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ABSTRACT
Networks evolve continuously over time with the addition, dele-

tion, and changing of links and nodes. Although many networks

contain this type of temporal information, the majority of research

in network representation learning has focused on static snapshots

of the graph and has largely ignored the temporal dynamics of the

network. In this work, we describe a general framework for incor-

porating temporal information into network embedding methods.

The framework gives rise to methods for learning time-respecting

embeddings from continuous-time dynamic networks. Overall, the

experiments demonstrate the effectiveness of the proposed frame-

work and dynamic network embedding approach as it achieves an

average gain of 11.9% across all methods and graphs. The results in-

dicate that modeling temporal dependencies in graphs is important

for learning appropriate and meaningful network representations.
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1 INTRODUCTION
In recent years, network (graph/relational) data has grown at a

tremendous rate; it is present in domains such as the Internet and

the world-wide web [8, 11, 21], scientific citation and collabora-

tion [43, 47], epidemiology [34, 42, 45, 51], communication anal-

ysis [60], metabolism [32, 66], ecosystems [13, 20], bioinformat-

ics [31, 41], fraud and terrorist analysis [35, 46], and many others.

The links in these network data may represent citations, friendships,

associations, metabolic functions, communications, co-locations,

shared mechanisms, or many other explicit or implicit relationships.

Themajority of these real-world networks are naturally dynamic—

evolving over time with the addition, deletion, and changing of

nodes and links. The temporal information in networks is known

to be important to accurately model, predict, and understand net-

work data [47, 67]. Despite the importance of these dynamics, the

majority of previous work has ignored the temporal information in

network data [7, 14, 15, 26, 37, 38, 52, 56, 61, 65].

In this work, we address the problem of learning an appropriate

network representation from continuous-time dynamic networks for
improving the accuracy of predictive models. We describe a general

framework for incorporating temporal dependencies into network

embedding methods. The framework serves as a basis for incorpo-

rating temporal dependencies into existing node embedding and

deep graph models based on random walks. The result is a more

appropriate time-dependent network representation that captures

the important temporal properties of the continuous-time dynamic

network. Hence, the framework allows existing embedding meth-

ods to be easily adapted for learning more appropriate network

representations from continuous-time dynamic networks by en-

suring time is respected during the learning and therefore reduces

noise by avoiding spurious or impossible sequences of events.

The proposed approach learns a more appropriate network rep-

resentation from continuous-time dynamic networks that captures

the important temporal dependencies of the network at the finest

most natural granularity (e.g., at a time scale of seconds or mil-

liseconds). This is in contrast to representing the dynamic network

as a sequence of static snapshot graphs where each static snap-

shot graph represents all edges that occur between a user-specified

discrete-time interval (e.g., day or week) [57, 59, 63, 64]. This can

be seen as a very coarse and noisy approximation of the actual

continuous-time dynamic network. Besides the loss of informa-

tion, there are many other issues such as selecting an appropriate

aggregation granularity which is known to be an important and
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challenging problem in itself that can lead to poor predictive per-

formance or misleading results. In addition, our approach naturally

supports learning in graph streams where edges arrive continuously
over time (e.g., every second/millisecond) [2, 3, 5, 27] and there-

fore can be used for a variety of applications requring real-time

performance [6, 12, 53].

We demonstrate the effectiveness of the proposed framework

and generalized dynamic network embedding method for tempo-

ral link prediction in several real-world networks from a variety

of application domains. Overall, the proposed method achieves

an average gain of 11.9% across all methods and graphs. The re-

sults indicate that modeling temporal dependencies in graphs is

important for learning appropriate and meaningful network rep-

resentations. In addition, any existing embedding method or deep

graph model that uses random walks can benefit from the pro-

posed framework (e.g., [7, 15, 18, 26, 37, 38, 52, 56]) as it serves as a
basis for incorporating important temporal dependencies into ex-

isting methods. Methods generalized by the framework are able to

learn more meaningful and accurate time-dependent network em-

beddings that capture important properties from continuous-time

dynamic networks.

Previous embedding methods and deep graph models that use

random walks search over the space of random walks S on G,
whereas the proposed approach learns temporal embeddings by

searching over the space ST of temporal random walks that obey

time. Informally, a temporal walk St from node vi1 to node viL+1
is

defined as a sequence of edges {(vi1 ,vi2 , ti1 ), (vi2 ,vi3 , ti2 ), . . . , (viL ,
viL+1

, tiL )} such that ti1 ≤ ti2 ≤ . . . ≤ tiL . A temporal walk rep-

resents a temporally valid sequence of edges traversed in increas-

ing order of edge times and therefore respect time. For instance,

suppose each edge represents a contact (e.g., email, phone call,

proximity) between two entities, then a temporal random walk

represents a feasible route for a piece of information through the

dynamic network. It is straightforward to see that existing methods

that ignore time learn embeddings from a set of random walks

of which the vast majority of them capture sequences of events

that are invalid when considering time. In other words, many of

the random walks used by these methods to derive embeddings

for nodes are not actually possible when time is respected. For

instance, suppose we have two emails ei = (v1,v2) from v1 to v2

and ej = (v2,v3) from v2 to v3; and let T(v1,v2) be the time of

an email ei = (v1,v2). If T(v1,v2) < T(v2,v3) then the message

ej = (v2,v3) may reflect the information received from the email

communication ei = (v1,v2). However, if T(v1,v2) > T(v2,v3)

then the message ej = (v2,v3) cannot contain any information

communicated in the email ei = (v1,v2). This is just one simple ex-

ample illustrating the importance of modeling the actual sequence

of events (email communications). Embedding methods that ig-

nore time are prone to many issues such as learning inappropriate

node embeddings that do not accurately capture the dynamics in

the network such as the real-world interactions or flow of infor-

mation among nodes. See Figure 1 for another example of infor-

mation loss that occurs when time is not respected (in existing

methods [7, 14, 15, 26, 37, 38, 52, 56, 61, 65]).

The proposed approach has the following desired properties:
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Figure 1: Dynamic network. Edges are labeled by time. Ob-
serve that v4,v1,v2 is not a valid temporal walk since v1,v2

exists in the past with respect to v4,v1.

• General & Unifying Framework: We present a general

framework for incorporating temporal dependencies in node

embedding and deep graph models that leverage random

walks.

• Continuous-Time Dynamic Networks: Learns a time-

dependent network representation for continuous-time dy-

namic networks. The approach avoids the issues and loss in

information that arise from creating a sequence of discrete

snapshot graphs from the continuous-time representation

of the graph.

• Effectiveness: The proposed approach is shown to be ef-

fective for learning dynamic network representations. We

achieve an average gain in AUC of 11.9% across all methods

and graphs from various application domains.

2 FRAMEWORK
This section describes the general framework for learning time-

dependent embeddings from continuous-time dynamic networks.

2.1 Temporal Model
In this work, instead of modeling the dynamic network as a se-

quence of discrete snapshot graphs defined as G1, . . . ,GT where

Gi = (V ,Et ) and Et are the edges active between the timespan

[ti−1, ti ], we model the temporal interactions as a continuous-time
dynamic network (CTDN) defined formally as:

Definition 2.1 (Continuous-Time Dynamic Network). Given
a graphG = (V ,ET ,T), letV be a set of vertices, and ET ⊆ V ×V ×R+

be the set of temporal edges between vertices in V , and T : E → R+

is a function that maps each edge to a corresponding timestamp. At
the finest granularity, each edge ei = (u,v, t) ∈ ET may be assigned
a unique time t ∈ R+.

In continuous-time dynamic networks (i.e., temporal networks
1
),

events denoted by edges occur over a time span T ⊆ T where T is
the temporal domain. For continuous-time systems T = R+. In such

networks, a valid walk is denoted by a sequence of nodes connected

by edges with non-decreasing timestamps. In other words, if each

edge captures the time of contact between two entities, then a

(valid temporal) walk may represent a feasible route for a piece of

information. More formally,

1
The terms temporal network and continuous-time dynamic network are used inter-

changeably.
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Definition 2.2 (Temporal Walk). A temporal walk from v1 to
vk inG is a sequence of vertices ⟨v1,v2, · · · ,vk ⟩ such that ⟨vi ,vi+1⟩ ∈

ET for 1 ≤ i < k , andT(vi ,vi+1) ≤ T (vi+1,vi+2) for 1 ≤ i < (k−1).
For two arbitrary vertices u, v ∈ V , we say that u is temporally con-
nected to v if there exists a temporal walk from u to v .

The definition of temporal walk echoes the standard definition

of a walk in static graphs but with an additional constraint that

requires the walk to respect time, that is, edges must be traversed

in increasing order of edge times. As such, temporal walks are

naturally asymmetric.

We now define the problem of learning time-respecting embed-

dings for continuous-time dynamic networks as follows: Given a

temporal network G = (V ,ET ,T), the goal is to learn a function

f : V → RD that maps nodes inG toD-dimensional time-dependent
feature representations suitable for a down-stream machine learning

task such as temporal link prediction. The proposed continuous-

time dynamic network embedding framework has two main in-

terchangeable components that allow the user to temporally bias
the learning of time-dependent network representations. We now

describe each component in Section 2.2 and 2.3.

2.2 Initial Temporal Edge Selection
Given a time-continuous dynamic network G = (V ,ET ,T), how

can we select a node to begin a temporal random walk? Observe

that most existing methods that ignore time simply perform a fixed

number of random walks from each node in the graph. However,

recall that a temporal walk from v1 to vk in G is a sequence of

vertices ⟨v1,v2, · · · ,vk ⟩ such that ⟨vi ,vi+1⟩ ∈ ET for 1 ≤ i < k ,
and T(vi ,vi+1) ≤ T (vi+1,vi+2) for 1 ≤ i < (k − 1). Notice that in

addition to a node v , a temporal random walk requires a starting

time t . In time-continuous dynamic networks (Definition 2.1), every

edge ei = (v,u) ∈ ET is associated with a time t = T(ei ) = T(v,u).
Therefore, we can either sample an initial time t∗ from a uniform

or weighted distribution Fs and find the edge ei closest to time t∗
or select an initial edge ei = (v,w) along with its associated time

t∗ = T(ei ) by sampling from an arbitrary (uniform or weighted)

distribution Fs . The choice of where to begin the temporal random

walk is used to our advantage as a way to temporally bias the tem-

poral random walks and therefore improve predictive performance

when the time-dependent embeddings are used on a downstream

time-series regression or classification task. This is a important

and fundamental difference between the proposed dynamic net-

work embedding framework that uses temporal random walks and

existing methods that use random walks on static graphs.

In general, each temporal walk starts from a temporal edge ei ∈
ET at time t = T sampled from a distribution Fs . The distribution
used to select the initial temporal edge can either be uniform in

which case there is no bias or the selection can be temporally biased

using an arbitrary weighted (non-uniform) distribution for Fs . For
instance, to learn node embeddings for the temporal link prediction

task, we may want to begin more temporal walks from edges closer

to the current time point as the events/relationships in the distant

past may be less predictive or indicative of the state of the system

now. Selecting the initial temporal edge in an unbiased fashion is

discussed in Section 2.2.1 whereas strategies that temporally bias

the selection of the initial edge are discussed in Section 2.2.2.

2.2.1 Unbiased. In the case of initial edge selection, each edge

ei = (v,u, t) ∈ ET has the same probability of being selected:

Pr(e) = 1/|ET | (1)

This corresponds to sampling the initial temporal edge using a

uniform distribution.

2.2.2 Biased. We describe two techniques to temporally bias

the selection of the initial edge that determines the start of the

temporal random walk. In particular, we sample the initial temporal

edge by sampling a temporally weighted distribution based on

exponential and linear functions. However, the continuous-time

dynamic network embedding framework is flexible and can easily

support other temporally weighted distributions for selecting the

initial temporal edge.

Exponential:We can also bias initial edge selection using an ex-

ponential distribution, in which case each edge e ∈ ET is assigned

the probability:

Pr(e) =
exp

[
T(e) − tmin ]∑

e ′∈ET exp

[
T(e ′) − tmin ]

(2)

where tmin is the minimum time associated with an edge in the

dynamic graph. This defines a distribution that heavily favors edges

appearing later in time.

Linear:When the time difference between two time-wise consecu-

tive edges is large, it can sometimes be helpful to map the edges

to discrete time steps. Let η : ET → Z+ be a function that sorts (in

ascending order by time) the edges in the dataset. In other words η
maps each edge to an index with η(e) = 1 for the earliest edge e . In
this case, each edge e ∈ η(ET ) will be assigned the probability:

Pr(e) =
η(e)∑

e ′∈ET η(e ′)
(3)

2.3 Temporal RandomWalk
After selecting the initial edge ei = (u,v, t) at time t to begin

the temporal random walk (Section 2.2), how can we perform a

temporal random walk starting from that edge? We define the set

of temporal neighbors of a node v at time t as follows:

Definition 2.3 (Temporal Neighborhood). The set of temporal
neighbors of a node v at time t denoted as Γt (v) are:

Γt (v) =
{
(w, t ′) | e = (v,w, t ′) ∈ ET ∧ T(e) > t

}
(4)

Note that it is possible for the same neighborw to appear in Γt (v)
multiple times since multiple temporal edges can exist between the

same pair of nodes – for instance, two individuals may exchange

multiple email messages over the course of time. The next node in a

temporal random walk can then be chosen from the set Γt (v). Here
we use a second distribution FΓ to temporally bias the neighbor
selection. Again, this distribution can either be uniform, in which

case no bias is applied, or more intuitively biased to consider time.

For instance, we may want to bias the sampling strategy towards

walks that exhibit smaller “in-between" time for consecutive edges.

That is, for each consecutive pair of edges (u,v, t), and (v,w, t + k)
in the randomwalk, we want k to be small. For temporal link predic-

tion on a dynamic social network, restricting the “in-between" time
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allows us to sample walks that do not group friends from different

time periods together. As an example, if k is small we are likely to

sample the random walk sequence (v1,v2, t), (v2,v3, t + k) which
makes sense as v1 and v3 are more likely to know each other since

v2 has interacted with them both recently. On the other hand, if

k is large we are unlikely to sample the sequence. This helps to

separate people that v2 interacted with during very different time

periods (e.g. high-school and graduate school) as they are less likely
to know each other.

2.3.1 Unbiased. For unbiased temporal neighbor selection, given

an arbitrary edge e = (u,v, t), each temporal neighborw ∈ Γt (v) of
node v at time t has the following probability of being selected:

Pr(w) = 1/|Γt (v)| (5)

2.3.2 Biased. We describe two techniques to bias the temporal

random walks by sampling the next node in a temporal walk via

temporally weighted distribution based on exponential and linear

functions. However, the continuous-time dynamic network em-

bedding framework is flexible and can easily be used with other

application or domain-dependent temporal bias functions.

Exponential: When exponential decay is used, we formulate the

probability as follows. Given an arbitrary edge e = (u,v, t), each
temporal neighborw ∈ Γt (v) has the following probability of being

selected:

Pr(w) =
exp

[
τ (w) − τ (v)

]∑
w ′∈Γt (v) exp

[
τ (w ′) − τ (v)

] (6)

Note that we abuse the notation slightly here and use τ to mean

the mapping to the corresponding time. This is similar to the expo-

nentially decaying probability of consecutive contacts observed in

the spread of computer viruses and worms [29].

Linear:Here, we define δ : V ×R+ → Z+ as a function which sorts

temporal neighbors in descending order time-wise. The probability

of each temporal neighbor neighborw ∈ Γt (v) of node v at time t
is then defined as:

Pr(w) =
δ (w)∑

w ′∈Γt (v) δ (w
′)

(7)

This distribution biases the selection towards edges that are closer

in time to the current node.

2.3.3 Temporal context windows. Since temporal walks preserve

time, it is possible for a walk to run out of temporally valid edges

to traverse. Therefore, we do not impose a strict length on the

sampled temporal walks. Instead, we simply require each temporal

walk to have a minimum length ω (in this work, ω is equivalent to

the context window size for skip-gram [44]). A maximum length

L can be provided to accommodate longer walks. Hence, when

generating a set of temporal walks, any temporal walk Sti with

length ω ≤ |Sti | ≤ L is considered valid. Given a set of temporal

random walks {St1
,St2
, · · · ,Stk }, we define a temporal context

window count β as the total number of context windows of size ω
that can be derived from the set of temporal randomwalks. Formally,

this can be written as:

β =
k∑
i=1

|Sti | − ω + 1 (8)

When sampling a set of temporal walks, we typically set β to be a

multiple of N = |V |.

2.4 Learning Time-preserving Embeddings
Given a temporal walk St , we can now formulate the task of learn-

ing time-preserving node embeddings in a CTDN as the optimiza-

tion problem:

max

f
log Pr

(
WT = {vi−ω , · · · ,vi+ω } \vi | f (vi )

)
(9)

where f : V → RD is the node embedding function, ω is the con-

text window size for optimization, andWT = {vi−ω , · · · ,vi+ω }
such that T(vi−ω ,vi−ω+1) < · · · < T(vi+ω−1,vi+ω ) is an arbi-

trary temporal context windowWT ⊆ St . We assume conditional

independence between the nodes of a temporal context window

when observed with respect to the source node vi . That is:

Pr

(
WT | f (vi )

)
=

∏
vi+k ∈WT

Pr

(
vi+k | f (vi )

)
(10)

Given a graph G, let S be the space of all possible random walks

onG and let ST be the space of all temporal random walks onG . It
is straightforward to see that the space of temporal random walks

ST is contained within S, and ST represents only a tiny fraction

of possible random walks in S. Existing methods sample a set of

random walks S from S whereas this work focuses on sampling

a set of temporal random walks St from ST ⊆ S. In general, the

probability of an existing method sampling a temporal randomwalk

from S by chance is very small and the vast majority of random

walks sampled by these methods represent sequences of events

between nodes that are invalid (not possible) when time is respected.

For instance, suppose each edge represents an interaction/event

(e.g., email, phone call, spatial proximity) between two people, then

a temporal random walk may represent a feasible route for a piece

of information through the dynamic network or a temporally valid

pathway for the spread of an infectious disease.

We summarize the procedure to learn time-preserving embed-

dings for CTDNs in Algorithm 1. Our procedure in Algorithm 1

generalizes the Skip-Gram architecture to continuous-time dynamic

networks. However, the framework can easily be used for other

deep graph models that leverage random walks (e.g., [37]) as the
temporal walks can serve as input vectors for neural networks [37].

2.5 Hyperparameters
While other methods have a lot of hyperparameters that require

tuning such as node2vec [26], the proposed framework has only a

single hyperparameter that requires tuning.

2.5.1 Arbitrary length walk. In our work, we allow temporal

walks to have arbitrary lengths which we simply restrict to be be-

tween the range [ω,L]. We argue that arbitrary-sizedwalks between

ω and L allow more accurate representations of node behaviors.

For instance, a walk starting at u can return to u after traversing L
edges, showing a closed community. On the other hand, another

walk starting from v can end immediately at minimum length ω
without ever going back to v . These are two distant cases that

would be misrepresented if a fixed random walk length is imposed.

Regarding the sensitivity of ω and L, they do not affect the overall

performance by a large margin for graphs used in our experiments.
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Algorithm 1 Continuous-Time Dynamic Network Embeddings

Input:
a (un)weighted and (un)directed dynamic network G = (V , ET , T),

temporal context window count β , context window size ω ,

embedding dimensions D ,

1 Set maximum walk length L = 80

2 Initialize set of temporal walks ST to ∅

3 Initialize number of context windows C = 0

4 Precompute sampling distribution Fs using G
Fs ∈ {Uniform, Exponential, Linear}

5 G′ = (V , ET , T, Fs )
6 while β −C > 0 do
7 Sample an edge e∗ = (v, u) via distribution Fs
8 t = T(e∗)
9 St = TemporalWalk(G′, e∗ = (v, u), t, L, ω + β −C − 1)

10 if |St | > ω then
11 Add the temporal walk St to ST

12 C = C + ( |St | − ω + 1)

13 end while
14 Z = StochasticGradientDescent(ω, D, ST )
15 return the dynamic node embedding matrix Z

Algorithm 2 Temporal Random Walk

1 procedure TemporalWalk(G′
, e = (s, r ), t , L, C )

2 Initialize temporal walk St =
[
s, r

]
3 Set i = r ▷ current node

4 for p = 1 tomin(L, C) − 1 do
5 Γt (i) =

{
(w, t ′) | e = (i, w, t ′) ∈ ET ∧ T(i) > t

}
6 if |Γt (i) | > 0 then
7 Select node j from distribution FΓ(Γt (i))
8 Append j to St
9 Set t = T(i, j)
10 Set i = j
11 else terminate temporal walk

12 return temporal walk St of length |St | rooted at node s

However, for much larger graphs, these values could be more data

dependent and may be modified by the user.

2.5.2 Exponential base. Suppose the exponential function is

used to bias the temporal random walk (Eq. 6) or bias the selection

of the initial edge to begin the temporal walk (Eq. 2), then we

allow the user to choose the base b of the exponential function for

the exponential distribution. In the case of initial temporal edge

selection (Eq. 6), a large base b would cause the function to grow

rapidly. Notice that if the observed temporal interactions (e.g. edges)
in the dynamic network span a large time period, the probability

of choosing one of the recent edges may be much larger than the

probability to choose all other edges resulting in sampled walks

that are skewed too much towards recent edges.

2.6 Model variants
The proposed continuous-time dynamic network embedding (CTDNE)
framework has two main interchangeable components that give

rise to a variety of useful models. In this section, we discuss a few
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Figure 2: Frequency of temporal random walks by length (ia-
contact).

of the variants we investigate in Section 3. Recall that we use a

distribution Fs to select the starting edge e∗ of a temporal random

walk (Section 2.2). Furthermore, we use another distribution FΓ to

bias the selection of each subsequent edge in a temporal random

walk (Section 2.3). Thus, different distributions Fs and FΓ can be

used to bias the random walk sampling strategy. In particular, we

investigated three different approaches to sample (1) the starting

temporal edge e∗ via Fs , and (2) each subsequent edge in a tem-

poral random walk via FΓ . This gives rise to nine different model

variants by taking all possible combinations of unbiased and biased

distributions discussed in Section 2.2 and Section 2.3.

3 EXPERIMENTS
The experiments are designed to investigate the effectiveness of the

proposed continuous-time dynamic network embedding (CTDNE)

framework using a wide range of temporal graphs with different

structural and temporal characteristics from a variety of different

application domains. A summary of the dynamic networks used for

evaluation and their statistics are provided in Table 2. All networks

are continuous-time dynamic networks with T = R+. For these
dynamic networks, the time scale of the edges is at the level of

seconds or milliseconds, i.e., the edge timestamps record the time

an edge occurred at the level of seconds or milliseconds (finest

granularity given as input). Our approach uses the finest time scale

given as input. All data was obtained from NetworkRepository [58].

In particular, we evaluate the performance of the proposed frame-

work on the temporal link prediction task. To generate a set of

labeled examples for link prediction, we first sort the edges in each

graph by time (ascending) and use the first 75% for representation

learning. The remaining 25% are considered as positive links and

we sample an equal number of negative edges randomly. We per-

form link prediction on this labeled data X of positive and negative

edges.

3.1 Experimental setup
We evaluate the framework presented in Section 2 for learning dy-

namic network representations against the following baseline meth-

ods: node2vec [26], DeepWalk [52], and LINE [65]. For node2vec,

we use the same hyperparameters (D = 128, R = 10, L = 80,
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Table 1: AUC scores for Temporal Link Prediction.

Data DeepWalk Node2Vec LINE CTDNE Gain

ia-contact 0.845 0.874 0.736 0.913 10.369

ia-hypertext09 0.620 0.641 0.621 0.671 6.508

ia-enron-employees 0.719 0.759 0.550 0.777 12.999

ia-radoslaw-email 0.734 0.741 0.615 0.811 14.833

ia-email-eu 0.820 0.860 0.650 0.890 12.734

fb-forum 0.670 0.790 0.640 0.826 15.254

soc-bitcoinA 0.840 0.870 0.670 0.891 10.962

soc-wiki-elec 0.820 0.840 0.620 0.857 11.319

ω = 10) and grid search over p,q ∈ {0.25, 0.50, 1, 2, 4} as mentioned

in [26]. We use the same hyperparameters for DeepWalk but with

p = q = 1 as it is a special case of node2vec. As for our method, we

use ω = 10, L = 80, D = 128. For LINE, we also use D = 128 with

2nd-order-proximity and number of samples T = 60 million.

After the embeddings are learned for each node, we follow the

methodology of [26] and compute the feature vector for an edge

by combining the learned embedding vectors of the corresponding

nodes using one of the following operations: ops ∈ {weighted-L1,

weighted-L2, average, hadamard}.

Recall that for each dataset, we generate a labeled dataset X

for link prediction. We use logistic regression (LR) with hold-out

validation of 25% on this dataset. Experiments are repeated for 10

random seed initializations and the average performance is reported.

Unless otherwise mentioned, we use AUC to evaluate the models.

Table 2: Dynamic network data and statistics. Let |ET | = num-
ber of temporal edges; ¯d = average temporal node degree; and
dmax = max temporal node degree.

Timespan
Dynamic Network |V | |ET | ¯d dmax (days)

ia-contact 274 28.2K 206.2 2092 3.97

ia-contacts-hypertext09 113 20.8K 368.5 1483 2.46

ia-enron-employees 151 50.5K 669.8 5177 1137.55

ia-radoslaw-email 167 82.9K 993.1 9053 271.19

ia-email-Eu 986 332.3K 674.1 10571 803.93

fb-forum 899 33.7K 75.0 1841 164.49

soc-sign-bitcoinA 3.7K 24.1K 12.8 888 1901.00

soc-wiki-elec 7.1K 107K 30.1 1346 1378.34

3.2 Comparison
For fair comparison we set D to the same value for all compared

methods. Furthermore, we ensure the same amount of informa-

tion is used for learning by all baseline methods. In particular, the

number of temporal context windows β used is

β = R × N × (L − ω + 1) (11)

where R denotes the number of walks for each node and L is the

length of a random walk required by the baseline methods.

Table 1 shows the performance of all the compared methods on

the temporal link prediction task. For this experiment, we use the

simplest variant from the proposed framework and did not apply

any additional bias to the selection strategy. In other words, both Fs
and FΓ are set to the uniform distribution. We note, however, that

since our temporal walks are time-obeying (by Definition 2.2), the

sampling is already biased towards edges that appear later in time

as the random walk traversal does not go back in time. Here we

see that the proposed approach performs consistently better than

DeepWalk, node2vec, and LINE. This is an indication that important

information is lost when temporal information is ignored. Strikingly,

our model does not leverage the bias introduced by node2vec [26],

and yet it still outperforms this model by a significant margin. We

could have generalized node2vec in a similar manner using the

proposed framework from Section 2. Obviously, we can expect to

achieve even better predictive performance from the embeddings

derived using the continuous-time node2vec generalization.

The last column of Table 1 provides the mean gain in AUC av-

eraged over all embedding methods for each dynamic network.

In all cases, the proposed approach significantly outperforms the

other embedding methods across all dynamic networks. Notably,

we achieve an overall gain in AUC of 11.9% across all embedding

methods and graphs. These results indicate that modeling and in-

corporating the temporal dependencies in graphs is important for

learning appropriate and meaningful network representations.

It is also worth noting that many other approaches that leverage

random walks can also be generalized using the proposed frame-

work [15, 18, 37, 38, 56], as well as any future state-of-the-art em-

bedding method. We also find that for many data sets, using a

biased distribution (either linear or exponential) does indeed im-

prove predictive performance in terms of AUC when compared to

the uniform distribution. For others however, there is no noticeable

gain in performance. This can likely be attributed to the fact that

most of the dynamic networks investigated have a short time span

(more than 3 years at most). Table 3 provides results for a few other

Table 3: AUC scores for different variants that were tested.
Note that Fs is the distributionused for initial edge sampling
and FΓ is the distribution for temporal neighbor sampling.
Reference to formulation in paper in parentheses.

Variant
Fs FΓ contact hyper enron rado

Unif (Eq. 1) Unif (Eq. 5) 0.913 0.671 0.777 0.811

Unif (Eq. 1) Lin (Eq. 7) 0.903 0.665 0.769 0.797

Lin (Eq. 3) Unif (Eq. 5) 0.915 0.675 0.773 0.818
Lin (Eq. 3) Lin (Eq. 7) 0.903 0.667 0.782 0.806
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variants from the framework. In particular, Table 3 shows the differ-

ence of applying a biased distribution to the initial edge selection

strategy Fs as well as the temporal neighbor selection FΓ for the
temporal random walk. Interestingly, using a biased distribution

for Fs seems to improve more on the tested datasets. However, for

ia-enron-employees, the best result can be observed when both

distributions are biased.

4 RELATEDWORK
The node embedding problem has received considerable attention

from the research community in recent years. In this problem, a

low-dimensional encoding is learned for each node in a graph.

The goal is to learn encodings (i.e. embeddings) that capture key

properties about each node such as their position in the graph, or

their local neighborhood structure. Since nodes that share similar

properties are grouped close to each other in the embedding space,

one can easily use the learned embeddings for tasks such as rank-

ing [50], community detection [48, 54], link prediction [39], and

node classification [57].

Many of the techniques that were initially proposed for solv-

ing the node embedding problem were based on graph factoriza-

tion [4, 9, 14]. More recently, the skip-gram model [44] was in-

troduced in the natural language processing domain to learn con-

tinuous vector representations for words. Inspired by skip-gram’s

success in language modeling, various methods [26, 52, 65] have

been proposed to learn node embeddings using skip-gram by treat-

ing a graph as a “document." Two of the more notable methods,

DeepWalk [52] and node2vec [26], use random walks to sample an

ordered sequence of nodes from a graph. The skip-gram model can

then be applied to these sequences to learn node embeddings.

Researchers have also tackled the problem of node embedding

in more complex graphs, including attributed networks [38], and

heterogeneous networks [18]. However, the majority of the work

in the area still fail to consider graphs that evolve over time (i.e.
temporal graphs). Notably, the framework described in this work

can be used to generalize these methods for learning more appro-

priate time-dependent embeddings since they are based on random

walks.

A few work have begun to explore the problem of node embed-

ding in temporal networks [28, 33]. However, our work differs from

previous work on several key points and is, in particular, of a more

general nature. While previous work have mostly been based on

using discrete snapshots of temporal networks [28, 33], we pro-

pose a framework for incorporating temporal dependencies into

node embeddings based on temporal random walks on a contin-

uous representation of the temporal network. Furthermore, this

work introduces a general framework that can serve as a basis for

generalizing other random walk based deep learning (e.g., [37]) and
embedding methods (e.g., [15, 18, 26, 38, 56]) for learning more ap-

propriate time-dependent embeddings from temporal networks. In

contrast, most other work has simply introduced new approaches

for temporal networks [28, 33] and therefore are significantly dif-

ferent than the problem focused on in this work which is a general

framework that can be leveraged by other non-temporal approaches

to lift them for modeling time-dependent networks.

Random walks on graphs have been studied for decades [40].

The theory underlying random walks and their connection to

eigenvalues and other fundamental properties of graphs are well-

understood [17]. Our work is also related to uniform and non-

uniform random walks on graphs [17, 40]. Random walks are at

the heart of many important applications such as ranking [50],

community detection [48, 54], recommendation [10], link predic-

tion [39], influence modeling [30], search engines [36], image seg-

mentation [25], routing in wireless sensor networks [62], and time-

series forecasting [23]. These applications and techniques may also

benefit from the notion of temporal random walks.

More recently, there has been significant research in developing

network analysis and machine learning methods for modeling tem-

poral networks. Temporal networks have been the focus of recent

research including node classification in temporal networks [57],

temporal link prediction [19], dynamic community detection [16],

and dynamic mixed-membership role models [22, 59], anomaly

detection in dynamic networks [55], influence modeling and on-

line advertisement [24], finding important entities in dynamic net-

works [23, 49] temporal network centrality and measures [29]. For

a survey on temporal network analysis, see [1, 29].

5 CONCLUSION
We have described a general framework for incorporating tempo-

ral information into network embedding methods. The framework

provides a basis for generalizing existing random walk-based em-

bedding methods for learning dynamic (time-dependent) network

embeddings from continuous-time dynamic networks. The result

is a more appropriate time-dependent network representation that

captures the important temporal properties of the continuous-time

dynamic network. We demonstrated the effectiveness of the pro-

posed framework and generalized dynamic network embedding

method for temporal link prediction in several real-world networks.

Overall, the proposed method achieves an average gain of 11.9%

across all methods and graphs. Our results indicate that modeling

and incorporating the temporal dependencies in graphs is important

for learning appropriate and meaningful network representations.

Future work will investigate using the continious-time dynamic

network framework to generalize heterogeneous network embed-

ding methods [18] and attributed network embedding methods [38],

among other approaches [26, 56].
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