
Logical and mathemlicnl reasoning ahout impcrdtive programs.’ 

Daniel I.civant 

~imrcgir-Me/km CJmkmOy 

‘l‘llcrc llavc bccli 1~ Irditicms of fimi;~li/itlg rc;lwlitl~ shout 

progrxns ;Illd compul;tlioii\. one ;Iritllll~c~ic;~l ill Ij;Ilurc. 11~~ olljcr logi- 

cal. In tilis chaplcr WC propusc Sccoud-Or&r I .ogic. with controlled 

I;mns of ci~~~i~,rclicnsioll, :I$ it friuncaor k ill which both approaches 

can hc suirahly rcprc<cntccd. ;mal)~cd ;IINJ cornparcd, Wc also main- 

tain that it is by itself a htghly suil;lblc fr;lmcwork for rc;lsoning &out 

prugrams. comput;ltions ;~nd d&l types, and as a tool for deriving 

mctamathcmnticd rcsul Is. 

It is well known that reasoning &out compul;ltion can hc car- 

ricd cu within Pc;mo Arithmetic [ KlcSZj. hlthougl~ this was dcmun- 

strarcd originally for ‘l’uring Machine computa:ions. the m&d 

ildilpts easily to rcasonin g about computiltions of impcrativc programs 

(see c.g. [%ucSO] and [hI‘SI]). ‘l‘hc cumhcrsomc numeric coding. with 

which such reasoning frameworks arc plilgucd. is ncccssaly only when 

(UK Coflfincs oncsclf to the mcagcr language of’ first-order arithmetic: 

when tic language is cnrichcd. to allow direct rcfcrcncc to program- 

ming constructs, one obtains a rcasonahlc framework for reasoning 

about impcrativc programs. A formalism of this type might be 

dubbed “Arithmetic of Programs”. In a scnsc. the “Non-Standard 

I)ynamic I.ogic” of Ncmcti & als. [Ncm82, ANSSZ]. is such an arith- 

metic. 

I.ogks of programs, in the nylcs of Floyd, Hoarc. Pratt and oth- 

ers. rcprcscnt an altogether diffcrcnt approach to reasoning about pro 

grams. Fkh one of these styles is based on a ttlodollanguagc for rea 
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soning about programs, with no extraneous rcfcrcncc to numbers or to 

time. and on a mostly syntax driven axiom&s. Iloth choice of 

language and choice of axiomatics rcflcct an attempt to capture the 

analytic, a priori, meaning of programs thcrcby justifying these for- 

malisms as “logical”, as opposed to “mathematical”. 

Without venturing a gcncral diffcrcntiation bctwccn Logic and 

Mathematics it seems sound to agree that the infinite is not analytic. 

and that reasoning about the infinite is, thcrcforc. a mathematical 

rather than a logical cntcrprisc (cf. [Wan74]). (In Kusscll’s LogiciSn4 

howcvcr. no such distinction is adnittcd (Rus20.3S: I l&X3].) I~cCall, 

for cxinnplc. tl~t syntax-driven rcilsol\ing is impossible in First-Order 

Aritliinctic: for cvciy k>O thcrc is a lip dlcorcir of I’c;ino Arilh- 

mctic with no proof whcrc induction is used only over formulas with 

less than k quantificn. It is then clear Ihat wmc of the rclrsoning 

about programs, namely that part which dcls with itcmtivc constructs 

such as looping and recursion. is rcillly not logical. anti can not bc 

s!*ntax driven. ‘I’hus, reasoning about programs f,acnctorizcs into rcason- 

ing about program compositionality, for whose logical character a ten 

;lblc caw ciln bc made. ;md into a typically mathematical component 

of reasoning about itcrativc aspects of program cxccudon. 

In Mathematical I.ogic the tcnn “logic” has &n used for for- 

malisms which do involve the infinite in implicit and cvcn explicit 

ways. such as I,,,,, and w-logic. ‘fhc kinship of thcsc two examples 

to Dynamic Logic has been cxtcnsivcly cxplurcd. and to the cxtcnt 

lhat thcsc formalisnis are “logics”. so arc all logics of programs 

withoul further ado. Howcvcr. the term “logic” is applied to fonal- 

isms of this kind only by cxtcnsion: they wcrc dcsigncd ncithcr as 

fcasiblc carriers of reasoning, nor as convcycrs of cpistcmologicat dis- 

tinctions, but mcrcly as technical tools (to calibrate cxprcssivcness to 

charactcrizc hicrarchics. for proof-thcorctic analysis. and so on). The 

traditional aims of I.ogic cannot. howcvcr, bc ovcrlookcd for logics of 

programs. On the one hand, no logic of programs has yet gained wide 
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acccpuncc as a fcasiblc carrier of reasoning about programs, while the 

need for such a carrier is dirt. On the other hand, WC fccccl that funda- 

mental mcta-logical conccpa, such as complctcncss and soundness, 

have not yet been idcntificd for logics of programs in a satisfactory 

manner. and that identifying the correct concepts dcpcnds on a precise 

delineation of the “logical” component of reasoning about programs, 

In summary, WC wish to identify a formalism IT satisfying the 

following conditions, l’hc first three critcriaarc nccdcd lo dclincate 

the purely logical potion of logics of programs: 

Traditional logics of programs have natural intcrprctions 

in F. 

Thcrc is a natural frugmcnt I:L of 1: which captures 

tic “logical” portion of F. 

‘I’hc limnulas (and terms) of I’ which arc esscntiat lb 

rotsoning aboul plIlglXIllS arc prcscnl iii /$, . 

‘Ihc following additional conditions arc dcsirahlc fur F to hc 

useful as il formalism for rcilsoiiing ;Ibout pn~griltlls of indcpcndcnt 

iutcrcst. 

4. Rciisoning about programs can bc carried out in 1: in a 

s~r~~iglltfi~rward manner. 

5. 1,‘ is proof thcorctically strong. 

6. I: is polcntially suitable for cxprcssing and reasoning 

ahout less clcmcntary programming Ianguilgc conccpls, 

such as inductively dcfincd dat;l types. rccursivc pro- 

ccdurcs, pruccdurcs as paramctcrs. concurrency aud 

polymorphism. 

1.2. Second-Order Logic and Weak Second-Order Logic. 

WC now identify a solution to conditions (l-6). 

Condition (2) implics, by lindstrum’s l’hcorcm [l.inG9,HT84] 

(xc also [Wan74. chapter 41); that FL must bc a variant of First- 

Order I.ogic. At the same time. (3) implics that the input-output rela- 

tions gcncrcitcd by while-programs, for insfancc. should bc cxprcssible 

in the hnguagc of 1:‘. ‘lhc input-output relation gcncratcd by a pro- 

gramming language can bc explicitly dcfincd using natural numbers as 

an auxiliary notion (c.g. IZucSO]). It can also dcfincd without any 

auxiliary ohjccts. using quantification over relations. as in 52.1 below. 

Ihis suggests the choice of Second-Order Logic as the formalism F. 

Ihc “logical” portion p~ of I: can then bc taken as the restriction 

of 1: to first-order comprchcnsion. in fhc scnsc spcciticd momen- 

tarily. 

First let us recall in a nutshell the csscntials of Second-Order 

Logic. Given a first order language, say the language of Pun: First- 

Order Prcdicatc I-ogic. the corresponding secorrd-order language is 

obtained by using quantifiers over prcdicatc lcttcrs as additional con* 

structs. The intcndcd. standard semon/ics, is that quantifiers over k- 

ary prcdicatc lcttcrs range over all k-ary relations over the domain of 

(ground) clcmcna. Among dicsc relations arc UIC ones definable bb 

f~~\Uas ofthc bnguagc. SO the Cmprrhrrrsiun Schema, 

Comp,: sRV/x (R(E) +-b V), 

is valid under the standard semantics, where cp iS any formula of the 

language. 

In this language equality and natural numbers are definable: 

x-y E VR(R(x) ++ R(y)) 

and 

N(x) e VR(Vr(R(z) + R(S(z))) -b R(O) + R(x)). 

Similarly, tic graph of any primitive recursive function iS e@iCiuY 

definable. Hcncc First-Order hrithmctic, in fact Second-Order Arith- 

mchc (= Mathematical Analysis). is inrcrprctable in Second-Order 

Logic. It follows that Second-Order Logic is in fact a mathematical 

system, and is not a gcnuinc logic in the scnsc of $1.1. It also follows 

lhnt thcrc is no fonn;il c&x~lus for Scyond-Order I.ogic, since the set 

of valid second-ordcl formulas is not dcfinablc in (second-order) a&h- 

mctic. Ict alone clTcclivcly cnumcrablc. 

Nonclhckss. a natural calculus I,* for Second-Order I,ogic is 

obtained by cxtcnding the quantifier axioms and rules of First-Order 

Prcdicatc I.ogic to second-order quantilicrs, and by adding tic 

Comprchcnsion Schema as an axiom schcmc lHh38]. Equivalent cal- 

culi can bc dctincd using Gcntzcn’s natural deduction style [Pra65], or 

Gcntzcn’s scqucntial calculus style (c.g. rfak75]). In the natural 

deduction style Comprchcnsiou bccomti implicit in the rules for 

second-order universal quantifier elimination and for second-order 

cxistcntial quantifier introduction: 

cplWR1 3RT 

Here R is a k-ary prcdicatc variable, and the substitution cp[#lR] 

of (the k -ary relation canonically dcfincd by) the formula # for R 

in 9 is defined in a straightforward manner. 

This formalism can, however , bc intcrpretcd as a many-sorted 

first-order theory [KK67]. The sorts are 1. for individuals, and k’. for 

k-ary relations (k 20). Using. for each k20, a prcdicatc constant 

I& of sort (R,r. . . . ,&I. an atomic formula R(rl, . . . , c) of 

Second-Order Logic can be rendered by I,@,I~. . . . .tk). 

quantification over prcdicatcs becomes first-order, and Comprehension 

turns into a first-order axiom schema. 

From the Complctcncss Thcorcm for First-Order Logic it then 

follows that the theory is complctc for its mod& which arc simply 

mod& of many-sorted first-order logic in which all instances of the 
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Comprchcnsion Schema arc valid. In such a model each object r of 

sort i represents the k-ary Elation R(x) I Ik(t.Y) over the 

domain h4 of individuals, but these relations constitute any collec- 

tion closed under second-order definability. not ncccssarily the entire 

power set P(M’). Thu.% L2 is complctc for validity in mod& of the 

language of Second-Order Logic, with the collection of relations 

explicitly spccificd. subject to the condition that it bc closed under 
second-order &inability [HcnSO. I’ndlOl. ‘I’hcsc mod& arc rcfcrrcd 

to as Her&~ nrodels 

Marc gcncrally, one may consider subsystems of /,2, W~WC the 

Comprchcnsion Schema is rcstrictcd to formulas in a given class C 

of formulas. The only rcquircmcnt on Hcnkin models of such 

thcorics is then that they bc closed under dcfmnbility by formulas in 

C. Of particular interest is UIC subsystem Lzl of 1-2 of@order 

comprehension, that is, whcrc Comp, is postulated only for first- 

order formulas I. WC dub L21 Weak Seconr&O&cr Lo&. 

Our feeling is that L,, is in fact a variant of First-Order Logic, 

and should qualify as a genuine logic (whereas L2 is a Jirst-order 

mnfhcmnficd theory). Shelving for now the cpistcmological evidence 

for this claim, we mention three technical facts which support it. 

Firstly, Lzl is schematically consetvafive over First-Order J-ogic. in 

the following sense: If a first-order theory T is axiomatized by a col- 

lection r of schemas &J, where the (p ‘s range over all (first- 

order) formulas in the language of T. then no new theorems in that 

language will arise if the logic is expanded to f.21, and where schema 

are interpreted eith 5 ranging over all second-order formulas in the 

language of T). For example. Peano Arithmetic is axiomatized using 

the schema of Induction; no new first-order theorems arise from rea- 

soning in L21. with induction over all second-order formulas in the 

language of arithmetic. This is to be contrasted with L1: using the 

Induction Schema over all second-order formulas with unrestricted 

Comprehension. permits the derivation of many first-order formulas 

which are not theorems of Pcano Arithmetic (for example, a formula 

rendering the consistency of Pcaoo Arithmetic). 

Secondly, Lzl is syntax oriented: if a formula cp is provable in 

L21, then it has a proof in which all formulas are infemd firs-order 

instances of (9, where the set C of these formulas is defined induc- 

tively by: all subformulas of v are in C; if QRJl is in C (Q=\d 

or 3). and x E C is first-order, then #[x/R] E C. Note that C 

may bc characterized as the set of lcrm-substitution instances of a ccr- 

Llin finite set of formulas. gcncralking only slightly the tcxtuill subfor- 

midas of ‘p. 

Finally. tbc proof theory of 1,21 is csscntially the Silmc as that 

of First-Order Logic. Proofs of such mcla-logical propcrtics as nor- 

mJization of natural dcdoctions and cut elimination for scqucrrtial 

2 This USC of the ten should bc diiingukhed hum other us such u for logic with 
sccond-udcr quantifiers ranging over linite seti 

proofs have the same compicxity as for first-order logic. 

In summary, WC arc intcrcstcd in Second-Order Logic with its 

standard semantics in 1.2, and in I.,,. WC shall write +s. b“ 

and bLzl for semantic entailment in thcsc three formalisms, rcspcc 

tively. 

1.3. The relevance of Second-Order Logic and weak 

comprehension IO Computer Science. 

The second-order d&ability of the natural numbers, mcntloncd 

above, is one cxamplc of the definability of all inductively defined 

sets. Among such sets are the inductively dcfincd data-types, such as 

lists and trees. Induction for objects of the data type is an immediate 

conscqucnce of the Comprchcnsion Schema to tic type’s definition. 

Similarly, fixpoint operations in denotational semantics of pro- 

gramming languages are akin to inductive definitions. The USC of CCS’ 

trictcd compmhcnsion is also rclcvanl to dcnotational scmantlcs: one 

considers the space of conlittuous functions. for example, rather than 

IIIC spi\cc of all futtc/irrtts over given domains. 

011 a nwc specific and technical lcvcl, the dclinability of induc- 

tivcly dcfincd data types can bc combined with second-order reasoning 

about purely functional programs, yielding a highly cccmomical and 

slrcamlincd calculus Tar reasoning about ftmctional computations over 

such types [l.ci83]. J+om this thcrc follow connections bctwccn 

second-order (natural-deduction) proofs on the one hand and the 

I;unbda Calculu$ polymorphic types, and complexity classes on the 

other hand. The relation bctwccn polymorphism and second-order 

logic is clearly ~mdamcntal IGir72, Rcy74,1-? -083, MPS83. L&4]. 

Finally, WC note the increasing promincncc of comprchcnsion 

principles in current studies in the Foundation of Analysis. Various 

prlnciplcs and classical thcorcms have hccn idcntificd as equivalent 

(module weak proof thcorctic means) to particular forms of 

comprchcnsion [FSS83]. Rcstrictcd t%ms of comprchcnsion are 

thcrcforc a natural and powerful tool in calibrating the logical strength 

of ~J~corcms of Mathematical Analysis 

1.4. Class~@arion of Second-Order formulas 

Formulas in the language of Second-Order Arithmetic can be 

brought to a prcncx normal form, by the Tarski-Kuntowski-Kleene 

pruccdurc [Rog67]. A prcnex normal form formula has a block of 

altcrnatlng second-order quantlfierr followed by a first-order formula. 

The crucial step of the TKK procedure is Klccnc’s observation that 

second-order quantifiers pcrmutc (in an appropriate scnsc) with first- 

order quantifiers: 

where QJfl. * * * .fk) = Q(x.fl, * * . ,fk). The implication from left 
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to right is intuitively valid by the Axiom of Choice, but is not a 

thcorcm of L2. 

Though second-order formulas can not bc easily classified in 

L21, two classes of formulas stand out as particularly rclcvant to our 

discussions below. We Say that a second order formula cp is nfs if 

no second-order universal quantifier occurs ncgativcly in cp. and no 

second-order cxistcntial quantifier occurs positively. The definition of 

Zte formulas is dual. When insisting on the prcncx normal bnn of a 

IT? ~‘~~IITIU~U WC Shall 1lSC the plrr;~s~ “pure I-l{.” 

Proposition I. I.ct p bc a l7p formula. 

Proof. lhc imphcations from right to ICI? arc trivial. since a standard 

second-order model is a Hcnkin model of 1.1, and a Ilcnkin model of 

Lt is a model of Lzt. 

Suppose ksv, and consider a Itcnkin model <MC> of Lt, 

wlicrc M is the ground domain and C the collection of relations 

cp is true in the standard model over M, and restricting positive 

occurrcnccs of universal quantifiers or ncgntivc occurrcnccs of cxistcn- 

tial quantifiers (to C) weakens a formula. So cp is true in <MC>. 

11~ second implication from lcfi to right is proved similarly. n 

2. Direcl reasoning about imperidve programs. 

2.1. Explicir dejnirion of rhe operarional scmanrics of pro- 

gramming conslrucls 

WC show that the input-output relation dctcrmincd by program- 

ming constructs is dctinablc by llp formulas. ‘fhc two key ideas are, 

firstly, that the set of initial traces of a computation is inductively 

dcfinablc: secondly, that the “principal” store used by a program is 

finite. Ihc latter point may bc controversial when it comes to rccur- 

sivc proccdurcs. for cxamplc. Our point is that such computations 

proceed through an unbounded number of auxiliary stores, each finite, 

which have only a paranthctical cffcct on the computation. In con- 

crctc implcmcntations. garbage collection is the closing paranthcsis. 

In explicit definition. as below. the paranthcsis arc the scope of (first- 

order) universal quantifiers. 

WC assume. for simplicity and without loss of gcncrality. that 

programs arc over a single type of individual objects. As mcntioncd 

WC also assume that the input-output behavior of a program a 

involves only a Rnitc number of store locations: and that, come 

qucntly, it constitute a Zk-ary relation R, over ground objects. It is 

customary to aSSumc that the store locations affcctcd by a program are 

rhc variables active (= assigned to) in the prognrrn, but our assumption 

is consistent with the cxistcncc of side cffccts. Also, programming 

constructs such as rccursivc proccdurcs may affect an unbounded por- 

tion of the store, but for a tcnninating calculation all store locations 

activated by rccursivc calls would bc trcatcd as auxiliary store, and 

would bc subjcctcd to garbage collection without cffcct on subsequent 

calculation (at lcast not when the model of cxccution is idcalized). 

WC dcscribc the input-outp.ut behavior of a program without 

explicit rcfcrcncc to the store. To achieve this WC refer to the store 

indirectly through a fixed cnumcration (without rcpctition) of all pro- 

gram variables. xl; .. . If a program a affects only variabln 

among <x1, . . . x+>, where il< . . . <&, then we describe the input- 

output behavior of a by a relation df, over 2’il, (logical) vari- 

ables, of which ir; variables dcnotc the initial values of all program 

variables x1 * * + Xik. and the remaining 4 (logical) variables denote 

the tcnninal values. Marc gcncrally. WC shall need formulas hf:. 

dcScribing the cffccl of a on the StOrC <xl . . x,>. for any tt >ik. 

WC dcfinc hclow the input-output relation gcncratcd by certain 

progr;unming constructs. WC do include rccuisivc proccdurcs. but not 

such constructs as call-by-narnc. proccdurcs as paramctcts. typing (i.c. 

abortion on type errors) or type as arguments (as in l<USSl~lJ.). 

‘l‘hcsc will bc trcatcd clscwhcrc. In the following definitions WC 

a:;sumc throughout that the program variables (active) in the program 

a have all index In+ and that F and i; arc II-tuplcs of variables, 

all distinct. 

ISwrenlaty conslfucl~ 

l If a z x1- I, then 

M:[u.iq c 

VR” [R(UI, *. * .Uj-*,f(UlX],Ui+l, * * * t.4,) + R(F)]. 

This isofcoutscthcsamcas Vi=/[lTlF], Vj=Uj (i+i). 

. If a z &y, then 

. If a m test ‘p, then 

AI,“[I,T] s ‘v’R”[R(ii)~~[t7I~] + R(F)]. 

. If a = if ‘p then /3 else y. then 

nr:[iT,iq s 

q+i/F] + u; [ii,;;1 . A. --&/xl -, M;[iY,iq. 

l If a m PUy (non-dctcnninistic choice). then 

Iv: [ii.iq 5 AI; [U,i;] v M;[u.iq. 
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l Ifa E xi+ ?, (non-dctcrministic assignment) then 

h4:p.q 3 

3zVR” [R(u,. * * * ,uj-].z.rj+]. . . . u,) + (R(F)]. 

IxJoping: 

. If ~1 3 while v &I~, then 

-cp[Tlx] A VR” (Rbi) A I’rc~g,,~[R] -, R(V)], 

where 

Procedurex 

‘lhc point of our including proccdurc is to suppon our claim 

that the operational semantics of programs can be dcfincd using a 

finite number of store locations. Although sltctchy, WC hope that it 

will convey tic idea. 

A collection of proccdurc definitions 

form an environment, with the usual scope rules ‘lbe variables 

uficted in the cnvironmcnt arc the ones global in some of the pro- 

ccdurc bodies. Suppose n is the last index of an affcctcd variable. 

The proper srore of a procedure Qj is the set of proccdurc arguments 

(= formal paramctcrs). W.1.o.g. the latter are consecutive variables, 

following the Iast affcctcd variable of the environment Let r(j) be 

the number of actual parameters of Qj. Let Pi GEJ) be predicate 

Icttcrs, with arity II + r(j), respectively. 

Suppo9z a is in the scope of the cnvironmcnt above. The pro- 

cedure definitions may be (mutually) recursive, and a may use glo- 

bai procedure idcntificrs, i.c. ones for which no definition is given. 

0 suppose 0 E call Q&J (call by value). The variables affcctcd 

by a arc the same as tic ones affcctcd in the environment, plus the 

proper store of /Ijo (if jOEJ). Rclow, U and V dcnotc the initial 

and final values of the variables affcctcd. rcspcctivcly. i and 5 

dcnvtc the initial and final values in the proper store (the initial values 

are irrclcvant). 

tkfine 

I’,& i[Ulr‘] ) - I’,&? G), 

whcrc P,o is a free prcdicatc variable. 

WC write M, for h/i whcrc II is such that Sf: is d&cd 

i.e. if all variables affcctcd by n have index $I. WC may require 

that n bc the smallest such number. but the choice is of no consc- 

qucnce: if n<m. then (the universal ctosurc of) 

is clearly a thcorcm of &I. 

Given the definitions above, or similar definitions for other pro- 

gramming constructs, WC dcfinc the cor~ooni~l /o@c of the program- 

ming language at hand to bc .Lil augmcntcd with the dctinitions. 

And WC define the canonical calculus of the language to bc L2 simi- 

larly augmented. 

2.2. PaMal cotrecmess assertions and rerminarion asset- 
lions 

A parlial corrccfness asscrfiotr is a formula of the form 

A /oral-cormc~nesr (or /enninubort) assertion is a formula of the form 

In both casts cp and # arc first-order, with no occurrence in cp of 

a variable in ii, and no occurrence in J/ of a variable in V. 

Proposition 2. For every program a. the formula M, is llf. 

Proof. Induction on a. H 

Proposition 3. A total-corrcctncss assertion is valid iff it is a thcorcm 

of 1.21. Hcncc. the canonical bgic of the programming language is 

complctc for total corrcctncss assertions. 

Proof. Dy proposition 2 cvcry total corrcctncss assertion is a n{ for- 

mula. ‘I’hc statcmcnt then follows from proposition 1. n 

Note that proposition 3 dots no! imply that cvcry termination 

assertion true over the natural numbers is provable in I,*,. ‘lhc tcc- 

minativn ass&on above, when intcrprctcd over natural numbers. is 

rcndcrcd by 

which is no longer a llf formula 

Note that when Qjo is a global proccdurc idcntificr, the 

definition boils down to 
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2.3. Meyer’s Separalion Principle. 

In (MH82j and [MM831 it has hccn obscrvcd that if programs a 

and p differ in their input-output behavior on some structurC. then 

they have diffcrcnt partial-corrcctncss thcorics, and diffcrcnt total- 

corrcctncss thcorics: lhcrc arc first-order formulas 9, and $ such 

that one of the partial-correctness assertions cp{a}+ and p{fi)# is 

valid. while the other is not; and similarly for total-corrcctncss. 

The proof for the partial-corrcctncss cast in [MHSZ. theorems 

4.1,4.4] uses numeric (God&) coding and a first-order axiomatization 

of the ring of intcgcrs [MHSZ appendix B]. ‘Ihc proofs for the total- 

corrcctncss cast [MHSZ, thcorcm 5.1; MM83 tbcorcm I] use a approx- 

imations of rccursivc programs by simpler programs. 

We show how Mcycr’s Separation Principle for partial correct- 

ncss falls out as a trivial conscquencc of UK llf definability of the 

semantics of programs. This holds for any programming language 

whose semantics has such a definition. 

Proposition 4 (Separation by partial-corrcctncss). Suppose u and B 

arc programs such tbat 

ht, +-, h4, 

is not valid. ‘I’hcn thcrc is a Rrst-order formula J, such that one of 

the parlial corrcctncss assertions 

trur{a}JI and truc{/I)JI 

is valid, while the other not Morcovcr, the valid one is a theorem of 

I+ 

Proof. Suppose M is a structure where 

where Z and b are tuplcs of clcmcnts in the (ground) domain of 

M. Let fi, = VEX,, bc the pure IIf form of A4,, with x. 

first-order: similarly for tifl s VEX@. By (1) there is a model M+ 
such that 

(2) M’k -.lxsI;;.i;l. 

trivially. But 

since 

by (l), but 

by (2). W 

‘To apply the same method to Mcycis Separation Principle for 

total-corrcctncss WC need an cxistcntial definition of !he semantics of 

programs. Such a dcfinitko is straightforward in Lulw (using 

cqu~~lity as a primitive, this time). Using k,,[U,i;] to dcnotc fie 

inPWUtPut relation gcnccucd by program a. WC dcfinc, for cxam- 

pk. for a E rthile cp do fl. 

whcrc 

.srep~[~ I If = ii, 
Sl?pj+l[a S 3L (S/tp,p,li;] A (pE/X] A fiflF,Q, 

Mcycr’s Separation Principle for total corrcctnIcss thcorics is then 

proved by an argument dual to tic above. 

NW that L,,, is used hcrc purely as a technical tool. 

3. Modill rrasorling ilboul iwpcralive programs. 

3.1. htodnl langirnges ml hgicafly closed fkgmenls 

‘I‘hc intcndcd semantics of modal logics is usuAly bilwd OII some 

Ilotiolls of “state” :~nd of “kmsition” bctwccn states, but with no 

explicit rcfcrcncc made to cithcr notion in the modal language itself. 

Explicit rcfcrcncc to sI;ltcs is avoided by conkkring st;ucs only 

insohr as they arc rclatcd by transitions. Such states. the “bcforc” 

and “aficr” of a transition 7. can bc implicitly scparatcd in a formula 

by UIC modal OPCIralor-O)cCurrctnc~ which denotes 7: the scope of that 

occurrcncc rcfcrs to the aftcrmafh of the transition, UIC rest of the for- 

mula ro its antcccdcnt. 

Pratt has npplicd thcsc ideas to reasoning about programs, yicld- 

ing Dynamic I.ogic jPra76. Pn180, I&u-79]. ‘Ihc semantics of Pratt’s 

box and diamond modal operators is given by 

‘I’hcsc definitions arc quite gcncral, and may bc applied to any pm- 

gramming lang~mgc (whose operational semantics is definable in 

Second-Order I.ogic). 

WC can then dclinc, for any programming language, its canoni- 

cal modal langungc, built freely from first-or&r logic using the modnl- 

itics [a] and <a>, whcrc a rsngcs over the programs in the 
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langnagc, ~;,a& formula v in this language can bc translated into a 

Rmmkl (Fexp of Second-Order I.ogic, using (1) and (2). A mmiCd 

]ogical fontlaliml and :I canmical r~drcrrmlic~al jmmlisnr CM IlOW be 

spccificd: ‘fhc frst consists of the modal formulas p for which @rp 

js a thcorcm of /,>,. The second corresponds similarly to f,z. 

It may be appropriate to note that not cvcry form of Fcasoning 

about programs is modal. Uy definition, whcncvcr one reasons about 

sL,tcs dirmuy, rather than about transitions, 1hC I’CX4011itl~ iS NM 

m&l, and attcrnpts to prcwnt it ns such arc unnatural at best. Much 

of tbc reasoning about concurrency. for cxnmplc. falls under this 

comment. 

In practice one may bc intcrcstcd in only a fmgmcnt of the 

modal langu,age of a given progr:lmming language. Iloarc’s I.ogic, for 

cxamplc, is a formalism for deriving wily modal fonnul,~s of the form 

4 -5 la]+. Similarly, Honrc-style calculi Ibr total corrrctncss asseT 

tinns nrc Formalisms for deriving formulas of the for JI --, <a>$. 

Arc thcrc sound criteria for choosing particular sublanguagcs of 

Dynamic Logic, and attempt to &sign formalisms for them? 

Our use of I.* and 1~~ as master thcorics indicate a rclativc 

criterion of this kind. Suppose one is intcrcstcd in proving modal for- 

muha of a particular form. say [a]~. It may bc nc-cssary to use 

modal formulas of other forms in such proofs. (To xc what formulas 

arc nccdcd, 011c looks at nonncrl natural drduction proofs. or cut-free 

scqucntinl proofs of 1~~; see 83.2). For cxamplc, it bccomcs quickly 

clear that proving a formula of the form [a]+ may rcquirc proving 

formulas of the form # 4 [fi]4. Some more rcflcction will show 

that, for while programs, no additional forms of modal formulas arc 

ncccssary. l’hc choice of partial correctness nsscrtions as the only use 

of modality is tbcrcforc clearly natural. 

We now gcncraliec this cxamplc. I.ct I, be the modal language 

of a programming language, F a fragment of L. The lo&d closure 

of F is the smallest fragment C of I,, containing P, and such that 

for any formula v E C. if qP is a thcorcm of f,*,, then tpcXp has 

a proof in which all (translations 00 modal formulas rlrc in C. A 

fragment F of I, is hgicully clus~d if it is equal to its own closiirc. 

A concept of nwthendcully cfuscd fragments can bc dcfincd similarly, 

with L2 in place of /,2,, but it is of lcsscr intcrcst (bccnusc the 

unrcstrictcd USC of Comprchcnsion usunlly prohibits non-trivial 

mathematically closed fragments). 

Using this terminology. partial corrcctncss assertions constitute 

the closure of the fragment { (alp 1 v first-order. a a rvhilc- 

program }. This is no longer true ft>r a programming lnnguagc ollow- 

ing global proccdurcs (comparc [MMSJ]). Similarly. lugical reasoning 

about concurrency (i.e. reasoning in I,:i) can rrol bc conlincd to par- 

tial corrcctncss nsscrtions. as ili~usscd in [IiroXS]. Insisting 011 using 

only partial corrcctncss assertions hcrc my Icad IO ralhcr cwlrrivcd 

foimalisms. Another intcrcsting cxanrplc is pro- 

vidcd by the fragment 

{ <a>cp 1 cp lirst-order. R ;I while-program 1. Its closure is nof the 

class of total corrcctncss assertions. Conscqucntly. tlic fragment con- 

sisting of total corrcctncss assertions is not logically closed. 

Given a logically closed fragment F. the corrorricnl logic fir I; 

is the canonical logic (for the programming Ianguugc at hand) rc~ 

trictcd to F. 

3.2. The logical completetress of iioare logic. 

WC arc now in a position to show that Hoarc I.ogic for while 

pmgrams is complctc for logical rcusoning about such programs. l3y 

Jloare /.ogic (for while programs) WC understand here the modal cal- 

culus H over partiat corrcctncss assertions. with Assignment and 

lnvariancc as axioms (axioms 1 and 9 in lhptgl]). and with tbc Com- 

position. Branching. ltcration and Conscqucncc Rules (rules 2.3.4.5 in 

[Apfll]). 

Proposition 5. 11 is (strongly) sound for FL*‘. and hcncc for tS, 

l.c., if r is a set of first-order formulas, and 

r l--l/ dalS 

then 

r t-,,,,‘p[ii/F] A M,[ii,?] + #[S/X]. 

Proof. Verify that the intcrprctation of each axiom of H is provable 

in 1.21, and that the infcrcncc rules arc valid in L21. n 

The convcrsc is somewhat more complicated. 

Ixmma 6. (Interpolation for lip formulas) Suppose cp-+# isa 

ITf formula. If it is a tJ~corcm of f,21, then thcrc is a&r-order for 

mula x, in which all first- (and second-) order variahics arc common 

to cp and #. such that ‘p 4 x and x - J, arc thcorcms of 1)2t. 

Proof. Similnr to any one of the standard prwf-thcorctic proofs of 

the intqolation thcorcm for I:irst-Or&t I.ogic (see c.g. uak7SJ). n 

Lfmma 7. Let (I e j3;y. and let p and 4 bc first-order formu- 

las. Suppose that 

(1) cpIiil~M,wl -# WI. 

is a theorem of 1-21. Then there is afftsl-order formula L such that 

p[u’l AMgIGl + 43 

and 

c[i]hh!,[i,Fl + $Fl 

illI! thcorcms Of 1.21. 

Proof. Suppose (1). i.C. 



VR” [ (t/?(hf,n (l7.i) + X(i)) -, 

3i(RmAhf:‘(i.i;))]. 

-+ 4m 

by a normal proof of 1.2, [Pra71]. It is easy to see that there arc 

first-order formulas xi, iEf, such that the following is derived: 

(p A Air,(U, - E,) * +. 

where 

cl, 3 Vi( hd,[rr.z7 --, xr[ijl 

and 

Ej s 33 x,[il A M,[i.qh 

and where ‘p E cp[U] and # ss $(;;I. Thus 

Cp A &rf(‘Ui ” EI) -S ‘/e 

andso 

Cp A ‘J,,,{(AjnJ1uIl/)A (Aj,jE/)I * ‘I* 

where 7 m I - J. It follows that 

Alt,{ (P”(A,,,-‘u,) + (b,$,) + J, k 

Note that the premise of the main implication, in each conjunct has 

no occurrcncc of variables in ?, and that the anteccdcnt has no 

occurrence of variables in ii. By lemma 6, it follows that there are 

first-order formulas &, JCI, with no free occurrence of any variable 

in G, V, such that 

IJ A “j,-iEl * ‘I’. 

Substituting the dctinitions of Uj and ci, this implies, for each 

JCI. 

“/,J vz [ ‘&‘f’~f~ -b (xJ”t) 1 

and 

“jl~ Vi [ Xj A (J A My 4 ‘k 1, 

where 

M, I h4,,[ii,q. M, E M,[i,J]. 

This implies 

vi [ P A hfp + VjtJ Xj V IJ) 1 

and 

Hence 

‘p A M, + “&,t~ X/ ” tJ) 1 

and 

[“,,,(f’jaJxj AfJ)AM,] -‘#- 

The proof is then concluded by applying the following lemma, n 

Lemma 8. For any set I, the following schema is derivable in Propo- 

si tional Logic. 

PrOOf. hSUITM2 the prCI’IIi92 tNC and thC COI3ChSiOn fake. Then iqJ 

for all ICI. Taking J=I, we get from the premise that pi0 holds 

for some i&I. Let J1 z I - (ie}. Then the premise implies simi- 

larly that pi, holds for some itEll. unlca It = 0. Continuing we 

SW that pi holds for all iEf. But then Aitl pr holds for J= I. 

Also, the assumption for J = 0 implies qJ. since and empty dis- 

junction is trnc. Thus the conclusion holds for the disjunct J = I. a 

contradiction. n 

Proposition 9. (Chnplctcnc~s of I loarc’s Logic for logical rmsoning 

about programs) 1-l is complctc for logical reasoning about programs: 

if a pcutial correctness awrtion is provahlc in I, *t, then it is provable 

in H. 

Proof. Ry induction on the program in the partial correctness asser- 

tion. lemma 7 is the induction step for the composition case. Other 

casts arc trcatcd similarly. n 

Corollary 10. Hoarc’s Logic is exactly the canonical logic for partial 

corrcctncss assertions (for while programs). 

Proof, lmmcdiatc from propositions 5 and 9. l 

Proposition 9 can be slightly gcneralizcd to the following which 

we USC in the sequel. 

Proposition II. (Strong Completeness of Horre’s Logic) If a partial 

correctness assertion is provable in Lat from a set of first-order for- 

mulas (or cvcn Xta formulas), then it is provable in H from the 

same set. W 
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