
Logical and mathemlicnl reasoning ahout impcrdtive programs.’

Daniel I.civant

~imrcgir-Me/km CJmkmOy

‘l‘llcrc llavc bccli 1~ Irditicms of fimi;~li/itlg rc;lwlitl~ shout

progrxns ;Illd compul;tlioii\. one ;Iritllll~c~ic;~l ill Ij;Ilurc. 11~~ olljcr logi-

cal. In tilis chaplcr WC propusc Sccoud-Or&r I .ogic. with controlled

I;mns of ci~~~i~,rclicnsioll, :I$ it friuncaor k ill which both approaches

can hc suirahly rcprc<cntccd. ;mal)~cd ;IINJ cornparcd, Wc also main-

tain that it is by itself a htghly suil;lblc fr;lmcwork for rc;lsoning &out

prugrams. comput;ltions ;~nd d&l types, and as a tool for deriving

mctamathcmnticd rcsul Is.

It is well known that reasoning &out compul;ltion can hc car-

ricd cu within Pc;mo Arithmetic [KlcSZj. hlthougl~ this was dcmun-

strarcd originally for ‘l’uring Machine computa:ions. the m&d

ildilpts easily to rcasonin g about computiltions of impcrativc programs

(see c.g. [%ucSO] and [hI‘SI]). ‘l‘hc cumhcrsomc numeric coding. with

which such reasoning frameworks arc plilgucd. is ncccssaly only when

(UK Coflfincs oncsclf to the mcagcr language of’ first-order arithmetic:

when tic language is cnrichcd. to allow direct rcfcrcncc to program-

ming constructs, one obtains a rcasonahlc framework for reasoning

about impcrativc programs. A formalism of this type might be

dubbed “Arithmetic of Programs”. In a scnsc. the “Non-Standard

I)ynamic I.ogic” of Ncmcti & als. [Ncm82, ANSSZ]. is such an arith-

metic.

I.ogks of programs, in the nylcs of Floyd, Hoarc. Pratt and oth-

ers. rcprcscnt an altogether diffcrcnt approach to reasoning about pro

grams. Fkh one of these styles is based on a ttlodollanguagc for rea

permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for direct
commercial advmtage, the ACM copyright notice and the title of the
publiation and its date appear, and notice is given that COpYin is by
permission of the Association for Computing Machinery. To copy
otherwise., or to republish, requires a fee and/or specific permission.

01984 ACM 0-89791-147-4/85/001/0132 $00.75

soning about programs, with no extraneous rcfcrcncc to numbers or to

time. and on a mostly syntax driven axiom&s. Iloth choice of

language and choice of axiomatics rcflcct an attempt to capture the

analytic, a priori, meaning of programs thcrcby justifying these for-

malisms as “logical”, as opposed to “mathematical”.

Without venturing a gcncral diffcrcntiation bctwccn Logic and

Mathematics it seems sound to agree that the infinite is not analytic.

and that reasoning about the infinite is, thcrcforc. a mathematical

rather than a logical cntcrprisc (cf. [Wan74]). (In Kusscll’s LogiciSn4

howcvcr. no such distinction is adnittcd (Rus20.3S: I l&X3].) I~cCall,

for cxinnplc. tl~t syntax-driven rcilsol\ing is impossible in First-Order

Aritliinctic: for cvciy k>O thcrc is a lip dlcorcir of I’c;ino Arilh-

mctic with no proof whcrc induction is used only over formulas with

less than k quantificn. It is then clear Ihat wmc of the rclrsoning

about programs, namely that part which dcls with itcmtivc constructs

such as looping and recursion. is rcillly not logical. anti can not bc

s!*ntax driven. ‘I’hus, reasoning about programs f,acnctorizcs into rcason-

ing about program compositionality, for whose logical character a ten

;lblc caw ciln bc made. ;md into a typically mathematical component

of reasoning about itcrativc aspects of program cxccudon.

In Mathematical I.ogic the tcnn “logic” has &n used for for-

malisms which do involve the infinite in implicit and cvcn explicit

ways. such as I,,,,, and w-logic. ‘fhc kinship of thcsc two examples

to Dynamic Logic has been cxtcnsivcly cxplurcd. and to the cxtcnt

lhat thcsc formalisnis are “logics”. so arc all logics of programs

withoul further ado. Howcvcr. the term “logic” is applied to fonal-

isms of this kind only by cxtcnsion: they wcrc dcsigncd ncithcr as

fcasiblc carriers of reasoning, nor as convcycrs of cpistcmologicat dis-

tinctions, but mcrcly as technical tools (to calibrate cxprcssivcness to

charactcrizc hicrarchics. for proof-thcorctic analysis. and so on). The

traditional aims of I.ogic cannot. howcvcr, bc ovcrlookcd for logics of

programs. On the one hand, no logic of programs has yet gained wide

132

http://crossmark.crossref.org/dialog/?doi=10.1145%2F318593.318625&domain=pdf&date_stamp=1985-01-01

acccpuncc as a fcasiblc carrier of reasoning about programs, while the

need for such a carrier is dirt. On the other hand, WC fccccl that funda-

mental mcta-logical conccpa, such as complctcncss and soundness,

have not yet been idcntificd for logics of programs in a satisfactory

manner. and that identifying the correct concepts dcpcnds on a precise

delineation of the “logical” component of reasoning about programs,

In summary, WC wish to identify a formalism IT satisfying the

following conditions, l’hc first three critcriaarc nccdcd lo dclincate

the purely logical potion of logics of programs:

Traditional logics of programs have natural intcrprctions

in F.

Thcrc is a natural frugmcnt I:L of 1: which captures

tic “logical” portion of F.

‘I’hc limnulas (and terms) of I’ which arc esscntiat lb

rotsoning aboul plIlglXIllS arc prcscnl iii /$, .

‘Ihc following additional conditions arc dcsirahlc fur F to hc

useful as il formalism for rcilsoiiing ;Ibout pn~griltlls of indcpcndcnt

iutcrcst.

4. Rciisoning about programs can bc carried out in 1: in a

s~r~~iglltfi~rward manner.

5. 1,‘ is proof thcorctically strong.

6. I: is polcntially suitable for cxprcssing and reasoning

ahout less clcmcntary programming Ianguilgc conccpls,

such as inductively dcfincd dat;l types. rccursivc pro-

ccdurcs, pruccdurcs as paramctcrs. concurrency aud

polymorphism.

1.2. Second-Order Logic and Weak Second-Order Logic.

WC now identify a solution to conditions (l-6).

Condition (2) implics, by lindstrum’s l’hcorcm [l.inG9,HT84]

(xc also [Wan74. chapter 41); that FL must bc a variant of First-

Order I.ogic. At the same time. (3) implics that the input-output rela-

tions gcncrcitcd by while-programs, for insfancc. should bc cxprcssible

in the hnguagc of 1:‘. ‘lhc input-output relation gcncratcd by a pro-

gramming language can bc explicitly dcfincd using natural numbers as

an auxiliary notion (c.g. IZucSO]). It can also dcfincd without any

auxiliary ohjccts. using quantification over relations. as in 52.1 below.

Ihis suggests the choice of Second-Order Logic as the formalism F.

Ihc “logical” portion p~ of I: can then bc taken as the restriction

of 1: to first-order comprchcnsion. in fhc scnsc spcciticd momen-

tarily.

First let us recall in a nutshell the csscntials of Second-Order

Logic. Given a first order language, say the language of Pun: First-

Order Prcdicatc I-ogic. the corresponding secorrd-order language is

obtained by using quantifiers over prcdicatc lcttcrs as additional con*

structs. The intcndcd. standard semon/ics, is that quantifiers over k-

ary prcdicatc lcttcrs range over all k-ary relations over the domain of

(ground) clcmcna. Among dicsc relations arc UIC ones definable bb

f~~\Uas ofthc bnguagc. SO the Cmprrhrrrsiun Schema,

Comp,: sRV/x (R(E) +-b V),

is valid under the standard semantics, where cp iS any formula of the

language.

In this language equality and natural numbers are definable:

x-y E VR(R(x) ++ R(y))

and

N(x) e VR(Vr(R(z) + R(S(z))) -b R(O) + R(x)).

Similarly, tic graph of any primitive recursive function iS e@iCiuY

definable. Hcncc First-Order hrithmctic, in fact Second-Order Arith-

mchc (= Mathematical Analysis). is inrcrprctable in Second-Order

Logic. It follows that Second-Order Logic is in fact a mathematical

system, and is not a gcnuinc logic in the scnsc of $1.1. It also follows

lhnt thcrc is no fonn;il c&x~lus for Scyond-Order I.ogic, since the set

of valid second-ordcl formulas is not dcfinablc in (second-order) a&h-

mctic. Ict alone clTcclivcly cnumcrablc.

Nonclhckss. a natural calculus I,* for Second-Order I,ogic is

obtained by cxtcnding the quantifier axioms and rules of First-Order

Prcdicatc I.ogic to second-order quantilicrs, and by adding tic

Comprchcnsion Schema as an axiom schcmc lHh38]. Equivalent cal-

culi can bc dctincd using Gcntzcn’s natural deduction style [Pra65], or

Gcntzcn’s scqucntial calculus style (c.g. rfak75]). In the natural

deduction style Comprchcnsiou bccomti implicit in the rules for

second-order universal quantifier elimination and for second-order

cxistcntial quantifier introduction:

cplWR1 3RT

Here R is a k-ary prcdicatc variable, and the substitution cp[#lR]

of (the k -ary relation canonically dcfincd by) the formula # for R

in 9 is defined in a straightforward manner.

This formalism can, however , bc intcrpretcd as a many-sorted

first-order theory [KK67]. The sorts are 1. for individuals, and k’. for

k-ary relations (k 20). Using. for each k20, a prcdicatc constant

I& of sort (R,r. . . . ,&I. an atomic formula R(rl, . . . , c) of

Second-Order Logic can be rendered by I,@,I~.tk).

quantification over prcdicatcs becomes first-order, and Comprehension

turns into a first-order axiom schema.

From the Complctcncss Thcorcm for First-Order Logic it then

follows that the theory is complctc for its mod& which arc simply

mod& of many-sorted first-order logic in which all instances of the

133

Comprchcnsion Schema arc valid. In such a model each object r of

sort i represents the k-ary Elation R(x) I Ik(t.Y) over the

domain h4 of individuals, but these relations constitute any collec-

tion closed under second-order definability. not ncccssarily the entire

power set P(M’). Thu.% L2 is complctc for validity in mod& of the

language of Second-Order Logic, with the collection of relations

explicitly spccificd. subject to the condition that it bc closed under
second-order &inability [HcnSO. I’ndlOl. ‘I’hcsc mod& arc rcfcrrcd

to as Her&~ nrodels

Marc gcncrally, one may consider subsystems of /,2, W~WC the

Comprchcnsion Schema is rcstrictcd to formulas in a given class C

of formulas. The only rcquircmcnt on Hcnkin models of such

thcorics is then that they bc closed under dcfmnbility by formulas in

C. Of particular interest is UIC subsystem Lzl of 1-2 of@order

comprehension, that is, whcrc Comp, is postulated only for first-

order formulas I. WC dub L21 Weak Seconr&O&cr Lo&.

Our feeling is that L,, is in fact a variant of First-Order Logic,

and should qualify as a genuine logic (whereas L2 is a Jirst-order

mnfhcmnficd theory). Shelving for now the cpistcmological evidence

for this claim, we mention three technical facts which support it.

Firstly, Lzl is schematically consetvafive over First-Order J-ogic. in

the following sense: If a first-order theory T is axiomatized by a col-

lection r of schemas &J, where the (p ‘s range over all (first-

order) formulas in the language of T. then no new theorems in that

language will arise if the logic is expanded to f.21, and where schema

are interpreted eith 5 ranging over all second-order formulas in the

language of T). For example. Peano Arithmetic is axiomatized using

the schema of Induction; no new first-order theorems arise from rea-

soning in L21. with induction over all second-order formulas in the

language of arithmetic. This is to be contrasted with L1: using the

Induction Schema over all second-order formulas with unrestricted

Comprehension. permits the derivation of many first-order formulas

which are not theorems of Pcano Arithmetic (for example, a formula

rendering the consistency of Pcaoo Arithmetic).

Secondly, Lzl is syntax oriented: if a formula cp is provable in

L21, then it has a proof in which all formulas are infemd firs-order

instances of (9, where the set C of these formulas is defined induc-

tively by: all subformulas of v are in C; if QRJl is in C (Q=\d

or 3). and x E C is first-order, then #[x/R] E C. Note that C

may bc characterized as the set of lcrm-substitution instances of a ccr-

Llin finite set of formulas. gcncralking only slightly the tcxtuill subfor-

midas of ‘p.

Finally. tbc proof theory of 1,21 is csscntially the Silmc as that

of First-Order Logic. Proofs of such mcla-logical propcrtics as nor-

mJization of natural dcdoctions and cut elimination for scqucrrtial

2 This USC of the ten should bc diiingukhed hum other us such u for logic with
sccond-udcr quantifiers ranging over linite seti

proofs have the same compicxity as for first-order logic.

In summary, WC arc intcrcstcd in Second-Order Logic with its

standard semantics in 1.2, and in I.,,. WC shall write +s. b“

and bLzl for semantic entailment in thcsc three formalisms, rcspcc

tively.

1.3. The relevance of Second-Order Logic and weak

comprehension IO Computer Science.

The second-order d&ability of the natural numbers, mcntloncd

above, is one cxamplc of the definability of all inductively defined

sets. Among such sets are the inductively dcfincd data-types, such as

lists and trees. Induction for objects of the data type is an immediate

conscqucnce of the Comprchcnsion Schema to tic type’s definition.

Similarly, fixpoint operations in denotational semantics of pro-

gramming languages are akin to inductive definitions. The USC of CCS’

trictcd compmhcnsion is also rclcvanl to dcnotational scmantlcs: one

considers the space of conlittuous functions. for example, rather than

IIIC spi\cc of all futtc/irrtts over given domains.

011 a nwc specific and technical lcvcl, the dclinability of induc-

tivcly dcfincd data types can bc combined with second-order reasoning

about purely functional programs, yielding a highly cccmomical and

slrcamlincd calculus Tar reasoning about ftmctional computations over

such types [l.ci83]. J+om this thcrc follow connections bctwccn

second-order (natural-deduction) proofs on the one hand and the

I;unbda Calculu$ polymorphic types, and complexity classes on the

other hand. The relation bctwccn polymorphism and second-order

logic is clearly ~mdamcntal IGir72, Rcy74,1-? -083, MPS83. L&4].

Finally, WC note the increasing promincncc of comprchcnsion

principles in current studies in the Foundation of Analysis. Various

prlnciplcs and classical thcorcms have hccn idcntificd as equivalent

(module weak proof thcorctic means) to particular forms of

comprchcnsion [FSS83]. Rcstrictcd t%ms of comprchcnsion are

thcrcforc a natural and powerful tool in calibrating the logical strength

of ~J~corcms of Mathematical Analysis

1.4. Class~@arion of Second-Order formulas

Formulas in the language of Second-Order Arithmetic can be

brought to a prcncx normal form, by the Tarski-Kuntowski-Kleene

pruccdurc [Rog67]. A prcnex normal form formula has a block of

altcrnatlng second-order quantlfierr followed by a first-order formula.

The crucial step of the TKK procedure is Klccnc’s observation that

second-order quantifiers pcrmutc (in an appropriate scnsc) with first-

order quantifiers:

where QJfl. * * * .fk) = Q(x.fl, * * . ,fk). The implication from left

134

to right is intuitively valid by the Axiom of Choice, but is not a

thcorcm of L2.

Though second-order formulas can not bc easily classified in

L21, two classes of formulas stand out as particularly rclcvant to our

discussions below. We Say that a second order formula cp is nfs if

no second-order universal quantifier occurs ncgativcly in cp. and no

second-order cxistcntial quantifier occurs positively. The definition of

Zte formulas is dual. When insisting on the prcncx normal bnn of a

IT? ~‘~~IITIU~U WC Shall 1lSC the plrr;~s~ “pure I-l{.”

Proposition I. I.ct p bc a l7p formula.

Proof. lhc imphcations from right to ICI? arc trivial. since a standard

second-order model is a Hcnkin model of 1.1, and a Ilcnkin model of

Lt is a model of Lzt.

Suppose ksv, and consider a Itcnkin model <MC> of Lt,

wlicrc M is the ground domain and C the collection of relations

cp is true in the standard model over M, and restricting positive

occurrcnccs of universal quantifiers or ncgntivc occurrcnccs of cxistcn-

tial quantifiers (to C) weakens a formula. So cp is true in <MC>.

11~ second implication from lcfi to right is proved similarly. n

2. Direcl reasoning about imperidve programs.

2.1. Explicir dejnirion of rhe operarional scmanrics of pro-

gramming conslrucls

WC show that the input-output relation dctcrmincd by program-

ming constructs is dctinablc by llp formulas. ‘fhc two key ideas are,

firstly, that the set of initial traces of a computation is inductively

dcfinablc: secondly, that the “principal” store used by a program is

finite. Ihc latter point may bc controversial when it comes to rccur-

sivc proccdurcs. for cxamplc. Our point is that such computations

proceed through an unbounded number of auxiliary stores, each finite,

which have only a paranthctical cffcct on the computation. In con-

crctc implcmcntations. garbage collection is the closing paranthcsis.

In explicit definition. as below. the paranthcsis arc the scope of (first-

order) universal quantifiers.

WC assume. for simplicity and without loss of gcncrality. that

programs arc over a single type of individual objects. As mcntioncd

WC also assume that the input-output behavior of a program a

involves only a Rnitc number of store locations: and that, come

qucntly, it constitute a Zk-ary relation R, over ground objects. It is

customary to aSSumc that the store locations affcctcd by a program are

rhc variables active (= assigned to) in the prognrrn, but our assumption

is consistent with the cxistcncc of side cffccts. Also, programming

constructs such as rccursivc proccdurcs may affect an unbounded por-

tion of the store, but for a tcnninating calculation all store locations

activated by rccursivc calls would bc trcatcd as auxiliary store, and

would bc subjcctcd to garbage collection without cffcct on subsequent

calculation (at lcast not when the model of cxccution is idcalized).

WC dcscribc the input-outp.ut behavior of a program without

explicit rcfcrcncc to the store. To achieve this WC refer to the store

indirectly through a fixed cnumcration (without rcpctition) of all pro-

gram variables. xl; .. . If a program a affects only variabln

among <x1, . . . x+>, where il< . . . <&, then we describe the input-

output behavior of a by a relation df, over 2’il, (logical) vari-

ables, of which ir; variables dcnotc the initial values of all program

variables x1 * * + Xik. and the remaining 4 (logical) variables denote

the tcnninal values. Marc gcncrally. WC shall need formulas hf:.

dcScribing the cffccl of a on the StOrC <xl . . x,>. for any tt >ik.

WC dcfinc hclow the input-output relation gcncratcd by certain

progr;unming constructs. WC do include rccuisivc proccdurcs. but not

such constructs as call-by-narnc. proccdurcs as paramctcts. typing (i.c.

abortion on type errors) or type as arguments (as in l<USSl~lJ.).

‘l‘hcsc will bc trcatcd clscwhcrc. In the following definitions WC

a:;sumc throughout that the program variables (active) in the program

a have all index In+ and that F and i; arc II-tuplcs of variables,

all distinct.

ISwrenlaty conslfucl~

l If a z x1- I, then

M:[u.iq c

VR” [R(UI, *. * .Uj-*,f(UlX],Ui+l, * * * t.4,) + R(F)].

This isofcoutscthcsamcas Vi=/[lTlF], Vj=Uj (i+i).

. If a z &y, then

. If a m test ‘p, then

AI,“[I,T] s ‘v’R”[R(ii)~~[t7I~] + R(F)].

. If a = if ‘p then /3 else y. then

nr:[iT,iq s

q+i/F] + u; [ii,;;1 . A. --&/xl -, M;[iY,iq.

l If a m PUy (non-dctcnninistic choice). then

Iv: [ii.iq 5 AI; [U,i;] v M;[u.iq.

135

l Ifa E xi+ ?, (non-dctcrministic assignment) then

h4:p.q 3

3zVR” [R(u,. * * * ,uj-].z.rj+]. . . . u,) + (R(F)].

IxJoping:

. If ~1 3 while v &I~, then

-cp[Tlx] A VR” (Rbi) A I’rc~g,,~[R] -, R(V)],

where

Procedurex

‘lhc point of our including proccdurc is to suppon our claim

that the operational semantics of programs can be dcfincd using a

finite number of store locations. Although sltctchy, WC hope that it

will convey tic idea.

A collection of proccdurc definitions

form an environment, with the usual scope rules ‘lbe variables

uficted in the cnvironmcnt arc the ones global in some of the pro-

ccdurc bodies. Suppose n is the last index of an affcctcd variable.

The proper srore of a procedure Qj is the set of proccdurc arguments

(= formal paramctcrs). W.1.o.g. the latter are consecutive variables,

following the Iast affcctcd variable of the environment Let r(j) be

the number of actual parameters of Qj. Let Pi GEJ) be predicate

Icttcrs, with arity II + r(j), respectively.

Suppo9z a is in the scope of the cnvironmcnt above. The pro-

cedure definitions may be (mutually) recursive, and a may use glo-

bai procedure idcntificrs, i.c. ones for which no definition is given.

0 suppose 0 E call Q&J (call by value). The variables affcctcd

by a arc the same as tic ones affcctcd in the environment, plus the

proper store of /Ijo (if jOEJ). Rclow, U and V dcnotc the initial

and final values of the variables affcctcd. rcspcctivcly. i and 5

dcnvtc the initial and final values in the proper store (the initial values

are irrclcvant).

tkfine

I’,& i[Ulr‘]) - I’,&? G),

whcrc P,o is a free prcdicatc variable.

WC write M, for h/i whcrc II is such that Sf: is d&cd

i.e. if all variables affcctcd by n have index $I. WC may require

that n bc the smallest such number. but the choice is of no consc-

qucnce: if n<m. then (the universal ctosurc of)

is clearly a thcorcm of &I.

Given the definitions above, or similar definitions for other pro-

gramming constructs, WC dcfinc the cor~ooni~l /o@c of the program-

ming language at hand to bc .Lil augmcntcd with the dctinitions.

And WC define the canonical calculus of the language to bc L2 simi-

larly augmented.

2.2. PaMal cotrecmess assertions and rerminarion asset-
lions

A parlial corrccfness asscrfiotr is a formula of the form

A /oral-cormc~nesr (or /enninubort) assertion is a formula of the form

In both casts cp and # arc first-order, with no occurrence in cp of

a variable in ii, and no occurrence in J/ of a variable in V.

Proposition 2. For every program a. the formula M, is llf.

Proof. Induction on a. H

Proposition 3. A total-corrcctncss assertion is valid iff it is a thcorcm

of 1.21. Hcncc. the canonical bgic of the programming language is

complctc for total corrcctncss assertions.

Proof. Dy proposition 2 cvcry total corrcctncss assertion is a n{ for-

mula. ‘I’hc statcmcnt then follows from proposition 1. n

Note that proposition 3 dots no! imply that cvcry termination

assertion true over the natural numbers is provable in I,*,. ‘lhc tcc-

minativn ass&on above, when intcrprctcd over natural numbers. is

rcndcrcd by

which is no longer a llf formula

Note that when Qjo is a global proccdurc idcntificr, the

definition boils down to

138

2.3. Meyer’s Separalion Principle.

In (MH82j and [MM831 it has hccn obscrvcd that if programs a

and p differ in their input-output behavior on some structurC. then

they have diffcrcnt partial-corrcctncss thcorics, and diffcrcnt total-

corrcctncss thcorics: lhcrc arc first-order formulas 9, and $ such

that one of the partial-correctness assertions cp{a}+ and p{fi)# is

valid. while the other is not; and similarly for total-corrcctncss.

The proof for the partial-corrcctncss cast in [MHSZ. theorems

4.1,4.4] uses numeric (God&) coding and a first-order axiomatization

of the ring of intcgcrs [MHSZ appendix B]. ‘Ihc proofs for the total-

corrcctncss cast [MHSZ, thcorcm 5.1; MM83 tbcorcm I] use a approx-

imations of rccursivc programs by simpler programs.

We show how Mcycr’s Separation Principle for partial correct-

ncss falls out as a trivial conscquencc of UK llf definability of the

semantics of programs. This holds for any programming language

whose semantics has such a definition.

Proposition 4 (Separation by partial-corrcctncss). Suppose u and B

arc programs such tbat

ht, +-, h4,

is not valid. ‘I’hcn thcrc is a Rrst-order formula J, such that one of

the parlial corrcctncss assertions

trur{a}JI and truc{/I)JI

is valid, while the other not Morcovcr, the valid one is a theorem of

I+

Proof. Suppose M is a structure where

where Z and b are tuplcs of clcmcnts in the (ground) domain of

M. Let fi, = VEX,, bc the pure IIf form of A4,, with x.

first-order: similarly for tifl s VEX@. By (1) there is a model M+
such that

(2) M’k -.lxsI;;.i;l.

trivially. But

since

by (l), but

by (2). W

‘To apply the same method to Mcycis Separation Principle for

total-corrcctncss WC need an cxistcntial definition of !he semantics of

programs. Such a dcfinitko is straightforward in Lulw (using

cqu~~lity as a primitive, this time). Using k,,[U,i;] to dcnotc fie

inPWUtPut relation gcnccucd by program a. WC dcfinc, for cxam-

pk. for a E rthile cp do fl.

whcrc

.srep~[~ I If = ii,
Sl?pj+l[a S 3L (S/tp,p,li;] A (pE/X] A fiflF,Q,

Mcycr’s Separation Principle for total corrcctnIcss thcorics is then

proved by an argument dual to tic above.

NW that L,,, is used hcrc purely as a technical tool.

3. Modill rrasorling ilboul iwpcralive programs.

3.1. htodnl langirnges ml hgicafly closed fkgmenls

‘I‘hc intcndcd semantics of modal logics is usuAly bilwd OII some

Ilotiolls of “state” :~nd of “kmsition” bctwccn states, but with no

explicit rcfcrcncc made to cithcr notion in the modal language itself.

Explicit rcfcrcncc to sI;ltcs is avoided by conkkring st;ucs only

insohr as they arc rclatcd by transitions. Such states. the “bcforc”

and “aficr” of a transition 7. can bc implicitly scparatcd in a formula

by UIC modal OPCIralor-O)cCurrctnc~ which denotes 7: the scope of that

occurrcncc rcfcrs to the aftcrmafh of the transition, UIC rest of the for-

mula ro its antcccdcnt.

Pratt has npplicd thcsc ideas to reasoning about programs, yicld-

ing Dynamic I.ogic jPra76. Pn180, I&u-79]. ‘Ihc semantics of Pratt’s

box and diamond modal operators is given by

‘I’hcsc definitions arc quite gcncral, and may bc applied to any pm-

gramming lang~mgc (whose operational semantics is definable in

Second-Order I.ogic).

WC can then dclinc, for any programming language, its canoni-

cal modal langungc, built freely from first-or&r logic using the modnl-

itics [a] and <a>, whcrc a rsngcs over the programs in the

L37

langnagc, ~;,a& formula v in this language can bc translated into a

Rmmkl (Fexp of Second-Order I.ogic, using (1) and (2). A mmiCd

]ogical fontlaliml and :I canmical r~drcrrmlic~al jmmlisnr CM IlOW be

spccificd: ‘fhc frst consists of the modal formulas p for which @rp

js a thcorcm of /,>,. The second corresponds similarly to f,z.

It may be appropriate to note that not cvcry form of Fcasoning

about programs is modal. Uy definition, whcncvcr one reasons about

sL,tcs dirmuy, rather than about transitions, 1hC I’CX4011itl~ iS NM

m&l, and attcrnpts to prcwnt it ns such arc unnatural at best. Much

of tbc reasoning about concurrency. for cxnmplc. falls under this

comment.

In practice one may bc intcrcstcd in only a fmgmcnt of the

modal langu,age of a given progr:lmming language. Iloarc’s I.ogic, for

cxamplc, is a formalism for deriving wily modal fonnul,~s of the form

4 -5 la]+. Similarly, Honrc-style calculi Ibr total corrrctncss asseT

tinns nrc Formalisms for deriving formulas of the for JI --, <a>$.

Arc thcrc sound criteria for choosing particular sublanguagcs of

Dynamic Logic, and attempt to &sign formalisms for them?

Our use of I.* and 1~~ as master thcorics indicate a rclativc

criterion of this kind. Suppose one is intcrcstcd in proving modal for-

muha of a particular form. say [a]~. It may bc nc-cssary to use

modal formulas of other forms in such proofs. (To xc what formulas

arc nccdcd, 011c looks at nonncrl natural drduction proofs. or cut-free

scqucntinl proofs of 1~~; see 83.2). For cxamplc, it bccomcs quickly

clear that proving a formula of the form [a]+ may rcquirc proving

formulas of the form # 4 [fi]4. Some more rcflcction will show

that, for while programs, no additional forms of modal formulas arc

ncccssary. l’hc choice of partial correctness nsscrtions as the only use

of modality is tbcrcforc clearly natural.

We now gcncraliec this cxamplc. I.ct I, be the modal language

of a programming language, F a fragment of L. The lo&d closure

of F is the smallest fragment C of I,, containing P, and such that

for any formula v E C. if qP is a thcorcm of f,*,, then tpcXp has

a proof in which all (translations 00 modal formulas rlrc in C. A

fragment F of I, is hgicully clus~d if it is equal to its own closiirc.

A concept of nwthendcully cfuscd fragments can bc dcfincd similarly,

with L2 in place of /,2,, but it is of lcsscr intcrcst (bccnusc the

unrcstrictcd USC of Comprchcnsion usunlly prohibits non-trivial

mathematically closed fragments).

Using this terminology. partial corrcctncss assertions constitute

the closure of the fragment { (alp 1 v first-order. a a rvhilc-

program }. This is no longer true ft>r a programming lnnguagc ollow-

ing global proccdurcs (comparc [MMSJ]). Similarly. lugical reasoning

about concurrency (i.e. reasoning in I,:i) can rrol bc conlincd to par-

tial corrcctncss nsscrtions. as ili~usscd in [IiroXS]. Insisting 011 using

only partial corrcctncss assertions hcrc my Icad IO ralhcr cwlrrivcd

foimalisms. Another intcrcsting cxanrplc is pro-

vidcd by the fragment

{ <a>cp 1 cp lirst-order. R ;I while-program 1. Its closure is nof the

class of total corrcctncss assertions. Conscqucntly. tlic fragment con-

sisting of total corrcctncss assertions is not logically closed.

Given a logically closed fragment F. the corrorricnl logic fir I;

is the canonical logic (for the programming Ianguugc at hand) rc~

trictcd to F.

3.2. The logical completetress of iioare logic.

WC arc now in a position to show that Hoarc I.ogic for while

pmgrams is complctc for logical rcusoning about such programs. l3y

Jloare /.ogic (for while programs) WC understand here the modal cal-

culus H over partiat corrcctncss assertions. with Assignment and

lnvariancc as axioms (axioms 1 and 9 in lhptgl]). and with tbc Com-

position. Branching. ltcration and Conscqucncc Rules (rules 2.3.4.5 in

[Apfll]).

Proposition 5. 11 is (strongly) sound for FL*‘. and hcncc for tS,

l.c., if r is a set of first-order formulas, and

r l--l/ dalS

then

r t-,,,,‘p[ii/F] A M,[ii,?] + #[S/X].

Proof. Verify that the intcrprctation of each axiom of H is provable

in 1.21, and that the infcrcncc rules arc valid in L21. n

The convcrsc is somewhat more complicated.

Ixmma 6. (Interpolation for lip formulas) Suppose cp-+# isa

ITf formula. If it is a tJ~corcm of f,21, then thcrc is a&r-order for

mula x, in which all first- (and second-) order variahics arc common

to cp and #. such that ‘p 4 x and x - J, arc thcorcms of 1)2t.

Proof. Similnr to any one of the standard prwf-thcorctic proofs of

the intqolation thcorcm for I:irst-Or&t I.ogic (see c.g. uak7SJ). n

Lfmma 7. Let (I e j3;y. and let p and 4 bc first-order formu-

las. Suppose that

(1) cpIiil~M,wl -# WI.

is a theorem of 1-21. Then there is afftsl-order formula L such that

p[u’l AMgIGl + 43

and

c[i]hh!,[i,Fl + $Fl

illI! thcorcms Of 1.21.

Proof. Suppose (1). i.C.

VR” [(t/?(hf,n (l7.i) + X(i)) -,

3i(RmAhf:‘(i.i;))].

-+ 4m

by a normal proof of 1.2, [Pra71]. It is easy to see that there arc

first-order formulas xi, iEf, such that the following is derived:

(p A Air,(U, - E,) * +.

where

cl, 3 Vi(hd,[rr.z7 --, xr[ijl

and

Ej s 33 x,[il A M,[i.qh

and where ‘p E cp[U] and # ss $(;;I. Thus

Cp A &rf(‘Ui ” EI) -S ‘/e

andso

Cp A ‘J,,,{(AjnJ1uIl/)A (Aj,jE/)I * ‘I*

where 7 m I - J. It follows that

Alt,{ (P”(A,,,-‘u,) + (b,$,) + J, k

Note that the premise of the main implication, in each conjunct has

no occurrcncc of variables in ?, and that the anteccdcnt has no

occurrence of variables in ii. By lemma 6, it follows that there are

first-order formulas &, JCI, with no free occurrence of any variable

in G, V, such that

IJ A “j,-iEl * ‘I’.

Substituting the dctinitions of Uj and ci, this implies, for each

JCI.

“/,J vz [‘&‘f’~f~ -b (xJ”t) 1

and

“jl~ Vi [Xj A (J A My 4 ‘k 1,

where

M, I h4,,[ii,q. M, E M,[i,J].

This implies

vi [P A hfp + VjtJ Xj V IJ) 1

and

Hence

‘p A M, + “&,t~ X/ ” tJ) 1

and

[“,,,(f’jaJxj AfJ)AM,] -‘#-

The proof is then concluded by applying the following lemma, n

Lemma 8. For any set I, the following schema is derivable in Propo-

si tional Logic.

PrOOf. hSUITM2 the prCI’IIi92 tNC and thC COI3ChSiOn fake. Then iqJ

for all ICI. Taking J=I, we get from the premise that pi0 holds

for some i&I. Let J1 z I - (ie}. Then the premise implies simi-

larly that pi, holds for some itEll. unlca It = 0. Continuing we

SW that pi holds for all iEf. But then Aitl pr holds for J= I.

Also, the assumption for J = 0 implies qJ. since and empty dis-

junction is trnc. Thus the conclusion holds for the disjunct J = I. a

contradiction. n

Proposition 9. (Chnplctcnc~s of I loarc’s Logic for logical rmsoning

about programs) 1-l is complctc for logical reasoning about programs:

if a pcutial correctness awrtion is provahlc in I, *t, then it is provable

in H.

Proof. Ry induction on the program in the partial correctness asser-

tion. lemma 7 is the induction step for the composition case. Other

casts arc trcatcd similarly. n

Corollary 10. Hoarc’s Logic is exactly the canonical logic for partial

corrcctncss assertions (for while programs).

Proof, lmmcdiatc from propositions 5 and 9. l

Proposition 9 can be slightly gcneralizcd to the following which

we USC in the sequel.

Proposition II. (Strong Completeness of Horre’s Logic) If a partial

correctness assertion is provable in Lat from a set of first-order for-

mulas (or cvcn Xta formulas), then it is provable in H from the

same set. W

139

Rckrcnces.

(ANS82] A. Andreka. 1. Nemeti nnd I Sain. A complere log/r /or reuson-
ing ahoul progmms via non-slarldard model rheory. TIleor&
irnl Computer Science 17 (1982) 193-212.259-278.

[Apt81] K rzysr.~oC Apl. Ten years of Iiwre:r Logic: a survey - part I;
,cnf Trmsrctions on Progrummin~ Inngungcs nnd Sys-
terns 3 (19X1) 431-483.

(BtiS] Stephen D. Brookes. On fhc axlomaric ~eatmem of con-
ctrrrcnr.v. Proceediugs ol the NSF-CIZRS Seminur on Con-
carrcncy. Spintfer-Verlag. New York (1985).

[BTSl] Jan A. Uergsua and John V. Tucker. Hocrre’s IO@ ond /‘two’s
Arl/hm& Mathematisch Centrum REport 1W 160/81
(198t)i+27.

[deB80] Jaco de B;rkkcr. Mathematical Theory of Progrmn Correct-
ness. Prentice-Hall. Engfewood Clilfs (1980) xvii+ SOS.

[EFT84] f1.D. Ebbinghaus. J. Flum and W. Thornus, Mulhcmntical
togis: Springer-Vcrlag. New York, (1984) ix+216.

[End70] Herbert 1). Endenon. A Mothemalicnl Introduclion to logic:
Academic Press. New York (1970) xiii+295pp.

[FLOSJ] Steven Fortune. Daniel Leivanr. and Michael O’Donnell. “The
expressiveness of simple and second or&r type structures,”
Journal of the ACM JO (1983). pp 151-185.

[FSSSS] Harvey M. Friedman, Stephen G Simlrjon and Rick L. SmitJr.
Countable algebras and se1 exktence axioms Annals of
Pure and Applied Logic 25 (1983) 141.181.

(Gir72j Jean-Yves Girard. inrerpr~fa~ion joncrionelle et ~lmku~ioe des
coupures dons lirrilhmkfique d’otdre superieur, These de
Doctorat d’Eun. 1972. Paris.

[HA381 David Hilbert and Wilhelm Ackermann. Gnmdqe der
thcoreltschen Loftit (Second Edition). Springer, Berlin
(IY38) viii+133
English translation: Principles of Mathemrtical Logic.
Chclsca. New York (1950) xii + 172.

[Har79) David Harel. Fiat-Order Dynnmic Lottie. Leclurr Notes in
Computer Science 6X. Springer-Verlog, 1979.

[HenSO] Leon ffcnkin. Con~plefeness In rhe Theory ojTypeg Journnl of
Symbolic Logic 15 (1950), 81-91.

[KK67] Georg Krcisel nnd Jean-Iuuis Krivien, Elemenfs de Loglgue
Muthemotique. Dunod. Paris (1967) viii+213

[Klc52] S.C. Klecne. Introductinn to Metnmnlhcmatics. Noordhoff,
Groningen (1952) x+550.

[Lci83] Daniel l&ant. Reasaning obour funcrionaf pmgmms and corn-
plexirv rlasw ussociured with :ypr disc i,dines”. ‘l’weuty
f011rtli Annual Symposium on Poundntionr of Computer
Science (1983) 460-469.

[Lei84] Daniel Leirant. Typing and comvergcnce in the Lambdu Cal-
culus manus;ripl(l984).

[Lin63] Per Lindstrom. On exrenslons of ek~menrory lo&z. Theoria .3S
(1969) l-11.

[Ml1821 Albert Meyer and Joseph I lalpcrn. .lxiomurfc Lflnlrbn o/pm-
gmmming Imtguages: a rhrorrriral asiewwnl Juurnul of
the ACM 29 (1982) 555-576.

(MH82] Albert Meyer and John C. Mitchell. Tetm/na~hw asserUons/or
recursive pr0::ram.t complexiry and uxiomtrrlr clujnuhill~y,
lnformnlion nnd Conlrol 56 (1383) 112-I 38.

[Ml%841 David It. Ma@ueen, Gotin Plotkin and Ravi Sethi. “An
ideal model for recursive polymorphic tylxf” Conference
Recoil o/’ the Elevenrh Annual ACM Symposium on Wnci-
pies of Ptvgmmmbtg Languages (1984) 165.174.

(NcmSZ] I. Nemeti. iVonsmu&mf dynamic logic: in: D. Korea (cd.).
Logics al Progrunts. SpringerVerlug (LNCS # 131). Berlin
(19X2) 311-348.

[GG76) Susan Owicki und David Gries. An axlomatfc pmoJ ihechnlque
fir pamllelprogmms I. Actw Inlormrlic:ti 6 (1976) 319-340.

[pra76] Vaughnn Pratt, Semanticuul considemrions on Floyd-Moan log-
Icx Proceedlnp or the Seventecnlh ItXE Symposium on
Foundntions of Computer Srience (1976) 109-121.

Ipra76) Vaughan Pralt. Appllcarlons of modal Iogk IO pmgmmming
Studta Logia 39 (1980) 257-274.

[Pm711 Da8 Pruwb. Ideas and resufrs In Proaf Theory. Proceedings of
the Second Scandiaarinu Logic Sympusium (J.E. $enstnd,
editor) North-Holland. Amsterdam (1971) 235-307.

[Pn6.5] Da”,pzgj N~luml Deduction. Almqvisl und Wikrll, Upp-
, .

[Rey74] John C. Reynolds, Towords a theoty of iypc smctures Pm-
gramming Symposium (Colloquc sur ln Prup.mmnuitton,
Paris). Springer (LNCS # 19). Berlin (1974) 408-425.

fRne67] tlart!cy p0ge.m Jr.. Theory ol Recl!airc Funclions and
~:;IIY Computabddy, McGraw-thll, New York (1967)

IRus20j Bertrand Russell. Introduction to Mwlhcmatical Pbilosopby~
(SeLmnd Edition), London (1920).

(R&7] Bertrand Russell. Principles ul Mnthematics. (Second Edition).
lmldml (1937).

fTuk75) Gairi TukeuLi. Proof Theory, North-tlollnnd. Amsterdam
(1975) vii+372.

(Wun74) HIM Wang. From Mntheniutics to Phitosophy. Roultegc &
Kegnn Puul. London (1974) xiv+428.

[Zuc80] Jcllery Zucker. ExpressiblIity of pm- and post-condlllons in
[&B80] 44-l-465.

140

