
Efficient Tree Pattern Matching: an Aid to Code Generation 

(Extended Abslracl) 

Aifrcd V. Aho 
AT&T Ikll I&oratories, 
Murray Hill, New Jersey 

Mahadcvan Canapathi 
Stanford University, 
Stanford, California 

Abstract 

WC show that tree pattern matching has significant 
advanragcs in the specification and implcmcntation 
of cfficicnt code gcncrators. WC prcscnt a top-down 
tree-matching algorithm that is particularly well 
suited to code gcncration applications. Finally, WC 
prcscnt a IICW back-end Iilnguagc that incorporates 
tree pattern matching with dynamic programming 
into a unilbrm framework for the spccitication and 
implcmcntalion of cfficicnt code gcncrators. 

1. Int reduction 

In the last dccndc rcscarch in code gcncnrtion has 
yicldcd fundamental thcorctical insights and 
promising pr;stical approaches [G~~lliljXltlli. I;ischcr 
and t Icnncssy, 1982. I .uncll. lY83j. 011 1llC 
thcorctical front. cfficicnl Agorilhms for gcncrating 
provably optimal code OII iI bl.oild CI;ISS of unifbrm 
rcgistc J machines have been dcvclopcd fjr 
cxprcssions with no common subcxprcssions [Scthi 
and Ullman, 1970; Aho and Johnson, 197OJ. 01lcc 
common subcxprcssions arc cncountcrcd. or optimal 

Permission to copy without fee all or part of this material is granted 
providal that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appcpr, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
othctwise, or to republish, requires a fee and/or specific permission, 

01984 ACM 0-89791-147-4/85/001/0334 $00.75 

code needs to bc generated for machines with 
irregular architccturcs, then the poblcm of optimal 
code gcncration has been proven to be 
combinatorially difficult [lIntno and Scthi, 1976; 
Aho, Johnson and Ullman, 1977a], and heuristic 
tcchniqucs for gcncrating good code have been 
thcorctically i\nalyXcd [MO, Johnson and Ullman, 
1977b]. 
011 the cxpcrimcntal front, scvcral innovative 
approaches to rctargctablc code gcncration have 
been pursued. ‘I’hcsc approaches have focusscd on 
the USC of table driven tcchniqucs to scparatc the 
machine description from the code gcncration 
algorithm [Cattcll, 1978; Prascr, 1977; Ganapnthi 
and Fischer. 1982, 1984b: Glanvillc and Graham, 
1978, Graham, 80: Henry, 1984: JO~IIISOII, 1978; 
Wdf, 19801. Compilers hascd on some of thcsc 
tcchniqucs have been shown to bc fairly easily 
rctargctcd when compared to their monolithic 
counterparts (Johnson, 1978). 
In this paper wc prcscnt il language lhat 

CllCilpS~ll~ltCS some of LllCSC I.llcorcticid illld 

cxpcrimcntal ndvilnccs into a single framework for 
describing and implcmcnting code gcncrators. ‘l’hc 
li~nguagc builds 011 the cxpcricncc of grammar and 
attribute-gram~liai based descriptions of code 
gcncrators. It also incorporates rcccnt advances in 
tree pattern matching technology along with the 
dynamic programming algorithm of [hho and 
Jollnsvtl, 19701 for gcncrating locally optimal code 
for cxprcssion IKCS in linc’ar time for a broad class of 
rcgistcr miKllillCS. As WC shr\ll see, it signilicantty 
fisilitatcs the description of Ganapathi-Fischer style 
code gcncrators. 

334 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F318593.318663&domain=pdf&date_stamp=1985-01-01


2. Pattern-Directed Code 
Generation 

‘I’hc major tcchniquc adopted in the rctargctabtc 
approaches is to rcplacc virtual machine 
intcrprctation by pattern matching. Wasitcw (19721 
and Wcingnrt 119731 wcrc among the first to propose 
this idea. The target machine instructions are 
rcprcscntcd as individual tree patterns. The input to 
the code gcncrator is a tree rcprcscntation of the 
source program. ‘I‘hc code gcncrator matches the 
input tree and on each match, outputs target code. 

For cxamplc, consider the following machinc- 
patterns for instruction-sclcction: 

PI: Address -t index 
/ \ 

/ \ 
/ \ 
X Y 
USC index addressing mode X[Y] 

PM: Word ---t mu1 tiply 
/ \ 

/ \ 
/ \ 
X Y 
emit IMULX, Y,‘I’cmp 

Now. consider the following input to tbc code 
gcncrator. ‘I’hc code gcncrator is being asked to first 
sclcct oddrcssing modes for operands. then sclcct an 
op-code and then once again sclcct an addressing 
mode. 

index 
/ \ 

/ \ 
multiply C 

/ \ 
/ \ 

A II 

‘I’hc code gcncrator mabhcs the multiplication 
pattern (PM) first, rhc instruction I M U I. A, I& ‘I’cmp 
is cmittcd and the input tree is rcduccd to: 

index 
/ \ 

/ \ 
Word C 

Next, the co& gcncrator matches the index pattern 
(PI), an index addressing mode is used and the IK 
tree is consumed. 

‘I’hc early pattern matching tcchniqucs have 
cmploycd direct tree-pattern matching tcchniqucs. 
Frascr[l977] and Cattcll 119781 have cmphasizcd the 
USC of heuristic starch. l;rascr rctics on knowlcdgc- 
based rules that direct pattern matching whereas 
Cattcll suggests a goal-dircctcd heuristic search. In 
Cattcll’s approach. subgoals arc crcatcd as the starch 
continues. Heuristics arc used, both to order 
subgoal sclcction and also to order patterns when 
trying to match. 

I,atcr tcchniqucs have lincarizcd the input tree to 
the code gcncrator. ‘t’hc target machine is dcscribcd 
in the form of grammar productions. Thus, pattern 
matching in trees is implicitly provided with the http 
of bottom-up parsers [Glnnvillc, 1977; Ganapathi, 
19801. With cacb reduction step of the parser, the 
input lincarizcd-tree gets smaller. In [Clanvillc. 
19771, the target instructions arc rcprcscntcd by 
context-free grammars. I’vcry possible instruction 
variant is dcscribcd by a grammar rule. Pattern 
matching is then provided by simptc SI.R parsing. 
It is it purely syntactic approach to the instruction- 
sclcction problem. ‘I’bc tree-jtallertr-ttmrchittS is 
provided in a complctcly left.opcrand bi:lscd fashion. 
That is, when gcncrating code for an cntirc sub-tree, 
the code for the left operand is sclcctcd without 
considering the rigbt operand. Nccdlcss to mention, 
this yields suboptimal code in many casts. 

For cxamplc. consider the string 01/J A /I. ‘f’hc 
addressing mode for A is sclcctcd without seeing 
IL ‘l’bu~, A could be a rc~is/rritrtlircc*/ itddrcssing 
mode on tbc iht’X-2XOt. Next. I$ IKI~~CIIS to bc a 
lllclllol*y llilllllIl tllilt gels one of LllC memory 
addressing modes. Now. comes the time to sclcct a 
machine op-code, ‘I’hc code gcncrator rcalizcs that 
nicmory-to-nicmory operations cannot bc 
pcrformcd in one instruction. l’hus, it is forced to 
move A to a rcgistcr. 

I~urtlicrmorc, the SylltilCtiC ;ll>prOiKll to instruction- 
set SpCci kidon is inadcquatc on most real 
machines. Ncithcr is thcrc iI mcch;~nism to specify 
arrhitccLuritl restrictions on the programming model 
such as, rcgistcr restrictions on addressing-mode use 
nor is thcrc a mechanism to track multiptc rcsutts 
such as, results in multiple locations and condition- 
code setting. I:urthcrmorc. syntactic trcatmcnt of 
sctnantics yields a very large number of grammar 

lihPX is a lradcnmk or InhI Corporation 

33.5 



productions, unacceptably large for of-the-shelf 
parser gcncmtors, ‘fimc-consuming and tedious 
engineering decisions arc rcquircd on the grammar 
to make the schcmc partially workable [Henry, 
19841. 
In [Ganapathi. 19801, the target instruction-set is 
spccificd by attribute grammars instead of contcxt- 
fret grammars. Semantic attributes and predicates 
provide automated semantic handling. Prcdicatcs 
arc used to specify architectural restrictions on the 
programming model. Attributes arc used to track 
multiple instruction results. Instruction sclcction is 
done by attributed parsing [Ganapathi and Fischer, 
1982. 1984a). Addressing modes arc dcscribcd by 
separate individual productions and so arc op-codes. 
Addressing-mode sclcction is left-biased in the true 
tree-pattern matching SCIISC, but selection of op- 
codes in not biased toward any operand. Opcodc 
productions have symmetric operand patterns. This 
symmetry cnablcs the code gcncrator to dciay 
decisions regarding destination rcquircmcnts. In 
cffcct, this decision is made OIJ seeing the cntirc sub- 
tree for the operator. ‘I’hus, efficient code is 
produced in casts when cithcr of tbc operands can 
be used to store the result of evaluation. Only in 
cases whcrc their original results need bc prcscrvcd 
is a call made to the rcgistcr/tcmporary allocator. 

For cxamplc, con$idcr the iAPX-286 instruction-set 
architccturc. Only five of the tight gcncral-purpose 
rcgistcls arc avnilablc for offset address calculations, 
i.e., indexing. So. the indexing pattern PI is 
qualified by a prcdicatc cxprcssion that specifics 
thcsc architcctllral restrictions on the programming 
model. ‘I‘hc symbol 1 att;lcllCS atlributcs to grammar 
symbols. 

PI-ihPX286: 

Addrcssfa -+ index 
/ \ 

/ \ 
/ \ 

IIatumfX DntumfY 

prcdicatcs: 
X = 16-bit constant and 
Y = SI, II. BP, RX or SP rcgistcr 

action. -- 
USC index nddrcssing mode X[Y] 
the attribute ‘;I’ specifics this mode 

Consider three-address. two-address and singlc- 
address multiplication on the ihPX-286 that may bc 
selcctcd during instruction-sclcction. 

PM-iAPX286: 

Wordt’i’cmp --) multiply 
/ \ 

/ \ 
/ \ 

DatumT X DatumfY 

p red ica’te: 
X = 16-bit constant 

action. -’ 
emit IMUL’l’cmp, Y, X 

WordfY --t multiply 
/ \ 

/ \ 
/ \ 

l.latumfX DatumfY 

prcdicateq: 
X = 8-bit constant 
Y = 16-bit rcgistcr A Y = 7 busy 

action: 
emit IMUL, Y, X 

WordfAXJIX -+ multiply 
/ \ 

/ \ 
/ \ 

DatumfX DatumfY 

prcdicatcs: 
X = 16-bit operand 
Y = AX rcgistcr A Y = -, busy 

action: 
emit IMUL, X 

The USC of attributes and prcdicotcs allows the 
incrcmcntal dcvclopmcnt of a code gcncrator. 
Initially, the most gcncral form of production use is 
listed. I ,atcr. spccii\l-case productions arc added to 
improve the pcrformnncc of the target code. In tllc 
nbovc cxamplc, WC could incorporalc two-address 
and three-address multiplies at a later stage. ‘I’hcsc 

336 



special-cast productions may bc added even though 
the grammar bccomcs ambiguous. Ambiguous 
grammars arc usch~l in the specification of code 
gcncrators because subsequent modifications can bc 
pcrformcd with rcduccd effort. Parsers can bc 
constnlctcd from ambiguous specifications [hho, 
Johnson and Ullman, 19751. YACC [Johnson, 19751 
is a parser gcncrator that allows ambiguous 
specifications. 

Furthcrmorc. implicit factoring of addressing modes 
by use of addressing-mode productions and 
semantic attributes, replaces Glanville’s cross- 
product of op-code and addressing modes by their 
addi tivc sum, Conscqucntiy, the number of 
grammar productions is considerably smaller and 
practical (scvcral hundred productions instead of 
scvcral thousand). t’xtcnsivc grammar engineering 
is not nccdcd to implcmcnt a code gcncrator based 
on semantic attributes and prcdicatcs. 

In this paper. WC prcscnt a tree pattern matching 
algorithm for USC in code gcncration. It climinatcs 
the dcficicncics pointed out ebovc. In addition to its 
ability to dcfcr decisions and product locally 
optimal code. the following advantages also accrue: 

1. ‘I’hc underlying tree-automaton based code 
gcncrator can bc constructed more quickfy 
than a bottom-up parser or attributcd- 
grammar based parser. In code gcncration. 
only the string pattern matching capabilities 
arc nccdcd; Lhc hottonr-up synthesis part 
provided by I .I< parsers is not really nccdcd, 

2. Although the ntcthod used in [Gonapathi and 
Fischer, 1982J provided succinct and concise 
grammar descriptions, it was obscrvcd that 
many gramm;lr productions had considcrablc 
syniaclic silnililrily. ‘I’hcy diffcrcd only in 
attributes and prcdicatcs. Our aim in 
replacing an nttrihutcd-parser by a tree 
autoalaton is to factor the rcpcatcd syntactic 
parts into one common pattern. so that one 
syntactic match can correspond to scvcral 
concurrent IlliltChCS Of ti\@Ct mi~cchitlc 

instructions. As al additional bcnclit, the time 
and cffbrt rcquircd to write description 
patterns for such iIn automaton is considerably 
less when compared to [Ganapathi and 
Fischct, 19821. 

3. Since fcwcr patterns arc nccdcd, the 
description of the code gcncrator is 
significantly simplified. A simple cxpcrimcnt 
showed that the description of the code 
gcncralor for the ihPX-86 was cut almost in 
haIF. 111 addition, the original prcdicatc-free 

grammar-based description has 450 
shift/rcducc and 5000 rcducc/rcducc conflicts. 
The tree pattern matching description 
climinatcs the need to deal with thcsc parsing 
action conflicts complctcly. 

4.Onc of the restrictions in [Ganapathi and 
Fischer, 19821 was the USC of inhcritcd 
attributes to non-terminals in the grammar. In 
particular the l&t-hand side of a grammar 
production cannot have any inherited 
attribute. This restriction is due to the one- 
pass bottom-up code gcncration scheme. 
While for non-optimizing machine-code 
gcncrators. thctc dots not seem to bc a riced 
for inhcritcd attributes on the Icft-hand side, 
such an allowance. could bc bcncficial for 
optimization. For cxamplc, the target path of 
an operation cm bc passed as an inhcritcd 
attribute to the Icft-hand side. At prcscnt, the. 
target is figured out by examining the left 
context provided on the attribute stack of the 
parser. In contrast, this infbrmation could be 
automatically made available as an inherited 
attribute of the Icft-hand side. In the trce- 
automaton based code gcncrator, the pattern 
matching is pcrformcd by a prcordcr traversal 
of UlC intcrntcdiatc language b-CC. 

Conscqucntly, inhcritcd attributes can bc 
easily computed in the top-down pass. 

5. ‘t’hc lincal time dynamic programming 
algorithm of [Aho and Jo~~soI~, 19761 has 
proven cffcctivc in practical code gcncration 
[Johnson. 1978: Kipkcn. 19781. ‘I’his schcmc 
can bc readily inicgratcd into the tree 
ITlWhillg process. ‘I’hc dynamic programming 
i@)riLhm guar;lNccs locally optimal code for 
cxprcssion trees, an advantage not cnjoycd by 
the current gratnmar-biscd code gcncrators. 
t~urthcrntc~rc. lhc incorporation of the 
dynamic programming algorithm climinatcs 
the ncccssity for explicitly breaking cycles to 
prcvcnt the code gClK!lYltOr from looping. 

Consider the intcrmcdiatc rcprcscntation for 
indcxcd multiplication given above. WC comparc 
the Gr;llli~~~l-Glal~villc, 111~ Gnnapathi-l;ischcr and 
the current tr’CC-ilUtOlltiltOll tcchniqiics in gcncrating 
code for this intcrmcdiatc rcprcscntation. 

Graham-Glanvillc cannot model predicate 
restrictions on the USC of the index addressing mode 
and the IMUL op-code for the iAPX-286 
archi tee tin-c. 
‘I’hc G;ln;lpatlti-l;ischcr code gcncrator will first 
match the three-address multiplication production 



(PM-ihPX286). I’hcn the temporary allocator is 
invoked. ‘I’hc attribute-stack provides information 
regarding the context of operation, i.e., whether tic 
operator is a nn.dfiply and the operands arc integer 
operands, more prcciscly, word data-types. The 
temporary allocator, which in this cast is the rcgistcr 
allocator, returns the AX-1)X rcgistcr pair. The 
three-address multiplication op-code is cmittcd and 
the result is the AX-1)X pair that is propagated as a 
synthetic attribute to the I&-hand side grammar 
symbol. 

Next, the index production is selected. 13ccausc of 
prcdicatc restrictions on use of this addressing mode, 
code is gcncratcd to move the contents of AX 
rcgistcr to an indcxablc rcgistcr, say Sl in this case. 
Subscqucntly, &he index production is scfectcd. 

If in fhc first step the temporary allocator had 
allocated an indcxablc rcgistcr in the first place, then 
the redundant rcgistcr move in the second step 
could have been avoided. In the tree pattern 
matching automaton, this redundant move is 
avoided. 

3. Tree Pattern Matching 
Algorithms 

A number of tree pattern matching algorithms have 
been rcccntly proposed for diffcrcnt applications 
[Kron. 1975: Hoffman and O’l~onncll, 1982; Huct 
and 1,cvy. 1979:‘ Inng, Schimmlcr and Schmcck, 
19801. WC have Found a gcncralization of the string 
matching algorithm of [Aho and Corasick. 19751 for 
top-down tree pilttcrn matching well suited for our 
code gcncration application. As suggcstcd in 
[I loffinan ;III~ O’l~onncll, 1982). cnch tree pattern 
can bc charac~crixcd as a set of root-to-leaf path 
strings. A string pattern matching automaton can 
then bc constructed from thcsc sets of characterizing 
path strings. 

The pattern matching algorithm uses the automaton 
to partition an cxprcssion tree into a set of subtrcc 
matches by performing a prcordcr traversal of the 
target tree. A dynamic programming algorithm is 
run concurrcnlly with the matching to sclcct a 
minimal cost partition. 

Our tree matching algorithm has scvcral advantages 
for code gcncralion purposes. ‘ihc construction of 
the pattcnl rnatchcr can bc done in time linear in the 
size of the tree pattern specifications. ‘I’hc size of the 
resulting pattern mat&r is also a linear function of 
the size of the input specification. Ncithcr of thcsc 
claims can bc nlildc for lhc SI .I< parser construct.ion 
algorithm (or for a purely bottom-up style OF tree 

matching). Practical cxpcricncc with the Aho- 
Corasick algorithm for string matching shows that 
thousands of string patterns cant bc matched 
simultaneously with a running time that is 
comparablc to the UNIX* system grcp command 
looking for a single-string pattern. 

4. A Pattern-Directed Code 
Generation Language 

In this section WC sketch the design of the code 
gcncrator languaggc CGL that incorporates the tree 
pattern matching and dynamic programming 
language into a uniform framework for specifying 
code gcncrators. ‘I’hc language is modclcd after a 
production system, as is the parser-gcncratot 
language YACC. A CGL program is basically a 
scqucncc of pattern-action statcmcnts. Each pattern 
is a tree-rewriting rule of the form A + a whcrc ,I is 
a node and a a tree tcmplatc. Each action is a 
scqucncc of gunrdcd commands. like Ilijkstra’s 
language but without nondctcrminism. Each guard 
is a prcdicatc whose variables are inhcritcd and 
synthcsizcd attributes. Each command is a program 
fragment. like a YACC action. Attached to each 
command is a cost that is used in the dynamic 
programming algorithm to sclcct locally optimal 
code. l’hc pattern-action statcmcnt works in the 
following manner. If the patt.crn a is found in the 
input tree, then the pattern is rewritten as an A. 
provided that some prcdicatc in the action is 
satisfied. ‘I’hc command asst~intcd with the satisfied 
prcdicatc is cxccutcd. If more than one paltcrn and 
prcdicatc match, then the cost associated with each 
command is used by the dynamic programming 
algorithm to dctcrminc which command to cxccutc. 
An omitted cost is assumed to bc unity. 

Hcrc is an cxamplc showing the iAPX-286 
multiplication productions written in CGL: 

*Unix is a rradcmark of Ikll Laboratories 

338 



WordtR --t multiply WordtX WordtY 

predicate: 
X = 16-bit constant; 

action: 
emit “IMULTemp, Y, X”; 
R := Tcmp; 

&: 4, 24 

predicate: 
X = 8-bit constant 
Y = 16-bit register A Y = 1 busy; 

action: 
emit “lMUL Y, X”; 
R Y; := 

cost: 3,24 

predicate: 
X = 16-bit operand 
Y = AX rcgistcr A Y = 1 busy 

action: 
emit “IMUL X”; 
R : = AX,DX; 

cost: 2,16 

An cxpcrimcntal vcrsiou of this code gcncration 
language CallCd ‘I’WIG has been implcmcntcd by 
‘I‘jiang [ 19841. Preliminary results indicate that the 
pcrformancc of a ‘I’W IG gcncratcd code gcncrator is 
superior to tllilt of the code gcncri&)r, Pcc2, of the 
I’ortablc C compiler [Johnson, 19783. 

5. Conclusions 

WC have shown thi\t lrcc paltcrn matching can bc 
used to climinatc scvcral major difficulties with 
grammar and atti.ibutc-graminnr based npproachcs 
to code gcncration, WC hnvc isnlatcd a tree pattcru 
matching algorithm that seems well suited for USC in 
code gcncration. A code gciicratioii language that 
cncapsulntcs the tree matching and dynamic 
programming algorithms hiIs been dcsigncd and 
implcmcntcd. It call 1~~ USC~ to dcscribc Ciilt~:lpi~Llli- 
I;ischcr style code gcllcrators with considcrablc cast. 

31hc cost takes into account UIC space rcquircd by UN 
instructiori, and Urc number of clock cycles chat this form oT 
inotnrction lakes to CXCCUIC: i.c.. UIC Umc rcquircd lo calculalc an 
qxrad’s cf’rcclivc address. llic inlcrnal processing ovcrhcad in 
clock cycles and lhc lime nccdcd to read or wrilc a memory 
operand. 

References 

1. A. V. Aho and M. J. Corasick, “Efficient string 
matching: an aid to bibliographic starch”, 
Comm. ACM, l&6, June 1975, 333-340. 

2. A.V. Aho, S.C. Johnson and J.D. Ullman, 
“Dctcrminislic Parsing of Ambiguous 
Grammars”, Comm. ACM 18(8), 1975. 

3. A. V. Aho and S. C. Johnson, “Optimal code 
gcueration for cxprcssion trees”, J. ACM, 23, 
3, 1976.488-501. 

4.A.V. Aho. S.C. Johnson and J.1). Ullman, 
“Code gcncration for expressions with 
common subcxprcssions “, J. ACM, 24, 1, 
1977,146-160. 

5. A. V. Aho, S. C. Johnson and J. 11. Ullman, 
“Code gcncration for machines with 
multircgistcr operations”, Fourth ACM 
Symposium on Principles of Programming 
l,anguagcs, 1977,21-28. 

6. A. V. Aho and J. 11. Ullman, “Principles of 
Compiler Design”, Addison-Wcslcy, Reading 
MA, 1977, 

7. J. 13runo and R. Scthi. “Code gcncration for a 
one-rcgistcr machine”, J. ACM, 23, 3, 1976, 

8. 

9. 

IO. 

11, 

12. 

13. 

502-510. 
R.G.G. Cattcll. “t+‘ormalization and Automatic 
I)crivirtion of Code Gcncrato&‘. PhD 
dissertation, Carncgic-Mellon University, 
April 1978. 
C.W. Fraser. “Automatic Gcncriltion of Code 
Gcncrators”, Phi) dissertation. Computer 
Scicncc I)cpartmcnt, Yale University, New 
I-lilvcll, Connecticut, July 1977. 
M. Ganapathi. “Rctargctablc Code 
Gcncration and Optiminhtion uSiug Attribute 
Grammars”. 1’1~11 dissertation, ‘l’cchnical 
Report #406, University of Wisconsiu 
- Madison, 1980. 
M. Ganapathi and C.N. Fischer. “I)cscription- 
l)rivcn Code Gcncration Using Attribute 
Gl;ltllm;\r~“. Confcrcncc RCLXW~ of the Ninth 
AlllIuilI ACM Symposium OH I’rinciplcs of 
Programming I ;angungcs, Albuqucrquc, New 
Mexico. January 25 - 27.1982. 

M. Ganapathi, C.N. I+?schcr and J.I,. Hcnncssy 
“Rctargctablc Compiler Code Gcncration”, 
ACM Computing Surveys, Vol. 14, No. 4, 
Dcccmbcr 1982. 

M. Ganapathi and C.N. Fischer. “Instruction 
Sclcction by Attributed Parsing”, ‘I’cclmical 

339 



report #256, Computer Systems Laboratory, 
Stan ford Electronics Laboratories, 
Dcpartmcnts of Electrical Engineering and 
Computer Science, Stanford University, 
February 1984. (Also, to uppmr in AC’A4 
Trcmuc~ions on Prograrrzn~irtg Larrgunges und 
Sysfems). 

14. M. Ganapathi and C.N. Fischer, “Attributed 
Linear Intermcdiatc Rcprcscntations for 
Rctargctable Code Gcncrators”, Software 
- Practice and Expcricncc, Vol. 14, April 1984. 

15. R.S. Glanvillc, “A Machine [ndcpendcnt 
Algorithm for Code Gcncration and its USC in 
Rctargctnble Compilers”, PhD dissertation, 
University of California, bcrkclcy. Dcccmber 
1977. 

16. R.S. Glanvillc and S.1,. Graham, “A New 
Method for Compiler Code Gcncrntion”, 
Confcrcncc Record of the Fifth Annual ACM 
Symposium on Principles of Programming 
languages, pp. 23 l-240, January 1978. 

17. s.1,. Graham, “‘I’ablc-Driven Code 
Gcncration”, IFJX Computer, Vol. 13 No. 8, 
pp. 25-34, August 1980. 

lg. RR. Henry, “Graham Glanvillc Code 
Gcncraton”, Pli I1 IXsscrtation. Computer 
Scicncc 1Xvisiot-r. JXCS, University of 
California, Rcrkclcy, 1984. 

19. C.M. I-loffman and M.J. O’Donnell, “Pattern 
Matching in ‘l’rccs”, J. ACM 29, I. 1982.68-95. 

20. G.l-iuct and J.-J. I,cvy. “Call by need 
computations in non-ambiguous liricar term 
rcwriling systems”. ‘IX 359. IRIA laboria. 
I ,cChcsnay. I~rancc, 1979. 

21. S.C. Johnson, “YACC - Yet Another 
Compiler Compiler”, Computer Scicnccs 
‘I’cchnical Report #32. llcll ‘I’clcphonc 
Laboratories, Murray Hill. New Jcrscy, 1975. 

22. S.C. Johnson, “A Portable Compiler: ‘Ihcory 
and Practice”, Proc. 5th ACM Symp. 
Principles of Programming tanguagcs, pp. 
97-104, January 1978. 

23. Ii. Kron. “‘l’rcc ‘I’crnplatcs and Subtrcc 
‘I’rnnsforinational Grammars”, I’hD 
Dissertation, University of California, Santa 
Crux., 1975. 

24. tl.-W. I.ang, M. Schimmlcr and H. Schmcck, 
“Matching ‘I’rcc Patterns sublincar OI\ the 

;iVCClgC”. ‘I’cchnical I&port, I)cpitrtmcnt of 
Informatik, Univcrsily of Kicl, Kicl, West 
Germany, 1980. 

25. H. Lunch, “Code Generator Writing 
Systems”, SoRware Systems Rcscarch Ccntcr, 
S-58183, Linkoping, Swcdcn, 1983. 

26. K. Ripkcn, “Formalc Bcschrcibun von 
Maschincn, lmplcmcnticrungcn und 
Optimi&cndcr Maschincn-codcerzcugung aus 
Attributicrtcn Programmgraphe”, TUM- 
INFO-7731, Institut fur lnformatik, 
Tcchnischc Univcrsitat Munchen, Munich, 
West Germany, July 1977. 

27. R. Scthi and J. I). Ullman, “The generation of 
optimal code for arithmetic expressions”, 
J. ACM, 17,4,1970,715-728. 

28. S. Tjiang. Private communication, October 
1984. 

29. S.G. Wasilcw, “A Compiler Writing System 
with Optimization capabilities for Complex 
Order Structures”, Phl) thesis, Northwestern 
University, 1972. 

30. S.W. Wcingart, “An Ffftcicnt and Systematic 
Method of Compiler Code Gcncration”, PhD 
dissertation, Computer Scicnccs Dcpartmcnt, 
Yale University, 1973. 

31. W. Wulf, 13. I,evcrctt, R. Cattcll, S. Hobbs, 
J. Ncwcomcr, A. Rcincr and D. Schatx, “An 
Ovcrvicw of the Production Quality Compilcr- 
Compiler Project”, I WI< Computer Vol. 13 
No. 8. pp. 38-49, August 1980. 

32. W.A. Wulf. “PQCC: A Machine-Rclativc 
Compilci ‘I’cchnology”, IHHH 4th 
lntcrnat.ional COM PSAC Confcrcncc, pp. 24 
- 36, Chicago, October 1980. 


