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Abstract

“We show that tree pattern matching has significant

advantages in the specification and implemcentation
of cfficient code generators. We present a top-down
tree-matching algorithm that is particularly well
suited to code gencration applications. Finally, we
present a new back-end language that incorporates
tree pattern matching with dynamic programming
into a uniform framework for the specification and
implementation of cfficient code gencerators.

1. Introduction

In the last decade rescarch in code gencration has
yiclded fundamental theorctical  insights  and
promising practical approaches [Ganapathi, IKischer
and Hennessy, 1982, Luncll, 1983,  On the
theoretical front, cfficient algorithms for generating
provably optimal cede on a broad class of uniform
register machines have been  developed  for
cxpressions with no common subexpressions {Scthi
and Ullman, 1970; Aho and Johnson, 1976). Once
comimon subexpressions arc cncountered, or optimal
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code nceds to be generated for machines with
irregular architecturcs, then the problem of optimal
code gencration has been proven to  be
combinatorially difficult [Bruno and Scthi, 1976;
Aho, Johnson and Ullman, 1977a), and hcuristic
techniques for generating good code have been
theoretically analyzed [Aho, Jolinson and Ullman,
1977b}.

On the cxperimental front, scveral innovative
approaches to rctargetable code gencration have
been pursucd. ‘These approaches have focussed on
the usce of table driven techniques to scparate the
machine description from the code generation
algorithm [Caticll, 1978; Fraser, 1977; Ganapathi
and Fischer, 1982, 1984b; Glanville and Graham,
1978, Graham, 80; Hcnary, 1984; Johnson, 1978;
Wulf, 1980). Compilers based on some of these
techniques have been shown to be fairly casily
rctargeted when compared to  their monolithic
counterparts [Johnson, 1978].

In this paper we present a  language that
cncapsulates  some  of  these  theorctical  and
experimental advances into a single framework for
describing and implementing code gencrators. ‘The
language builds on the experience of grammar and
attribute-grammar  based  descriptions  of code
generators, It also incorporates recent advances in
tree pattern matching technology along with the
dynamic programming algorithm of [Aho and
Johnson, 1976] for gencrating locally optimal code
for expression trees in linéar time for a broad class of
register machines, As we shall scc, it significantly
facilitates the description of Ganapathi-Fischer style
code gencerators.
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2. Pattern-Directed
Generation

Code

The major technique adopted in the retargetable
approaches is to replace  virtual  machine
interpretation by pattern matching. Wasilew [1972]
and Wcingart [1973] were among the first to propose
this idca. The target machine instructions are
represented as individual tree patterns. The input to
the code generator is a tree representation of the
source program. ‘I'hc code gencrator matches the
input tree and on cach match, outputs target code.

For cxample, consider the following machinc-
patterns for instruction-sclection:

PL: Address — index
/ N\
/ \
/ \
X Y
usc index addressing mode X[Y}
PM: Word — multiply
/ N\
/ \
/ \
X Y

emit IMUL X, Y, Temp

Now, consider the following input to the code
generator. ‘The code generator is being asked to first
sclect addressing modes for operands, then sclect an
op-code and then once again sclect an addressing
mode.

IR:
index
/ N\
/ \
multiply C
/ N\
/ \
A B

The code generator matches the multiplication
pattern (I°M) first, the instruction IMULL A, B, Temp
is emitted and the input tree is reduced to:

index
/ \
/ \
Word C
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Next, the code gencrator matches the index pattern
(P1), an indcx addressing mode is uscd and the IR
tree is consumed.

The carly pattern matching techniques have
employed direct tree-pattern maiching technigues.
Fraser {1977] and Cattcll [1978] have emphasized the
usc of heuristic scarch. Fraser retics on knowlcdge-
bascd rules that dircct pattern matching whereas
Cattell suggests a goal-directed heuristic scarch. In
Cattell’s approach, subgoals are created as the scarch
continucs.  Heuristics arc used, both to order
subgoal sclection and also to order patterns when
trying to match.

Later techniques have lincarized the input tree to
the code gencerator. ‘The target machine is described
in the form of grammar productions. Thus, pattern
matching in trees is implicitly provided with the help
of bottom-up parscrs [Glanville, 1977; Ganapathi,
1980]. With cach reduction step of the parser, the
input lincarized-tree gets smaller.  In [Glanville,
1977], the target instructions arc represented by
context-free grammars,  LEvery possible instruction
variant is described by a grammar rule. Pattern
matching is then provided by simple SI.R parsing.
It is a purcly syntactic approach to the instruction-
sclection problem.  T'he rree-pattern-matching is
provided in a completely left-operand biased fashion,
That is, when gencrating code for an entire sub-tree,
the code for the left operand is sclected without
considering the right operand. Necdless to mention,
this yiclds suboptimal code in many cascs.

For cxample, consider the string op A4 B, The
addressing mode for A is sclected without sccing
B. Thus, A could be a register-indirect addressing
mode on the IAPX-286!. Next, B happens to be a
memory  datum  that gets one of (he memory
addressing modes. Now, comcs the time to sclect a
machine op-code. The code gencrator realizes that
memory-lo-memory  operations  cannot  be
performed in onc instruction. Thus, it is forced to
move A to a register.

FFurthermore, the syntactic approach to instruction-
set  specification is  inadequate  on most  real
machines. Neither is there o mechanism to specify
architectural restrictions on the programming modcl
such as, register restrictions on addressing-modc use
nor is there a mechanism to track multiple results
such as, results in multiple locations and condition-
code sciting.  Furthermore, syntactic trcatment of
semantics yiclds a very large number of grammar
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productions, unacceptably large for of-the-shelf
parser gencrators,  ‘Time-consuming and tedious
engincering decisions arc required on the grammar
to makc the scheme partially workable [Henry,
1984].

In [Ganapathi, 1980], thc targct instruction-sct is
specified by attribute gramimars instcad of context-
freec grammars. Scmantic attributes and predicates
provide automated semantic handling. Predicates
are used to spccify architectural restrictions on the
programming model, Attributes are usced to track
multiple instruction results. Instruction sclection is
done by attributed parsing {Ganapathi and Fischer,
1982, 1984a). Addressing modces arc described by
scparate individual productions and so arc op-codes.
Addressing-modec sclection is left-biased in the true
trce-pattern matching scnse, but selection of op-
codes in not biased toward any operand. Opcode
productions have symmetric operand patterns. This
symmetry cnables the code generator to delay
dcecisions regarding destination requirements.  I[n
cffect, this decision is made on secing the entire sub-
trce for the opcrator. ‘Thus, efficient code is
produccd in cascs when cither of the opcrands can
be used to storc the result of cvaluation. Only in
cascs where their original results nced be preserved
is a call made to the register/temporary allocator.

For cxample, consider the iAPX-286 instruction-sct
architecturc. Only five of the cight general-purpose
registers arc available for offset address calculations,
i.c., indcxing. So. the indcxing pattern Pl s
qualificd by a predicate cxpression that specifics
these architectural restrictions on the programming
modcl. The symbol T attaches attributes to grammar
symbols.

PI-iAPX286:

AddressTa  — index
/ N\
/ \
/ \
Datum{ X Datum(Y
predicates:

X = 16-bit constant and

Y = S, DI, BP, BX or SP register
action:

usc index addressing mode X[Y]

the attribute "o’ specifics this mode
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Consider threc-address, two-address and single-
address multiplication on the iAPX-286 that may be
selected during instruction-sclection.

PM-iAPX286:
Word{Temp — multiply
/ \
/ \
/ \
Datum{ X DatumlY

predicate:

X = 16-bit constant
action:

emit IMUL Temp, Y, X

WordlY — multiply.
/ \
/ \
/ \

DatumTX DatumTY

predicates:

X = 8-bit constant

Y = 16-bit register AY = -~ busy
action:

cmit IMUL Y, X

WordTAX,DX —  multiply
/ N\
/ \
/ \

DatumTX DatumfY

predicates:

X = 16-bit opcrand

Y = AX register A Y = -~ busy
action:

cmit IMUL X

The use of attributes and predicates allows the
incremental development of a code gencrator.
Initially, the most general form of production use is
listed. later, special-case productions are added to
improve the performance of the target code. In the
above example, we could incorporate two-address
and three-address multiplies at a later stage. 'These



special-case productions may be added cven though
the grammar becomes ambiguous.  Ambiguous
grammars arc uscful in the specification of code
generators because subsequent modifications can be
performed with reduced cffort.  Parsers can be
constructed from ambiguous spccifications [Aho,
Johnson and Ullman, 1975]). YACC [Johnson, 1975]
is a parser gencrator that allows ambiguous
specifications.

Furthcrmore, implicit factoring of addressing modes
by wuse of addressing-mode productions and
scmantic  attributes, replaces  Glanville’s  cross-
product of op-code and addressing modes by their
additive sum.  Conscquently, thc number of
grammar productions is considerably smaller and
practical (scveral hundred productions instcad of
scveral thousand). Extensive grammar engineering
is not nceded to implement a code gencerator based
on semantic attributes and predicates.

In this paper. we present a tree pattern matching

algorithm for usc in codc gencration. 1t climinates

the deficiencies pointed out above, In addition to its

ability to decfer decisions and produce locally
optimal code, the following advantages also accrue:

1. The underlying tree-automaton based code

gencrator can be constructed more quickly

than a bottom-up parscr or attributed-

grammar based parser. In code gencration,

only the string pattern matching capabilitics

arc nceded; the bottom-up synthesis part
provided by 1.R parsers is not really needed.

2. Although the mcthod used in [Ganapathi and
Fischer, 1982] provided succinct and concise
grammar descriptions, it was obscrved that
many grammar productions had considcrable
syntactic similarity. ‘They differed only in
attributes  and  predicates. OQur aim in
replacing  an  attributed-parser by a  tree
automaton is to factor the repeated syntactic
parts into onc common pattcrn, so that onc
syntactic match can correspond to scveral
concurrent matches  of target  machine
instructions. As an additional benefit, the time
and cffort required o  writc  description
patterns for such an automaton is considerably
less when compared to [Ganapathi and
Fischer, 1982].

3.Since fewer patterns arc  nceded, the
description  of the code generator s
significantly simplificd. A simplc experiment
showed that the description of the code
generator for the IAPX-80 was cut almost in
half. In addition, the original predicate-free
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grammar-based  description has 450
shift/rcduce and 5000 reduce/reduce conflicts.
The tree pattern matching  description
climinates the need to deal with these parsing
action conflicts completely.

4,Onc of the restrictions in [Ganapathi and
Fischer, 1982] was the usc of inherited
attributcs to non-terminals in the grammar, In
particular the lcft-hand side of a grammar
production cannot have any inherited
attribute. ‘This restriction is due to the one-
pass bottom-up code gencration scheme.
While for non-optimizing machine-code
generators, there does not scem to be a nced
for inherited attributes on the left-hand side,
such an allowancc- could be bencficial for
optimization. For cxample, the target path of
an operation can be passed as an inhcrited
attribute to the left-hand side. At present, the
target is figured out by cxamining the left
context provided on the attribute stack of the
parscr. In contrast, this information could be
automatically made available as an inherited
attribute of the left-hand side. In the tree-
automaton bascd code generator, the pattern
matching is performed by a prcorder traversal
of the intermediatc  language  tree.
Conscquently, inhcrited attributes can be
casily computed in the top-down pass.
5.The lincar time dynamic programming
algorithm of [Aho and Johnson, 1976] has
proven cffective in practical code generation
[Johnson, 1978; Ripken, 1978). 'This scheme
can be readily integrated into the tree
matching process. "The dynamic programming
algorithm guarantees locally optimal code for
cxpression trees, an advantage not enjoyed by
the current grammar-based code gencrators.
Furthermore, the incorporation  of the
dynamic programming algorithm climinatcs
the necessity for explicitly breaking cycles to
prevent the code gencrator from looping.
Consider the intenmediate  representation  for
indexed multiplication given above.  We compare
the Graham-Glanville, the Ganapathi-Iischer and
the current trec-automaton techniquces in generating
code for this intermediate representation.
Graham-Glanville  cannot  model  predicate
restrictions on the usc of the index addressing mode
and thc¢ IMUL op-codc for the iAPX-286
architccture.
The Ganapathi-Fischer code generator will first
match the three-address multiplication production



(PM-iAPX286). Then the temporary allocator is
invoked. Thc attributc-stack provides information
regarding the context of operation, i.e., whether the
operator is a multiply and the opcrands arc integer
opcrands, more preciscly, word data-types. The
temporary allocator, which in this casc is the register
allocator, rcturns the AX-DX register pair. The
threc-address multiplication op-code is emitted and
the result is the AX-DX pair that is propagated as a
synthetic attribute to the left-hand side grammar
symbol.

Next, the index production is sclected. Because of
predicate restrictions on use of this addressing mode,
code is generated to move the contents of AX
register to an indexable register, say Sl in this casc.
Subscquently, the index production is sclected.

If in the first step the temporary allocator had
allocated an indexable register in the first place, then
the redundant register move in the second step
could have been avoided. In the tree pattern

matching automaton, this rcdundant move s
avoided.

3. Tree Pattern Matching
Algorithms

A numbecr of tree pattern matching algorithms have
been recently proposed for different applications
[Kron, 1975: Hoffman and O'Donncll, 1982; Huct
and levy, 1979 Lang, Schimmler and Schmeck,
1980]). We have found a generalization of the string
matching algorithm of [Aho and Corasick, 1975] for
top-down trce pattern matching well suited for our
code generation application.  As suggested in
[Hoffman and O'Donncll, 1982), cach trce pattern
can be characterized as a sct of root-to-leaf path
strings. A string pattern matching automaton can
then be constructed from these sets of characterizing
path strings.

The pattern matching algorithm uscs the automaton
to partition an expression tree into a sct of subtree
matches by performing a preorder traversal of the
target trec. A dynamic programming algorithm is
run concurrently with the matching to sclect a
minimal cost pactition.

Our trec matching algorithm has several advantages
for code gencration purposcs. ‘The construction of
the pattern matcher can be done in time lincar in the
size of the trec pattern specifications. ‘The size of the
resulting pattern matcher is also a lincar function of
the sizc of the input specification.  Neither of these
claims can bc made for the S1.R parser construction
algorithm (or for a purcly bottom-up style of tree
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matching). Practical cxpecricnce with the Aho-
Corasick algorithm for string matching shows that
thousands of string patterns cani be matched
simultancously with a running timc that is
comparable to the UNIX2? system grep command
looking for a singlc-string pattcrn,

4. A Pattern-Directed Code
Generation Language

In this section we sketch the design of the code
generator language CGL that incorporates the tree
pattern matching and dynamic programming
language into a uniform framework for specifying
code gencrators. ‘The language is modcled after a
production system, as is the parser-gencrator
language YACC. A CGI. program is basically a
sequence of pattern-action statements. Each pattern
is a tree-rewriting rule of the form 4 — a where A is
a node and a a trcc template. Each action is a
scquence of guarded commands, like Dijkstra’s
language but without nondcterminism. Each guard
is a predicatc whose variables are inherited and
synthesized attributes. Each command is a program
fragment, like a YACC action. Attached to cach
command is a cost that is used in the dynamic
programming algorithm to sclect locally optimal
code. The pattern-action statcment works in the
following manner. If the pattern a is found in the
input trce, then the pattern is rewritten as an A,
provided that some predicatc in the action is
satisficd. ‘The command associated with the satisfied
predicate is exccuted. If more than onc pattern and
predicate match, then the cost associated with cach
command is used by the dynamic programming
algorithm to determine which command to cxccute.
An omitted cost is assumed to be unity,

Here is an cxample showing the iAPX-286
multiplication productions written in CGL.:

2{Jnix is a trademark of Bell Laboratorics.



WordtR — multiply WordtX WordTY

predicate:
X = 16-bit constant;
action:
cmit "IMUL Temp, Y, X";
R := Temp;
costd: 4,24

predicate:

X = 8-bit constant

Y = 16-bit register A Y = - busy;
action:

emit "IMUL Y, X™;

R:=Y;
cost: 3,24

predicate:

X = 16-bit operand

Y = AXregister A Y = -~ busy
action:

emit "IMUL X™;

R := AX,DX;
cost: 2, 16

An cxperimental version of this code gencration
language calied 'TWIG has been implemented by
Tjiang [1984]. Prcliminary results indicate that the
performance of a T'WIG gencrated code generator is
supcrior to that of the code generator, Pec2, of the
Portable C compiler [Johnson, 1978].

5. Conclusions

We have shown that tree pattern matching can be
uscd to climinatc scveral magor difficultics with
grammar and attribute-grammar based approaches
to code gencration. We have isolated a tree pattern
matching algorithm that scems well suited for use in
codc generation. A code gencration language that
cncapsulates  the trce matching and  dynamic
programming algorithms has been designed and
implecmented. 1t can be used to describe Ganapathi-
ischer style code gencrators with considerable case.

¥he cost takes into account the space required by the
instruction, and the number of clock cycles that this form of
instruction takes (o exccule: i.c., the time required to calculate an
operand’s cffective address, the internal processing overhecad in
clock cycles and the time nceded to read or write a memory
opcrand.
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