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Abstract

Randomization is a fundamental tool used in many theoretical and practical areas of com-
puter science. We study here the role of randomization in the area of submodular function
maximization. In this area most algorithms are randomized, and in almost all cases the ap-
proximation ratios obtained by current randomized algorithms are superior to the best results
obtained by known deterministic algorithms. Derandomization of algorithms for general sub-
modular function maximization seems hard since the access to the function is done via a value
oracle. This makes it hard, for example, to apply standard derandomization techniques such as
conditional expectations. Therefore, an interesting fundamental problem in this area is whether
randomization is inherently necessary for obtaining good approximation ratios.

In this work we give evidence that randomization is not necessary for obtaining good algo-
rithms by presenting a new technique for derandomization of algorithms for submodular function
maximization. Our high level idea is to maintain explicitly a (small) distribution over the states
of the algorithm, and carefully update it using marginal values obtained from an extreme point
solution of a suitable linear formulation. We demonstrate our technique on two recent algorithms
for unconstrained submodular maximization and for maximizing submodular function subject
to a cardinality constraint. In particular, for unconstrained submodular maximization we ob-
tain an optimal deterministic 1/2-approximation showing that randomization is unnecessary for
obtaining optimal results for this setting.
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1 Introduction

Randomization is a fundamental tool used in many theoretical and practical areas of computer
science [2, 32]. It is widely used, for example, in cryptology, coding, and the design of approximation
and online algorithms. In the area of approximation algorithms randomization is used both to
improve the running time of algorithms and to obtain improved approximation ratios. However, in
the majority of cases randomization can be removed to obtain an equivalent deterministic algorithm
with the same approximation ratio (albeit, in some cases, with a longer running time). One
central field of combinatorial optimization in which it is unclear whether it is possible to avoid
randomization is the field of submodular function maximization.

A set function f : 2N → R is submodular if for every A,B ∈ N : f(A ∩ B) + f(A ∪ B) ≤
f(A)+ f(B). An equivalent definition of submodularity, which is perhaps more intuitive, is that of
diminishing returns: f(A∪{u})−f(A) ≥ f(B∪{u})−f(B) for every A ⊆ B ⊆ N and u /∈ B. The
concept of diminishing returns is widely used in economics, and thus, it should come as no surprise
that utility functions in economics are often submodular. Additionally, submodular functions are
ubiquitous in various other disciplines, including combinatorics, optimization, information theory,
operations research, algorithmic game theory and machine learning. A few well known examples
of submodular functions from these disciplines include cut functions of graphs and hypergraphs,
rank functions of matroids, entropy, mutual information, coverage functions and budget additive
functions. Moreover, submodular maximization problems capture well known combinatorial op-
timization problems such as: Max-Cut [24, 26, 28, 29, 33], Max-DiCut [15, 24, 25], Generalized
Assignment [10, 11, 17, 22] and Max-Facility-Location [1, 12, 13].

For a general submodular function the explicit representation of the function might be expo-
nential in the size of its ground set. Hence, it is standard practice to assume that the function is
accessed via a value oracle returning the value of f(S) when given a set S ⊆ N . The use of a value
oracle makes it difficult to use the standard derandomization method of conditional expectations
(see, e.g., [2]). Moreover, other standard methods, such as using a small sample space, seem to
fail as well. Indeed, for most scenarios the best current approximation algorithms are randomized,
while known deterministic algorithms achieve only inferior approximation ratios. One example is
the problem of unconstrained submodular maximization [4] for which the best (optimal) random-
ized algorithm has an approximation ratio of 1/2, while the approximation ratio of the best known
deterministic algorithm is only 1/3. Another example is maximizing a monotone submodular func-
tion subject to a matroid constraints [21, 8, 19]. For this problem the best deterministic algorithm
has an approximation ratio of 1/2, while the best (optimal) randomized algorithm has an improved
approximation ratio of 1 − 1/e. An interesting fundamental problem is whether randomization is
inherently necessary for obtaining good approximation ratio in the field of submodular function
maximization.

1.1 Our results

In this paper we give evidence that randomization is not necessary for obtaining good algorithms
for submodular maximization. We present a new technique for derandomization of algorithms for
submodular maximization based on the following idea. In a typical randomized algorithm the size
of the support of the distribution implied by the algorithm is exponential (as otherwise it can often
be trivially enumerated). We show that in certain cases the size of the distribution can be kept
small (polynomial) throughout the execution of the algorithm. This is done by formulating the set
of “good” updates to the distribution in each iteration of the algorithm as a linear formulation,
and then choosing an update step that corresponds on an (optimal) extreme point of the linear
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program. We then use the fact that an extreme point for our formulations does not have many
non-integral variables to control the increase in the size of the support of the distribution. This
allows us to maintain the distribution explicitly throughout the execution. We are not aware of
any previous results that obtain derandomization via such an approach, and believe that this idea
may be applicable for other settings as well.

We demonstrate our technique on two recent algorithms. The first of them is a randomized
1/2-approximation algorithm presented by [4] for the problem of unconstrained submodular max-
imization. It is known that the approximation ratio of the last algorithm cannot be improved by
any polynomial time algorithm [16]. Using our technique we obtain the following result. In this
result, and throughout the rest of the paper, we use n to denote the size of the ground set N .

Theorem 1.1. Let f be a submodular function. There exists a deterministic algorithm with
an approximation ratio of 1/2 for the problem maxS⊆N{f(S)}. The algorithm makes O(n2) value
oracle queries.

Notice that this result shows that randomization is not necessary for obtaining the best possible
approximation ratio for the problem. However, this comes at a cost, as the number of oracle queries
made by our deterministic algorithm is O(n2), while the randomized algorithm only needs O(n)
oracle queries.

Our second result is for maximizing a (non-monotone) submodular function subject to a car-
dinality constraint. For this problem the best known randomized algorithm has an approximation
guarantee of 1/e + 0.004 [5]. This algorithm is based on a combination of two randomized algo-
rithms; one of which is an elegant randomized greedy algorithm that has approximation ratio 1/e
(on its own). We show that one can obtain an equivalent deterministic algorithm.

Theorem 1.2. Let f be a submodular function. There exists a deterministic algorithm that has
an approximation ratio of 1/e for the problem of max|S|≤k{f(S)}. The algorithm makes O(k2n)
value oracle queries.

Again, note that our deterministic algorithm makes O(k2n) oracle queries, while the randomized
algorithm only needs O(kn) queries.

1.2 Previous Results

The literature on submodular maximization problems is very large, and therefore, we mention below
only a few of the most relevant works. Randomization is widely used in submodular maximization.
In particular, many of the recent algorithms use an extension of submodular functions to fractional
vectors known as the multilinear extension (see, e.g., [8, 23, 19, 30, 5]). Any algorithm using this
extension must be randomized since the only known way to (approximately) evaluate this extension
is via random sampling. A few examples of randomized algorithms for submodular maximization
that do not use the multilinear extension can be found in [14, 3, 4, 20].

The first provable approximation algorithms for unconstrained submodular maximization were
described by Feige et al. [16]. Their best algorithms for the problem achieve a randomized ap-
proximation ratio of 0.4 − o(1), and a deterministic approximation ratio of 1/3 − ε (where ε is an
arbitrarily small positive constant). On the negative side, [16] showed that no algorithm has an
approximation ratio of 1/2+ε for the problem. The randomized approximation ratio was improved
gradually [23, 18], eventually leading to an optimal linear time 1/2-approximation randomized algo-
rithm given by [4]. However, the deterministic approximation ratio has not been improved since the
work of [16]. Interestingly, [4] described a different 1/3-approximation deterministic algorithm for
the problem, which led some to conjecture that no deterministic algorithm can do better. Huang
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and Borodin [27] strengthened this conjecture by showing that a large class of deterministic al-
gorithms resembling the optimal 1/2-approximation randomized algorithm of [4] cannot achieve
1/2-approximation for unconstrained submodular maximization.

The problem of maximizing a (non-monotone) submodular function subject to a matroid inde-
pendence constraint (which generalizes a cardinality constraint) was given a deterministic (1/4−ε)-
approximation algorithm by Lee et al. [31] and a randomized 0.309-approximation algorithm by
Vondrák [34]. Later, the randomized approximation ratio was improved to 0.325 using a simulated
annealing technique [23], and then to 1/e − o(1) [19] via an extension of the continuous greedy
algorithm of [8]. All the above randomized results are based on the multilinear extension, and thus,
are quite inefficient. Buchbinder et al. [5] described a simple randomized greedy algorithm designed
specifically for a cardinality constraint, and used this algorithm to achieve a clean approximation
ratio of 1/e with a significantly better time complexity. Additionally, [5] also showed that 1/e is not
the correct approximation ratio for the case of a cardinality constraint by describing an (inefficient)
polynomial time (1/e + 0.004)-approximation algorithm for it. On the hardness side, [23] showed
that no polynomial time algorithm can have an approximation ratio better than 0.491 for the
problem of maximizing a (non-monotone) submodular function subject to a cardinality constraint.

Recent works consider online and streaming variants of the above problems [7, 9] as well as
faster algorithms [6].

2 Additional Notation

For every set S and element u, we denote the union S ∪ {u} by S + u, and the expression S \ {u}
by S−u. Given a submodular function f : 2N → R, the marginal contribution of u to S is denoted
by f(u | S) = f(S + u) − f(S). Our algorithms explicitly maintain in each iteration i a (finite)
distribution Di over possible states of the algorithm. Each distribution is represented as a multiset
of tuples {(p, S)}, where S is a state and p is the probability of this state. Naturally, we require
all the p-values to be positive and to add up to 1. We denote by |Di| the number of tuples in the
distribution Di, and by supp(Di) the set of states represented by these tuples (which is also the set
of states having a positive probability).

To simplify the presentation of our algorithms, we allow our distributions to contain multiple
tuples with the same state. Moreover, there might even be multiple identical tuples (this is why the
distributions have to be multisets). Whenever this happens, the meaning is that the probability of
a state S is the sum of the p-values of tuples containing it. An implementation of our algorithm
can either keep identical state tuples separate, or unify them. Our proofs are independent of such
details. The pseudocode of our algorithms uses the first option, which requires us to assume the
following semantic rules regarding multisets:

• Given multisets A and B of tuples, the multiplicity of a tuple in the union A ∪B is the sum
of its multiplicities in the original sets.

• Given an expression of the from {(p(x), S(x)) | x ∈ A}, where A is a set and (p(x), S(x)) is
a tuple which is a function of an element x ∈ A. If there are multiple x values resulting a
single tuple (p, S), then we assume that the multiplicity of this tuple is equal to the number
of such x values in A.
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3 Unconstrained Submodular Maximization

In this section we present a deterministic 1/2-approximation algorithm for the problem max{f(S) :
S ⊆ N} whose formal description is given as Algorithm 1. Each state in the distribution maintained
by our algorithm is a pair (X,Y ) of sets. Technically, this means that the distribution should be
a multiset of tuples (p, (X,Y )). However, we abuse notation and use tuples of the form (p,X, Y )
instead. Additionally, we write EDi

instead of E(X,Y )∼Di
to avoid visual cluttering.

Algorithm 1: Deterministic Unconstrained(f)

1 Initialize: D0 = {(1,∅,N )}.
2 Denote the elements of N by u1, u2, . . . , un, in an arbitrary order (recall that n = |N |).
3 for i = 1 to n do

4 ∀(X,Y ) ∈ supp(Di−1), let ai(X) = f(X + ui)− f(X), bi(Y ) = f(Y − ui)− f(Y ).
5 Find an extreme point solution of the following linear formulation:

(P ) EDi−1
[z(X,Y )ai(X) +w(X,Y )bi(Y )] ≥ 2 · EDi−1

[z(X,Y )bi(Y )]
EDi−1

[z(X,Y )ai(X) +w(X,Y )bi(Y )] ≥ 2 · EDi−1
[w(X,Y )ai(X)]

z(X,Y ) + w(X,Y ) = 1 ∀(X,Y ) ∈ supp(Di−1)
z(X,Y ), w(X,Y ) ≥ 0 ∀(X,Y ) ∈ supp(Di−1)

6 Construct a new distribution:

Di ← {(z(X,Y ) · PrDi−1
[(X,Y )], (X + ui, Y )) | (X,Y ) ∈ supp(Di−1), z(X,Y ) > 0}

∪ {(w(X,Y ) · PrDi−1
[(X,Y )], (X,Y − ui)) | (X,Y ) ∈ supp(Di−1), w(X,Y ) > 0} .

7 return arg max(X,Y )∈supp(Dn){f(X)} (equivalent to arg max(X,Y )∈supp(Dn){f(Y )}).

We begin the analysis of Algorithm 1 with the following simple observations.

Observation 3.1. The following holds for every iteration 1 ≤ i ≤ n of Algorithm 1:

1. For every state (X,Y ) ∈ supp(Di), X ∩ {ui+1, . . . , un} = ∅, {ui+1, . . . , un} ⊆ Y and X ∩
{u1, . . . , ui} = Y ∩ {u1, . . . , ui}.

2. The total sum of the probabilities in Di is 1, and thus, Di is a valid distribution.

3. The formulation (P ) is feasible. In particular, one feasible solution assigns for every state
(X,Y ) ∈ supp(Di−1):

z(X,Y ) =
max{0, ai(X)}

max{0, ai(X)} +max{0, bi(Y )}
(or 1 if the denominator is 0)

and

w(X,Y ) = 1− z(X,Y ) =
max{0, bi(Y )}

max{0, ai(X)} +max{0, bi(Y )}
(or 0 if the denominator is 0) .

4. For any extreme point of (P ) there are at most 2 + |Di−1| non-zero variables. Thus, |Di| ≤
2 + |Di−1|, and |Dn| ≤ 2n+ 1.
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Remark: Item 4 of Observation 3.1 is the only place in the analysis of Algorithm 1 where we use
the fact that the algorithm finds an extreme point solution of (P ). Claim A.1 shows that one can in
fact compute a solution for (P ) having at most 1+|Di−1| non-zero variables. Moreover, it is possible
to compute such a solution in near linear time, implying that implementation of Algorithm 1 does
not require an LP solver.

Proof. The proof of the observation is by induction on i. Assume the observation holds for every
1 ≤ i′ < i, and let us prove it for i. Observe that item (1) holds for i − 1 either by the induction
hypothesis or (for i = 1) by the fact that D0 trivially obeys it. Additionally, it is easy to see that
every state of Di is obtained from a state of Di−1 by either adding ui to X or removing ui from Y .
Hence item (1) is maintained. Similarly, item (2) holds for i− 1. Since z(X,Y ) +w(X,Y ) = 1 for
every state (X,Y ) ∈ supp(Di−1), the distribution Di contains up two tuples resulting from (X,Y ),
and these tuples exactly split the probability (X,Y ) has in Di−1. Thus, the sum of the probabilities
in Di is equal to their sum in Di−1.

To see why item (3) holds, observe first that by (1) X ⊆ Y \{ui} for each (X,Y ) ∈ supp(Di−1),
and therefore, by submodularity,

ai(X) + bi(Y ) = [f(X + ui)− f(X)] + [f(Y − ui)− f(Y )] ≥ 0 .

Next, we prove that the first constraint of (P ) is satisfied by the assignment suggested by (3).
Proving that the second constraint of (P ) is satisfied by the assignment can be done similarly.

If ai(X) = bi(Y ) = 0 for some state (X,Y ), then (X,Y ) does not contribute to either side of the
first constraint of (P ), and we may ignore it. Thus, we may assume that either ai(X) or bi(Y ) is
strictly non-zero for every state. Plugging the assignment suggested by (3) under this assumption
into the first constraint in (P ), we get:

EDi−1
[z(X,Y ) · ai(X) + w(X,Y ) · bi(Y )]

= EDi−1

[

max{0, ai(X)} · ai(X)

max{0, ai(X)} +max{0, bi(Y )}
+

max{0, bi(Y )} · bi(Y )

max{0, ai(X)} +max{0, bi(Y )}

]

≥ 2 · EDi−1

[

max{0, ai(X)} · bi(Y )

max{0, ai(X)} +max{0, bi(Y )}

]

= 2 · EDi−1
[z(X,Y ) · bi(Y )] .

The final inequality holds even without the expectation due to the following argument: if either
ai(X) < 0 or bi(Y ) < 0, then the LHS is non-negative while the RHS is non-positive. On the other
hand, if ai(X) ≥ 0 and bi(Y ) ≥ 0 the inequality reduces to a2i (X) + b2i (Y ) ≥ 2ai(X)bi(Y ), which
clearly holds.

Item (4) follows immediately by the properties of an extreme point. Since (P ) has 2 + |Di−1|
constraints, an extreme point of (P ) has at most 2+ |Di−1| non-zero variables. Since a single tuple
is added to Di for every non-zero variable, the size of Di is upper bounded by 2 + |Di−1|.

Let OPT ⊆ N be the optimal solution for the problem {f(S) : S ⊆ N} that we want to
approximate, and let OPT (X,Y ) be a shorthand for the set ((OPT ∪X) ∩ Y ). The following is
the main lemma we need in order to analyze Algorithm 1.

Lemma 3.2. For any iteration 1 ≤ i ≤ n of Algorithm 1,

EDi
[f(X) + f(Y )]− EDi−1

[f(X) + f(Y )] ≥ 2 ·
(

EDi−1
[f(OPT (X,Y ))]− EDi

[f(OPT (X,Y ))]
)

.
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Proof. Observe that whenever ui /∈ OPT :

EDi−1
[f(OPT (X,Y ))]− EDi

[f(OPT (X,Y ))]

= EDi−1
[z(X,Y ) · (f(OPT (X,Y ))− f(OPT (X + ui, Y )))]

≤ EDi−1
[z(X,Y ) · (f(Y − ui)− f(Y ))] = EDi−1

[z(X,Y ) · bi(Y )] ,

where the inequality follows by submodularity since OPT (X,Y ) ⊆ Y −ui. A similar argument can
be used to show that whenever ui ∈ OPT :

EDi−1
[f(OPT (X,Y ))] − EDi

[f(OPT (X,Y ))] ≤ EDi−1
[w(X,Y ) · ai(X)] .

The lemma now follows by combing the above observations with the next inequality:

EDi
[f(X) + f(Y )]− EDi−1

[f(X) + f(Y )]

= EDi−1
[z(X,Y ) · (f(X + ui)− f(X)) + w(X,Y ) · (f(Y − ui)− f(Y ))]

= EDi−1
[(z(X,Y ) · ai(X) + w(X,Y ) · bi(Y ))]

≥ 2 ·max
{

EDi−1
[z(X,Y ) · bi(Y )],EDi−1

[w(X,Y ) · ai(X)]
}

,

where the inequality follows by the constraints of (P ).

We can now prove the next theorem, which implies Theorem 1.1.

Theorem 3.3. Algorithm 1 is a 1
2-approximation algorithm performing O(n2) value oracle queries.

Proof. Adding up Lemma 3.2 over 1 ≤ i ≤ n we get:

EDn
[f(X) + f(Y )]− ED0

[f(X) + f(Y )] ≥ 2 · (ED0
[f(OPT (X,Y ))]− EDn

[f(OPT (X,Y ))]) .

The single state in the support of D0 is (∅,N ). Hence, ED0
[f(OPT (X,Y ))] = f(OPT (∅,N )) =

f(OPT ). On the other hand, for every state (Xn, Yn) ∈ supp(Dn) we have Xn = Yn by Ob-
servation 3.1, and thus, OPT (Xn, Yn) = Xn = Yn. Plugging all these observations into the last
inequality gives:

2 · EDn
[f(X)]− (f(∅) + f(N )) ≥ 2 · (f(OPT )− EDn

[f(X)]) .

Using an averaging argument and the non-negativity of f we now get:

arg max
(X,Y )∈supp(Dn)

{f(X)} ≥ EDn
[f(X)] ≥

f(OPT )

2
+

f(∅) + f(N )

4
≥

f(OPT )

2
.

Observation 3.1 shows that |Di| ≤ 2i + 1 for every 1 ≤ i ≤ n. Since Algorithm 1 performs
2 oracle queries for every state in supp(Di−1), the number of such queries done during the i-th
iteration is at most 4i − 2. Adding up the last bound over all iterations we get a bound O(n2) on
the total number of oracle queries made by the algorithm.

4 Cardinality Constraints

In this section we present a deterministic 1/e-approximation algorithm for the problem max{f(S) :
|S| ≤ k} whose formal description is given as Algorithm 2. Each state in the distribution maintained
by our algorithm is a set S.

We first make the following simple observations.
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Algorithm 2: Deterministic Cardinality(f, k)

1 Initialize: D0 = {(1,∅)}.
2 for i = 1 to k do

3 Let Mi ⊆ N be a subset of at most k elements maximizing
∑

u∈Mi
ES∼Di−1

[f(u | S)].

4 Find an optimal extreme point solution of the following linear formulation:

(P ) max
∑

u∈Mi
ES∼Di−1

[x(u, S) · f(u | S)]
ES∼Di−1

[x(u, S)] ≤ 1/k · PrS∼Di−1
[u 6∈ S] ∀u ∈Mi

∑

u∈Mi
x(u, S) + ℓ(S) = 1 ∀S ∈ supp(Di−1)

x(u, S), ℓ(S) ≥ 0 ∀u ∈Mi, S ∈ supp(Di−1)

5 Construct a new distribution:

Di ← {(x(u, S) · PrDi−1
[S], S + u) | u ∈Mi, S ∈ supp(Di−1), x(u, S) > 0}

∪ {(ℓ(S) · PrDi−1
[S], S) | S ∈ supp(Di−1), ℓ(S) > 0} .

6 Return arg maxS∈supp(Dk)
{f(Sk)}.

Observation 4.1. The following holds for every iteration i = 1, . . . , k of Algorithm 2:

1. The assignment x(u, S) = 1/k · 1[u 6∈ S] and ℓ(S) = 1 − |Mi \ S|/k for every S ∈ supp(Di−1)
and u ∈Mi is a feasible assignment for the formulation (P ).

2. The total sum of the probabilities in Di is 1, and thus, Di is a valid distribution.

3. |Di| ≤ k + |Di−1|. Thus, |Dk| ≤ k2 + 1.

Proof. The proof of the observation is by induction on i. Assume the observation holds for every
1 ≤ i′ < i, and let us prove it for i. It is easy to verify that item (1) holds given that Di−1 is a
valid distribution. To see why item (2) holds, observe that the sum of the probabilities in Di is:

∑

S∈supp(Di−1)

PrDi−1
[S] ·





∑

u∈Mi

x(u, S) + ℓ(S)



 =
∑

S∈supp(Di−1)

PrDi−1
[S] = 1 .

Finally, to prove item (3) notice that the number of constraints in (P ) at iteration i is at most
k + | supp(Di−1)| ≤ k + |Di−1|. By the properties of extreme point solutions the total number of
variables that are strictly greater than zero is upper bounded by the number of (tight) constraints.
Since a single set is added to Di for every non-zero x(u, S) or ℓ(S) variable, the size of Di is also
upper bounded by k + |Di−1|.

The next lemma upper bounds the probability of an item to be in a set chosen according to the
distributions defined by Algorithm 2.

Lemma 4.2. For every element u ∈ N and 0 ≤ i ≤ k:

PrS∼Di
[u 6∈ S] ≥

(

1−
1

k

)i

.
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Proof. The proof of the lemma is by induction on i. The distribution D0 gives a probability 1 to
the empty set, and thus, PrS∼D0

[u 6∈ S] = 1 for every u ∈ N , i.e., the base case i = 0 holds. Next,
assume the lemma holds for 0 ≤ i− 1, and let us prove it for i.

For simplicity of notation, let us define x(u, S) to be 0 for every u 6∈ Mi. A set S ∈ supp(Di)
contains the element u in two cases: if it is constructed from a set in the support of Di−1 that
contains u, or it is constructed by adding u to a set in the support of Di−1. Using this observation
we get the bound:

PrS∼Di
[u 6∈ S] =

∑

S∈supp(Di−1)
u 6∈S

PrDi−1
[S] ·





∑

u′∈Mi−u

x(u′, S) + ℓ(S)





≥
∑

S∈supp(Di−1)
u 6∈S

PrDi−1
[S] ·





∑

u′∈Mi

x(u′, S) + ℓ(S)



−
∑

S∈supp(Di−1)

x(u, S) · PrDi−1
[S]

= PrS∼Di−1
[u 6∈ S]− ES∼Di−1

[x(u, S)] ≥ (1− 1/k) · PrS∼Di−1
[u 6∈ S] ≥

(

1−
1

k

)i

,

where the second equality holds by the second constraint of (P ), the second inequality holds by the
first constraint of (P ) and the last inequality holds by the induction hypothesis.

The following lemma is an immediate implication of Lemma 2.2 of [5]. For completeness, we
give an independent proof of it Appendix A.

Lemma 4.3. For any subset T and a distribution D,

ES∼D[f(T ∪ S)] ≥ f(S) ·min
u∈N

PrS∼D[u 6∈ S] .

The next lemma is the last component we need in order to analyze Algorithm 2.

Lemma 4.4. For any iteration 1 ≤ i ≤ k of Algorithm 2,

ES∼Di
[f(S)]− ES∼Di−1

[f(S)] ≥ 1/k · ES∼Di−1
[f(OPT ∪ S)− f(S)] .

Proof. One can view the construction of Di in the following way: the probability of every set
S ∈ supp(Di−1) is split. A fraction of ℓ(S) of this probability is kept for S, and for every u ∈Mi a
fraction of x(u, S) of this probability is transferred to S + u. Using this view we get:

ES∼Di
[f(S)]− ES∼Di−1

[f(S)] =
∑

u∈Mi

ES∼Di−1
[x(u, S) · f(u | S)] ≥

1

k
·
∑

u∈Mi

ES∼Di−1
[f(u | S)]

≥
1

k
·
∑

u∈OPT

ES∼Di−1
[f(u | S)] ≥

1

k
· ES∼Di−1

[f(OPT ∪ S)− f(S)] ,

where the first inequality holds since the solution found by Algorithm 2 must be at least as good
as the feasible solution given by Observation 4.1, the second inequality holds by the definition of
Mi and the last inequality holds by submodularity.

We can now prove the next theorem, which implies Theorem 1.2 (note that Theorem 1.2 is
trivial for k = 1).

8



Theorem 4.5. For k ≥ 2, the approximation ratio of Algorithm 2 is at least
(

1− 1
k

)k−1
≥ 1/e,

and it performs O(k2n) oracle queries.

Proof. By combining Lemmata 4.2, 4.3 and 4.4, we get

ES∼Di
[f(S)]− ES∼Di−1

[f(S)] ≥
1

k
· ES∼Di−1

[

(

1−
1

k

)i−1

· f(OPT )− f(S)

]

. (1)

Next, we prove by induction that:

ES∼Di
[f(S)] ≥

i

k
·

(

1−
1

k

)i−1

f(OPT ) .

For i = 0, this is true since f(∅) ≥ 0 = (0/k) · (1 − 1/k)−1 · f(OPT ). Assume now that the
claim holds for every i′ < i, let us prove it for i > 0.

ES∼Di
[f(S)] ≥ ES∼Di−1

[f(S)] +
1

k
· ES∼Di−1

[

(

1−
1

k

)i−1

· f(OPT )− f(S)

]

=

(

1−
1

k

)

· ES∼Di−1
[f(S)] +

1

k
·

(

1−
1

k

)i−1

· f(OPT )

≥

(

1−
1

k

)

·
i− 1

k
·

(

1−
1

k

)i−2

· f(OPT ) +
1

k
·

(

1−
1

k

)i−1

· f(OPT )

=
i

k
·

(

1−
1

k

)i−1

· f(OPT ) ,

where the first inequality follows by inequality (1), and the second inequality follows by the induc-
tion hypothesis.

The approximation ratio guaranteed by the theorem follows immediately by plugging k into the
induction hypothesis. Finally, Observation 4.1 implies |Di| ≤ ik+1, and thus, in the i-th iteration
Algorithm 2 makes at most n ·supp(Di−1) ≤ n · |Di−1| ≤ nik oracle queries. Thus, the total number
of oracle queries in all the iterations is at most O(k2n).

4.1 A Tight Example for Algorithm 2

In this section we give an example of a “bad” instance for which Algorithm 2 has an approximation
ratio of at most e−1 + O( 1

k
). Specifically, the optimal solution for the instance we describe has a

value of at least 1, while Algorithm 2 may produce a set of value at most e−1 +O( 1
k
). In the rest

of this section we assume k is larger than some arbitrary constant ℓ (to be determined later).
The ground set N of our bad instance is the union of two sets O and Y , both of size k (if one

wishes to have n > 2k, it is possible to add an arbitrary number of elements that do not affect the
objective function). The objective function of the instance is the function f : 2N → R

+ defined as
follows,

f(S) =
|S ∩O|

k
·

(

1−
|S ∩ Y |

k

)

+

[

g

(

|S ∩ Y |

k

)

+
ℓ · |S ∩ Y |

k2

]

·

(

1−
|S ∩O|

k

)

,

where g : [0, 1]→ [0, 1] is a function given by the following formula:

g(x) =

{

(x− 1) · ln(1− x) for 0 ≤ x ≤ 1− e−1 ,

e−1 for 1− e−1 ≤ x ≤ 1 .

9



Observe that g(x) is a continuous function. Additionally, we note that,

g′(x) =

{

1 + ln(1− x) for 0 ≤ x ≤ 1− e−1 ,

0 for 1− e−1 ≤ x ≤ 1 ,

and

g′′(x) =

{

1
x−1 for 0 ≤ x < 1− e−1 ,

0 for 1− e−1 < x ≤ 1 .

Observe that g′ is always non-negative and g′′ is always non-positive. Thus, g is a non-decreasing
continuous concave function with g(0) = 0 and g(1) = e−1.

It is useful to find expressions for the marginal contribution of an element u ∈ N to a set S ⊆ N
given the objective f . Let y = |S ∩ Y |/k and x = |S ∩O|/k, then

f(u | S) = −
x

k
+ (1− x)

(

g(y + 1/k)− g(y) +
ℓ

k2

)

∀u ∈ Y \ S (2)

f(u | S) =
1

k

(

(1− y)−

(

g(y) +
ℓy

k

))

∀u ∈ O \ S (3)

Observation 4.6. The function f is a submodular function.

Proof. The marginal (2) of an element u ∈ Y is a decreasing function of x since g is non-decreasing
and of y since g is concave. On the other hand, the marginal (3) of an element u ∈ O is independent
of x and a decreasing function of y since g is non-decreasing.

In Appendix B we complete the proof. We show that given the above bad instance, Algorithm 2
may terminate with a distribution over subsets of Y . The value of f for any such set S is at most:

f(S) = g

(

|S|

k

)

+
ℓ · |S|

k2
≤ e−1 +

ℓ

k
= e−1 +O

(

1

k

)

.

On the other hand, O is a feasible solution and f(O) = 1. Thus, completing the proof.

5 Conclusions

In this paper we proposed a new technique for derandomization of algorithms in the area of sub-
modular function maximization. For unconstrained submodular maximization we showed that ran-
domization is not necessary for obtaining the best possible approximation ratio. For submodular
maximization with a cardinality constraint we obtained nearly the best known result.

The main interesting open question is whether algorithms that are based on the multilinear
extension can be derandomized. In particular, it is interesting whether the continuous greedy
approach [8, 19] used to obtain optimal results for maximizing a monotone submodular function
subject to a matroid independence constraint can be derandomized. One possible direction is to
try to approximate the multiliner extension function deterministically using its special properties.
Another interesting question is whether the number of oracle calls of the deterministic algorithms
can be reduces. A possible way to speed up algorithms produced by our method is to keep the size
of the distributions small by avoiding splitting sets when this results in sets of a too low probability.
As long as only low probability sets are affected, this should not significantly decrease the quality
of the output, while reducing the number of oracle queries needed (and speeding up the algorithm).
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A Omitted Proofs

The following claim slightly improves item 4 of Observation 3.1, and shows that every iteration of
Algorithm 1 can be implemented in near linear time.

Claim A.1. Let (P ) be the formulation in Algorithm 1. There always exists a solution to (P ) with
at most 1+ |Di−1| non-zero variables. Moreover, this solution can be computed in near linear time.

Proof. To get the desired solution of (P ) we need make a few simple manipulations to (P ). First,
we replace the first constraint of (P ) with an objective function asking to maximize:

EDi−1
[z(X,Y ) · ai(X) + w(X,Y ) · bi(Y )]− 2 · EDi−1

[z(X,Y )bi(Y )] ,

Since (P ) is feasible by Observation 3.1, any optimal solution for the new formulation is a feasible
solution for (P ). We can simplify the new objective of (P ) by removing constants and using the
fact that w(X,Y ) is fully determined by z(X,Y ) due to the equality z(X,Y ) +w(X,Y ) = 1. This
yields:

EDi−1
[z(X,Y ) · (ai(X) − 3bi(Y ))] .

Similarly, by exchanging terms, the second constraint of (P ) can be replaced with the equivalent
form:

EDi−1
[z(X,Y ) · (bi(Y )− 3 · ai(X))] ≤ EDi−1

[bi(Y )− 2 · ai(X)] .

The resulting linear program, for which we need to find an optimal solution, is a variant of the
fractional knapsack problem of the following form (where the number m of items is | supp(Di−1)| ≤
|Di−1|).

max
∑m

j=1 vj · zj
∑m

j=1 sj · zj ≤ B

0 ≤ zj ≤ 1 ∀ 1 ≤ j ≤ m

The only change compared to a standard (fractional) knapsack problem is that vj and sj may
have negative values (such values can be interpreted as an option to buy additional knapsack
space). However, a simple modification of the, so called, density rule can be used to solve the
problem optimally. First, take to the solution all items with vj > 0 and sj < 0. Also, omit all items
of vj < 0 and sj > 0. This leaves us with two types of items: “positive” items having vj , sj ≥ 0,
and “negative” items having vj, sj < 0. We sort the positive items in decreasing order of vj/sj
(intuitively, the value that we can earn per unit of the knapsack). Similarly, we sort the negative
items increasingly by vj/sj (intuitively, the price we need to pay to buy a unit of the knapsack). The
algorithm then starts by (fractionally) taking the first positive items until the knapsack becomes
full (or we are out of positive items). We then continue (fractionally) taking positive items and
negative items in parallel as long as the value per unit gained by the positive item is at least equal
to the price per unit paid for the negative item. It is easy to see that this algorithm produces an
optimal solution for the above fractional knapsack problem, and whenever it terminates there is
only a single (positive or negative) item taken fractionally.

To complete the proof of the claim observe that when translating a solution for the fractional
knapsack problem into a solution for the original formulation (P ) we get two non-zero variables for
every item taken fractionally, and one non-zero variable for every other item.

Lemma 4.4 is an immediate implication of Lemma 2.2 of [5]. For completeness, we give an
independent proof of it.
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Lemma 4.3. For any subset T and a distribution D,

ES∼D[f(T ∪ S)] ≥ f(S) ·min
u∈N

PrS∼D[u 6∈ S] .

Proof. Let u1, u2, . . . , un denote the elements of N sorted by a non-decreasing order of the proba-
bility PrS∼D[u 6∈ S]. Additionally, let Ai = {u1, u2, . . . , ui} be the set of the first i elements in this
order (for every 0 ≤ i ≤ n). Then,

ES∼D[f(T ∪ S)] = f(T ) +

n
∑

i=1

ES∼D[1[ui ∈ S] · f(ui | T ∪ (Ai−1 ∩ S))]

≥ f(T ) +
n
∑

i=1

ES∼D[1[ui ∈ S] · f(ui | T ∪Ai−1)] = f(T ) +
n
∑

i=1

f(ui | T ∪Ai−1)] · PrS∼D[ui ∈ S]

= PrS∼D[u1 6∈ S] · f(T ) +
n−1
∑

i=1

(PrS∼D[ui ∈ S]− PrS∼D[ui+1 ∈ S]) · f (T ∪Ai)

+ PrS∼D[un ∈ S] · f(N ) ≥ PrS∼D[u1 6∈ S] · f(T ) ,

where the first inequality holds by submodularity and the second inequality is based on the fact
that PrS∼D[ui ∈ S] is a non-increasing function of i.

B Proof of the Tight Example for Algorithm 2

In this section we continue the proof of the tight example for Algorithm 2. Let f be the submodular
function defined in Section 4.1. We analyze a possible execution of the algorithm given this function.

Let us denote the elements of Y by u1, u2, . . . , uk. For notational convenience, given an index
i > k, we denote by ui the element uj having i ≡ j (mod k). Given a value z ∈ [0, 1], let us
characterize a distribution D(z) as follows. The support of the distribution D(z) contains at most
2k states:

• For every 1 ≤ i ≤ k, the state SL
i = {uj}

i+⌊kz⌋
j=i has a probability of z − ⌊kz⌋/k.

• For every 1 ≤ i ≤ k, the state SS
i = {uj}

i+⌊kz⌋−1
j=i has a probability of ⌊kz + 1⌋/k − z.

It can be verified that all the above probabilities add up to 1, and thus, D(z) is a valid distribution.
Technically the above definition of D(z) sometimes defines multiple identical states (for example,
the states SS

i are identical when z < 1/k). Whenever this happens, we formally unify these states
and give the unified state a probability equal to the sum of the probabilities of the unified states.
In the rest of the proof we ignore that possibility for simplicity.

Intuitively, D(z) is a distribution over two types of subsets of Y : cyclically continuous states of
size 1 + ⌊kz⌋ and cyclically continuous states of size ⌊kz⌋. The distribution is symmetrical in the
sense that all the cyclically continuous states of a given length have equal probabilities.

Observation B.1. For every z ∈ [0, 1] and element u ∈ N ,

Pr
S∼D(z)

[u ∈ S] =

{

z if u ∈ Y ,

0 if u ∈ O .
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Proof. It is clear that elements of O never appear in a set distributed like D(z), thus, we consider
only an element u ∈ Y . By symmetry u appears in ⌊kz⌋ + 1 cyclically continuous states of size
⌊kz⌋+ 1 and ⌊kz⌋ cyclically continuous states of size ⌊kz⌋. Thus,

Pr
S∼D(z)

[u ∈ S] = (⌊kz⌋ + 1) · (z − ⌊kz⌋/k) + (⌊kz⌋) · (⌊kz + 1⌋/k − z)

= ⌊kz⌋ · (⌊kz + 1⌋ − ⌊kz⌋)/k + (z − ⌊kz⌋/k) = z .

Lemma B.2. For every 0 ≤ i ≤ k, Algorithm 2 may set Di = D(zi), where zi = 1− (1− 1/k)i.

Proof. We prove the lemma by induction. Notice that D(z0) puts all the probability on the empty
set, thus, it is identical to D0. This completes the proof of the base case. Next, assume that
Algorithm 2 choosed Di−1 = D(zi−1) for some 1 ≤ i ≤ k, and let us prove that it can end up with
Di = D(zi). Let us start with analyzing the marginal contributions of the various elements to a
random set from D(zi−1).

Let z′i−1 = ⌊kzi−1⌋/k, and note that z′i−1 ≤ zi−1 ≤ z′i−1 + 1/k. Consider an arbitrary element
uo ∈ O. Every set S ∈ supp(Di−1) contains either kz′i−1 or kz′i−1 + 1 elements of Y , and thus, by
submodularity, we can lower bound the expected marginal contribution of uo to a random set of
Di−1 with its marginal contribution to a set containing kz′i−1 elements of Y . By (3) we now get:

ES∼Di−1
[f(uo | S)] ≤

1

k

(

(1− z′i−1)−

(

g(z′i−1) +
ℓz′i−1

k

))

≤
1

k

(

(1− z′i−1)− (z′i−1 − 1) ln(1− z′i−1)
)

=
1

k
(1− z′i−1) · (1 + ln(1− z′i−1)) .

On the other hand, consider an element uy ∈ Y . A random set from Di−1 contains uy with
probability zi−1, in which case the marginal contribution of uy is 0. Every other set S in the
distribution contains either kz′i−1 or kz′i−1 + 1 elements of Y , and thus, by submodularity, we can
upper bound the expected marginal contribution of uy to such a set with its marginal contribution
to a set containing kz′i−1 + 1 elements of y. By (2) we now get:

ES∼Di−1
[f(uy | S)] = (1− zi−1) ·

(

g(z′i−1 + 2/k)− g(z′i−1 + 1/k) +
ℓ

k2

)

≥
1

k
· (1− zi−1) ·

(

g′(z′i−1 + 2/k) +
ℓ

k

)

(4)

≥
1

k
· (1− z′i−1 − 1/k) ·

(

1 + ln(1− z′i−1 − 2/k) +
ℓ

k

)

,

where Inequality (4) follows by the concavity of g. Using the two inequalities we get,

ES∼Di−1
[f(uy | S)]− ES∼Di−1

[f(uo | S)]

≥
1

k
·
(

1− z′i−1

)

(

ln

(

1−
2

k(1 − z′i−1)

)

+
ℓ

k

)

−
1

k2
·

(

1 + ln(1− z′i−1 − 2/k) +
ℓ

k

)

≥
1

e · k

(

ln

(

1−
2e

k

)

+
ℓ

k

)

−
2

k2
(5)

≥
1

e · k

(

−
2e

k
(

1− 2e
k

) +
ℓ

k

)

−
2

k2
(6)

≥
1

e · k

(

−
4e

k
+

ℓ

k

)

−
2

k2
≥ 0 , (7)
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where Inequality (5) follows for a large enough ℓ (≥ 4e) since k ≥ ℓ by our assumption and
0 ≤ z′i−1 ≤ 1 − e−1. Inequality (6) follows by the inequality ln(1 − y) ≥ − y

1−y
, which holds for

y ∈ [0, 1). Finally, Inequality (7) and the last inequality both follow by considering a large enough
ℓ (≥ 6e) and recalling that k ≥ ℓ.

Since the last inequality holds for every pair of elements uo ∈ O and uy ∈ Y , it implies that
the set Mi chosen by the algorithm is exactly Y . Given this observation, the formulation (P ) of
Algorithm 2 in iteration i becomes:

(P ) max
∑

u∈Y ES∼Di−1
[x(u, S) · f(u | S)]

ES∼Di−1
[x(u, S)] ≤ 1/k · (1− zi−1) ∀u ∈ Y

∑

u∈Mi
x(u, S) + ℓ(S) = 1 ∀S ∈ supp(Di−1)

x(u, S), ℓ(S) ≥ 0 ∀u ∈Mi, S ∈ supp(Di−1)

We need to show that there exists an optimal extreme point solution for this formulation which
makes the algorithm set Di = D(zi). There are two cases to consider. If D(zi−1) and D(zi) have
the same states (i.e., ⌊kzi−1⌋ = ⌊kzi⌋), then Algorithm 2 can come up with a solution x∗ for (P )
assigning x(uj+⌊kzi⌋, S

S
j ) = (zi − zi−1)/PrDi−1

[SS
j ] for every 1 ≤ j ≤ k and the value 0 to the other

x variables (the values of the ℓ variables are induced by the values of the x variables, and thus, we
do not state their assignment). The solution x∗ is feasible since, for every 1 ≤ j ≤ k:

ES∼Di−1
[x(uj , S)] = PrDi−1

[SS
j ] ·

zi − zi−1

PrDi−1
[SS

j ]
= [1− (1− 1/k)i]− [1− (1− 1/k)i−1]

= (1− 1/k)i−1[1− (1− 1/k)] = 1/k · (1− zi−1) .

It can be checked that x∗ indeed leads Algorithm 2 to set Di = D(zi). To see that x∗ is optimal,
notice that it adds elements only to the smaller sets (which results in a larger marginal gain by
submodularity), and it adds every element to the maximal extent allowed by the first type of
constraints. Finally, to see that x∗ is an extreme point solution notice that it is the only solution
maximizing the objective function c · x, where c is a vector taking the value 1 exactly in the
coordinates for which x∗ is non-zero.

The second case we need to consider is when D(zi−1) and D(zi) have different states (i.e., 1
+ ⌊kzi−1⌋ = ⌊kzi⌋). In this case Algorithm 2 can come up with a solution x∗ for (P ) assigning
x(uj+⌊kzi−1⌋, S

S
j ) = 1 and x(uj+⌊kzi⌋, S

L
j ) = k−1(kzi−1− zi−1−⌊kzi−1⌋)/Pr[S

L] for every 1 ≤ j ≤ k
and the value 0 to the other x variables. The solution x∗ is feasible since, for every 1 ≤ j ≤ k:

ES∼Di−1
[x(uj , S)] = PrDi−1

[SS
j ] + PrDi−1

[SL
j ] ·

kzi−1 − zi−1 − ⌊kzi−1⌋

k · PrDi−1
[SL

j ]

= ⌊kzi−1 + 1⌋/k − zi−1 +
kzi−1 − zi−1 − ⌊kzi−1⌋

k
= 1/k · (1− zi−1) .

It can be checked that x∗ again leads Algorithm 2 to set Di = D(zi). To see that x
∗ is optimal, notice

that it adds as much as possible elements to the smaller sets (which results in a larger marginal
gain by submodularity), and only the remaining capacity given by the first type of constraints is
used to add elements to the larger sets. Finally, to see that x∗ is an extreme point solution notice
that it is the only solution maximizing the objective function c · x, where c is a vector taking the
value k + 1 in the coordinates for which x∗ is 1 and the value 1 in the other coordinates for which
x∗ is non-zero.

To complete the analysis of our bad instance, notice that O is a feasible solution and f(O) = 1.
On the other hand, Lemma B.2 shows that Algorithm 2 may terminate with a distribution over
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subsets of Y . The value of f for any such set S is at most:

f(S) = g

(

|S|

k

)

+
ℓ · |S|

k2
≤ e−1 +

ℓ

k
= e−1 +O

(

1

k

)

.
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