Je� Anton, and Michael Hirohama. 1987. Extendability in POSTGRES.

IEEE Data Engineering Bulletin 10, 2 (1987), 16–23.
[71] R.E. Tarjan. 1978. Complexity of combinatorial algorithms. SIAM Rev (1978).
[72] Toby J. Teorey and K. Sundar Das. 1976. Application of an Analytical Model to Evaluate Stor-

age Structures. In Proceedings of the ACM SIGMOD International Conference on Management
of Data.

[73] Peng Wang, Di Wang, and Adam Chlipala. 2017. TiML: a functional language for practical
complexity analysis with invariants. PACMPL 1 (2017), 79:1–79:26.

[74] Leland Wilkinson. 2005. The Grammar of Graphics. Springer (2005).
[75] S Bing Yao. 1977. An Attribute Based Model for Database Access Cost Analysis. ACM Trans-

actions on Database Systems (TODS) 2, 1 (1977), 45–67.
[76] S. Bing Yao and D. DeJong. 1978. Evaluation of Database Access Paths. In Proceedings of the

ACM SIGMOD International Conference on Management of Data.
[77] S. Bing Yao and Alan G. Merten. 1975. Selection of File Organization Using an Analytic Model.

In Proceedings of the International Conference on Very Large Data Bases.
[78] Ming Zhou. 1999. Generalizing Database Access Methods. Ph.D. Thesis. University of Waterloo

(1999).
[79] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing for interactive

exploration of big data series. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 1555–1566.

A ADDITIONAL RELATED AREAS
Auto-tuning and Adaptive Systems. Work on tuning [16, 41]
and adaptive systems is also relevant as conceptually any adaptive
technique tunes along a part of the design space. For example, work
on hybrid data layouts and adaptive indexing automates selection of
the right layout [3, 4, 8, 28, 30, 34, 36, 39, 40, 42, 56, 64, 65, 68, 69, 79].
Typically, in these lines of work the layout adapts to incoming re-
quests. Similarly works on tuning via experiments [10], learning [5],
and tuning via machine learning [2, 37] can adapt parts of a design
using feedback from tests. While there are shared concepts with

1 Function CompleteDesign (Q, E, l, currentPath = [], H)
2 if blockReachedMinimumSize(H .pa�e_size) then
3 return END_SEARCH;

4 if !meaningfulPath(currentPath, Q, l) then
5 return END_SEARCH;

6 if (cacheHit = cachedSolution(Q, l, H)) != null then
7 return cacheHit;

8 bestSolution = initializeSolution(cost=1);
9 for E 2 E do

10 tmpSolution = initializeSolution();
11 tmpSolution.cost = synthesizeGroupCost(E, Q);
12 updateCost(E, Q , tmpSolution.cost);
13 if createsSubBlocks(E) then
14 Q 0 = createQuer�Blocks (Q);
15 currentPath.append(E);
16 subSolution = CompleteDesign(Q 0, E, l + 1, currentPath);
17 if subSolution.cost != END_SEARCH then
18 tmpSolution.append(subSolution);

19 if tmpSolution.cost bestSolution.cost then
20 bestSolution = tmpSolution ;

21 cacheSolution(Q, l, bestSolution);
22 return bestSolution;

Algorithm 1: Complete a partial data structure layout specification.

these lines of work, they are all restricted to much smaller design
spaces, typically to solve a very speci�c systems bottleneck, e.g.,
incrementally building a speci�c index or smoothly transitioning
among speci�c layouts. The Data Calculator, on the other hand, pro-
vides a generic framework to argue about the whole design space of
data layouts. Its capability to quickly test the potential performance
of a design can potentially lead to new adaptive techniques that
will also leverage experience in existing adaptive systems literature
to adapt across the massive space drawn by the Data Calculator.
Data Representation Synthesis. Data representation synthesis
aims for programming languages that automate data structure se-
lection. SETL [20, 21] was the� rst language to generate structures
in the 70s as combinations of existing data structures: array, and
linked hash table. A series of works kept providing further func-
tionality, and expanding on the components used [18, 19, 24–27].
Cozy [18] is the latest system; it supports complex retrieval opera-
tions such as disjunctions, negations, and inequalities and by uses
a library of� ve data structures: array (sorted and plain), linked list,
binary tree, and hash map. These works compose data structure
designs out of a small set of existing data structures. This is parallel
to the tuning and access path selection problem in databases. The
Data Calculator introduces a new vision for what-if design and
focuses on two new dimensions: 1) design out of� ne-grained prim-
itives, and 2) calculation of the performance cost given a hardware
pro�le and a workload. The focus on� ne-grained primitives en-
ables exploration of a massive design space. For example, using the
equations of Section 2 for homomorphic two-node designs, a� xed
design space of 5 possible elements can generate 25 designs, while
the Data Calculator can generate 1032 designs. The gap grows for
polymorphic designs, i.e, 2 ⇤ 109 for a 5 element library, while the
Data Calculator can generate up to 1.6 ⇤ 1055 valid designs (for a
10M dataset and 4K pages). In addition, the focus on cost synthesis
through learned models of� ne-grained access primitives means
that we can capture hardware and data properties for arbitrary de-
signs. Array Mapped Tries [15] use� ne-grained primitives, but the
focus is only on trie-based collections and without cost synthesis.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

548

Unless otherwise specified, we use a
reduced default values domain of

100 values for integers, 10 values for
doubles, and 1 value for functions.

Hash Table B+Tree/CSB+Tree/FAST
LPL

Primitive Domain size H LL UDP B+ CSB+ FAST ODP

N
od

e
or

ga
ni

za
tio

n

1 Key retention. No: node contains no real key data, e.g., intermediate nodes of
b+trees and linked lists. Yes: contains complete key data, e.g., nodes of b-trees,
and arrays. Function: contains only a subset of the key, i.e., as in tries.

yes | no | function(func) 3

no no yes no no no yes
2 Value retention. No: node contains no real value data, e.g., intermediate nodes

of b+trees, and linked lists. Yes: contains complete value data, e.g., nodes of b-
trees, and arrays. Function: contains only a subset of the values.

yes | no | function(func) 3

no no yes no no no yes
3 Key order. Determines the order of keys in a node or the order of fences if real

keys are not retained.
none | sorted | k-ary (k: int) 12

none none none sorted sorted 4-ary sorted
4 Key-value layout. Determines the physical layout of key-value pairs. row-wise | columnar | col-row-

groups(size: int) 12 co
l.

co
l.

Rules: requires key retention != no or value retention != no.
5 Intra-node access. Determines how sub-blocks (one or more keys of this node)

can be addressed and retrieved within a node, e.g., with direct links, a link only
to the first or last block, etc.

direct | head_link | tail_link |
link_function(func) 4

di
re

ct

he
ad

di
re

ct

di
re

ct

di
re

ct

di
re

ct

di
re

ct

6 Utilization. Utilization constraints in regards to capacity. For example, >= 50%
denotes that utilization has to be greater than or equal to half the capacity.

 >= (X%) | function(func) | none
(we currently only consider X=50) 3

none none none
>=

50%
>=

50%
>=

50% none

N
od

e
fil

te
rs

7 Bloom filters. A node's sub-block can be filtered using bloom filters. Bloom
filters get as parameters the number of hash functions and number of bits.

off | on(num_hashes: int,
num_bits: int)
(up to 10 num_hashes considered) 10

01

off off off off off off off
8 Zone map filters. A node's sub-block can be filitered using zone maps, e.g., they

can filter based on mix/max keys in each sub-block.
min | max | both | exact | off 5

off off off min min min off
9 Filters memory layout. Filters are stored contiguously in a single area of the

node or scattered across the sub-blocks. consolidate | scatter 2

sc
at

te
r

sc
at

te
r

sc
at

te
r

Rules: requires bloom filter != off or zone map filters != off.

Pa
rt

iti
on

in
g

10 Fanout/Radix. Fanout of current node in terms of sub-blocks. This can either be
unlimited (i.e., no restriction on the number of sub-blocks), fixed to a number,
decided by a function or the node is terminal and thus has a fixed capacity.

fixed(value: int) | function(func)
| unlimited | terminal(cap: int)

(up to 10 different capacities and up
to 10 fixed fanout values are

considered)

22

fix
ed

(1
00

)

un
lim

ite
d

te
rm

(2
56

)

fix
ed

(2
0)

fix
ed

(2
0)

fix
ed

(1
6)

te
rm

(2
56

)

11 Key partitioning. Set if there is a pre-defined key partitioning imposed. e.g. the
sub-block where a key is located can be dictated by a radix or range partitioning
function. Alternatively, keys can be temporaly partitioned. If partitioning is set to
none, then keys can be forward or backwards appended.

none(fw-append | bw-append)
| range() | radix() | function
(func) | temporal(size_ratio:

int, merge_policy: [tier| level])

205

ra
ng

e(
10

0)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

no
ne

(fw
)

12 Sub-block capacity. Capacity of each sub-block. It can either be fixed to a value,
or balanced (i.e., all sub-blocks have the same size), unrestricted or functional.

fixed(value: int) | balanced |
unrestricted | function(func)

(up to 10 different fixed capacity
values are considered)

13

un
re

st
ric

t.

fix
ed

(2
56

)

ba
la

nc
ed

ba
la

nc
ed

ba
la

nc
ed

Rules: requires key partitioning != none.
13 Immediate node links. Whether and how sub-blocks are connected. next | previous | both | none 4 none next none none none none none
14 Skip node links. Each sub-block can be connected to another sub-block (not only

the next or previous) with skip-links. They can be perfect, randomized or
custom.

 perfect | randomized(prob:
double) | function(func) | none 13 none none none none none none none

15 Area-links. Each sub-tree can be connected with another sub-tree at the leaf
level throu area links. Examples include the linked leaves of a B+Tree.

forward | backward | both |
none 4 none none forw. none none none none

Ch
ild

re
n

la
yo

ut

16 Sub-block physical location. This represents the physical location of
the sub-blocks. Pointed: in heap, Inline: block physically contained in parent.
Double-pointed: in heap but with pointers back to the parent.

inline | pointed | double-
pointed 3

po
in

te
d

in
lin

e

po
in

te
d

po
in

te
d

po
in

te
d

Rules: requires fanout/radix != terminal.
17 Sub-block physical layout. This represents the physical layout of sub-blocks.

Scatter: random placement in memory. BFS: laid out in a breadth-first layout.
BFS layer list: hierarchical level nesting of BFS layouts.

BFS | BFS layer(level-grouping:
int) | scatter

(up to 3 different values for layer-
grouping are considered)

5

sc
at

te
r

sc
at

te
r

sc
at

te
r

BF
S

BF
S-

LL

Rules: requires fanout/radix != terminal.
18 Sub-blocks homogeneous. Set to true if all sub-blocks are of the same type.

boolean 2

tr
ue

tr
ue

tr
ue

tr
ue

tr
ue

Rules: requires fanout/radix != terminal.
19 Sub-block consolidation. Single children are merged with their parents.

boolean 2

fa
lse

fa
lse

fa
lse

fa
lse

fa
lse

Rules: requires fanout/radix != terminal.
20 Sub-block instantiation. If it is set to eager, all sub-blocks are initialized,

otherwise they are initialized only when data are available (lazy). lazy | eager 2 la
zy

la
zy

la
zy

la
zy

la
zy

Rules: requires fanout/radix != terminal.
21 Sub-block links layout. If there exist links, are they all stored in a single array

(consolidate) or spread at a per partition level (scatter). consolidate | scatter 2

sc
at

te
r

Rules: requires immediate node links != none or skip links != none.

Re
cu

rs
io

n 22 Recursion allowed. If set to yes, sub-blocks will be subsequently inserted into a
node of the same type until a maximum depth (expressed as a function) is
reached. Then the terminal node type of this data structure will be used.

yes(func) | no 3

no no ye
s(

lo
gn

)

ye
s(

lo
gn

)

ye
s(

lo
gn

)

Rules: requires fanout/radix != terminal.
Total number of property combinations > 10^18 / 60 invalid combinations ≈ 10^16

Node descriptions: H : Hash, LL: Linked List, LPL: Linked Page-List, UDP: Unordered Data Page, B+: B+Tree Internal Node
CSB+: CSB+Tree Internal Node, FAST: FAST Internal node, ODP: Ordered Data Page (Nodes highlighted with gray are terminal leaf nodes)

Figure 11: Data layout primitives and synthesis examples of data structures.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

549

Data Access Primitives and Fitted Models
Data Access Primitives Level 1
(required parameters ; optional
parameters)

Model Parameters Data Access Primitives Layer 2 Fitted Models

1 Scan Data Size Scalar Scan (RowStore, Equal) Linear Model (1)
2 (Element Size, Comparison, Scalar Scan (RowStore, Range) Linear Model (1)
3 Data Layout; None) Scalar Scan (ColumnStore, Equal) Linear Model (1)
4 Scalar Scan (ColumnStore, Range) Linear Model (1)
5 SIMD-AVX Scan (ColumnStore, Equal) Linear Model (1)
6 SIMD-AVX Scan (ColumnStore, Range) Linear Model (1)
7 Sorted Search Data Size Binary Search (RowStore) Log-Linear Model (2)
8 (Element Size, Data Layout;) Binary Search (ColumnStore) Log-Linear Model (2)
9 Interpolation Search (RowStore) Log + LogLog Model (3)
10 Interpolation Search (ColumnStore) Log + LogLog Model (3)
11 Hash Probe

(; Hash Family)
Structure Size

Linear Probing (Multiply-shift [29])
Sum of Sigmoids (5),
Weighted Nearest
Neighbors (7)

12
Linear Probing (k-wise independent,
k=2,3,4,5)

Sum of Sigmoids (5),
Weighted Nearest
Neighbors (7)

13 Bloom Filter Probe
(; Hash Family)

Structure Size, Number
of Hash Functions Bloom Filter Probe (Multiply-shift [29])

Sum of Sum of Sigmoids
(6), Weighted Nearest
Neighbors (7)

14
Bloom Filter Probe (k-wise independent,
k=2,3,4,5)

Sum of Sum of Sigmoids
(6), Weighted Nearest
Neighbors (7)

15 Sort Data Size QuickSort NLogN Model (4)
16 (Element Size; Algorithm) MergeSort NLogN Model (4)
17 ExternalMergeSort NLogN Model (4)
18 Random Memory Access Region Size Random Memory Access Sum of Sigmoids (5),

Weighted Nearest
Neighbors (7)

19 Batched Random Memory
Access

Region Size Batched Random Memory Access Sum of Sigmoids (5),
Weighted Nearest
Neighbors (7)

20 Unordered Batch Write Write Data Size Contiguous Write (RowStore) Linear Model (1)
21 (Layout;) Contiguous Write (ColumnStore) Linear Model (1)
22 Ordered Batch Write Write Data Size, Batch Ordered Write (RowStore) Linear Model (1)
23 (Layout;) Data Size Batch Ordered Write (ColumnStore) Linear Model (1)
24 Scattered Batch Write Number of Elements,

Region Size
ScatteredBatchWrite Sum of Sum of Sigmoids

(6), Weighted Nearest
Neighbors (7)

Models used for� tting data access primitives
Model Description Formula

1 Linear Fits a simple line through data f (v) = w>� (v) + �0;� (�) = (�)

2 Log-Linear Fits a linear model with a basis composed of the identity and
logarithmic functions plus a bias

f (v) = w>� (v) + �0;� (�) =

�

log�

!

3 Log + LogLog Fits a model with log, log log, and linear components f (v) = w>� (v) + �0;� (�) = *.
,

�
log�

log log�
+/
-

4 NLogN Fits a model with primarily an NLogN and linear component f (v) = w>� (v) + �0;� (�) =

� log�

�

!

5 Sum of Sigmoids Fits a model that has k approximate steps. Seen as sigmoids in
log x as this� ts various cache behaviors nicely

f (x) =
Pk
i=1

ci
1+e�ki (logx�xi)

+ �0

6 Sum of Sum of
Sigmoids

Fits a model which has two cost components, both of which have
k approximate steps occuring at the same locations.

f (x,m) =
Pk
i=1

ci1
1+e�ki (logx�xi)

+

(m � 1) (Pk
i=1

ci2
1+e�ki (logx�xi)

+ �1) + �0
7 Weighted Nearest

Neighbors
Takes the k nearest neighbors under the l2 norm and computes a
weighted average of their outputs. The input x is allowed to be a
vector of any size.

Let x1, ...xk be the nearest neighbors of x
with costs �1, . . . , �k . Then
f (x) = 1

Pk
i=1

1
d (x,xi)

Pk
i=1

1
d (x,xk)�k

Notation: f is a function, v is a vector, and x, m are scalars. log(v) returns a vector with log applied on an element by element

basis to v; i.e. if � =

�1
�2

!
, then log� =

log�1
log�2

!
. Finally, if we have vectors � (1), � (2) of lengths n,m stacked on each other

as

� (1)

� (2)

!
, then this signi�es the n +m length vector produced by stacking the entries of � (1) on top of the entries of � (2) ; i.e.

� (1)

� (2)

!
=

⇣
� (1)
1 , . . . , � (1)

n , � (2)
1 , . . . , � (2)

m

⌘>
.

Table 1: Data access primitives and models used for operation cost synthesis.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

550

