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Abstract 

In this paper we discuss the performance prediction of 

Fortran constructs commonly found in numerical scien- 

tific computing. Although the approach is applicable to 

multi-processors in general, within the scope of the paper 

we will concentrate on the Albant FX/8 multiprocessor. 
The techniques proposed involve a combination of empiri- 

cal observations, architectural models and analytical tech- 

niques, and exploits earlier work on data locality analysis 
and empirical characterization of the behavior of memory 
systems. The Lawrence Livermore Loops are used as a 

test-case to verify the approach. 

1 Introduction 

In recent years, all U.S. supercomputers manufac- 
tures, and dozens of mini-supercomputer vendors 
have entered the market with some form of general 
purpose parallel processing. It is expected that most 
computer companies will offer a scalable multiproces- 
sor by the end of the decade. Unfortunately, very 
few of these systems provide a software environment 
for building parallel programs beyond a standard se- 
quential language compiler and a micro-tasking li- 
brary supporting parallel execution. None of the 
most widely used programming languages (C, For- 
tran, Lisp) have been officially extended to support 
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concurrency and vendors generally will disagree on 
most of the unoflicial extensions. Consequently, the 
task of porting ordinary programs to parallel hard- 
ware and developing new, large parallel applications 
codes has been moving at a slow pace. 

Clearly, a set of tools to help the program designer 
transform existing code or develop new codes is highly 
desirable. These tools must provide the program de- 
signer with information such as: why a program does 
not exhibit the structure of concurrency needed to 
exploit a given machine; the influence of task granu- 
larity on the structure of the algorithm; the impact 
of memory hierarchy (or lack thereof) on the perfor- 
mance of the algorithm; and the ways in which the 
algorithm exploits multilevel concurrency. In short, 
these tools must provide expert analysis and advice 
on improving performance. 

In this paper, we discuss performance prediction of 
loop constructs commonly found in scientific numeri- 
cal computing, e.g. numerical linear algebra compu- 
tations. In particular, we consider the consequences 
of one of the common observations from past perfor- 
mance studies on an Alliant FX/& peak performance 
is often dominated by the data transfer/management 
capabilities of a particular architecture. The resulting 
prediction strategy involves the use of: data depen- 
dence analysis to estimate data locality [1,2]; a hierar- 
chy of data motion kernels that characterize memory 
system behavior [3];’ an assembler code analyzer to 
evaluate characteristics of the code generated by the 
compiler such as instruction counts and ideal cycle 
counts for certain segments of the code; and model- 
ing techniques which use the-resulting information to 
predict performance. 

In section 3, 4 and 5 the necessary background ma- 
terial concerning the load/store primitive hierarchy 
and the data locality estimation techniques is pre- 
sented. The use of the load/store hierarchy to pre- 
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diet performance on the Alliant FX/8 is illustrated 
section 6 by considering the prediction some of the 
Lawrence Livermore Loops [4]. 

2 The Target Architecture: 
Alliant FX/8 

The Alliant FX/8 machine consists of up to eight 
pipelined computational elements (CE’s), each capa- 
ble of delivering a peak rate of 11.75 Mflops for double 
precision calculations (two operations per cycle) im- 
plying a total peak rate of approximately 94 Mflops. 
The startup times for the vector instructions can re- 
duce this rate significantly. For example, the vector 
triad instruction w + v + az (the preferred instruc- 
tion for achieving high performance in many codes) 
has a maximum performance of 68 Mflops. 

The CE’s are connected by a concurrency control 
bus which is used as a fast synchronization facility, 
This mechanism enables the CE’s to cooperate in per- 
forming the computations of a single program unit 
with small granularity, e.g, a Fortran loop. 

The memory system of the Alliant FX/8 combines 
parallel data access with a hierarchical memory struc- 
ture. It is organized in three levels, a large main 
memory, a cache shared by the CE’s, and scalar and 
vector registers private to each CE. The vector regis- 
ters are 32 double precision (64-bit) words long and 
can be operated on via the vector processing capabil- 
ities of each CE. The 16K-word write-back cache is 
organized into four banks and connected to the eight 
CE’s via a crossbar switch. The cache can service up 
to eight simultaneous accesses per cycle. The cache 
and the four-way interleaved main memory are con- 
nected through the main memory bus which is able 
to deliver up to four words per cycle. Therefore, the 
bandwidth between main memory and CE’s is 23.5 
Mwords/s which is half of the 47 Mwords/s possible 
between the cache and the CE’s. Note that these 
are hardware specifications and not necessarily the 
achieved bandwidths that should be used when an- 
alyzing algorithm performance; in practice, stride-l 
vector loads of data residing in main memory run at 
a rate of approximately 12 Mwords/s [3]. 

3 Load/Store Primitive Hier- 
archy 

Often the architectural parameters supplied by the 
manufacturer bear little or no relation to the perfor- 
mance values important from the algorithmic point 

of view. In particular, in order to predict perfor- 
mance we must have a reasonably accurate charac- 
terization of the memory system’s behavior. In this 
paper, we use a behavioral characterization of the 
memory We use a behavioral characterization of the 
memory system based on a hierarchy of data-motion 
primitives (31. The hierarchy, informally called the 
LOAD/STORE model, consist mainly of vector moves 
(vmove) and null nop operati.on instructions. This 
section reviews the LOAD/STORE hierarchy and its 
relationship to the prediction of loop constructs. 

3.1 Load/Store Model 

The basic primitive in the hierarchy is a simple vector 
load or store. On the AlIiant FX/8, these simple oper- 
ations use both the concurrent and vector processing 
capabilities of the machine. The structure of the ba- 
sic primitive kernel is shown in table 1. The kernel 
has the form of a concurrent loop construct with the 
body of the loop iteration being a set of vector move 
instructions. 

At the top of the loop, the processors enter a con- 
current processing mode (this has little overhead on 
the Alliant FXJ8 due to its hardware concurrency 
support). The preamble code is executed once per 
processor and consists mostly of address computa- 
tions for the load and store streams; in general, it can 
perform any initializing ‘computation. The remainder 
of the kernel consists of code which is performed for 
each of the iterations of the concurrent loop. For the 
simplest load and store primitives, which are used to 
explore the behavior of a single vector read or write 
of length n, each iteration corresponds to the process- 
ing of a single block of length b. The iteration code 
consists of address computations followed by a loop of 
nop instructions and a sequence of vmove instructions. 
The vector loop is required since b may be larger than 
the vector register size. 

A database of empirical results is produced by 
varying several aspects of this basic template. The 
two simplest parameters to vary are the number of 
processors, p, and the length of the vector loop, 
n. A more complex variation investigates differ- 
ent scheduling/partitioning choices. Two scheduling 
strategies have been chosen for our database on the 
Alliant: self-scheduling with contiguous blocks, and 
static scheduling with both contiguous blocks and in- 
terleaved blocks. In self-scheduling, the vector is di- 
vided into blocks of size b and the vector operation 
is transformed into a concurrent outer loop over the 
blocks. The blocks are allocated to the processors 
at run-time via the hardware self-scheduling mecha- 
nism of the FX/8. With static-scheduling, the vec- 
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start concurrent execution 
preamble code executed once per processor 

loop-body: 
initial computations of iteration body 

vector-loop: 
nop sequence 
vmove sequence 
jump to vector-loop if work left in block 
get next concurrent iteration index 

jump to loop-body 
resume sequential operation 

Table 1: The basic load/store primitive template. 

tor operation is either divided into p blocks, each of 
which consists of either contiguous elements of the 
vector operands (contiguous blocks), or in an inter- 
leaved fashion where each element of a set of p con- 
tiguous elements is placed in a different block (in- 
terleaved blocks). Vector partitioning choices (con- 
tiguous versus interleaved) additionally serve to help 
characterize synchronization costs, the effects of load 
balancing, and memory conflict arbitration. 

The variation of the number of nop instructions 
making up the nop sequence in the kernel is used to 
evaluate the effect of changing the density of mem- 
ory requests made by each processor. This param- 
eter is also used in the prediction methodology de- 
scribed below to take into account the differences in 
the start-up times of the various vector instructions as 
well as model any register-register operations and ad- 
dress computations which take place between vector 
instructions in the iteration body code. 

The stride of the vector is varied in the basic prim- 
itive hierarchy in order to characterize the effect on 
performance of the mapping strategy used to assign 
elements of an array to cache banks. This parame- 
ters can also be used to probe the effects of bursts 
of successive misses. The stride can also be varied 
to manipulate the cache banks servicing the misses if 
knowledge of the address mapping is exploited. 

The above variations of the primitive kernels form 
the basis of a set of experiments used to characterize 
the behavior of the Alliant FX/8’s memory system. 
From this base, other levels of the LOAD/STORE hi- 
erarchy are built by manipulating two additional as- 
pects of the primitive: the number of vector address 
streams and the hit ratio. The former is accomplished 
by manipulating the vmove sequence within the vec- 
tor loop in the primitive template. This sequence is 
modified to be a series of vmove instructions to and 

from memory for several address streams. The three 
most basic multiple address stream primitives found 
in vector computations are: load-load, load-store, and 
load-load-store. The hit ratio is manipulated by choos- 
ing the vector sequence to be a vmove instruction to 
or from memory followed by a sequence of k vmoves 
to the same location. The first vmove causes a cache 
miss with the subsequent k accesses being cache hits. 
The hit ratio and multiple address stream variations 
can also be combined. 

3.2 Experimental Results 

Many experiments with the LOAD/STORE kernels 
were performed on the Alliant FX/8 using differ- 
ent parameter combinations. Here we present results 
from this empirical study as background to the is- 
sues faced in kernel performance prediction (see also 
[3]). The major conclusion from the study is that 
the LOAD/STORE k ernels accurately matched em- 
pirical observation of vector codes with similar form. 
Also, the characteristic curves obtained from the re- 
sults showed smooth behavior relative to the varying 
parameters allowing the qualitative prediction of per- 
formance trends. From a quantitative point of view, 
however, explaining kernel performance behavior is 
more complex. 

Figures 1 and 2 show the characteristic curves for 
five basic kernels for one and eight processors, respec- 
tively. The key observations are that performance is 
at its peak within cache, performance falls off as more 
cache misses occur, and performance reaches a min- 
imum as references are made entirely from memory. 
The significant difference between the one and eight 
processor curves is that one processor performance 
shows no memory saturation effects and its peak-to- 
minimum performance reflects the 2-to-1 bandwidth 
performance difference between cache and memory. 
On the other hand, whereas the eight processor in- 
cache performance shows no cache stressing effects 
(the peak performance is roughly eight times the peak 
performance of one processor), the falloff is signifi- 
cantly greater showing a 3-to-1 performance differ- 
ence (it is worse in the cases of store operations be- 
cause of the write-back cache). Clearly, the memory 
bandwidth is being saturated at this point. 

The effects of varying NOPs are shown in figure 3. 
Overhead processing, represented by the NOPs, can 
significantly reduce performance within cache because 
of their relatively larger percentage of total execution 
time. From memory, the effect of this overhead is 
less severe because of the predominance of data move- 
ment time. One also observes the influence of NOPs 
on memory bandwidth saturation. The performance 
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difference becomes less as the overhead increases be- 
cause the density of memory operations reduces. It is 
conjectured that the effect is a spreading out of mem- 
ory references to a point that the instantaneous mem- 
ory bandwidth request does not saturate the available 
bandwidth. 

The effects of varying cache hit ratio are shown in 
figure 4. As expected, performance vastly improves 
for long vector lengths as the cache hit ratio increases. 
However, the rate of improvement decreases because 
the time to service one cache miss per k hits still repre- 
sents a greater portion of total execution time posing 
a performance barrier. For vector references within 
cache, the vector hits simulate the effects of loop un- 
rolling. The performance improvement for greater 
vector hits corresponds to the reduction in the sig- 
nificance of the kernel’s fixed loop overhead. Interest- 
ingly, there is a limiting point where the overhead is 
irrelevant and the kernel is performing at the limit of 
the cache bandwidth. 

The hierarchy formed by the different combinations 
of the LOAD/STORE k ernels together with variations 
of the initial nop sequences and cache hits forms the 
basis of the strategy for predicting the behavior of 
concurrent-vector operations on the Alliant FXJ8. 

4 A Prediction Database 

The prediction of parallel numerical DO-loop con- 
structs are obtained by interpolating/extrapolating 
from data in an empirical database. Although 
the behavior of parallel numerical DO-loop struc- 
tures can be perfectly modeled with the help of the 
LOAD/STORE kernels, because the number of param- 
eters involved in the LOAD/STORE kernels and the 
number of basic templates can be large, providing all 
the necessary database entries can be an overwhelm- 
ing task. Therefore some abstraction of the parameter 
space and the basic templates must be done in order 
to make the construction of such a database feasible. 

We propose the following strategy. On a particu- 
lar architecture, the load kernel is considered first. It 
is probed on a subset of the parameter space which 
characterizes the major bottlenecks and performance 
gradients in the memory system. The initial guess 
at such a set is based on some knowledge of the gen- 
eral architectural structure of the machine as well as 
specific detailed knowledge about a particular ma- 
chine. We will call such a set the characterizing 
subset of the parameter space. Next the hierarchy 
of sequences is built up, store, load-store, load-load- 
store, load-load-load-store, and probed for the same 
subset of the parameter space, until we reached the 

point that for some k - load the sequence loadk”“d- 
store achieves essentially the same performance as 
the loadklo~a+l . The same procedure is performed 
with store-oriented sequences, e.g. load-store-store, 
load-store-store-store, to identify k,t,,. The two se- 
quence of LOAD/STORE kernels obtained form the 
fundamental set of kernels for the particular archi- 
tecture. For instance, on the Alliant FX/8, k = 4 
determines the fundamental set, see figures 5 and 6. 
Specifically, the fundamental LOAD/STORE set for 
the Alliant FX/8 comprises the kernels: load, store, 
load-store, load-load-store, load-load-load-store, load- 
store-store, and load-store-store-store. 

The second phase in the strategy considers the 
determination of properties of the fundamental set 
which allow the transformation of an instruction se- 
quence found in a code segment or a sequence of NOP 
and wmove instructions into an element or combina- 
tion of elements in the fundamental set. (Notice that 
the determination of the parameters kload and kitme 
also yields such information.) The most fundamental 
property used in this transformation is commutativ- 
ity. In particular, two forms of commutativity are 
considered: 

l Structural Commutativity 

0 Spatial Commutativity. 

The first form of commutativity asserts that the or- 
der of the loads and stores in each fundamental kernel 
is independent of the performance of the kernel. So, 
for instance, for the load-load-load-store kernel it is 
investigated whether the performance of this kernel 
matches the performance of the store-load-load-load, 
the load-store-load-load and the load-load-store-load 
kernel on the characterizing subset of the parameter 
space. Such structural commutativity holds for the 
fundamental set of kernels on the Alliant FX/8. 

Spatial commutativity pertains to the relationship 
of performance and the location of the NOP instruc- 
tions in the vmove sequence in the loop body of the 
kernels. It asserts that the NOP instructions dis- 
tributed over the loop body of the fundamental ker- 
nels can be replaced by a single group of NOPs at the 
beginning of the loop body. This is easily determined 
empirically and is clearly required if the fundamen- 
tal kernels are to have the form described earlier. In 
figures 7 and 8 the performance of the load kernel 
is depicted for different locations of NOPs insertion. 
Again on the Alliant FX/8, the fundamental kernels 
are spatially commutative. 

After the commutativity properties are determined, 
the fundamental set is extended to include the struc- 
tural and spatial variations which were determined 
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not to be equivalent via commutativity to the origi- 
nal elements. For the Alliant FX/8 such an extension 
is not required. In fact, the size of the extended fun- 
damental set of kernels can be viewed as a measure 
of the complexity of run-time behavior of a particu- 
lar machine. Clearly, if the set grows to large it is 
an indication that the behavioral characterization of 
the memory system proposed in [3] and the prediction 
strategy discussed here are probably not applicable. 

After the fundamental set of kernels and its trans- 
formation properties are determined, the parameter 
space is probed to minimize the amount of informa- 
tion required in the database (the number of sam- 
ple performance points which must be evaluated) to 
achieve a reasonable accuracy in predicting perfor- 
mance. This is accomplished by sweeping the param- 
eter space iteratively with grids of increasing refine- 
ment to identify and probe regions where the perfor- 
mance gradient is large. (The refinement is, of course, 
carried out only in those areas where large gradients 
are observed.) 

5 Predicting the performance 
of DO-loop structures 

Based on the empirical database described in the pre- 
vious section, a method has to be defined which allows 
the extraction from the test code (to be analyzed) the 
value of the parameters. This method should allow us 
to establish a correspondence between experimental 
points and the test code. In other words, we need to 
determine from the source code: hit ratios (i.e., loca- 
tion of the operands), temporal distribution, patterns 
of accesses, and strides. Most of these parameters 
(except the location of the operands) can be deter- 
mined by inspection of the assembly code generated 
from the loop studied. The general strategy to estab- 
lish the correspondence between the test code and the 
empirical database is as follows: 

l From the assembly code generated from the test 
code, a template of the load/store pattern of the 
code is constructed and a NOP value is deter- 
mined which accounts for the differences in the 
startup times of the arithmetic vector instruc- 
tions and the vmove instructions that have re- 
placed them as well as for any register-register 
operations. 

a The amount of non-data-movement activity that 
has not been accounted for above is determined 
and converted into a second NOP value for the 
template. (This non-data-movement includes 
scalar operations that involve operands which 

may be in memory or cache and must therefore 
be treated slightly differently than the determin- 
istic NOP count generated above.) 

l The basic template is reduced to one of the fun- 
damental kernels. 

l The relative number of floating point operations 
per data-movement operation (load or store) is 
determined. 

l The location of the operands in the memory hier- 
archy is analyzed to produce an average hit/miss 
ratio. 

The construction of the basic templates can be easily 
obtained by analyzing the assembler code. A choice 
must be made, however, concerning the range of a ba- 
sic template. By this we mean that one could view 
a whole program as being represented by the basic 
template, or only part of it. It is important to note 
that there is trade-off between predictability of the 
test code and reducibility of the basic templates: the 
larger the range of the basic template, the better the 
performance prediction - this also implies an atten- 
dant increase in the complexity of the reduction pro- 
cess which maps the template to the fundamental set 
of kernels. On the Al&ant FX/8 we have chosen the 
range of a basic template to be the range of a con- 
current or vector-concurrent loop. The template may 
in turn have a number of component loadstore pat- 
terns which correspond to a sequence of distinct vec- 
tor loops with in the body of each iteration of the 
loop under consideration (see the template for LLL8 
below). 

The reduction of each basic template to one of the 
fundamental kernels has to be handled with some 
care. According to the commutativity rules the loads 
and the stores of the basic template are grouped to- 
gether. Note that the commutativity rules were de- 
rived from the fundamental kernels and do not neces- 
sarily have to apply to the basic templates in gen- 
eral. Our experience has shown, however, that in 
most cases the error introduced by applying the com- 
mutativity rules to the basic templates is negligi- 
ble. On the Alliant FX/8 where all the fundamen- 
tal kernels are structurally symmetric the grouping 
of the load’s and store’s will always yield a tem- 
plate in the form: loadkstorem. This template is 
now reduced by normalizing the number of store’s 
if k 2 m or k = 0, or the number of load’s if 
k<morm = 0. After this normalization the ba- 
sic template has the form: loadqstore (loadstore’) 
with q = k/m (q = m/k). Whenever q is an integer 
the corresponding fundamental kernel depends upon 
the relationship of q and klocrd or krtme depending on 
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which are dominant in the template the loads or the 
stores. If Q 5 kroad (q < &,tae) then the template 
has been reduced to an element of the fundamental 
set. If L is not an integer then the basic template will 
be bounded by the corresponding fundamental ker- 
nel of loadkqJ store (loadstore Lqj ) and loadLqJ+r store 
(loadstore Lqj+’ ). The fact that the number of data- 
movements in both of the enclosing fundamental ker- 
nels are not related to the original basic template by 
an integer scaling function, which was the case if q is 
an integer must be taken into account when determin- 
ing the relative number of floating point operations 
per data-movement as well as when determining the 
values for the other parameters needed to extract in- 
formation from the empirical database. 

Since the set of all basic templates can be embed- 
ded in a complete binary tree and the set of funda- 
mental kernels is a distinct subset of this tree, the 
reduction process of a basic template to an element 
of the fundamental set is a mapping of a given node 
in a binary tree onto one of the nodes representing a 
fundamental kernel. This process is depicted in fig- 
ure 9 where the set of fundamental kernels is that of 
the Alliant FX/8. So the set of fundamental kernels 
has the property that it spawns a complete binary 
tree. This concept is related to codes as defined in 
the theory of codes, see [6,7]. 

The relative number of floating point operations 
per data-movement is obtained by determining for 
each data-movement operation (load or store) in the 
basic template whether or not it corresponds to an 
arithmetic computation or to a simple load/store 
into/from a vector register. Note that this number 
must be scaled appropriately in the reduction and, in 
particular, when the template is not exactly reducible 
to a fundamental kernel. 

The average hit/miss ratio is determined by the lo- 
cation of the operands of the data movements in the 
basic template. Predicting the location of an operand 
is more complex than determining the values of the 
other parameters of the database. The simplest solu- 
tion is to consider the two extreme cases: either all the 
operands coming from cache (upper bound on the per- 
formance) or all the operands coming from memory 
(lower bound). Unfortunately, these approximations 
can give a very large range of potential performance. 
We can refine our approach by assuming an infinite 
cache and assuming that at the beginning of the loop 
all the operands are initially coming from memory. 
In this case the problem of determining if, at a given 
point of the program, data is in cache is equivalent 
to the problem of determining if a previous instruc- 
tion has already accessed the data. This, of course, 
is the classical data dependence problem encountered 

by any restructuring compiler. In the case of linearly 
indexed array;xwhich is a very common case in numeri- 
cal computations, the problem can be solved using re- 
cently proposed data dependence analysis techniques 
[5]. Moreover, these techniques also allow the compu- 
tation of the total number of distinct references to an 
array and a static estimate of the cache hit ratio. 

The amount of non-data-movement operations can 
be obtained by a simple instruction count in between 
each pair of load/store instructions or controlling in- 
structions (e.g. the bounding instructions of the con- 
current and vector iterations) in the basic templates. 
A simple estimate of the average number of cycles in- 
volved for each of these instructions can be used to 
get the average number of corresponding NOPs in be- 
tween each two load/store instruction. (This assumes 
that the register-register vector instructions have al- 
ready been converted to NOP instructions.) The spa- 
tial commutativity properties of the fundamental ker- 
nels are then used to group the NOPs together as 
much as possible. In the case of the Alliant FX/8 
where all the fundamental kernels are spatially com- 
mutative the NOPs can all be shifted to a fixed place 
in the basic templates. Thereafter, the number of 
NOPs are scaled according to the reduction of the ba- 
sic template to the corresponding fundamental kernel 
as are the other parameters. 

After this procedure the performance prediction of 
the test code is interpolated from the entries in the 
experimentation database which are closest in the pa- 
rameter space. Note that, because of the construction 
of this database (see the previous section), the error 
introduced by this interpolation is small even when 
the distance in the parameter space between the test 
code and the database entry is large. In the next 
section we show the feasibility of the performance 
prediction strategy by applying this strategy to the 
Lawrence Livermore Loops. 

6 Predicting the Performance 
of the Lawrence Livermore 
Loops 

In this section we consider the application of the per- 
formance prediction strategy outlined in section 5 to 
the Lawrence Livermore Loops [4]. The LLL ker- 
nel set comprises 24 samples of Fortran source codes, 
which are meant to expose many specific inefficiencies 
in the formulation of Fortran code, in the quality of 
the compiler, and in the capability of the architecture. 
Because of these properties we have chosen the first 
twelve of these kernels as a testbed for our prediction 
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strategy. For the purpose of presentation we will han- 
dle only kernel 2 (LLLZ) in detail. The performance 
predictions of the other kernels will be summarized. 

LLL2 represents an excerpt of an Incomplete 
Cholesky-Conjugate Gradient code. The loop body 
has the form: 

IL = na 
IPNTP = 0 

222 IPNT = IPNTP 
IPNTP = IPNTP+IL 

IL = IL/2 
i = IPNTP 

CVD$ NODEPCHK 
CVD$ NOSYNC 

DO2k= IPNT+2,IPNTP,2 
1 = i+i 

2 X(i) = X(k) - V(k)*X(k-I) 
- V(k+l)*X(k+l) 

IF ( IL.GT.1) GO TO 222 

NODEPCHK and NOSYNC are FX/Fortran com- 
piler direct&es. After compilation by the FX/Fortran 
(version 4) compiler the assembler code has essentially 
the following structure: 

57: cvector 
lllZ.label-LC 
lllZ.label-LF 
104: vmoved --BL--+8000+16:l~d7:1:dj,v3 
106 : vmoved --BL--+O+S:l[d7:1:dJs ,v2 
108: vmoved -,BL,-+8000+8:1[d7:.l:d] ,vO 
110: vmuld --BL--+O:l[d7:l:dl ,vo,vo 
112: vmuld ~-BL~-+0+16:1~d7:1:d~,v3,v3 
116: vrsubd v2,vO,v2 
117: vrsubd v2,v3,v2 
121: vmoved v2 ,--BL-,+O:l[d7:l:d] 
125 : vcnt32 1112.label-LF 
128: crepeat 1112.labe1,LC 

The numbers in front of each line denote the actual 
line number in the assembly code, and the --BL-, 
strings indicate memory addresses. So, LLL2 yields 
[LLLLLS] as a basic template (L and S denoting load 
and store respectively). Note, that this basic template 
is already of the form load*store, so we can directly 
map it to a fundamental kernel. The translation of 
the non-data-movement instructions into correspond- 
ing NOPs is a little bit more tedious. As noted earlier 
we distinguish between two different sources of NOPs: 
fixed and variable. The fixed number of NOPs is the 
sum of those counted for each concurrent start and 
branch instructions, register-register vector instruc- 
tions and the difference in startup costs between a 
vmove instruction and the arithmetic instruction it 

replaces. The variable number of NOPs provides an 
estimate of other scalar instructions whose costs may 
vary, e.g. scalar instructions with operands which 
may be in memory or in cache. An estimate is com- 
puted by counting the number of assembler lines in 
between each two vector instructions and multiply- 
ing this number with scalar a! which is the average 
number of cycles required for a non-vector instruc- 
tion. For example, on the Alliant FX/8 a = 3 when 
operands are assumed in cache. 

The resulting basic template for LLL2 is then 
9+14cr+[~LLLLS(l12,42cu)]. The numbers in paren- 
theses are the values of the fixed and variable NOPs 
per iteration of the vector loop. The initial terms in 
the template are the NOPs which are associated with 
the concurrent loop level. Note that the extraction of 
this template and the calculation of the various values 
of NOPs is easily automated. Such a tool is currently 
under development at the University of Indiana by D. 
Gannon and D. Atapattu. 

Because the length of the basic template is greater 
than kload(4), see Section 5, this basic template re- 
duces into the the fundamental kernel: 9 + 14~~ + 
[L(19,7@)]. s o, in fact kernel 2 can be modeled 
by an simple load kernel. The average number of 
floating point operations per data-movement is 4/6, 
and the average vector hit/miss ratio of this kernel 
is 3/3. Note however that some of the accesses are 
stride 1 and others have stride 2. In order to pre- 
dict the behavior of LLL2 we interpolate the perfor- 
mance of the mixed stride load by weighting appro- 
priately the performance figures of the fundamental 
kernel 9 + 14a + [L(19,7a)] with vector hit/miss ra- 
tio of 1 for stride 1 and stride 2. This results in a 
bandwidth of approximately 9 Mword/s. The final 
predicted performance value of LLL2 is then com- 
puted by applying the operations-to-data-movement 
ratio yielding 0.66 * 9.15 Mflops = 6.1 Mflops. The 
actual performance of LLL2 is 5.4 Mflops. In table 2 
the basic templates of each kernel are presented. ta- 
ble 3 contains the equivalent fundamental kernels and 
the vector hit/miss ratio, the stride values, and the 
predicted and actual performance of LLLl through 
LLL12 for vector lengths long enough so that the data 
starts out in main memory, i.e; the execution of LLL2 
on each iteration of the timing loop is guaranteed to 
flush the cache of all of the operands needed by the 
next iteration. 

7 Conclusions 

Since the performance of parallel numerical algo- 
rithms on super/parallel computers is largely depen- 
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dent on the transfer rates of data loads and stores, the 
performance prediction strategy proposed in this pa- 
per is based on the load/store behavior of a particular 
architecture. The characterization of this behavior is 
accomplished via a strategy proposed and evaluated 
for the Ahiant FX/8 [3]. The strategy relies on a sys- 
tematically constructed empirical database of a hier- 
archy of data-motion primitives In order to minimize 
the data storage required for the database, its struc- 
ture is kept orthogonal. This is achieved by the identi- 
fication of a set of fundamental kernels which, in some 
sense, spawn the entire space of possible load/store 
templates. Further, for each of these fundamentd 
kernels the performance data is gathered for a set of 
points in the parameter space which are chosen, based 
on the value of the variation of the performance gra- 
dient, to keep the density of database entry points 
reasonable. 

The prediction of the performance of a particu- 
lar test code is obtained by first extracting a ba- 
sic load/store template of the test code then reduc- 
ing this template to a fundamental kernel via trans- 
formations which have been determined during the 
construction of the database. The values of the pa- 
rameters for the fundamental kernel which index the 
database are then determined via an automatable 
procedure followed by an interpolation based empiri- 
cal performance results in the database predicts per- 
formance. We conclude that for the LLL kernels on 
an Alliant FX/8 this strategy yields a reasonably ac- 
curate prediction of the observed performance. 

Our present and future work on this topic includes: 
the automation of the prediction process, the verifica- 
tion of the approach on more complex loop structures 
and other architectures such the CEDAR system and 
the Cray 2 and Cray X-MP architectures. 
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Kernel Basic Template 

LLLl 9+10a+[LLLS(41,23a)] 
LLL2 9+14cr+[LLLLLs(ll2,42a)l 
LLL3 34$40o+[LL(17,7a)] 
LLL4 30+47o+[LL(l7,lOo)] 
LLL5 20+15rr+[LLLS(14,1Ocu)] 
LLL6 30+6lo+[LL(17,lla)] 
LLLP 20+21a+[LgS(224,200)] 
LLL8 23+119cy+[(LLS)3(26,43ct)I,[(L7S)3(389,830)] t 
LLL9 20+40a+[L1’S(131,27a)l 
LLLlO 20+34c~+[LS(LSS)~(76,86o)] 
LLLll 
LLL12 20+16cc+[LLS(10,8cu)] 

tThe basic template& a compositionof two different templ+tes. 

Table 2: The Basic Templates of LLLl through 
LLLl2 

Figure 1 
Kernel Performancs on 1 Processor 

(Block Siw 612) 

MTransactions/aec 

Load Load Store 

“;’ 8192 16384 24576 32768 40960 49152 

Length of Vector Operation 
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1 Kernel Fund. Kernel 

L 
ttThis kernel 8CtU< 

LLL2 
LLL3 
LLL4 
LLL5 
LLL6 
LLL7 
LLL8 
LLL9 
LLLlO 
LLLll $1 
LLL12 

1 Fl./Tr. I V. H/M Stride I Pr. Petf. I Act. Perf. 

9+loCY+[LLLS(41,23a)] 
9+14a+[L(19,7cu)] 
34+40a+[L(9,4a)] 
30+47cY+[L(9,5a)] 
20+15~+[LLLS(14,10c-x)] 
30+61a+[L(8,6a)] 
20+21a+[L(22,2cr)] 
23+119a+[LLS(3,14cx)],[L(16,3a)] 
20+40a+[L(l2,2a)] 
20+34a+[LS’-‘(8,9a)] $ 

5/4 

w 
2J2 
2J2 
2J4 

212 
16/10 
36/33 
17/11 
9J29 

20+16a+[LLS(lO,8a)] l/3 l/2 

I 

l/3 
313 
O/2 
o/2 
l/3 
o/2 
6/4 
21112 

714 
20/9 

y represents a triangular solve, so the vector lengths of the instruc :tic 

1 

112 
1 
1,5 
1 
1,dim 
1 

195 
dim 
1,dim 

I 

14.1 ] 13.5 
6.1 5.4 
10.5 9.8 
4.3 3.4 
5.7 6.0 
3.6 tt 2.1 
21.0 21.0 
9.1 7.1 
6.4 5.4 
2.1 2.0 

2.0 
1 4.4 1 4.1 
ms range from 2 up to dim. This exp ains 

the larger deviation from the actual performance. 

$The performance of this fundamental kernel is approximated by the corresponding LS template and LSS template. 

$$Due to the fact that the code generator produced a call to an intrinsic of which we did not have the source code, the performance 

could not be estimated. 

Table 3: The Fundamental Kernels, Predicted Performance and Actual Performance of LLLl through LLL12 

Figure 2 
Kernel Performance on 3 Proceuom 

(Block Sise 512) 

MTranssctions/see 

Figure a 
Effect of NOPs on 8 Processon 
(Load Kernel, Block Sire 128) 

MLoads/sec 

25- 

20- 

Load Load Store 

0-l I Effect of Cache Mlu Ratio on 8 Processors 

0 8192 18384 24576 32768 40980 49152 (Lord kernel, Block 9i.e 128) 

Figure 4 

28 

22 n 

18 

m 

10240 20480 30720 40960 

Length of Vector Operation 

Length of Vector Operation 

MWords/see 

101 
10240 20480 30720 40980 

Length of Vector Operation 
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Figure 6 
Kernel Performance 

(8 Procwsors) 

MLOd+?C 

30 

25 

Figure 6 
Kernel Performance 

(8 Processors) 
(Block Sise 2513) 

(64 Nope) 

MLosda/sec 

30 

. 1 
25- i5 G 

20- 
a t 

t 

16- f ii! 

I Figure 7 
8192 16384 24576 32708 40980 Load Performance 

Length of Vector Operation 
(Bloek Sise 6192) 

(Nopsb=4096, Noprc=612, Nopsd=M) 

MLoade/sec 

Figure 8 
Load Performance 
(Block Sise 1024) 

(Nopsb=1792, Nopsc=224, Nopsd-56) 

Nopsb - 1 processors 
Nopse - 1 processors 
Nopsd - 1 proceeaors 
Nopsb - 8 processors 
No&x - 8 +cemor. 
Nopsd - 8 processors 

30- 

25- 

20- 

16- 

lo- 

5- 
PI 

. 
0 
:: 

Nopsb - 1 
1 

processora 
Nopsc - 
Nopsb Nopsd - - 8 1 

processors 

Nopsc Nopsd - - 8 8 

processors processors 

h processors processors 

0 8192 16984 24576 32768 rose0 

Length of Vector OperAon 

O-l- 
8192 

2048 9728 17408 26088 

Length of Vector Operation 

32768 

I 

15872 23552 31232 

Length of Vector Operation 

38912 

Figure 0 
Reduction to a Fundamental Kernel 
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