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Logical and mathemtical reasoning about imperative programs.!

Preliminary Report

Danicl L.civant

Carnegie-Mellon University

. A framework lor reasoning about programs.

1.1, Logical vs. mathematical reasoning,

‘There have been two traditions of formalizing reasoning about
programs and computations. one arithinetical in nature, the other logi-
cal. In this ehapter we propose Second-Order 1ogic, with controlled
forms of comprehension, as a framework in which both approaches
can he suitably represented. analyzed and compared. We also nain-
tain that it is by itself a nghly suitable framework for reasoning about
programs. computations and data types, and as a twol for deriving
metamathematical results,

It is well known that reasoning about computation can be car-
ried out within Peano Arithmetic [K1e52). Although this was demon-
strated  originally for Turing Machine computations, the method
adapts casily w reasoning about computations of imperative programs
(scc e.g. {Zuc80) and [BT81]). The cumbersome numeric coding, with
which such recasoning frameworks arc plagucd. is necessary only when
one confines oneself to the meager language of first-order arithinetic:
when the language is enriched, to allow dircct reference to program-
ming constructs, onc obtains a rcasomable framework for reasoning
about imperative programs. A formalism of this type might be
dubbed “Arithmetic of Programs”. In a sense, the "Non-Standard
Dynamic Logic" of Nemeti & als. [Nem82, ANS82). is such an arith-
metic.

Logics of programs, in the styles of Floyd, Hoare, Pratt and oth-
ers, represent an altogether different approach to reasoning about pro-
grams. Each one of these styles is based on a modal language for rea-
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soning about programs, with no cxtraneous reference to numbers or o
time, and on a mostly synfax driven axiomatics. Both choice of
language and choice of axiomatics reflect an attempt to capture the
analytic, a priori, meaning of programs, thercby justifying these for-
malisms as "logical”, as opposed to "mathematical”.

Without venturing a general differentiation between Logic and
Mathematics, it seems sound to agree that the infinite is not analytic,

‘and that reasoning about the infinite is, therefore, a mathematical

rather than a logical enterprise (cf. [Wan74]). (In Russell’s Logicism,

however, no such distinction is admited [Rus2038: 11A38]) Recall,
for example, that syntax-driven reasoning is impossible in First-Order
Arithinctic: for every D0 there is a T theorem of Peano Arith-
metic with no proof” where induction is used only over formulas with
fess than & quantifiers. It is then clear that some of the reasoning
about programs, namcely that part which deals with iterative constructs
such as looping and recursion, is rcally not logical, and can not be
svatax driven, ‘Thus, rcasoning about programs factorizes into reason-
ing about program compuositionality, for whosc logical character a ten-
able case can be made, and into a typically mathcmatical component

of reasoning about itcrative aspects of program exccution.

In Mathematical [ogic the term “logic™ has been used for for-
malisims which do involve the infinite in implicit and even explicit
ways, such as L., ,. and w-logic. The kinship of these two cxamples

to Dynamic Logic has been cxtensively explored, and to the extent
that these formalisms are "logics”, so arc all logics of programs
without further ado. However, the term "logic” is applied to formal-
isms of this kind only by cxtension: they were designed neither as
feasible carriers of reasoning, nor as conveyers of epistemological dis-
tinctions, but merely as technical tools (to calibrate cxpressivencss, to
characterize hierarchies, for proof-theorctic analysis, and so on). The
traditional aims of Togic cannot, however, be overlouked for logics of
programs. On the onc hand, no logic of programs has yet gained wide

1. An carly announcement of this research bore the title The logical completeness of
Hoare-style logles
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acceptance as a feasible carrier of reasoning about programs, while the
need for such a carrier is dire. On the other hand, we feel that funda-
mental meta-logical concepts, such as completeness and soundness,
have not yet been identified for logics of programs in a satisfactory
manncr, and that identifying the correct concepts depends on a precise

delincation of the "logical” component of reasoning about programs,

In summary, we wish to identify a formalism F satisfying the
following conditions, 'The first three criteria arc needed to delincate
the purely logical portion of logics of programs:

1. Traditional logics of programs have natural interpretions
n F,

2. There is a natural fragment Fy of F which captures
the "logical” portion of F.

3. The formulas (and terms) of F which are essential for
reasoning about pragrams are present in /.

The following additional conditions arc desirable for F to be
wseful as a formalism for reasoning about programs of independent
interest.

4. Reasoning about programs can be carried outin F in a
straightforward manner,

5. F

6. I
about less clementary programming language concepts,

is proof theoretically strong,

is potentially suitable for cxpressing and rcasoning

such as inductively defined data types, recursive pro-
cedures, proccdures as  parameters, concurrency and
polymorphism,

1.2, Second-Order Logic and Weak Second-Order Logic.

We now identify a solution to conditions (1—86).

Condition (2) implics, by Lindstrom’s Theorem [1.in69,E[°T84]
(scc also [Wan74, chapter 4]), that Fy must be a varant of First-
Order Logic. At the same time, (3) implics that the input-output rela-
tions gencrated by while-programs, for instance, should be expressible
in the language of I,. The input-output relation gencrated by a pro-
gramming language can be explicitly defincd using natural numbers as
an auxitiary notion (c.g. [Zuc80]). It can also defined, without any
auxiliary objccts. using quantification over rclations, as in §2.1 below.
This suggests the choice of Sccond-Order Logic as the formalism F.
The "logical” portion F; of F can then be taken as the restriction
of I’ to first-order comprchension, in the sense specificd momen-
tarily.

First Jet us recall in a nutshell the essentials of Second-Order
Logic. Given a first order language, say the language of Pure First-
Order Predicate logic. the corresponding second-order language is
obtained by using quantifiers over predicate Ietters as additional con-
structs. The intended, standard semantics, is that quantifiers over k-
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ary predicate letters range over all k-ary relations over the domain of
(ground) clements. Among these relations are the ones definable by

formulas of the language, so the Comprehension Schema,

Comp,: FRVX (R(X) «— @)
is valid under the standard scmantics, where ¢ is any formula of the

language.

In this language cquality and natural numbers are definable:

Y R(R(x) «— R{y))

x=y

fil

and

N(x) = VR(VR(z) = R(S(Z)) — R0 = R(x)).

the graph of any primitive recursive function is explicitly
Hence First-Order Arithmetic, in fact Sccond-Order Arith-
Mathematical Analysis), is intcrpretable in Second-Order
follows that Second-Order Logic is in fact a mathematical

Similarly,
definable.
metic (=
Logic. It
systemn, and is not a genuine logic in the sense of §1.1. It also foltows
that there is no formal calculus for Second-Order 1.ogic, since the set
of valid sccond-order formulas is not definable in (sccond-order) arith-

mectic, et alone cflectively cnumerable.

Nonctheless, a natural caleulus Ly for Second-Order l.ogic is
obtained by cxtending the quantifier axioms and rules of First-Order
Predicate 1.ogic to sccond-order quantifiers, and by adding the
Comprchension Schema as an axiom scheme [HA38). Equivalent cal-
culi can be defined using Gentzen's natural deduction style [Pra65), or
Genwzen's sequential calculus style {e.g. [Tak75]). In the naturat
deduction style Comprchension becomes implicit in the rules for
second-order universal quantificr climination and for second-order

existential quantifier introduction:

VRe Pl¥/R]

Pl¥IR] Ire

Here R is a k-ary predicate variable, and the substitution el¥/R}
of (the k-ary relation canonically defined by) the formula ¥ for R
in @ is defined in a straightforward manner,

This formalism can, however , be interpreted as a2 many-sorted
first-order theory {KK67). The sorts are ¢, for individuals, and &, for
k-ary relations (k2>0). Using, for each k>0, a predicate constant
Iy of sort (k. ...,1), an atomic formula R(n,....4) of
Sccond-Order  Logic be LRty ... ),
quantification over predicates becomes first-order, and Comprehension

can rendered by

tums into a first-order axiom schema.

From the Completeness Theorem for First-Order Logic it then
follows that the theory is complete for its models, which are simply
modcls of many-sorted first-order logic in which all instances of the



Comprehension Schema are valid. In such a model cach object » of
sort k represemts the k-ary relation R(x) = I,(r.%) over the
domain M of individuals, but these relations constitute any collec-
tion closed under sccond-order definability, not necessarily the entire
power set P(M*). Thus, L, is complete for validity in models of the
language of Sccond-Order Logic, with the collection of rclations
explicitly specificd, subject to the condition that it be closed under
second-order definability {Hen$0, £nd70]. These models ace referred
to as Henkin models.

Morc gencrally, one may consider subsystems of /.5, where the
Comprechension Schema is restricted to formulas in a given class C
of formulas. The only requirement on Henkin models of such
theorics is then that they be clased under definability by formulas in
€. Of particular interest is the subsystems Ly of L, of firsr-order
comprehension, that is, where Comp, is postulated only for first-
order formulas . We dub Ly Weak Second-Order Logic®.

Our feeling is that L, is in fact a variant of First-Order Logic,
and should qualify as a genuine logic (whercas L, s a first-order
mathematical theory). Shelving for now the cpistemological evidence
for this claim, we mention three technical facts which support it
Firstly, Ly, is schematically conservative over First-Order I.ogic, in
the following sense: If a first-order theory 7 is axiomatized by a col
lection T of schemas y[;], where the @ 's range over all (first-
order) formulas in the language of 7, then no new theorems in that
language will arise if the logic is expanded to L3, and where schemas
are interpreted eith ; ranging over all second-order formulas in the
language of T). For example, Peano Arithmetic is axiomatized using
the schema of Induction; no new first-order theorems arise from rea-
soning in L4y, with induction over all second-order formulas in the
language of arithmetic. This is to be contrasted with L, using the
Induction Schema over all second-order formulas, with unrestricted
Comprehension, permits the derivation of many first-order formulas
which are not theorems of Pcano Arithmetic (for exampie, a formula

rendering the consistency of Peano Arithmetic).

Sccondly, L,y is syntax oriented: if a formula ¢ is provable in
L. then it has a proof in which all formulas are internal first-order
instances of ¢, where the set C of these formulas is defined induc-
tively by: all subformulas of ¢ arein C;if QRY isin C (Q=V
or 1), and x € C is first-order, then Y[x/R] € C. Note that C
may be characterized as the set of term-substitution instances of a cer-
tain finite set of fonmulas, gencralizing only slightly the textual subfor-
mulas of @.

Finally, the proof theory of 1.y is essentially the same as that
of First-Order Logic. Proofs of such meta-logical propertics as nor-
malization of natural deductions and cut climination for sequential

2. This use of the temm should be distinguished from other uses, such as for logic with
second-order quantifiers ranging over finite sets.
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proofs have the same complexity as for first-order logic.

In summary, we arc interested in Second-Order Logic with its
standard semantics in L, and in L. We shall writc =%, =42
and =12 for semantic cntailment in these three formalisms, respee-
tively.

1.3, The relevance of Second-Order Logic and weak
comprehension 1o Computer Science.

The second-order definability of the natural numbers, mentioned
above, is one cxample of the definability of all inductively dcfined
sets. Among such scts are the inductively defined data-types, such as
lists and trees. Induction for objects of the data type is an immcediate
consequence of the Comprehension Schema to the type's definition.

Similarly, fixpoint operations in denotational semantics of pro-
gramming languages arc akin to inductive definitions. The use of res-
tricted comprehension is also relevant to denotational scmantics: one
considers the space of continuous functions, for example, rather than

the space of all functions aver given domains.

On a more specific and technical level, the defisability of induc-
tively defined data types can be combined with second-order reasoning
about purely functional programs, yielding a highly economical and
strcamlined calculus for reasoning about functional computations over
such types [1.¢i®3). From this there follow conncctions between
second-order (natural-deduction) proofs on the one hand and the
lambda Caleulus, palytnarphic types, and complexity classes on the
other hand. The relation between polymorphism and second-order

logic is clearly fundamental {Gir72, Rey74, 1F1.083, MPS83, Leigd).

Finally, we notc the increasing prominence of comprehension
principles in current studies in the Foundation of Analysis. Various
principles and classical thcorcms have been identified as cquivalent
{modulo weak proof theorctic means) to particular forms of
comprechension [FSS83]. Restricted forms of comprchension are
therefore a natural and powerful tool in calibrating the logical strength

of theorems of Mathematical Analysis.

1.4. Classification of Second-Order formulas.

Formulas in the language of Sccond-Order Arithmetic can be
brought to a prenex normal form, by the Tarski-Kuratowski-Kleene
procedure [Rog67]. A prenex normal form formula has a block of
alternating sccond-order quantifiers, followed by a first-order formula.
The crucial step of the TKK procedure is Kicene's obscrvation that
sccond-order quantifiers permute (in an appropriate scnse) with first-
order quantifiers:

WV x IR [R) «— 105V xelQ,),

where  Q,(1y,* -+ &) = Qx.ty, -+ - .1p). The implication from left



to right is intuitively valid by the Axiom of Choice, but is not a is consistent with the cxistence of side effects. Also, programming
theorem of L, constructs such as recursive procedurcs may affect an unbounded por-

Though sccond-order formulas can not be casily classified in tion of the store, but for a tcrminating calculation all store locations

Ly, two classes of formulas stand out as particularly relevant to our activated by recursive calls would be treated as auxiliary store, and

discussions below, We say that a sccond order formula @ is 11 £ if would be subjected to garbage collection without cffect on subsequent

no sccond-order universal quantifier occurs negatively in g, and no calculation (at lcast not when the model of cxccution is idealized).

second-order cxistential quantifier occurs positively. The definition of We describe the input-output behavior of a program without

Zf formulas is dual. When insisting on the prenex normal form of a explicit reference to the store. To achieve this we refer (o the store

1TF formula we shall use the phrase "pure 1 X indircctly through a fixed enumeration (without repetition) of all pro-

gram variables, xy,--- . If a program « affccts only variables

Proposition 1. It @ bea M# formula. among <x,l <o X 20 where i< - K, then we describe the input-
output behavior of a by a rclation M, over 2*; (logical) vari-
B¢ if Elle iff -2 S i -

ables, of which i, variables denote the initial values of all program

Proof. 'The implications from right to left are trivial, since a standard variables x -+ x;,. and the remaining. i (ogical) variables denote

second-order model is a Henkin model of /.4, and a Henkin model of the terminal values. More gencrally, we shall need formulas Mg,
Ly is amodel of Ly. describing the cffect of a on the store <xp - -+ x,2, for any n2>i.

Suppose |5 ¢, and consider a Henkin model <KM,C> of L,, We define below the input-output refation gencrated by certain
whicre M is the ground domain and C the collection of relations. programming constructs. We do include recursive procedures, but not
¢ is true in the standard model over M, and restricting positive such constructs as call-by-name, procedurces as parameters, typing (i.c.
occurrences of universal quantifiers or negative occurrences of existen- abortion on type crrors) or type as arguments (as in RUSSELL).
tial quantifiers (to C) weakens a formula. So ¢ is true in <M,C. These will be treated clsewhere.  In the following dcfinitions we

The second implication from Teft to right is proved similarly. m assume throughout that the program variables (active) in the program

a have all index <n, and that # and v arc n-tuplcs of variablcs,
all distinct.

2. Direct reasoning about imperative programs. .
FElementary constructs:

2.1. Explicit definition of the operational semantics of pro- o Ifa = x<tthen

gramming constructs. Miuyv] =
We show that the input-output relation determined by program- YR [RQuy, -« w2 f{@ 1X) i 41, -+ u,) = R(V)).

ming constructs is definable by TI{f formulas. The two key ideas are, .. .
& y y This is of course the same as v, =1[@ /X)), vy=u; (j#i).

o If @ = B;y,then

firstly, that the sct of initial traces of a computation is inductively
definable: sccondly, that the "principai” storc used by a program is
finite. The latter point may be controversial when it comes to recur- MIE7) = VR [((VHML(E.2) = R@E) =
sive procedures, for cxample. Our point is that such computations IwR () A T

proceed through an unbounded number of auxiliary storcs, cach finite,

which have only a paranthetical cffect on the computation, In con- o If a = tost g, then

crete implementations, garbage collection is the closing paranthesis. MEF) = VRRG) agld 7] — R
In cxplicit definition, as below, the paranthesis arce the scope of (first- .

order) universal quantifiers. o If @ = if @ then 8 clse y, then

We assume, for simplicity and without loss of generality, that _
Miuv] =

programs arc over a single type of individual objects. As mentioned, - . o _
el x]— Mjfa.v}. A —plalx] = M 7).

we also assume that the input-output behavior of a program a
involves only a finitc number of store locations; and that, conse- o If @ = BUy (non-detcrministic choice), then
quently, it constitute a 2k-ary relation R, over ground objects. It is
nis 31 = nEs o1 ngs
customary to assume that the store locations affected by a program are Miuy] = Mylu.v}v Mifu.vl

the variables active (=assigned to) in the program, but our assumption
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o If @ = x;+ 2. (non-decterministic assignment) then

Mluy] =
VR Ry -+ w1z, uy1, -+ - ) = (REV))

looping:

e If @ = while ¢ do B, then

M 7] =
—@[vIX] A VYR [RU) A Progg [RT— RV,

where

Progg [R] =
VZw[R(Z) A plzX] A M}[Z, W] — R(W)).

Procedures:

The point of our including procedurce is to support our claim
that the operational scmantics of programs can be dcfined using a
finitc number of store locations. Although sketchy, we hope that it
will convey the idea.

A collection of procedure definitions
Qix;)) « B, j€J.

form an cnvironment, with the usual scope rules. The variables
affected in the environment are the ones global in some of the pro-
cedure bodics. Suppose n is the last index of an affected variable.
The proper store of a procedure Q; is the sct of procedure arguments
(=formal parameters). W.lo.g. the later are consecutive variables,
following the last affected variable of the environment. Let r(j) be
the number of actual parameters of Q;. Let P; (€J) be predicate
letters, with arity n + r(f), respectively.

Suppose a is in the scope of the environment above. The pro-

cedure definitions may be (mutually) recursive, and a may use glo-
bal procedure identificrs, i.c. ones for which no definition is given.
o Suppose @ = call Q;r) (call by valuc). The variables affected
by a arc the same as the oncs affected in the environment, plus the
proper store of B,y (if jOEJS). Below, # and v denote the initial
and final values of the variables affected, respectively. Z and w
denote the initial and final values in the proper store (the initial values
are irrclevant).

Lcfine
Miluz vw] =
OV Pjes | s A B (BYAM [5.3) = PADY
= (Pl t[ul5]) = Pif7 W)

Note that when Q; is a global procedure identifier, the
definition boils down to

138

Piofii 1[al %)) = Puf7 W),

where Py is a free predicate variable.

We write M, for M7 where n is such that A7 is defined,
i.e. if all variables affected by a have index <n. We may require
that n be the smallest such number, but the choice is of no conse-
quence; if n<n, then (the universal closure of)

M, 5] = M2z, %)
is clearly a thcorem of L.

Given the definitions above, or similar definitions for other pro-
gramming constructs, we define the canonical logic of the program-
ming language at hand to be L3 augmented with the definitions.
And we define the canonical calculus of the language to be L, simi-
larly augmented.

2.2, Partial correctness assertions and termination asser-
tions,

A partial correctness assertion is a formula of the form
plu]aM [, v] = (v}
A total-correctness (or termination) assertion is a formula of the form
pla) = I5 (M [i@.7] A ¥(3]).

In both cases ¢ and ¥ are first-order, with no occurrence in ¢ of
a variable in #, and no occurrence in ¥ of a variable in ¥.

Proposition 2. For cvery program a. the formula M, is A

Proof. Inductionon a.®

Proposition 3, A total-correctness assertion is valid iff it is a thcorem
of L4. Hence, the canonical logic of the programming language is

complete for total correctness assertions.
Proof. By proposition 2 cvery total correctness asscrtion is a I} for-

mula. The statement thea follows from proposition 1. 8

Note that proposition 3 docs not imply that cvery termination
assertion truc over the natural numbers is provable in /.. The ter-
mination assertion above, when interpreted over natural numbers, is
rendercd by

AN () A glin) = 35 (M [3,7) A 7))

which is no longer a T1f formula.



2.3. Meyer’s Separation Principle.
In {[MH82] and [MMB&3] it has been observed that if programs a

and B differ in their input-output behavior on some structure, then
they have different partial-correctness theorics, and different total-
correctness theories: there are first-order formulas ¢ and ¢ such
that onc of the partial-correctness assertions @{aly and @{B}Y is
valid, while the other is not; and similarly for total-correctness.

The proof for the partial-correctness case in [MH82, thcorems
4.1,4.4] uscs numeric (Godel-) coding and a first-order axiomatization
of the ring of integers [MHS82, appendix B). The proofs for the total-
comrectness case [MH82, theorem 5.1; MM83 theorem 1] use 2 approx-
imations of recursive programs by simpler programs.

We show how Meycr's Scparation Principle for partial correct-
ness falls out as a trivial consequence of the TIf definability of the
semantics of programs. ‘This holds for any programming language

whose semantics has such a definition.

Proposition 4 (Separation by partial-correctness). Suppose a and 8
arc programs such that

A'Ia > A'I#

is not valid. 'Then there is a fisst-order formula ¢ such that one of

the partial correctness assertions

truc{a}y and true{B}y

is valid, while the other not. Morcover, the valid one is a theorem of
Lj.

Proof. Supposc M is a structure where
(1) ME MG but MK MED,

where @ and b are tuples of clements in the {ground) domain of
M. Lot M, = \JRy, be the purc TIf form of M,, with x,
first-order; similarly for 1t7, = VR Xg- By (1) there is a model m*
such that

) M'E=yEhL

Let

vixl= Tax,la sl
Then

b= Myl v] = Y51x)
trivially. But

FeM [, v] = v/ X],
since

M @1 )i 7] = M.[E. 7,
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by (1), but
M E1E)bI7) = v,
by (2). ®

To apply the same method to Meyer's Separation Principle for
total-correctness we need an existential definition of the scmantics of

programs. Such a definiticn is straightforward in L, (using

cquality as a primitive, this time), Using A?,,[E.F] to denote the
input-output relation gencrated by program a, we dcfine, for exam-
ple, for a = while @ do 8,

M (i 7] = gl IX) A (v)s0 StepfT17)),
where

Stepllz] = z=u,

Stepy Tl = 37 (Step;[7) A glF 3] A M4l5,7).

Meyer's Separation Principle for 10tal correctness theorics is then
proved by an argument dual to the above.

Note that L. isusced here pusely as a technical tool,

3. Modal reasoning about imperative programs,

3.1. Modal languages and logically closed fragments,

The intended semantics of modal Jogics is usually based on some
notions of “state” and of "tansition”™ between states, but with no
explicit reference made o cither notion in the modal language itsclf,
Explicit reference to states is avoided by considering states only
insofar as they are related by transitions. Such states, the “before™
and "after” of a transition 7, can be implicitly separated in a formula
by the modal operator-occurrence which denotes 70 the scope of that
occurrence refers to the aftermath of the transition, the rest of the for-

mula to its antecedent.

Pratt has applied these ideas (o reasoning about programs, yicld-
ing Dynamic logic [Pra76, Pra80, [ar79]). The scmantics of Prait’s

box and diamond modal operators is given by
1) [alp = VvV (M (x7)— ¢[vIX)
and
Q) <o = IMZ5) A @TIZD

These definitions are quite gencral, and may be applied to any pro-
gramming language (whose opcrational semantics is dcfinable in
Second-Order Logic).

We can then define, for any programming language, its canoni-
cal modal language, built freely from first-order logic using the modal-

ities f[a] and <ad>, where a ranges over the programs in the



language. Each formula ¢ in this language can be translated into a
formula @™ of Sccond-Order Logic, using (1) and (2). A canonical
logical formalism and a canonical mathematical Sormalism can now be
specified: “The first consists of the modal formulas @ for which ™?

is 4 theorem of 1.3, The sccond corresponds similarly to Ly

It may be appropriate to note that not every form of reasoning
about programs is modal. By definition, whencver one reasons about
states dircctly, rather than about transitions, the reasoning is not
modal, and attempts to present it as such are unnatural at best. Much
of the reasoning about concurrency, for cxample, falls under this

comment.

In practicc onc may be interested in anly a fragment of the
modal language of a given programming language. Hoare's Logie, for
example, is a formalism for deriving only modal formulas of the form
¥ = [a]y. Similarly, Hoare-style calculi for total correctness asser-
tons are formalisms for deriving formulas of the for ¢ = <ady,
Are there sound criteria for choosing particular sublanguages of

Dynamic Logic, and attempt to design formalisms for them?

Our use of 1., and Ly as master theories indicate a relative
criterion of this kind. Suppose one is interested in proving modal for-
mulas of a particular form, say {a]e. It may be necessary to use
modal formulas of other forms in such proofs. (To sec what formulas
arc nceded, one looks at normal natural deduction proofs, or cut-free
scquential proofs of Ljy; sec 83.2). For example, it becomes quickly
clear that proving a formula of the form [al$ may require proving
formulas of the form ¢ — [Bl¢. Somc more reflection will show
that, for while programs, no additional forms of modal formulas are
necessary. The choice of partial correctness assertions as the only use
of modality is therefore clearly natural.

We now generalize this example, Let L be the modal language
of a programming language, F a fragment of L. The logical closure
of F is the smallest fragment C of L, containing F, and such that
for any formula @ € C, if @ is a thcorem of /.y, then P has
a proof in which al! (translations of) modal formulas arc in C. A
fragment ¥ of 1. is logically clused if it is cqual to ils own closure,
A concept of mathematically clused fragments can be Jefined similaely,
with L, in place of /., but it is of lesser intcrest (because the
unrostricted use of Comprechension  usually  prohibits  non-trivial

mathemaltically closed fragments).

Using this tcrminology, partial corrcctness assertions constitute
the closure of the fragment { [ale | @ first-order, a a while-
program }. This is no longer true for a programming language allow-
ing global procedures {comparc [MM83]). Similarly, logical reasoning
about concurrency (i.c. reasoning in L) can not be confined to par-
tial correctness assertions, as cliscussed in [BroRS). lusisting on using
only partial correctness assertions here may lead to rather contrived
formalisms, Another interesting example is pro-
vided by the fragment
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{ <ad¢@ | @ first-order, @ a while-program }. Its closure is not the
class of total corrcctness assertions. Consequently, the fragment con-
sisting of total correctness asscrtions is not logically closcd.

Given a logically closed fragment F, the canonical logic for F
is the canonical logic (for the pr()gl:amming language at hand) res-
tricted to F.

3.2. The logical completeness of Hoare logic.

We arc now in a position to show that Hoare Logic for while
programs is complete for logical reasoning about such programs, By
Hoare logic (for while programs) we understand here the modal cal-

culus H over partial correctness assertions, with Assighment and

Invariance as axioms (axioms 1 and 9 in [Ap81]), and with the Com-
position, Branching, Itcration and Conscquence Rules (rules 2,3,4,5 in
[AptB1)).

Proposition 5. H is (strongly) sound for =%, and hence for =5,
Le., if T is asct of first-order formulas, and

I yefaly

then

T b=, @l 1 x] A M [7¥] = $[v/x]
Proof. Verify that the interpretation of cach axiom of H is provable
in Ly, and that the inference rules are valid in L. m

‘The converse is somewhat more complicated,

Lemma 6. (Interpolation for TIR formulas) Suppose ¢ — ¢ is a
1T formula. IFitis a theorem of [y, then there is a first-order for-
mula ., in which all first- {and sccond-) order variables are common
to @ and ¢, suchthat ¢ = x and x ~* ¥ arc theorems of Py

Prool. Similar to any one of the standard proof-theoretic proofs of

the interpolation thecorem for First-Order Logic (see ¢.g. [Tak75)). m

Lemma 7. Let a = By, andlet ¢ and ¥ be first-order formu-
las. Suppose that

(1) glu)aM,fu,v] = 7).
is a theorem of Lg;. Then there is a firs-order formula ¢ such that

ol M4l 7] = d7]

E)AM 271 = V7]

are theorems of L.

Proof. Suppose (1), i.c.



plu] A
VR [(VZ(M] (7)) > REZ) —
F2RE) AMIE ).
- [V}
by a normal proof of Ly [Pra7l]. It is casy to scc that there are

first-order formulas x;, i€7, such that the following is derived:
® A ngU = E) = ).
where

U = VI( Mg, 1) = xilzD

-

and
E = 35 x,[2] A MZ7),
and where ¢ = @[u] and ¢ = Y[v]. Thus
P A ng(CUVE) >,
and so
@ AV A UDA (A EDY =
where J =7 — J. It follows that
Aed @A A U) = (A 5E) = ¥}

Note that the premise of the main implication, in cach conjunct, has
no occurrence of variables in ¥, and that the antecedent has no
occurrence of variables in #. By lemma 6, it follows that there are
first-order formulas §;, JC/, with no free occurrence of any variable

in &, v, such that
e AngT U 4

and
£ AnGE

Substituting the definitions of U; and £, this implics, for cach
Jjci,

Vi VZ [@aMy = (x;v4) ]
and

Vi i VZlxj A&y A M, = ¥])
where

Mg= Myiz)l, M,= MJ[Z7])
This implies

VZilo aMg—=viux;viED]

and
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v;[’\jt.’xj Af]AM', _‘¢lr

Hence

o AMg = AV x; vED]

and
[vie(njer xj nEF)Y AM ) = .

The proof is then concluded by applying the following lemma. m

Lemma 8. For any set /, the following schema is derivable in Propo-
sitional Logic.

NelVie Biva))

Vied Aja Py A a5 )

Proof. Assume the premisc truc and the conclusion false. Then =gy
for all JCI. Taking J=1I, we get from the premise that Pi, holds
for some ig€l. Let Jy = I-{ip}. Then the premise implies simi-
larly that p;, holds for some i1€7y, unless /7y = @. Continuing, we
scc that p; holds for all i€J. But then A;; p; holds for J=1.
Also, the assumption for J = @ implics ¢, since and cmpty dis-
junction is true. ‘Thus the conclusion holds for (hé disjunct J = I, a
contradiction, @

Proposition 9, (Completeness of Hoare's Logic for logical reasoning
about programs) H is complete for logical reasoning about programs:
if a partial correctness assertion is provable in Loy, then it is provable
in H.

Proof. By induction on the program in the partial correctness asser-
tion. l.emma 7 is the induction step for the composition case. Other

cascs arc trcated similarly. W

Corollary 10. Hoare’s Logic is exacdy the canonical logic for partial
correctness assertions (for while programs).

Proof, Immediate from propositions 5 and 9. &

Proposition 9 can be slightly generalized to the following, which

we usc in the scquel.

Proposition 11. (Strong Complcteness of Hoare's Logic) If a partial
correctness assertion is provable in L, from a set of first-order for-
mulas (or cven Zff formulas), then it is provable in H from the
same sct. B
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