
Paper to HTML-An Automatic, Seamless
Process for Documentation Production

Virginie Ahrens
ILOG S.A.

9, rue de Verdun
94250 Gentilly

FRANCE
Tel: +33 1 49 08 35 14

ahrens@ ilog.fr

1. ABSTRACT
This paper describes how ILOG, a French soft-
ware company designing C++ and Java class
libraries, managed the transition between
paper-only documentation and extensive
HTML online documentation in less than two
years. In this paper, we analyze the underlying
reasons for making this change, describe the
technological choices that were made, and walk
through the various steps of the project from its
beginning to final completion.

1.1 Keywords
C++ and Java class libraries, Online Documentation, Java
Script, HTML, Page-Authoring Tools, Web Design,
Modularity, Portability, Reusability.

2. Background
ILOG products are multi-platform C++ and Java class
libraries that enable developers to design GUIs and expert
systems, or to solve complex optimization problems. Until
1997, the documentation of all ILOG products was provided
in paper format only. Because the volume of documentation
was quickly growing both in terms of quantity of pages and
in number of manuals, the documentation department
decided to provide online documentation in addition to the
paper manuals. By doing so, we felt that online
documentation would facihtate navigation across several
manuals and would make the large volume of our
documentation more easily accessible. In addition, we
wanted our online manuals to convey the new visual identity
of ILOG in a consistent manner, to be intuitive to use, and to
be easily generated without any post-processing after the
conversion. We faced the foilowing challenges:

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation
the first page. To copy otherwise, to republish, to post on servers,
or to redistribute to tists, requires prjor specific permission
and/or a fee. 01999 ACM l-58113-0721/99/0009.$5.00

Valerie Lecompte
ILOG S.A.

1681, Route des Dolines
06560 Valbonne-Sophia Antipolis

FRANCE
Tel. +33 4 92 96 61 53
lecompte@ilog.fr

l We had to find the right format that would ensure the
portability of our online documentation.

l We wanted to make the move to online without
disrupting the normal writing tasks of the technical
writers.

l We wanted to continue to use our FrameMaker source
files because we needed them to generate other required
output such as PDF files.

3. Selecting a Format and a Tool
It was necessary to find a format that is highly portable, that
does not tie our customers to a specific document viewer,
and that loads quickly and integrates well with other
development tools. HTML was the logical choice that
naturally met all these environmental constraints.

To convert our paper manuals to online documentation, we
chose WebWorks Publisher from Quadralay for the
following reasons:

Our legacy paper manuals are all in FrameMaker. One of
the input formats that WebWorks accepts is MIF, the
Maker Interchange Format of FrameMaker.
WebWorks is robust enough to handle huge books (some
of our manuals are more that 1000 pages with large
indexes).
WebWorks easily converts FrameMaker cross-references
and markers into hypertext links.
It is a highly-customizable tool. WebWorks can be used
to generate HTML that matches complex paragraph and
character styles, and supports drawings, imported
graphics, and equations.

4. Online Documentation Structure
Because numerous ILOG customers use several of our
products simultaneously, we wanted each product
documentation suite to have the same structure and to
provide the same navigation mechanisms. We also wanted
our users to know at any time which product documentation
suite they are consulting, and more precisely which chapter
from which manual. To do so, we designed the following
structure:

l Each documentation suite has a product home page that

138

http://crossmark.crossref.org/dialog/?doi=10.1145%2F318372.318571&domain=pdf&date_stamp=1999-10-01

lists the manuals that are available for the product.
The standard online documentation page features a
three-pane window including a top frame that always
displays the product name and version number as well as
the current manual title, a side frame that displays the
Table of Contents of the current manual, and a central
frame that shows the page highlighted in the Table of
Contents.
HTML files are split at the level of chapters and at
heading levels 1 and 2. At the top of each file, the
current chapter title is displayed in the form of a running
header placed in a color text inset.

Figure 1. ILOG Planner 3.0 Documentation Home Page

We designed the following navigation mechanisms:

Within a manual, navigation is enabled through a set of
navigation arrows placed at the top and at the bottom of
each HTML page. In addition to hypertext links, specific
buttons grant access to the home page, the table of
contents and the index of the current manual.
For navigation across manuals, the top frame features a
drop-down list box containing the various manuals that
are available, and a button to access the documentation
home page that also provides access to the various
manuals. In addition, hypertext links placed in the text
allow navigation between a user’s manual and a
reference manual.

pre 2. Navigation Mechanisms

5. Building an Effkient Team
As we began this project, it became apparent that special
skills would be required to meet our goals. The
customization of WebWorks Publisher required advanced
knowledge of HTML and browser behavior. To implement
the navigation mechanisms and the three-pane format, Java
Script programming was required. To control the
appearance of fonts and ensure a consistent look across all
our online documentation, we needed to use CSS
(Cascading Style Sheets).

To meet these requirement, we hired a software developer
who became a full-time documentation tool developer within
the documentation team. The role of the documentation tool
developer consists of gathering information concerning the
needs of the technical writers, specifying and implementing
the conversion process, and delivering a customized tool that
that enables the technical writers to automatically convert
their FrameMaker files to HTML.

6. Technical Implementation
The conversion process to HTML consists of mapping each
FrameMaker element to an HTML structure. Before doing
this, we did the following in our legacy files:

l We studied them carefully to retrieve a consistent set of
paragraph and character tags, and “froze” the style sheet.
Style sheet changes were controlled by the
documentation manager and transmitted to the
documentation tool developer.

l We examined each element of our FrameMaker style
sheets and specified how we wanted them to look in
HTML. We had to pay particular attention to portability
issues as we wanted the generated HTML to display
correctly in both Explorer and in Netscape versions 3
and 4 on Unix and on Windows platforms.

We then customized WebWorks Publisher specifically to
accommodate our reference and user’s manuals styles, as
the set of predefined conversion formats available in
WebWorks was not adapted to our needs.

The following examples show the extensive customization
that was performed in WebWorks. For each element, we
show how it appears in the paper manual, explain its
conversion in WebWorks, and show how the result of the
conversion is displayed in a browser.

6.1 Notes and Warnings
Both elements are very similar in FrameMaker: a paragraph
tag is embedded within a table. The table allows a vertical
side bar to be displayed in front of the note and the warning
tags.

Figure 3. Note Tag in FrameMaker

139

In HTML, we have created a table in front of which we
place a graphic showing a visual cue representing the note
or the warning. The note or warning text is displayed in
boldface type next to the graphic.

L . I,,

Figure 4. Mapping Definition of a Note

When creating an object of type &&.nDnt. Plamer replaces

with a new MC?. This new instance Of IlcErmr3cporter
redefmes the member fUnctan IlcErrorFkzuorfer : : ctitSo1x-x
such that it takes an exception of type

Figure 5. Note Tag in Generated HTML

6.2 Code
In FrameMaker, code is formatted as a series of paragraphs
in Courier typeface surrounded by two horizontal lines. This
style is mapped to a single HTML table that displays the
code with a light color background.

Problem Representation: Dedaring Variables

Figure 6. Code in FrameMaker

Equations are entered directly in FrameMaker using the
equations module. They are converted to GIF files and
inserted in the generated HTML.

WebWorks Publisher provides a function called
@MAKEIMAGE that calculates the GIF image.

Figure 8. Mapping Definition of an Equation

Figure 9. Equation in Generated HTML

140

6.4 Special Characters
Our paper manuals include special characters that we
wanted to keep in the generated HTML. For example, we
use a special arrow in the Reference Manuals that shows for
each class which classes derive from it. In FrameMaker,
inheritance arrows are typed using Esc Shift+a (the \xe5
character in the Zapf Dingbats font).

IkLinearSolver

Figure 10. Page with Inheritance Arrow in FrameMaker

Because this font does not exist in HTML, we had to replace
each arrow with a GIF image.

Figure 11. Mapping of Special Characters

Figure 12. Page with Inheritance Arrow in HTML

6.5 Graphics
Several types of graphics are used in our documentation,
whether screen dumps in TIF, GIF or EPS format, or
drawings made with the FrameMaker tool box. Some of the
graphic formats, like GIF and JPEG, can be used directly in
the generated HTML files. Others need to be converted.

Depending on the purpose and the size of an image, we want
it to appear either in the middle of the text (this is the case of
icons or buttons) or in its own frame like a paragraph (for
screen dumps). The default for displaying images in HTML,
is to align them on the left margin, but in some cases we
need to center them. This has caused us to define several
mapping styles for images. The technical writer can chose
among those styles how the image is to be converted and
inserted within the generated HTML.

141

6.6 Hypertext Links
All FrameMaker marker types (cross-references, hypertext
links, user-defined markers) are supported by WebWorks
and converted into hypertext links. We make extensive use
of user-defined hypertext links in FrameMaker to set links
to other manuals and to code samples, or to open Java
applets. All links that have been set in our FrameMaker files
are automatically processed upon conversion.

Figure 14. Hypertext Links in Generated HTML

6.7 Index
Our documentation includes indexes that are sometimes
more than 100 pages Ion,. 0 Because of this large volume, we
decided to create an HTML file for each index letter, as
opposed to the single index file produced in FrameMaker.

Figure 15. Index in FrameMaker

Our generated HTML index includes a index cover page
which lists the letter entries contained in the index. Each
letter is an hypertext Iink that opens the corresponding index
file. This cover index page is generated automatically in the
following way:

l Each time an index letter tagged IndexLetter is
converted, a hypertext link corresponding to this letter is
added to the HTML index cover page.

1

Figure 16. Mapping Index Letters

l Then, each index page is processed separately. When the
index is generated in FrameMaker, hypertext links are
automatically set between page numbers and their
corresponding index entry. As page numbers are not
relevant in online documentation, we have replaced them
with a GIF image that contains a hypertext link to the
index page.

Figure 17. HTML Index Cover Page

142

Figure 18. A Graphic Replaces Page Numbers in HTML Index

6.8 Multi-frame Structure
The Table of Contents, which is located in a separate frame,
is a file that is automatically generated by FrameMaker with
the default option that creates an hypertext link between
each TOC entry and its corresponding paragraph in the
manual.

Each TOC entry is tagged with a specific paragraph:
ChapterTitleTOC, HeadinglTOC, ClassNameTOC, etc.
When each paragraph tag is processed by WebWorks, we
modify the HTML generation and instruct the converter to
build a multi-frame link that will make the TOC entries and
their corresponding paragraphs appear in two separate
frames.

We create this multi-frame display by entering the
instruction target=NManualBody" in the hypertext link

definition.

Figure 19. Setting the Appearance of the Table of Contents

7. Benefits
Moving from paper-only documentation to online has
brought us the following benefits:

l A component-based, modular approach Because
ILOG products can be used in combination, online
documentation reflects how our products are intertwined
through extensive use of hypertext links. Hypertext links
exist not only between manuals of the same product
suite, but also across various product suites and are
complemented by a comprehensive cross-product index.

l Ease-of-use for our customers In HTML, the large
volume of our documentation is not readily apparent.
Navigation across documents is facilitated by hypertext
links, the chunking of information into small text units,
and a page length that minimizes scrolling within each
HTIVIL file.

l A gradual, non-disruptive progression We first
converted reference manuals only, then extended the
conversion to a whole suite of manuals. Finally, we
included several documentation suites and made them
accessible from a general ILOG home page. This
smooth progression was possible because the actual
writing tasks take place in FrameMaker, while the
I-ITML mappings and Web design are handled in
WebWorks Publisher.

l A Reusable Knowledge Base We gained extensive
experience from developing Java Script functions,
processing images, using high-level I-ITML features like
Cascading Style Sheets, and providing HTML pages that
can be read from a variety of browsers. This knowledge
will help us meet the new challenges we will face in the
future of moving to XML, creating multimedia tutorials,
and designing HTML-based Help.

143

