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Abstract

We prove a query complexity lower bound for approximating the top r dimensional eigenspace
of a matrix. We consider an oracle model where, given a symmetric matrix M ∈ Rd×d, an
algorithm Alg is allowed to make T exact queries of the form w(i) = Mv(i) for i in {1, ...,T}, where
v(i) is drawn from a distribution which depends arbitrarily on the past queries and measurements
{v(j),w(i)}1≤j≤i−1. We show that for every gap ∈ (0, 1/2], there exists a distribution over
matrices M for which 1) gapr(M) = Ω(gap) (where gapr(M) is the normalized gap between the
r and r+ 1-st largest-magnitude eigenvector of M), and 2) any algorithm Alg which takes fewer

than const× r log d√
gap

queries fails (with overwhelming probability) to identity a matrix V̂ ∈ Rd×r

with orthonormal columns for which 〈V̂,MV̂〉 ≥ (1 − const × gap)
∑r

i=1 λi(M). Our bound
requires only that d is a small polynomial in 1/gap and r, and matches the upper bounds of
Musco and Musco ’15. Moreover, it establishes a strict separation between convex optimization
and randomized, “strict-saddle” non-convex optimization of which PCA is a canonical example:
in the former, first-order methods can have dimension-free iteration complexity, whereas in PCA,
the iteration complexity of gradient-based methods must necessarily grow with the dimension.

Our argument proceeds via a reduction to estimating a rank-r spike in a deformed Wigner
model M = W+λUU>, where W is from the Gaussian Orthogonal Ensemble, U is uniform on
the d×r-Stieffel manifold and λ > 1 governs the size of the perturbation. Surprisingly, this ubiq-
uitous random matrix model witnesses the worst-case rate for eigenspace approximation, and
the ‘accelerated’ inverse square-root dependence on the gap in the rate follows as a consequence
of the correspendence between the asymptotic eigengap and the size of the perturbation λ, when
λ is near the “phase transition” λ = 1. To verify that d need only be polynomial in gap−1 and r,
we prove a finite sample convergence theorem for top eigenvalues of a deformed Wigner matrix,
which may be of independent interest. We then lower bound the above estimation problem with
a novel technique based on Fano-style data-processing inequalities with truncated likelihoods;
the technique generalizes the Bayes-risk lower bound of Chen et al. ’16, and we believe it is
particularly suited to lower bounds in adaptive settings like the one considered in this paper.
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1 Introduction

Eigenvector approximation is widely regarded as a fundamental problem in machine learning [24],
numerical linear algebra [17], optimization, and numerous graph-related learning problems [36, 32,
31]. Interest in PCA has been driven further by the rush to understand non-convex optimization,
as PCA has become the cannonical example of a benign, but not-quite-convex objective. For one,
there is a striking resemblence between eigenvector approximation algorithms and first-order convex
optimization procedures [35, 19, 3]. Moreover, PCA is one of the simplest ‘strict saddle’ objectives:
that is, a function whose first-order stationary points are either local minima, or saddle points at
which the Hessian has a strictly negative eigenvalue. The strict saddle property extends to many
popular nonconvex objectives, and enables efficient optimization by first order algorithms. Notably,
Jin et al. [23] proposed a gradient algorithm which finds an approximate local minimum of a strict
saddle objective in a number of iterations which matches first-order methods for comparable convex
problems, up to poly-logarithmic factors in the dimension.

The aim of this paper is to understand the fundamental limits of randomized first-order methods
for such benign non-convex problems by establishing sharp query-complexity lower bounds for
approximating the top eigenspace of a symmetric matrix. Specifically, we consider randomized,
adaptive algorithms Alg which access an unknown symmetric matrix M ∈ Rd×d via T queries of
the form {v(i) = Mw(i)}i∈[T]. Letting gapr(M) denotes the (normalized) eigengap between the r-

and r + 1-st singular value (or eigenvalue-magnitude) of M, let abs(M) := (M2)1/2, we prove the
following:

Theorem 1 (Main Theorem). There are universal constants c1, c2 > 0 such that for every r ≥ 1 and
gap ∈ (0, 1/2], then there exist d0 = poly( 1

gap
, r) such that, for all d ≥ d0, there exists a distribution

over symmetric matrices M ∈ Rd×d for which gapr(M) ≥ gap
3 , and if Alg makes T ≤ c1r log d√

gap

queries, then with probability at least 1 − exp(−dc2), Alg cannot identify a matrix V̂ ∈ Rd×r with
orthonormal columns for which 〈V̂, abs(M)V̂〉 ≥

(
1− gap

12

)∑r
i=1 λi(abs(M)).1

We emphasize that our lower bounds are information-theoretic, and do not place any com-
putational or Krylov restrictions on how Alg generates its queries. Our bounds are tight, and
are matched by the Block-Lanczos algorithm [28]. Finally, the presence of a logarithmic factor
in the dimension establishes a strict separation between truly-convex and strict saddle objectives:
whereas convex objectives admit first order algorithms whose query complexity is independent of
the ambient dimension, strict saddle-objectives necessarily incur dimension-dependent terms, even
for randomized algorithms.

New Techniques Our lower bound proceeds by a reduction from eigenspace computation to
estimating a planted rank-r component in a deformed Wigner model M = W + λUU>, where W
is from the Gaussian Orthogonal Ensemble (GOE), U is uniform on the d × r Stieffel manifold,

and λ =
1+
√

gap(2−gap)

1−gap is a parameter ensuring that gapr(M) concentrates around gap. Note that

as gap → 0, λ → 1 placing us near the “phase transition” λ = 1 [18]. To ensure that we can
take d = poly( 1

gap
, r), we prove the first (to our knowledge) finite-sample convergence result for the

top r eigenvalues of a deformed Wigner matrix in the regime where d is polynomial r and gap−1.

1 Note that M and abs(M) have the same singular values. We choose to consider abs(M) since M will not be
PSD in our construction, and we do not wish to penalize the learner for the negative eigendirections of M. Moreover,
the “hard distribution” over M in our lower bounds will always be conditioned on the event that λ`(M) = σ`(M) =
λ`(abs(M)). If the reader’s taste prefers, one can readily establish qualitatively similar results in terms of 〈v̂,M2v̂〉.
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Along the way, we prove a variant of the Hanson-Wright inequality for the Stieffel manfiold, and a
pointwise convergence result for the Stieltjes transform; these results are outlined in Section 6.

After formalizing the reduction, our proof hinges on showing that when r = 1 and U = u ∈ Rd,
then our “information” about u, quantified by the squared-norm of the projection of u onto the
span of the first k query vectors, can grow at a rate of at most λO(1) = 1 +O

(
gap1/2

)
per round.

We generalize to the rank-r case by leveraging the information-theoretic arguments from the rank-
one case, but with a far more careful recursion to obtain the right dependence on r (see Section 5
for details). For r = 1, our basic strategy mirrors Price and Woodruff’s [33] sparse recovery lower
bound, which sequentially controls the mutual information bewteen measurements of a sparse vector
and a planted solution. However, since λ = 1 +O

(
gap1/2

)
, we require novel techniques in order to

not overshoot the slow growth rate of λO(1) per round. Specifically, at each round k ∈ [T], we apply
a generalization of Fano’s inequality which replaces the KL-divergence with the expected 1 + η-
powers of appropriate likelihood ratios. The inequality is based on the Bayes risk lower bounds of
Chen et al. [15], who generalize Fano’s inequality to arbitrary f -divergences, and show that their
χ2-variant of Fano’s inequality (i.e. η = 1) yields sharper lower bounds in many non-adaptive
problems. In our case, we tune η as a function of λ to get the correct rate.

Unfortunately, we cannot apply the bounds from Chen et al. [15] out of the box. This is because
if there is even a small probability that Alg takes one highly informative measurement, then the
expected likelihood ratios will overestimate the average information gain. This is an artifact of
the the fact that tails of likelihood ratios (unlike log-likelihoods) are ill-behaved. But this only
becomes a problem in adaptive settings where measurements grow more informative over time. We
circumvent this by proving a “truncated” variant of the bound in Chen et al. [15], which replaces
the expected likelihood moments with an expectation restricted to the “good event” where Alg
has yet to take an improbably-informative measurement. We prove this bound by generalizing
f -divergences to arbitrary finite, non-normalized measures (e.g., measures obtained by restricting
probability distributions to a given event), and establish that the data-processing inequality still
holds in this general setting. Our information-theoretic tools are explained at length in Section 4.3.

Related Work It is hard to do justice to the vast body of work on eigenvector computation,
matrix approximation, and first order methods for convex and strict saddle objectives. We shall
instead focus on situating our work in the lower bounds literature. As described above, our proof
casts eigenvector computation as a sequential estimation problem. These have been studied at
length in the context of sparse recovery and active adaptive compressed sensing [7, 33, 14, 13].
Due to the noiseless oracle model, our setting is most similar to that of Price and Woodruff [33],
whereas other works [7, 14, 13] study measurements contaminated with noise. More broadly, query
complexity has received much recent attention in the context of communication-complexity [6, 29],
in which lower bounds on query complexity imply corresponding bounds against communication via
lifting theorems. Similar ideas also arise the study of learning under memory constraints [38, 37, 34].

From an optimization perspective, our lower bound can be cast as a non-convex analogue of the
seminal convex-optimization oracle lower bounds of Nemirovskii and Yudin [30]. But whereas the
latter bounds match known upper bounds in terms of dependence on relevant parameters (accuracy,
condition number, Lipschitz constant), Nemirovskii and Yudin consider worst-case initializations,
and impose a strong Krylov space assumption. In the context of finite sums, Agarwal et al. [1]
show that the Krylov space assumption can be removed, and Woodworth et al. [40] prove truly
information-theoretic lower bounds by considering randomized algorithms as we do in this work
(albeit with different techniques). Lower bounds have also been established in the stochastic convex
optimization [2, 22] where each gradient- or function-value oracle query is corrupted with i.i.d. noise,
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and Allen-Zhu et al. [3] prove analogues of these bounds for streaming PCA. While these lower
bounds are information-theoretic, and thus unconditional, they are incomparable to the setting
considered in this work, where we are allowed to make exact, noiseless queries.

2 Statement of Main Results

Let ‖ · ‖ denote the `2 norm on Rd, and let Sd−1 := {x ∈ Rd : ‖x‖ = 1} denote the unit sphere
and Stief(d, r) denote the Stieffel manifold consisting of matrices V ∈ Rd×r such that V >V =
I. Let Sd×d denote the set of symmetric d × d matrices, and for M ∈ Sd×d, we let λ1(M) ≥
λ2(M) ≥ · · · ≥ λd(M) denote its eigenvalues in decreasing order, v1(M), v2(M), . . . , vd(M) denote
the corresponding eigenvectors, let ‖M‖op and ‖M‖F denote the operator and Frobenious norms,

and abs(M) := (M2)1/2. Finally, we define the eigengap of M ∈ Sd×d as gapr(M) := σr(M)−σr+1(M)
σr(M) ,

where σi(M) = λi(M
2)1/2 is the i-th singular value of M . We will also use the notation gap(M) :=

gap1(M). We now introduce a definition of our query model:

Definition 2.1 (Query Model). An randomized adaptive query algorithm Alg with query complexity
T ∈ N and accuracy ε ∈ (0, 1) is an algorithm which, for rounds i ∈ [T], queries an oracle with
a vector v(i), and receives a noiseless response w(i) = Mv(i). At the end T rounds, the algorithm
returns a matrix V̂ ∈ Stief(d, r). The queries v(i) and output V̂ are allowed to be randomized and
adaptive, in that v(i) is a function of {(v(1),w(1)), . . . , (w(i−1),w(i−1))}, as well as some random seed.

The goal of Alg is to return a V̂ satisfying

〈V̂, abs(M)V̂〉 ≥ (1− εgap(M))

r∑
`=1

σ`(M)

for some small ε ∈ (0, 1). In the rank-one case, V̂ is a vector v̂ ∈ Sd−1, and the above condition
reduces to 〈v̂, abs(M)v̂〉 ≥ (1− εgap(M)))‖M‖op.

Example 2.1 (Examples of Randomized Query Algorithms). In the rank-one case, the Power
Method and Lanczos algorithms [17] are both randomized, adaptive query methods. Even though
the iterates v(i) of the Lanczos and power methods converge to the top eigenvector at different
rates, they make identical queries: namely, they both identify M on the Krylov space spanned by
v(1),Mv(1), . . . ,MT−1v(1). Lanczos differs from the Power Method by choosing v̂ to be the optimal
vector in this Krylov space, rather than the last iterate. Observe that even in the rank-r case, our
query model still permits each single vector-query to be chosen adaptively. Hence, our lower bound
applies to subspace iterations (e.g., the block Krylov method of Musco and Musco [28]), and to
algorithms which use deflation [4]).

To state our results, we construct for every gap ∈ (0, 1) a distribution over matrices M under
which have a gap(M) & gap. To do so, we introduce the classical GOE or Wigner law [5]:

Definition 2.2 (Gaussian Orthogonal Ensemble (GOE)). We say that W ∼ GOE(d) if the entries
{Wij}1≤i≤j≤d are independent, for 1 ≤ i < j ≤ d, Wij ∼ N (0, 1/d), for i ∈ [d], Wii ∼ N (0, 2/d),
and for 1 ≤ j < i ≤ d, Wij = Wji.

In the rank one case, we will then take our matrix to be M := W+λuu>, where W ∼ GOE(d),

u
unif∼ Sd−1, and λ > 1 is a parameter to be chosen. A critical result gives a finite-sample analogue

of a classical result in random-matrix theory, which states that λmax(M) ≈ λ + λ−1 with high
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probability. On the other hand, ‖W‖op concentrates around 2, and thus by eigenvalue interlacing
λmax(M)− λ2(M) ' λ+ λ−1 − 2. Motivated by this, we define the asymptotic gap of M:

gap = gap(λ) :=
λ+ λ−1 − 2

λ+ λ−1
=

(λ− 1)2

λ2 + 1
. (2.1)

It is well know that, for a fixed λ, gapr(M)
prob→ gap as d→∞. We give a finite sample analogue:

Proposition 2.1 (Finite Sample Eigengap of Deformed Wigner). Let M = W + λUU>, where
W ∼ GOE(d)and U ∼ Stief(d, r) are independent. For γ ∈ (0, 1), define the event

Egood(γ) :=
{
‖W‖op + (1− γ)(λ+ λ−1 − 2) ≤ λr(M)

}⋂ {
λ1(M) ≤ (1 + γ)(λ+ λ−1)

}
.

There exists exists a polynomially bounded function q(gap−1, (1−gap)−1, γ−1, r, log(1/δ)) such that
for γ, δ ∈ (0, 1/10), and d ≥ q(gap−1, (1− gap)−1, γ−1, r, log(1/δ)), P[Egood(γ)] ≥ 1− δ. Moreover,
on Egood(λ, γ), gapr(M) = gapr(abs(M)) ≥ 1−γ

1+γ · gap.

The explicit polynomial can be derived from a more precise statement, Theorem 6.1. We now
state more precise version of Theorem 1:

Theorem 2.2. Fix a gap ∈ (0, 1) and any d ≥ q(gap−1, (1 − gap)−1, 2, r, log(2)) where q is as in

Proposition 2.1, and let λ =
1+
√

gap(2−gap)

1−gap be the solution to Equation 2.1. Let M = W + λUU>

where U
unif∼ Stief(d, r) and W ∼ GOE(d). Then for any Alg satisfying Definition 2.1, we have

EM

[
PAlg

[
〈V̂, abs(M)V̂〉 ≥

(
1− gap

12

) r∑
`=1

σ`(M)

] ∣∣Egood(1/2)

]

≤ 2e · exp

− d

78 log(d)gap3
·

(
1 +

√
gap(2− gap)

1− gap

)−18(T
r

+2)
 . (2.2)

Where PAlg is the probability taken with respect to the randomness of the algorithm. Note that on
Egood(1/2), gapr(M) ≥ gap/3.

Observe
1+
√

gap(2−gap)

1−gap . 1 + O
(√

gap
)

as gap is bounded away from 1. Hence, if gap ≤ 1/2,

d is a large enough polynomial in gap, then if (1 + O
(√

gap
)
)T/r ≤ dΩ(1), or equivalently, T �

√
gap−1/2r log d, we see that the probability that 〈V̂, abs(M)V̂〉 ≥

(
1− gap

12

)∑r
`=1 σ`(M) is at most

e−d
Ω(1)

, proving Theorem 1.
In Appendix A, we present two additional results that follow as easy modifications of our proofs:

Theorem A.1 presents an improved gap-dependence for r = 1, and generalizes to the setting where
Alg is allowed T rounds of adaptivity, and makes a batch of B queries per round; Theorem A.3

presents a modification of Theorem 2.2 which establishes a sharp lower bound of Ω
(

r log d
− log(1−gap)

)
in

the “easy” regime where gap approaches one. Our techniques can be adapted to show sharp lower
bounds for adaptively testing between H1 : M = W + λUU> against H0 : M = W; we omit these
arguments in the interest of brevity.
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3 Proof Roadmap

3.1 Notation

In what follows, we shall use bold letters u, U, M and W to denote the random vectors and
matrices which arise from the deformed Wigner law; blackboard font P and E will be used to
denote laws governing these quantities. We will use standard typesetting (e.g. u,M) to denote
fixed (non-random) quantities vectors, as well as problem dimension d and rank r of the plant U.

Quantities relating to Alg will be in serif font; these include the queries v(i), responses w(i), and
outputs v̂ and V̂. The law of these quantities under Alg will be denoted P in bold serif.

Mathematical operators like gap(M) are λ1(M) are denoted in Roman or standard font, and
asymptotic quantities like gap in Courier.

3.2 Reduction from Eigenvector Computation to Estimating U

In this section, we show that an algorithm which adaptively finds a near-optimal V̂ implies the
existence of a deterministic algorithm which plays a sequence of orthonormal queries v(1), . . . , v(T+r)

for which
∑T+r

i=1 ‖Uv(i)‖2 is large. Our first step is to show that if V̂ is near-optimal, then V̂ has a
large overlap with U, in the following sense:

Lemma 3.1. Given any V̂ ∈ Stief(d, r), any r′ ∈ [r], and under the event Egood(λ, 1/2), if

〈V̂, abs(M)V̂〉 ≥
(

1− (r+1−r′)gap
6r

)
·
∑r

`=1 σ`(M), then λr′(V̂>UU>V̂) ≥ gap
4 .

In the rank one case, with r = r′ = 1, V̂ = v̂ and U = u, the above lemma just implies that a
near optimal v̂ satisfies 〈v̂,u〉2 & gap. In the more general case, we have that λr′(V̂>UU>V̂) & gap

means that the image of V̂ needs to have “uniformly good” coverage of the planted matrix UU>.
The proof of Lemma 3.1 begins with the Lowner-order inequality

V̂>abs(M)V̂ = V̂>WV̂ + λV̂ � ‖W‖Ir + λV̂>UU>V̂

In the rank one-case, this reduces to

v̂>abs(M)v̂ ≤ ‖W‖+ λ〈v̂,u〉2.

Hence, if we want v̂>abs(M)v̂ ≥ λmax(M) − gap/2, we must have that, since λmax(M) − ‖W‖
concentrates around gap,

〈v̂,u〉2 ≥ 1

λ
(v̂>abs(M)v̂ − ‖W‖) ≥ 1

λ
(λmax(M)− ‖W‖ − gap/2) ≈ gap/2λ .

which gives the lower bound. For r > 1, the proof becomes more technical, and is deferred to
Appendix B.1.

Next, we argue that the performance of the optimal V̂ is bounded by a quantity depending
only on the query vectors. As a first simplification, we argue that we may assume without loss of
generality that v(1), v(2), . . . are orthonormal.

Observation 3.1. We may assume that the queries are orthonormal, so that:

Vk :=
[
v(1)|v(2)| . . . |v(k)

]
∈ Stief(d, k) ,

and that, rather that returning responses w(k) = Mv(k), the oracle returns responses w(k) = (I −
Vk−1V>k−1)Mv(k), where we note that Vk−1V>k−1 is the projection onto span(v(1), v(2), . . . , v(k−1)).
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The assumption that the queries are orthonormal are valid since we can always reconstruct
k-queries v(1), . . . , v(k) from an associated orthonormal sequence obtained via the Gram-Schmidt
procedure. The reason we can assume the responses are of the form w(k) = (I − Vk−1V>k−1)Mv(k)

is that since Alg queries v(1), . . . , v(k−1), it knows MVk−1V>k−1, and thus, since M and Vk−1V>k−1

are symmetric, it also knows Vk−1V>k−1M, and thus Mv(k) can be reconstructed from w(k) =

(I − Vk−1V>k−1)Mv(k). The next observation shows that it suffices to upper bound λr′(V̂>UU>V̂)

with λr′(V>T+rUU>VT+r)

Observation 3.2. We may assume without loss of generality that Alg makes r queries v(T+1), . . . , v(T+r)

after outputing V̂, and that λr′(V̂>UU>V̂) ≤ λr′(V>T+rUU>VT+r).

This is valid because we can always modify the algorithm so that the queries v(T+1), . . . , v(T+r)

ensures that

range(V̂) ⊂ span(v(1), . . . , v(T), v(T+1), . . . , v(T+r)) = range(VT+r)

In this case, we have that for all ` ∈ [r] (in particular, ` = r′),

V̂V̂> � VT+rV
>
T+r =⇒ U>V̂V̂>U � U>VT+rV

>
T+rU

=⇒ λ`

(
U>V̂V̂>U

)
≤ λ`(U>VT+rV

>
T+rU)

⇐⇒ λ`

(
V̂>UU>V̂

)
≤ λ`(V>T+rUU>VT+r) .

Lastly, suppose it is the case that PU,M[λ`(V>T+rUU>VT+r) ≥ B] ≤ b for any determinstic algo-
rithm Algdet, and some bounds B > 0 and b ∈ (0, 1). Then for any randomized algorithm Alg,
Fubini’s theorem implies

PU,M,Alg[λ`(V>T+rUU>VT+r) ≥ B]

= EAlgPU,M

[
λ`(V>T+rUU>VT+r) ≥ B

∣∣ seed of Alg
]
≤ b.

as well. Hence,

Observation 3.3. We may assume that, for all k ∈ [T + r], the query v(k+1) is deterministic given
the previous query-observation pairs (v(i),w(i))1≤i≤k.

3.3 Lower Bounding the Estimation Problem

As discussed above, we need to present lower bounds for the problem of sequentially selecting
measurements v(1), v(2), . . . , v(T+r) for which the associated measurement matrix VT+r has a large
overlap with the planted matrix U. Proving a lower bound for this sequential, statistical problem
constitutes the main technical effort of this paper. We encode the entire history of Alg up to
time i as Zi := (v(1),w(1), . . . , v(i),w(i))1≤j≤i; in particular, ZT+r describes the entire history of the
algorithm.

Next, for U ∈ Stief(d, r), we let PU denote the law of ZT+r where M = W+λUU> conditioned
on {U = U}. In the rank-one case, we Pu denotes the law of ZT+r where M = W + λuu>

conditioned on {u = u}. We will also abuse notation slightly by letting P0 denote the law obtained
by running Alg on M = W, i.e. with U = u = 0. In the rank-one case, we have the following
theorem, whose proof is outlined in Section 4:
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Theorem 3.2. Let M = W + λUU>, where W ∼ GOE(d), and u
unif∼ Sd−1. Then for all

δ ∈ (0, 1/e),

EuPu

[
∃k ≥ 1 : u>VkV>k u ≥ 32λ4k gap

−1(log δ−1 + gap−1/2)

d

]
≤ δ.

The above theorem essential states that the quantity u>VkV>k u can grow at most geometrically
at a rate of λ4k, with an initial value sufficiently large in terms of the probability δ and gap. In
Section 5, we prove an analogous bound, which gives a geometric control on λr′(U

>VkVkU):

Theorem 3.3. Let M = W+λUU>, where U
unif∼ Stief(d, r). Then for d ≥ gap−1/2 and δ ∈ (0, 1),

and r′ ∈ [r]

EUPU

[
∀k ∈ [d] : λr′(U

>VkVkU) ≤ 26rλ9k/r′ log(20d2) log(eδ−1)

dgap2

]
≥ 1− δ.

In Section A.3, we combine Theorem 3.3, Lemma 3.1, and Observation 3.1 to prove Theorem 2.2.

The final rate is a consequence of the fact that λ =
1+
√

gap(2−gap)

1−gap . As mentioned in the paragraph
New Techniques, our main technical hammer for proving Theorems 3.2 and 3.3 is a novel data-
processing lower bound (Proposition 4.4) which applies to “truncated” distributions; the techniques
are explained in greater detail in Appendix F.

3.4 Conditional Likelihoods from Orthogonal Queries

We conclude with one further simplification which yields a closed form for the conditional distri-
butions of our queries. Observe that it suffices to observe the queries w(i) = (I−Vi−1V>i−1)Mv(i) =

Mv(i) − Vi−1(MVi−1)>v(i), our algorithm already “knows” the matrix MVi−1 from the previous
queries. Hence,

Observation 3.4. We may assume that we observe queries w(i) = PiMv(i), where Pi := I −
Vi−1V>i−1.

We now show that, with our modified measurements w(i) = PiMv(i), then the query-observation
pairs (v(i),w(i)) in the rank-one case have Gaussian likelihoods conditional on Zi and u.

Lemma 3.4 (Conditional Likelihoods). Let Pi := I − ViV
>
i denote the orthogonal projection onto

the orthogonal complement of span(v(1), . . . , v(i)). Under Pu (the joint law of M and ZT on {u =
u}), we have

(Pi−1)Mv(i)
∣∣Zi−1 ∼ N

(
λ(u>v(i))Pi−1u,

1

d
Σi

)
where Σi := Pi−1

(
Id + v(i)v(i)>

)
Pi−1.

In particular, w(i) is conditionally independent of w(1), . . . ,w(i−1) given v(1), . . . ,w(i−1) and u =
u.

Lemma 3.4 is proved in Appendix C.2. We remark that Σi is rank-deficient, with its kernel
being equal to the span of {v(1), . . . ,w(i−1)}. Nevertheless, because the mean vector λ(u>v(i))Pi−1u
lies in the orthogonal complement of ker Σi, computing Σ−1

i (λ(u>v(i))Pi−1u) can be understood as

Σ†i (λ(u>v(i))Pi−1u), where † denotes the Moore-Penrose pseudo-inverse [21].
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4 Proof of Theorem 3.2 (r = 1)

In this section, we prove a lower bound for the rank-one planted perturbation. The arguments in
this section will also serve as the bedrock for the rank r case, and exemplify our proof strategy.
Given any Vk ∈ Stief(d, k), we introduce the notation Φ(Vk; u) := 〈Vk,uu>Vk〉, which is just the
square Euclidean norm of the projection of u onto the span of v(1), . . . , v(k). Φ(Vk; u) will serve as a
“potential function” which captures how much information the queries v(1), . . . , v(k) have collected
about the planted solution u, in a sense made precise in Proposition 4.4 below. The core of our
argument is the following proposition, whose proof is given in the following subsection:

Proposition 4.1. Let (τk) be a sequence such that τ0 = 0, and for k ≥ 1, τk ≥ 2k. Then for all
η > 0, one has

EuPu[{Φ(Vk; u) ≤ τk
d
} ∩ {Φ(Vk+1; u) >

τk+1

d
}]

≤ exp

{
η

2(1 + η)

(
(1 + η)λ2τk −

(√
τk+1 −

√
2k + 2

)2
)}

. (4.3)

The above proposition states that, given two thresholds τk, τk+1 ≥ 0, the probability that
d(Vk+1; u) exceeds the threshold τk+1 on the event that d(Vk; u) does not exceed the threshold τk
is small. Hence, for a sequence of thresholds 0 = τ0 < τ1 < . . . , we have

EuPu[∃k ≥ 0 : Φ(Vk+1; u) > τk+1/d]

≤
∞∑
k=0

EuPu[{Φ(Vk; u) ≤ τk/d} ∩ {Φ(Vk+1; u) > τk+1/d}].

Theorem 3.2 now follows by choosing the appropriate sequence τk(δ), selecting η appropriately,
and verifying that the right hand side of the above display is at most 2δ. For intuition, setting
η = λ − 1, we see that once τk gets large, it is enough to choose τk+1 = λ4τk ensure that the
exponent in Equation (4.3) is a negative number of sufficiently large magnitude. The details are
worked out in Appendix D. We now turn to the proof of Proposition 4.1.

4.1 Proving Proposition 4.1

To prove Proposition 4.1, we argue that if τk is much smaller than τk+1, then under the event
{Φ(Vk; u) ≤ τk/d}, the algorithm does not have enough information about u to select a new query
vector v(k+1) for which {Φ(Vk+1; u) > τk+1/d}. The following proposition is proved in Section 4.3,
and arises as a special case of a more general information theoretic tools introduced in that section.

Proposition 4.2. Let D be any distribution supported on Sd−1, and let η > 0. Then,

Eu∼DPu [{Φ(Vk; u) ≤ τk/d} ∩ {Φ(Vk+1; u) > τk+1/d}] ≤(
Eu∼DEZk∼P0

[(
dPu(Zk)

dP0(Zk)

)1+η

I({Φ(Vk; u) ≤ τk/d})

]) 1
1+η

·

(
sup

V ∈Stief(d,k+1)
Pu∼D[Φ(V ; u) > τk+1/d]η

) 1
1+η

.
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As is typical for data-processing inequalities, the above proposition relates the probability of
the event {Φ(Vk+1; u) > τk+1/d} to an “information” term capturing the size of power of likelihood

ratios
(

dPku
dPk0

)1+η
restricted to the event {Φ(Vk; u) ≤ τk/d}, and an “entropy” term, which captures

how unlikely it would be to find a V ∈ Stief(d, k + 1) such that {Φ(V ; u) > τk+1/d} by just
randomly guessing. We remark that Proposition 4.2 differs from many standard data-processing
inequalities (e.g., Fano’s inequality or the bounds in Chen et al. [15]) in two ways: first, we use an
unorthodox information measure: 1 + η-powers of likelihood ratios for η close to zero. This choice
of divergence gives us granular control in the case when λ is close to one. As mentioned above, we
will ultimately take η by setting η = λ − 1. Second, we consider the restriction of the likelihood
ratios to the “low-information” event {Φ(Vk; u) ≤ τk/d}. As mentioned above, this is necessary
to deal with the ill-behaved tails of the likelihoods. In Appendix F we present additional general
data-processing inequalities for truncated distributions.

Deducing Proposition 4.1 from Proposition 4.2 now follows readily by bounding the “entropy”
and “information” terms. We use concentration of measure on the sphere to bound the entropy
term as follows (see Appendix C.1 for proof):

Lemma 4.3. For any fixed V ∈ Stief(d, k + 1) and τk+1 ≥ 2(k + 1) , we have

Pu[u>V >V u ≥ τk+1/d] ≤ exp

{
−1

2

(√
τk+1 −

√
2(k + 1)

)2
}
.

We now state 4.4 which gives an upper bound on the information term. The proof is considerably
more involed that that of Lemma 4.3, and so we present a sketch in Section 4.2 below.

Proposition 4.4. For any τk ≥ 0 and any fixed u ∈ Sd−1, we have

EP0

[(
dPu(Zk)

dP0(Zk)
I(Φ(Vk;u) ≤ τk/d)

)1+η
]
≤ exp

(
η(1 + η)

2
λ2τk

)
. (4.4)

In particular, by taking an expectation over u ∼ Sd−1, we have that

EuEP0

[(
dPu(Zk)

dP0(Zk)
I(Φ(Vk; u) ≤ τk/d)

)1+η
]
≤ exp

(
η(1 + η)

2
λ2τk

)
.

This motivates the choice of Φ(Vk; u) as an information-potential, since it gives us direct control
over bounds of the likelihood ratios. Propostion 4.1 now follows immediately from stringing together
Proposition 4.2, Proposition 4.4 for the “information term”, and Lemma 4.3 for the “entropy term”.

4.2 Proof of Proposition 4.4 (“Information Term”)

The difficulty in Proposition 4.4 is that truncating to the event I (Φ(Vk;u)) ≤ τk) introduces cor-
relations between the conditional likelihoods that don’t arise in the conditionally independent
likelihoods of Lemma 3.4. Nevertheless, we use a careful peeling argument (Appendix C.3) to
upper bound the information term, an expected product of likelihoods, by a product of expected
conditional likelihoods which we can compute. Formally, we have

Proposition 4.5 (Generic upper bound on likelihood ratios). Fix an u, s ∈ Sd−1, and fix r > 0.
Define the likelihood functions

gi(Ṽi) := EP0

[(
dPu(Zi|Zi−1)

dP0(Zi|Zi−1)

)r
I(Vi = Ṽi)

]
. (4.5)
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Then for any subset Vk ⊂ Stief(d, k), we have

EP0

[(
dPu(Zi|Zi−1)

dP0(Zi|Zi−1)

)r
I(Vk ∈ Vk)

]
≤ sup

Ṽk∈Vk

k∏
i=1

gi(Ṽ1:i) , (4.6)

where Ṽ1:i denotes the first i columns of Ṽk.

Here, we remark that the tilde-notation (Ṽk, ṽ
(1), ṽ(i),...) represents fixed vectors which the

random quantities Vk, v
(1), ṽ(i) etc.. For example, in the event {Vk = Ṽk}, Ṽk is considered to be a

deterministic matrix.
We can now invoke a computation of the 1 + η-th moment of the likelihood ratios between two

Gaussians, proved in Appendix C.4.

Lemma 4.6. Let P denote the distribution N (µ1,Σ) and Q denote N (µ2,Σ), where µ1, µ2 ∈
(ker Σ)⊥. Then

EQ

[(
dP
dQ

)1+η
]

= exp

(
η(1 + η)

2
(µ1 − µ2)>Σ†(µ1 − µ2)

)
. (4.7)

We are now in a position to prove Proposition 4.4:

Proof of Proposition 4.4. Fix a u ∈ Sd−1, and we shall and apply Proposition 4.5 with ru = r0 =
1 + η and rs = 0. In the language of Proposition 4.5 , we have

gi(Ṽi) = EP0

[(
dPu(Zi|Zi−1)

dP0(Zi|Zi−1)

)1+η ∣∣Vi = Ṽi

]

= EP0

(dPu(w(i)|Zi−1)

dP0(w(i)|Zi−1)

)1+η ∣∣Vi = Ṽi


Now, observe that, Pu(w(i)|Zi−1) is the density of N (λ〈u, v(i)〉 ·Pi−1u,

1
dΣi) and P0(w(i)|Zi−1) is the

density of N (0, 1
dΣi). Since Σi = Pi−1

(
Id + v(i)v(i)>)Pi−1, we have Pi−1Σ†iPi−1 = Pi−1 � I. Thus,

u>Pi−1(Σi/d)†Pi−1u ≤ d‖u‖2 = d ∀u ∈ Sd−1 . (4.8)

Hence, by Lemma 4.6, we have

gi(Vi) = exp

(
η(1 + η)λ2〈u, v(i)〉2

2
u>Pi−1(Σi/d)†Pi−1u

)
(4.8)

≤ exp

(
η(1 + η)λ2 · d〈u, v(i)〉2

2

)
.
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Hence, if Vk := {Ṽk ∈ Stief(d; k) : Φ(Ṽk;u) ≤ τk/d}, then Proposition 4.5 implies

EP0

[(
dPu(Zk
dP0(Zk)

)1+η

I(Vk ∈ Vk)

]

≤ sup
Ṽk∈Vk

k∏
i=1

exp(
η(1 + η)λ2 · d〈u, Ṽk[i]〉2

2
)

= sup
Ṽk∈Vk

exp(
dη(1 + η)λ2Φ(Ṽk;u)

2
)

≤ exp(
η(1 + η)λ2τk

2
) .

4.3 Proof of Proposition 4.2

We begin by introducing the general framework for Bayes risk lower bounds as presented in Chen et
al. [15]. We begin with an estimand parameter θ drawn from some prior P over a measureable space
(Θ,G). To each fixed θ ∈ Θ is associated a measure µθ over a measureable space (X ,F), governing a
random variable x. In our setting, consider the rank-one deformed Wigner M = W+λuu>, a fixed
Alg and round k. Then the estimand is θ = u, the measures {µθ}θ∈Θ is the measure correspond to
the laws Pu(·) over x = Zk.

We would like to use x to make an action which tells us something useful about θ. Formally,
consider a space of action A and a space A of measurable action mappings a : X 7→ A, and an
indicator function I(·, ·) : a × Θ 7→ {0, 1} of a “good event” that we would want an algorithm to
achieve. In our Wigner model, A will denote the space Stief(d, k), each a might denote a mapping
from the playout history Zk to the measurements Vk, and the good event will be

I(Φ(Vk;θ)) = I(θ>VkV>k θ > τ)

for some threshold τ .
As we want to show lower bounds, our goal will be to show that the quantity

Vopt := sup
a∈A

Eθ∼Pµθ[{I(a(x),θ) = 1}] (4.9)

cannot be too large. The key difference between this setup and typical information-theoretic lower
bounds is that we will not require the measures µθ to be normalized (i.e., probability measures),
only that they have finite mass µθ(X ) < ∞. Our motivation for this is that we will take µθ to be
truncated probability measures, or measures µθ with µθ(X ) ≤ 1 for which there exists a probability
distribution µθ and an event Bθ ∈ F such that

∀A ∈ F : µθ(A) = µθ(A ∩Bθ). (4.10)

To make this concrete, suppose in our above example that use Pu as our unnormalized measures
µθ, and the sets Bu := {Φ(Vk−1;u) ≤ τk−1}. Then, µθ correspond to the subdistribution

A 7→ Pθ(A ∩ {Φ(Vk−1; θ) ≤ τk−1}).
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Hence, we have

Vopt = sup
a∈A

EuPθ ({Φ(a(Zk); u) ≤ τ} ∩ {Φ(Vk−1; u) ≤ τk−1}))

≥ Eu∼PPu ({Φ(Vk; u) ≤ τ} ∩ {Φ(Vk−1; u) ≤ τk−1}) , (4.11)

which is precisely the quantity we wish to control in Proposition 4.2. More generally, considering
such truncated measures is desirable in adaptive settings when we may want to consider the prob-
abililty than a sequential algorithm takes a certain action at stage k, on the event that it has taken
certain actions prior to stage k. Our main theorem is as follows:

Theorem 4.7 (Bayes risk lower bound for sub-distributions). Let P be a prior distribution over
(Θ,G), let ν and {µθ} be a family of finite measures over (X ,F). Let A denote an action space,
let A denote the space of decision rules a from X to A, and let I : A×Θ 7→ {0, 1} be an indicator
function. Let

V0 := sup
a∈A

Pθ∼P [{I(a, θ) = 1}] (4.12)

denote the optimal value of the best action taken without observing x. If f is non-negative, convex,
ν(X ) ≤ 1, supθ∈Θ µθ(X ) ≤ 1, and µθ are absolutely continuous with respect to ν2 for all θ ∈ Θ,
and either i) x 7→ xf(1/x) is non-increasing or ii) ν(X ) = 1, then

Eθ∼PEν [f(
dµθ
dν

)] ≥ V0f

(
Vopt

V0

)
.

In essence, the above theorem relates two quantities: on the right, a quantity comparing the
optimal value Vopt to be the best “data-oblivious”’ value V0, which depends only on the ”spreadness”

of the prior P and not on the condition laws µθ. The quantity Eν [f(dµθ
dν )] on the left hand side

is known as a f -divergence [16] between µθ and ν, which measures the dissimilarity between the
measures µθ and ν; we introduce them in full generality in Appendix F.1. If there exists a measure ν
for which Eθ∼PEν [f(dµθ

dν )] is small, it means that the measures µθ are in a sense similar on average,
and hence the variable x doesn’t convey too much information about the estimand θ, and thus Vopt

cannot be considerably larger than V0.
Theorem 4.7 is proven in Appendix F.1, along with a more general bound, Theorem F.3. We

now conclude this subsection with the proof Proposition 4.2:

Proposition 4.2. We apply Theorem 4.7 with f(x) = x1+η (which is non-negative on (0,∞), convex,
and xf(1/x) = x−η non-increasing). For clarity, we will index our truncated laws µu(A) by u ∈
Sd−1. Now, we take µu(A) := Pu(A ∩ {Φ(Vk−1;u) ≤ τk−1}). We also take ν to be the law of the
law Zk under P0, the law of Alg under M = W, without the rank-one spike. Since, Pθ � P0 we
see that µθ � ν. Moreover, we have that

dµu
dν

=
dPu
dP0

I(Φ(Vk−1; θ) ≤ τk−1).

Lastly we take P to be the uniform distribution on the sphere. Hence, the right hand side of
Theorem 4.7 reads

Eu∼Sd−1EZk∼P0

[(dPu(Zk)

dP0(Zk)

)1+η

I(Φ(Vk−1; u) ≤ τk−1)
]
.

2See e.g. Kallenberg [25] for a review of absolute continuity.
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On the other hand, we now choose the action spaceA = Stief(d, k) and and the indicator I(Vk, u) :=
I(Φ(Vk;u) > τ). Using (4.9), we have

V0f(Vopt/V0) = V η
0 V

1+η
opt

Eq. (4.12)
= V 1+η

opt

(
sup

Vk∈Stief(d,k)
Pu∼Sd−1 [Φ(Vk; u) > τ ]

)η
.

Solving for Vopt, we have (
sup

Vk∈Stief(d,k)
Pu∼Sd−1 [Φ(Vk; u) > τ ]

) η
1+η

×

(
EuEZk∼P0

[(
dPu(Zk)

dP0(Zk)

)1+η

I(Φ(Vk−1; u) ≤ τk−1)

]) 1
1+η

≥ Vopt

Eq. 4.11
≥ Eu∼PPu ({Φ(Vk; u) > τ} ∩ {Φ(Vk−1; u) ≤ τk−1}) .

This concludes the proof.

5 Proof of Theorem 3.3 (r ≥ 1)

Here we present a proof outline of Theorem 3.3 which modifies the insights from the rank one
case to get a recursion for the determinant det(U>VkVkU + ∆Ir). We will still use the rank-one
potential from the last section Φ(·; ·), but will instead be interested in

Φ(Vk; Ue) := e>U>VkV>k Ue, e ∈ Rr , (5.13)

which measures the amount of information gathered about U in the direction of e. We will want to
show that, with high probability, the following event holds for an appropriate choice of parameters:

E(λ̃,∆, kmax) := {∀e ∈ Rr, k ∈ {1, . . . , kmax}}⋂ {
dΦ(Vk; Ue) + ∆ ≤ λ̃(dΦ(Vk−1; Ue) + ∆)

}
. (5.14)

In other words, E(λ̃,∆, kmax) corresponds to the event that, up to a translation by ∆, the potentials
Φ(Vk; Ue) grows at most geometrically by a factor of λ̃ in every direction. We should think of λ̃ as
being of order λO(1), which may be quite close to 1. Hence, the translation ∆ gives us additional
slack which will be necessary for high-probability bounds.

Lemma 5.1. On E(λ̃,∆, kmax), it holds that

det(dU>VkVkU + ∆Ir) ≤ λ̃k det(∆Ir) = λ̃k∆r.

The proof of the above claim follows by first decomposing

dU>VkVkU + ∆Ir = dU>Vk−1Vk−1U + ∆Ir + U>v(k)v(k)>U,

and applying the Sherman-Morrison rank-one update formula to control the growth of the det(U>VkVkU+
∆Ir) in each stage. In Section E.1, we prove Theorem 3.3 by translating Lemma 5.1 into a growth
bound on λr′(U

>VkVkU), and control the probability of the event E(λ̃,∆, kmax) with the following
proposition:
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Proposition 5.2. Let ρ ≥ λ3cd,r, fix kmax ≥ 1, and set ∆ ≥ ρ(2kmax+2)
(ρ−1)3 . Then

P[E(ρ2,∆, kmax)] ≥ 1− (20d/(ρ− 1))r+2 exp

{
−λ3(λ− 1)∆

2

}
.

5.1 Proof of Proposition 5.2

We will proeceed by arguing that an analogue of E(λ̃,∆, kmax) holds for a fixed e ∈ Rr−1, and
then extending to all of Sr−1 via a covering argument. Our first step is to prove an analogue of
Proposition 4.1 for the potential Φ(Vk; Ue). This ends up between very similar to the rank-one
case, with the modification that we end up conditioning on the matrix U(I−ee>), and consequently
pay a slight penalty (see the factor cd,r below) for reducing the effective problem dimension from
estimating a random vector in Rd to one in Rd−r−1. Precisely, we have the following:

Proposition 5.3. Define the constant cd,r := d
d−r−1 . Fix an η > 0, k ≥ 0, and let τk, τk+1 ≥ 0,

with τ0 = 0. Then for any fixed e ∈ Rr

EUPkU[{Φ(Vk; Ue) ≤ τk/d} ∩ {Φ(Vk+1; Ue) > τk+1/d}] ≤

exp

{
η

2

(
λ2τk −

(√
cd,rτk+1 −

√
2k + 2

)2
1 + η

)}
.

(5.15)

Proposition 5.3 is proved in Appendix E.4. We can now prove that a point-wise analogue of
E(λ̃,∆, kmax) for each e ∈ Sr−1 holds for λ̃ = λ3cd,r:

Lemma 5.4. Let ρ ≥ λ3cd,r, fix kmax ≥ 1, and set ∆ ≥ ρ(2kmax+2)
(ρ−1)3 . Then, for any fixed k ∈

[kmax] = {1, · · · , kmax},

P[∃k ∈ [kmax] : dΦ(Vk; Ue) + ∆ ≥ ρ(dΦ(Vk−1; Ue) + ∆)] ≤ d2

ρ− 1
exp

{
−λ3(λ− 1)∆

2

}
.

The lemma is established by first fixing a k ∈ [kmax], “binning” dΦ(Vk−1; Ue) into at most d
1−ρ

intervals [τi−1, τi], applying Proposition 5.3 and then using union bound over over all kmax ≤ d time
steps. To conclude the proof of Proposition 5.2, we invoke a simple covering argument to extend
to all e ∈ Sr−1; details are given in Section E.2.

6 Spectrum of Deformed Wigner Model

In this section, we establish that for λ > 1, the top r eigenvalues of M = W + λUU> concentrate
around λ+λ−1, while the magnitude of the remaining eigenvalues lie below 2+od(1). While results
of this flavor are standard in the asymptotic regime in which λ and r are held as fixed constants as
d→∞ [12, 9] our lower bounds require that d can be taken to be polynomial in r, λ, and gap−1.

Theorem 6.1. There exists a universal constant C ≥ 0 such that the following holds. Let M =
W + λUU> ∈ Sd, and let gap be as in (2.1). Let κ ≤ 1/2, ε ≤ gap · min{1

2 ,
1

λ2−1
}, and δ > 0.

Then for

d ≥ C
(

(r + log(1/δ))

gapε2
+ (κgap)−3 log(1/κgap)

)
, (6.16)
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the event EM defined below holds with probability at least 1− 9δ:

EM :=
{
‖W‖op ≤ 2 + κ(λ+ λ−1 − 2)

}⋂{
[λr(M), λ1(M)] ⊂ (λ+ λ−1)[1− ε, 1 + ε]

}
.

Moreover, on EM, λr(M)− ‖W‖op ≥ (1− ε
gap

)(1− κ)(λ+ λ−1)gap ≥ (λ+ λ−1)gap/4.

The proof begins with the standard observation that the eigenvalues of M are precisely the
zeros of the function z 7→ det(zI −M) = det(zI −W + λUU>). In particular, if z > λmax(W),
then zI −W is invertible, and by standard determinant identities, we have

det(zI −M) = det(zI −W + λUU>)

= det(zI −W) det(I − λU>(zI −W)−1U) .

In other words, z > λmax(W) is in spec(M) if and only if det(I − λU>(zI −W)−1U) = 0. Given
ε, κ as in Theorem 6.1, we show that for z∗ ≤ 2 + κ(λ+ λ−1 − 2) = 2 + od(1), and for the values

alow = (λ+ λ−1)(1− ε) and aup = (λ+ λ−1)(1− ε) ,

it simultaneously holds with high probability that ‖W‖op ≤ z∗ and z 7→ det(I−λU>(zI−W)−1U)
vanishes for r distinct values of z ∈ [alow, aup]. This will imply that at least r of the eigenvalues
of M lie in [alow, aup]. Note that, by eigenvalue interlacing, it also follows that the remaining
eigenvalues of M lie in [λmin(W), λmax(W)] ⊆ [−‖W‖op, ‖W‖op]. We will proceed by showing
that the eigenvalues of the matrix Ir − λU>(zI −W)−1U are all negative when z∗ < z < alow and
are all positive when z > aup. This motivates the definition of the events A(z∗) := {‖W‖op ≤ z∗},

Elow(z) :=
{
Ir − λU>(zI −W)−1U � 0

}
, and

Eup(z) :=
{
Ir − λU>(zI −W)−1U � 0

}
.

Then, using a continuity argument, we derive a useful sufficient condition for det(Ir − λU>(zIr −
W)−1U) to vanish at r distinct points.

Proposition 6.2. The exists a zero-measure event N such that, on N c ∩ A(z∗) ∩ Eup(aup) ∩
Elow(alow), the function z 7→ det(I −λU>(zI −W)−1U) vanishes at r distinct points in [alow, aup].

We prove Proposition 6.2 in Section I. We are now left with controlling the probabilities of
A(z∗), Eup(aup) and Elow(alow). To control A(z∗), we combine a non-asymptotic bound on the
spectral norm of a Wigner matrix W by Bandeira and van Handel [8] with a standard concentration
inequality. Note that asymptotic results of the above statement can be found in references such
as [5]. Vershynin [39] gives bounds that are sharp up to constant factors.

Proposition 6.3 (Bound on ‖W‖op). Let d ≥ 250, and fix a p ∈ (0, 1). Then,

P[‖W‖op > z∗] ≤ p where z∗ = z∗(p) := 2 + 21d−1/3 log2/3(d) + 2
√

log(1/p)/d (6.17)

The above proposition is proved in Section J. We must now control the probabilities of Elow and
Eup. Since U is uniform on Stief(d, r) and independent of W, we expect by concentration that

U>(zId −W)−1U ≈ EU[U>(zId −W)−1U]

=
1

d
tr
(
(zId −W)−1

)
· Ir = SW(z) · Ir ,
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where SW(z) := 1
dtr
(
(zId−W)−1

)
the Stieltjes transform of the empirical spectral measure of the

Wigner matrix W. As d→∞, it is well known [5] that for all z > 2,

SW(z) := 1
dtr
(
(zId −W)−1

) prob.−→ s(z), where s(z) := z−
√
z2−4
2 .

Therefore we see that ‖λU>(zI−W)−1U−λs(z)Ir‖op = od(1). Finally, we see that the equation
s(z) = λ−1 is solved by z = λ+ λ−1, and that s(alow) > λ−1 and s(aup) < λ−1. Thus, our goal will
be to verify that, on A(z∗), the following holds for z ∈ {alow, aup} with high probability:

|SW(z)− s(z)|+ ‖SW(z)Ir −U>(zId −W)−1U‖op ≤ |s(z)− λ−1| . (6.18)

Indeed, we see that for z = alow < λ+λ−1, the above equation implies Elow by the triangle inequality,
and similarly if z = aup > λ + λ−1. To handle the error ‖SW(z)Ir − U>(zId −W)−1U‖op, we
fix W and reason about the above quadratic form in U using the following Hanson-Wright style
inequality proved in Section K:

Proposition 6.4 (Stieffel Hanson-Wright ). Let A ∈ Rd×d be any fixed symmetric matrix, and let

U
unif∼ Stief(d, r) be uniform on the Stieffel manifold. Then for all t ≤ d/4,

P

[∥∥∥∥U>AU− tr(A)

d
· Ir
∥∥∥∥

op

>
8
(
t1/2‖A‖F + t‖A‖op

)
d(1− 2

√
t/d)

]
≤ 3e−t+2.2r

In particular, if we choose A = (zId −W)−1 and condition on A(z∗), we can bound ‖A‖op ≤
(z− z∗)−1, ‖A‖F ≤

√
d(z− z∗)−1, and hence conclude that U>(zId−W)−1U = SW(z) · Ir + od(1).

Next, the term |SW(z)− s(z)| is upper bounded by Theorem 6.5 (proved below), which establishes
a finite sample version of Equation (6.18).

Theorem 6.5 (Stieltjes transform). Fix p, δ ∈ (0, 1) and let z∗ given in Proposition 6.3. Fix an
a ∈ (2 + 1

31(z∗ − 2), d), and assume that ε := (d(a − z∗)2)−1/2 satisfies ε2 < min{ 1
16
√

2
, a−2

32 }, and

p1/3 < ε/8. Then there exists an event ES(a) with P[ES(a)c] ≤ 1− δ and on ES(a) ∩ A(z∗),

|SW(a)− s(a)| ≤ cδε2 + 8d3/2p1/6, where cδ := 4
√

2 + 2
√

log(2/δ).

Finally, Lemma G.1 in the Appendix establishes a lower bound on |s(a)− λ−1| (note that this
is deterministic). In Section G.1, we put the pieces together to show for our choice ε, κ, and
an appropriate z∗, Theorem 6.5 and Proposition 6.4 imply that Equation (6.18) holds with high
probability.

6.1 Proof Roadmap for Theorem 6.5

Here we prove Theorem 6.5 by establishing estimates of SW(a) := 1
dtr(aI −W) = 1

d

∑d
i=1

1
a−λi(W)

under the event A(z∗) := {‖W‖ ≤ z∗}, for some a bounded away from z∗. To do so, we shall need
to overcome multiple technical roadblocks, and so we devote this subsection to give a roadmap.
Our first challenge is that, even those SW(a) will end up concentrating around s(a), its expectation
diverges for any a ∈ R. Indeed, the eigenvalues of W are distinct with probability 1, and their
marginals have a positive density with respect to the Lebesque measure, and so integrating the
summand 1

d(a−λmax(W )) in the neighborhood of a will cause the expectation to diverge.

Luckily, the probability that λmax(W ) is close to a is vanishly small in d, and so we will still
be able to establish concentration by estimating SW(z), where z = a + bi and b > 0 is very samll
relative to a. This ensures that E[SW(z)] will converge, and in fact we wil be able to both compute
the latter expectation and show that SW(z) concentrates around it. Before establishing with these
acts, we show that if b is sufficiently small and a is not to close to z∗, then SW(z) ≈ SW(a).
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Lemma 6.6. On A(z∗), |Re(SW(a+ ib))− SW(a)| ≤ b2

(a−z∗)3 for any a > z∗.

The proof of the above lemma is deferred to Appendix H.6. Our first step to control SW(z) is
estimating its expectation:

Proposition 6.7. Define the determininstic quantity

Err(z) := E[SW(z)2] +
1

d
E[tr(zI −X)2]− E[SW(z)]2 .

Then, as long as a2 − 4 > b2 + 4|Re(Err)| and b > |Im(Err(z))|, one has

|Re(E[SW(z)])− s(a)| ≤
√
|b2 + 4Re(Err)|+ |(2ab+ Im(Err)| .

The proposition, proved in Appendix H.5, follows the standard arguments given in Section
2.4 of [5]. At a high level, we show that E[SW(z)] satisfies a quadratic equation whose roots are

approximately a±
√
a2−4
2 . We need to take care that we choose the correct root, which imposes

the conditions a2 − 4 > b2 + 4|Re(Err)| and |b > |Im(Err(z))|. In particular, the requirement
b > |Im(Err(z))| will force us to take special care to show that Im(Err(z)) is dominated by b.

The remaining part of the proof requires us to establish two results: first, that Re(Err(z))
and Im(Err(z)) are sufficiently small, and second, that SW(z) concentrates around its expectation.
Since W has Gaussian entries, one may be tempted to argue both result by using the Lipschitz
property of the map W 7→ SW(z). Unfortunately, the Lipschitz constant of this map scales with
1/b, which will become quite large if we take b to be too small.

Instead, we define a modified matrix W̃ such that, W̃ = W on A(z∗), and the composition of

maps W 7→ W̃ 7→ S
W̃

(z) has a suitably large Lipschitz constant, even when b is vanishly small

function in d (e.g. d−10). Specifically, given the eigendecomposition W = OΛO>, define the matrix

W̃ := O>diag(min{Λii, z
∗})O to be the matrix obtained by truncating the eigenvalues of W to lie

in (−∞, z∗]. Observe that under A(z∗), one has W̃ = W. Moreover, λ1(W̃) ≤ z∗ almost surely.
This latter observation is crucial in establilshing the following lemma, which allows us to ap-

proximate the real and imaginary parts of Err(z) - a quantity defined in terms of the raw Wigner

matrix W - by variance-like quanities involving the Stieltjes transform of the modified matrix W̃ :

Lemma 6.8. Suppose that 0 < b < min{1, a− z∗}, and define pz∗ := P[A(z∗)]. Then,∣∣Re(Err(z))−Re(E[(S
W̃

(z)− E[S
W̃

(z)])2)
∣∣ ≤ 1

d(a− z∗)2
+

4pz∗

b2∣∣Im(Err(z))− Im((E[(S
W̃

(z)− E[S
W̃

(z)])2
∣∣ ≤ 2b

d(a− z∗)2
+

4pz∗

b2

Moreover, on A(z∗),

|Re(SW(z))−Re(E[SW(z)])| ≤ |Re(S
W̃

(z))−Re(E[S
W̃

(z)])|+ pz∗

b

This leaves us with the two tasks before we can finally apply Proposition 6.7 to get a high
probability bound on SW(z). First, we need to control Err(z) by bounding the size of the variance-
like terms Re(E[(S

W̃
(z)−E[S

W̃
(z)])2) and Im(E[(S

W̃
(z)−E[S

W̃
(z)])2). Secondly, we shall need to

argue that S
W̃

(z) concentrates around E[S
W̃

(z)]. Both tasks amount to controlling the deviations
of S

W̃
(z), which we can achieve by leveraging the fact that S

W̃
(z) is a Lipschitz function of the

underlying standard gaussian matrix X (recall that Xij
i.i.d.∼ N (0, 1):, and that W = 1√

2d
(X+X>).)
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Lemma 6.9. Let z = a+ bi, and define the map Ψ : X→ S
W̃

(z). Then if a− z∗ > |b|,

Lip(Re(Ψ))2 ≤
√

2

d2(a− z∗)4
and Lip(Im(Ψ))2 ≤ 4

√
2b2

d2(a− z∗)6
.

To control the variance terms, we use the Gaussian Poincare inequality, which states that if
f : RD → R is an L Lipschitz function, and let x ∈ RD is a standard gaussian vector, then
Var[f(x)] ≤ L2. This lets us control Re(Err(z)) and Im(Err(z))

Lemma 6.10. Suppose that b ≤ (a− z∗)/2 and d ≥ (a− z∗)−2. Then,

|Im(Err(z))| ≤ 8
√

2b

d
·max

{
1

(a− z∗)2
,

1

d(a− z∗)5

}
+

4pz∗

b2

|Re(Err(z))| ≤ 4

(
1

d(a− z∗)2
+ pz∗/b

2

)
Appendix H.1, we finally put together all these pieces to prove Theorem 6.5. Proofs of all the

supporting claims can be found in the following subsections of Appendix H.
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Part I

Supporting Material for the
Information-Theoretic Lower Bound

A Proof of Theorem 2.2 and Further Results

In this section, we prove Theorem 2.2, and state additional results which follow as easy consequences
of our framework.

A.1 Batch-Queries and Improved gap dependence for r = 1

We will begin by presenting an improved gap dependence in the r = 1 case. We shall actually prove
a lower bound in a more general setting, where the actual is allowed to make T-adaptive rounds of
batches of B queries. When d is a sufficiently large polynomial in gap and B, we show that we still
need T &

√
gap

Theorem A.1. Fix a gap ∈ (0, 1) and any d ≥ q(gap−1, (1− gap)−1, 2, 1, log(2)) where q is as in

Proposition 2.1, and let λ =
1+
√

gap(1−gap)

1−gap be the solution to Equation 2.1. Then M = W+λUU>

where U
unif∼ Stief(d, r) and W ∼ GOE(d), Then for any Alg make T adaptive rounds of batches of

B queries,

P[〈v̂, abs(M)v̂〉 ≥ 1

6
gap] ≤ e · exp

−dgap5/2

128B
·

(
1 +

√
gap(2− gap)

1− gap

)−4(T+1)
 (1.19)

The above theorem makes use of the following generalization of Theorem 3.3, which is sketeched
in Section A.4:

Theorem A.2. Let M = W + λUU>, where W ∼ GOE(d), and u
unif∼ Sd−1. Suppose Alg is

allowed to make B queries per round adaptivity. Then for all δ ∈ (0, 1/e),

PW,u,Alg

[
∃k ≥ 1 : u>VBkV>Bku ≥ λ4k · 32Bgap−1(log δ−1 + gap−1/2)

d

]
≤ δ

A.2 Sharp Lower Bounds in the Large-gap regime

When the eigengap is bounded away from zero, the complexity of PCA is better paramterized in
terms of the eigenration 1−gapr(M) = λr+1(M)/λr(M). Indeed, one can show in this regime that
both Lanczos and the power methods converge at a rate of log(1−gapr(M))−1(d) = log d/ − log(1 −
gapr(M)). More over, for any c ∈ (0, 1), we see that − log(1−gapr(M)) and − log(1

c (1−gapr(M))
blow up as gapr(M)→ 1, bu − log(1− cgapr(M)) stays bounded.

In the large gap case, we can simplify use the crude bounds σr(M) = λr(M) ≥ λ and σr+1(M) ≤
‖W‖op, which are consequences of eigenvalue interlacing. In particular, when d is a sufficiently large
constant, our norm bound on ‖W‖op in Proposition 6.3 implies that for all d large enough that

21d−1/3 log2/3 d ≤ 1/2, then with probabilty at least 1− e−d1/2/16, the event {‖W‖op ≤ 3} hholds.
Hence, for λ ≥ 6, we see that

{‖W‖op ≤ 3} ⊃
{
λ1(M) ≤ 3 + λ ≤ 3λ

2
, λr(M)− ‖W‖ ≥ λ/2, 1− gapr(M) ≤ 2/λ

}
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Noting that in this regime, we have that gap ≥ (6−1)2

62+1
= 25

37 ≥ 1/2. Hence, replacing gap by this

lower bound, and replacing
1+
√

gap(1−gap)

1−gap with λ, we can state the following “big-gap” analogoue
of Theorem 2.2

Theorem A.3. Let d be sufficiently large that P[‖W‖op ≤ 3] ≥ 1/2, and fix λ ≥ 6. Then

if M = W + λUU> where U
unif∼ Stief(d, r) and W ∼ GOE(d), then for any Alg satisfying

Definition 2.1, we have

EM

[
PAlg

[
〈V̂, abs(M)V̂〉 ≥ 23

24

r∑
`=1

σ`(M)

] ∣∣{‖W‖op ≤ 3}

]
≤

2e · exp

(
− d

8 · 78 log(d)
· λ−18(T

r
+2)

)
(1.20)

Where PAlg is the probability taken with respect to the randomness of the algorithm. Moreover, on
{‖W‖op ≤ 3, we have 1− gapr(M) ≤ 2/λ.

A.3 Proof of Theorems 2.2 and A.1

For r′ = dr/2e, we have via Lemma 3.1 and Observation 3.2 that

P[〈V̂, abs(M)V̂〉 ≥
(

1− gap

12

) r∑
`=1

σ`(M)|Egood] ≤ 1

P[Egood]
· PW,U,Alg

[
λr′(U

>VT+rVT+rU) ≥ gap/4
]

We set 26rλ9k/r′ log(20d2)
dgap2 log(eδ−1) = gap/4. Setting k = T + r, we have for d ≥ 10 that we can take

log(eδ−1) =
d

12 · 26 log(20d2)gap3
λ−18(T/r+2) ≤ d

78 log(d)gap3
λ−18(T/r+2)

Using the formula λ =
1+
√

gap(2−gap)

1−gap concludes. In the rank one case, we can improve the de-

pendence on the gap. Indeed, setting λ4(T+1) · 32Bgap−3/2(log eδ−1)
d = gap/4 and solving for δ, basic

manipulations reveal

P[〈v̂, abs(M)v̂〉 ≥ 1

6
gap] ≤ e · exp

(
−dgap

5/2

128B
· λ−4(T+1)

)

A.4 Proof of Theorem A.2

When we can make batches of B queries, we consider the matrices VBk ∈ Stief(d,Bk) associated
with the k-th round of adaptivity , and note Alg must decide on its B queries v(Bk+1), . . . , vB(k+1)

at the end of round k.The analogoue of Proposition 4.1 becomes that, for τk+1 ≥
√

2B(k + 1),

EuPu[{Φ(VBk; u) ≤ τk
d
} ∩ {Φ(VB(k+1); u) >

τk+1

d
}] ≤

exp

{
η

2

(
(1 + η)λ2τk −

(√
τk+1 −

√
2B(k + 1)

)2
)}

, (1.21)

where the only change was that we had to inflate the entropy term from an upper bound on
supV ∈Stief(d,k+1) Pu∼D[Φ(V ;u) > τk+1/d] to an upper bound on supV ∈Stief(d,B(k+1)) Pu∼D[Φ(V ;u) >
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τk+1/d], which forces us to replace
√

2k + 2 with
√

2B(k + 1). We now examine Appendix D, which
proves Theorem 3.2 from Proposition 4.1. There it is shown that, if τ0(δ) = 32gap−1(log δ−1 +
gap−1/2), then the sequence τk := λ4kτ0(δ) satisfies

Pu∼Sd−1Pu

[
∃k ≥ 1 : du>VkV>k u ≥ τk

]
≤ δ (B = 1) .

Following the algebra in that section, one can check that if we define the sequence τ̃k = Bτk, and
replace Proposition 4.1 with Equation (1.21), we get

Pu∼Sd−1Pu

[
∃k ≥ 1 : du>VBkV>Bku ≥ τ̃k

]
≤ δ (B ≥ 1) .

Concluding then follows from pulling in the definitionτ̃k = Bτk = Bλ4kτ0 = 32Bλ4kgap−1(log δ−1 +
gap−1/2), and rearranging.

B Reduction from Optimization to Estimation of u

B.1 Proof of Lemma 3.1

We begin with a technical lemma that holds for a general abs(M), and then proceed to simplify
using the definition of Egood:

Lemma B.1. Suppose that U ∈ Stief(d, r), and set g̃apr(abs(M)) := λr(abs(M)) − ‖W‖op > 0.

Then for any V̂ ∈ Stief(d, r), one has

〈V̂, abs(M)V̂〉 ≥
(

1− r′g̃apr(abs(M))

2rλ1(abs(M))

)
·

r∑
i=1

λi(abs(M)) implies

σr+1−r′(V̂>UU>V̂) ≥ g̃apr(abs(M))

2λ

The above lemma is proved in the subsection below. To conclude, note that Egood(γ), we have
that λ`(abs(M)) = σ`(abs(M)) = λ`(M) for ` ∈ [r], Moreover, g̃apr(abs(M)) := λr(M)−‖W‖op ≥
1
2(λ+λ−1− 2), and λ1(abs(M)) = λ1(M) ≤ 3

2(λ+λ−1). Hence, by the above lemma, we have that
as long as

〈V̂, abs(M)V̂〉 ≥
(

1− r′gap

6r

)
·

r∑
i=1

λi(abs(M)) ≥
(

1− r′g̃apr(abs(M))

2rλ1(abs(M))

)
·

r∑
i=1

λi(abs(M))

Then,

λr+1−r′(V̂>UU>V̂) ≥ g̃apr(abs(M))

2λ
≥ gap/4

Finally, we change the variables via r′ ← r + 1− r′.

B.2 Proof of Lemma B.1

Recall the definition

Φ(V; U) := 〈V̂,UU>V̂〉 = trV̂>UU>V̂
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Given r′ ∈ [r], define the matrix Ṽ ∈ Stief(d, r′) by

Ṽ := V̂ · Õ, where Õ := arg inf{Φ(V̂ · O; U) : O ∈ Stief(r′, r′)}

Note then that Õ corresponds to the eigenspace of the bottom r′ eigenvectors of the matrix
V̂>UU>V̂ � 0 , and thus, we see that

Φ(Ṽ; U) = tr(Õ>V̂>UU>V̂Õ) ≤ r′λr+1−r′(V̂>UU>V̂)

We will now establish a lower bound on Φ(Ṽ; U). First, we observe that there exists an V ∈
Stief(d, r − r′) such that V̂V̂> = ṼṼ> + VV

>
. Since abs(M) � abs(W) + UU>, we have

〈V̂, abs(M)V̂〉 = tr(abs(M)V̂V̂>)

= tr(abs(M)VV
>

) + tr(abs(M)ṼṼ>) +

≤
r−r′∑
i=1

λi(abs(M)) + tr(abs(M)ṼṼ>)

≤
r−r′∑
i=1

λi(abs(M)) + tr(abs(W)ṼṼ>) + tr(λUU>ṼṼ>)

≤
r−r′∑
i=1

λi(abs(M)) + r′‖W‖op + λΦ(Ṽ; U)

In particular, if 〈V̂, abs(M)V̂〉 ≥ (1− η)
∑r

i=1 λi(abs(M)), then we must have that

λΦ(Ṽ; U) ≥ (1− η)

r∑
i=1

λi(abs(M))−
r−r′∑
i=1

λi(abs(M)) + r′‖W‖op

≥ −η
r∑
i=1

λi(abs(M)) +

r∑
r=r−r′+1

{λi(abs(M))− ‖W‖op}

≥ −η
r∑
i=1

λi(abs(M)) + r′{λr(abs(M))− ‖W‖op}

≥ −ηrλ1(abs(M)) + r′g̃apr(abs(M))

= r′ ·
(

gapr(abs(M))− η · rλ1(abs(M))

r′

)
where g̃apr(abs(M)) := λr(abs(M)) − ‖W‖op. In particular, if we select η = g̃apr(abs(M)) ·

r′

2rλ1(abs(M)) , then we have that

r′λλr−r′+1(V̂>UU>V̂)) ≥ r′ ·
(

g̃apr(abs(M))− η · rλ1(abs(M))

r′

)
= r′ · (g̃apr(abs(M))) /2

Rearranging proves the lemma.
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B.3 Proof of Lemma B.1

Recall the definition

Φ(V; U) := 〈V̂,UU>V̂〉 = trV̂>UU>V̂

Given r′ ∈ [r], define the matrix Ṽ ∈ Stief(d, r′) by

Ṽ := V̂ · Õ, where Õ := arg inf{Φ(V̂ · O; U) : O ∈ Stief(r′, r′)}

Note then that Õ corresponds to the eigenspace of the bottom r′ eigenvectors of the matrix
V̂>UU>V̂ � 0 , and thus, we see that

Φ(Ṽ; U) = tr(Õ>V̂>UU>V̂Õ) ≤ r′λr+1−r′(V̂>UU>V̂)

We will now establish a lower bound on Φ(Ṽ; U). First, we observe that there exists an V ∈
Stief(d, r − r′) such that V̂V̂> = ṼṼ> + VV

>
. Since abs(M) � abs(W) + UU>, we have

〈V̂, abs(M)V̂〉 = tr(abs(M)V̂V̂>)

= tr(abs(M)VV
>

) + tr(abs(M)ṼṼ>) +

≤
r−r′∑
i=1

λi(abs(M)) + tr(abs(M)ṼṼ>)

≤
r−r′∑
i=1

λi(abs(M)) + tr(abs(W)ṼṼ>) + tr(λUU>ṼṼ>)

≤
r−r′∑
i=1

λi(abs(M)) + r′‖W‖op + λΦ(Ṽ; U) .

In particular, if 〈V̂, abs(M)V̂〉 ≥ (1− η)
∑r

i=1 λi(abs(M)), then we must have that

λΦ(Ṽ; U) ≥ (1− η)

r∑
i=1

λi(abs(M))−
r−r′∑
i=1

λi(abs(M)) + r′‖W‖op

≥ −η
r∑
i=1

λi(abs(M)) +

r∑
r=r−r′+1

{λi(abs(M))− ‖W‖op}

≥ −η
r∑
i=1

λi(abs(M)) + r′{λr(abs(M))− ‖W‖op}

≥ −ηrλ1(abs(M)) + r′g̃apr(abs(M))

= r′ ·
(

gapr(abs(M))− η · rλ1(abs(M))

r′

)
,

where g̃apr(abs(M)) := λr(abs(M)) − ‖W‖op. In particular, if we select η = g̃apr(abs(M)) ·
r′

2rλ1(abs(M)) , then we have that

r′λ · λr−r′+1(V̂>UU>V̂)) ≥ r′ ·
(

g̃apr(abs(M))− η · rλ1(abs(M))

r′

)
= r′ · (g̃apr(abs(M))) /2 .

Rearranging proves the lemma.
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C Controlling the “Entropy” and “Information” Terms

C.1 Proof of Lemma 4.3 (“Entropy Term”)

Note that‖V ‖op = 1, and hence the map u 7→ ‖V u‖2 is 1-Lipschitz. By spherical isoperimetry, this
implies

Pu∼Sd−1 [
√
d‖V u‖2 ≥ Median(

√
d‖V u‖2) + t] ≤ e−

1
2
t2 .

Note that by rotational invariance of u, we have Median(
√
d‖V u‖2) = Medianu∼Sd−1

[√
d
∑k

i=1 u2
i

]
.

Hence by inequality that

P(‖V u‖2 ≥
√

2k) = P(‖V u‖22 ≥ 2k) ≤ E[‖V u‖22
2(k + 1)

=
1

2
.

Thus, Median(
√
d‖V u‖2) ≤

√
2(k + 1). Hence, by Markov’s inequality and the fact that Median(

√
d‖V u‖2) ≤√

2(k + 1) ≤ τk+1,

Pu∼Sd−1 [d‖V u‖22 ≥ τk+1] ≤ Pu∼Sd−1 [
√
d‖V u‖2 ≥

√
τk+1]

≤ Pθ∼Sd−1 [
√
d‖V u‖2 ≥ Median(

√
d‖V u‖2) + (

√
τk+1 −Median(

√
d‖V u‖2)]

≤ exp(−1

2
(
√
τk+1 −Median(

√
d‖V u‖2)2)

≤ exp(−1

2
(
√
τk+1 −

√
2(k + 1))2).

C.2 Proof Lemma 3.4

Recall the definition Σi := Pi−1(Id + v(i)v(i)>)Pi−1, and that Fi−1 is the σ-algebra generated by
v(1), ṽ(1), . . . , ṽ(i−1), ṽ(i−1). Since our algorithm is deterministic, v(i) is Fi−1 measurable. It then
suffices to show that

ṽ(j) = Pj−1W v(j)
∣∣Fi ∼ N (0,Σi). (3.22)

Recall that Σi is degenerate, so we understand N (0, 1
dΣi) as a normal distribution absolutely

continuous with respect to the Lebesque measure supported on (kerPi−1)⊥. Note that w̃(i) is
conditionally independent of ṽ(1), . . . , ṽ(i−1) given v(1), . . . ,w(i−1), v(i). Consequently, the conditional
distribution of ṽ(i) given Fi can be computed as if the queries v(1), . . . , v(i) were fixed in advanced.

Hence, throughout, we shall assume that v(1), . . . , v(i) are deterministic, and consider the joint
distribution of ṽ(1), . . . , ṽ(i−1), ṽ(i). We will show that ṽ(i) is independent of ṽ(1), . . . , ṽ(i−1), and that
its marginal is N (0, 1

dΣi). Since the map W 7→ Pj−1W v(j) is linear maps, ṽ(1), . . . , ṽ(i) are jointly

Gaussian with mean zero. Thus, it suffices to show that 1) the (marginal) covariance of ṽ(i) is Σi

and, 2) the covariance between ṽ(i) and ṽ(j) for j 6= i is 0. The covariances are computed as

E
[
w̃(j)w̃(j)>

]
= E

[
(Pi−1Wv(i))(Pj−1Wv(j))>

]
= Pi−1E

[
Wv(i)v(j)>W

]
Pj−1, (3.23)

and we compute the inner term with the following lemma.

Lemma C.1. For any v(i), v(j), one has

E
[
Wv(i)v(j)>W

]
= v(j)v(i)> + 〈v(i), v(j)〉I. (3.24)
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For v(i) = v(j), Equations (3.23) and (3.24) immediately imply ṽ(i) has covariance Σi. Moreover,
for j < i, we have

Pi−1E
[
Wv(i)v(j)>W

]
Pj−1

(i)
= Pi−1v

(i)v(j)>Pj−1
(ii)
= 0 (3.25)

where (i) holds from Lemma C.1 and the fact that 〈v(i), v(j)〉 = 0 (since v(1), . . . , v(i) are assumed
to be orthogonal), and (ii) holds since v(j) ∈ ker(Pi−1), as Pi−1 projects onto the complement of
{v(1), . . . ,w(i−1)}.

Proof of Lemma C.1. For a ∈ {1, · · · , d},

E[Wv(i)v(j)>W ]aa = E[W 2
aa]v

(i)
a v(j)

a +
∑
p 6=a

E[W 2
ap]v

(i)
a v(j)

a

= 2v(i)
a v(j)

a +
∑
p6=a

v(i)
p v(j)

p = v(i)
a v(j)

a +
∑
p

v(i)
p v(j)

p = v(i)
a v(j)

a + 〈v(i), v(j)〉.

Whereas for a 6= b,

E[Wv(i)v(j)>W ]ab = E

[∑
p,q

WapWbqv
(i)
p v(j)

q

]
=
∑
p,q

E[WapWbq]v
(i)
p v(j)

q . (3.26)

Wap and Wbq are independent unless (a, p) = (b, q) or (a, p) = (q, b). If a 6= b, then this means the

only term in the above sum which is non zero is p = b and q = a, which yields v
(j)
a v

(i)
b .

C.3 Proof of Lemma 4.5

To make the argument, we will need a bit of notation. First Vi:j ∈ Stief(j − i, d) to be the matrix

whose columns are the vector v(i), . . . , v(j). In particular, Vk = V1:k.We will let Ṽj+1:k be a stand-in
for an arbitrary matrix whose columns are ṽ(j+1), . . . , ṽ(k). Given two matrices V1:j ,Vj+1:k, let

V1:j ⊕ Vj+1:k denote the matrix whose columns are such the concatenation of V1:j and Ṽj+1:k. We
will introduce the “head set” of all sequences of orthogonal matrix V1:j which can be extended to
matrices in Vk

V1:j
head := {V1:j : ∃Ṽj+1:i such that V1:j ⊕ Ṽj+1:i ∈ Vk}. (3.27)

and the “tail” set of all possible ways to complete the matrix V1:j such that

V1:j
tail(V1:j) := {Ṽj+1:k : V1:j ⊕ Ṽj+1:k ∈ Vk}. (3.28)

Observe that Vj+1:k
tail (V1:j]) depends only on Zj−1, since the vectors V1:j are Zj−1-measurable (recall

that the j-th measurement is decided upon at the end of the i-th round.
Recall the definition:

gi(Ṽi) := EP0

[(
dPu(Zi|Zi−1)

dP0(Zi|Zi−1)

)r
I(Vi = Ṽi)

]
.

We now define partial supremum over the products of the terms gi(V1:j ⊕ Ṽj+1:i) for i ≥ j as
follows

Gj(V1:j) = sup
Ṽj+1:k∈Vj+1:k

tail (V1:j])

k∏
i=j+1

gi(V1:j ⊕ Ṽj+1:i).
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adopting the convention Gk(v
(1:k)) = 1 (since it’s an empty product). We observe also that

G0 = sup
Ṽk∈Vk

k∏
i=1

gi(Vk)

does not take any arguments. Finally, define the shorthand for the likelihood ratio terms

Pj(Zj) :=

(
dPu(Zj)

dP0(Zj)

)r
and Pj(Zj |Zj−1) =

(
dPu(Zj |Zj−1)

dP0(Zj |Zj−1)

)r
.

adopting the convention that P0(Z0) = 1. We observe then that, for all j ∈ {1, . . . , k},

Pj(Zj) = Pj(Zj |Zj−1)Pj−1(Zj−1) and EP0 [Pj(Zj |Zj−1)|Zj−1] = gj(V1:j). (3.29)

Hence, with out notation, at i = k we have

EP0

[(
dPu(Zk)

dP0(Zk)

)r
I(Vk ∈ Vk)

]
= EP0

[
Gk(V1:k) · Pk(Zk) · I(V1:k ∈ V1:k

head))
]
,

since we took Gk(V1:k) := 1. Moreover, since P0(Z0) = 1, we have

EP0 [G0 · P0(Z0)] = sup
V′k

k∏
i=1

gi(V′k). (3.30)

Hence, it suffices to show that

EP0

[
Gk(V1:k) · Pk(Zk) · I(V1:k ∈ V1:k

head))
]
≤ EP0 [G0 · P0(Z0)] .

The above display is a direct consequence of applying the following claim inductively:

Claim C.2. It holds that

EP0

[
Gj(V1:j) · Pj(Zj) · I(V1:j ∈ V1:j

head))
]
≤ EP0

[
I(V1:j−1 ∈ V1:j−1

head )Gj−1(V1:j−1)Pj−1(Zj−1)
]
.

To prove the above claim, we have that for any j ∈ [k]

EP0

[
Gj(V1:j) · Pj(Zj) · I(V1:j ∈ V1:j

head))
]

= EP0

[
E
[
Gj(V1:j) · Pj(Zj) · I(V1:j ∈ V1:j

head))
∣∣Zj−1

]]
= EP0

[
E
[
Gj(V1:j) · Pj−1(Zj−1) · Pj(Zj |Zj−1) · I(V1:j ∈ V1:j

head))
∣∣Zj−1

]]
(i)
= EP0

[
Pj−1(Zj−1) · E

[
Gj(V1:j)Pj(Zj |Zj−1)I(V1:j) ∈ V1:j

head))
∣∣Zj−1

]]
(ii)
= EP0

[
Pj−1(Zj−1) ·Gj(V1:j)I(V1:j ∈ V1:j

head))E
[
Pj(Zj |Zj−1)

∣∣Zj−1

]]
(iii)
= EP0

[
Pj−1(Zj−1) ·Gj(V1:j)I(V1:j ∈ V1:j

head)) · gj(V1:j)
]
.

Here, (i) follows since Pj−1(Zj−1) is Zj−1-measurable, (ii) follows since Gj(Vj) and I(Vj ∈ V1:j
head)

are deterministic functions of Vj , which by assumption, are deterministic functions of Zj−1. Finally,
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(iii) follows from the definition of gj , as noted in Equation (3.29). To conclude, we now need only
show that

Gj(V1:j)I(V1:j ∈ V1:j
head)) · gj(V1:j) ≤ I(V1:j−1 ∈ V1:j−1

head ))Gj−1(V1:j−1). (3.31)

Note that, since V1:j = [v(1)| . . . |v(j)] ∈ V1:j
head, then for for any Ṽj+1:k = [ṽ(j+1)| . . . |ṽ(k)] ∈

Vj+1:k
tail (V1:j), we have that v(1), . . . , v(j), ṽ(j+1), . . . , ṽ(k) ∈ Vk. In particular, this implies that

v(j) ⊕ Ṽj+1:k = [v(j)|ṽ(j+1)| . . . |ṽ(k)] ∈ Vj:ktail(Vj−2). (3.32)

Hence, we have

Gj(V1:j)I(V1:j) ∈ V1:j
head)gj(V) = I(V1:j) ∈ V1:j

head) · gj(V1:j) sup
Ṽj+1:k∈Vj+1:k

tail (V1:j)

k∏
i=j+1

gi(V1:j ⊕ Ṽj+1:i)

≤ I(V1:j−1 ∈ V1:j−1
head ) · sup

Ṽj:k∈Vj:ktail(Vj−1)

k∏
i=j

gi(V1:j−1 ⊕ Ṽj:i)

= I(V1:j−1 ∈ V1:j−1
head ) ·Gj−1(V1:j−1).

C.4 Proof of Lemma 4.6

By a translation, we may assume without loss of generality that µ1 = µ and µ2 = 0.

EQ

[(
dP
dQ

)1+η
]

= Ez∼N (0,Σ)e
− 1+η

2 {(z−µ)>Σ†(z−µ)−z>Σ†z}

= Ez∼N (0,Σ)e
− 1+η

2 {(µ>Σ†µ−2µ>Σ†z}

= e−
1+η

2
µ>ΣµEz∼N (0,Σ)e

−2µ>Σ†z}

= e−
1+η

2
µ>ΣµEx∼N (0,I)e

(1+η)µ>Σ†Σ1/2x

= e−
1+η

2
µ>Σ†µ exp(

(1 + η)2

2
µ>Σ†ΣΣ†µ)

= e−
1+η

2
µ>Σ†µ exp(

(1 + η)2

2
µ>Σ†µ)

= exp(
η(1 + η)

2
µ>Σ†µ).

D Proof of Theorem 3.2

Define τ0(δ) = 32gap−1(log δ−1 + gap−1/2), and set τk = λ4kτ0(δ). It then suffices to show that,
with probability at least 1− δ,

Pu∼Sd−1Pu

[
∃k ≥ 1 : du>VkV>k u ≥ τk

]
≤ δ.

Throughout, we will use the following technical lemmas to simplify our expressions:

Lemma D.1. log(λ) ≥ gap1/2, and λ2/(λ− 1)2 ≤ gap−1

Proof. Since log(x) ≥ x−1
x for x ≥ 0, we have log(λ) ≥ λ−1

λ =
√

(λ−1)2

λ2 >
√

(λ−1)2

λ2 =
√
gap. The

second point follows since λ2/(λ− 1)2 ≤ (λ2 + 1)/(λ− 1)2 = gap−1.
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Lemma D.2.

max
k≥0

λ−4k(k + 1) ≤ 1 +
1

4e log(λ)
and max

k≥1
λ−4k log(1 + k) ≤ 1

4e log λ
.

Lemma D.2 is proved in the following subsection. Observe then that, for δ ∈ (0, 1/e), we have

τ0(δ) ≥
Lemma D.1
≥ 32λ2

(λ− 1)2
(log(1/δ) + log−1(λ)) (4.33)

≥ 32λ2

(λ− 1)2
(1 +

1

4e log(λ)
).

Hence, by first inequality in the above Lemma D.2, we have

2
√

(2k + 2)/τk+1 = 23/2
√
λ−4k(k + 1)/τ1

≤ 23/2

√
(1 +

1

4e log(λ)
)/τ1

≤ 23/2
√

(λ− 1)2/32 =
1

2
(1− 1/λ).

Taking η = λ− 1, the above inequality (i) in the following display:

exp

{
η

2

(
λ2τk −

(√
τk+1 −

√
2k + 2

)2
1 + η

)}
= exp

{
λ− 1

2λ

(
λ3τk −

(√
τk+1 −

√
2k + 2

)2
)}

≥ exp

{
λ− 1

2λ
((λ3τk − τk+1 + 2

√
(2k + 2)/τk+1)τk+1)

}
(i)

≥ exp

{
λ− 1

2λ
((λ3τk − τk+1 +

1

2
(1− 1/λ)τk+1)

}
= exp

{
−λ− 1

2λ
(τk+1 − τk+1/λ+

1

2
(1− 1/λ)τk+1

}
= exp

{
−(λ− 1)2

4λ2
τk+1

}
= exp

{
−τ1λ

4k(λ− 1)2

4λ2

}
.

Moreover, we have

τ1λ
4k(λ− 1)2

4λ2

Equation (4.33)

≥ 8λ4k(log(1/δ) + log−1(λ))

Equation (4.33)

≥ 8λ4k(log(1/δ) + log−1(λ))

≥ 8 log(1/δ) + log(k + 1) · 8λ4k

log(1/λ) log(k + 1)

≥ 8 log(1/δ) + log(k + 1) · 8λ4k

log(1/λ) log(k + 1)
Lemma D.2
≥ 8 log(1/δ) + log(k + 1) · 64e ≥ 2 log(1/δ) + 2 log(k + 1). (4.34)
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Recalling the bound

P[{Φ(Vk; U) ≥ τk} ∩ {Φ(Vk−1; U) ≤ τk−1}] ≤ exp

{
η

2

(
λ2τk −

(√
τk+1 −

√
2k + 2

)2
1 + η

)}
,

and putting thing together, we conclude

P[∃k ≥ 1 : Φ(Vk; U) ≥ τk] ≤
∑
k≥1

P[{Φ(Vk; U) ≥ τk} ∩ {Φ(Vk−1; U) ≤ τk−1}]

≤
∑
k≥0

exp(−τ1λ
4k(λ− 1)2

4λ2
)

Equation (4.34)

≤
∑
k≥0

δ2

(k + 1)2
= δ2π2/6 ≤ 2δ2

δ≤e−1

≤ δ.

D.1 Proof of Lemma D.2

For the first inequality, we have

max
k≥0

(k + 1)/λ4k = max
k≥0

(k + 1) exp(−4k log(1/λ))

= max
k≥0

(
k

4 log(λ)
+ 1) exp(−k)

≤ 1 + (4 log(λ))−1 max
k≥0

(k exp(−k)) = 1 +
1

4e log(λ)
.

For the second inequality, we have that

max
k≥0

log(1 + k)/λ4k e max
k≥0

k exp(−4k log(1/λ))

= max
k≥0

k

4 log λ
exp(−k))

=
1

4e log λ
.

E Supporting Results for the Rank-K Case

E.1 Details for Proof of Theorem 3.3

Recall that we choose ρ ≥ λ3cd,r, ∆ ≥ ρ(2kmax+2)
(ρ−1)3 , and define the event:

E(λ̃,∆, kmax) :=
{
∀e ∈ Rr, k ∈ [1, . . . , kmax], dΦ(Vk; Ue) + ∆ ≤ λ̃(dΦ(Vk−1; Ue) + ∆)

}
. (5.35)

On E(ρ2,∆, kmax), we have that for all k ∈ [kmax],

ρ2k∆r
Lemma 5.1
≥ det(dU>VkVkU + ∆Ir) =

r∏
i=1

λi(dU
>VkVkU + ∆Ir)

≥ (λr′(dU
>VkVkU + ∆Ir))

r′ · λmin(U>VkVkU + ∆Ir)
r−r′

≥ (λr′(U
>VkVkU))r

′ ·∆r−r′ .
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where the last step uses U>VkVkU � ∆Ir,U
>VkVkU � 0. Rearranging, we have that

dλr′(U
>VkVkU) = λr′(dU

>VkVkU) ≤ ∆ · ρ
2k
r′ . (5.36)

We now apply Proposition 5.2 with the following ρ and ∆. Because we assume cd,r = d−(r−1)
d ≤ λ,

we can take ρ = λ4. If we choose

∆ :=
2

λ4√gap

(
kmax

gap
+ log(1/δ) + (r + 2) log(20d/λ4gap1/2)

)
.

Then, using the fact ρ − 1 = (λ − 1)(λ + 1)(λ2 + 1) = gap(λ + 1)(λ2 + 1)3/2 ≥ max{4, λ4}gap1/2,
we find that

ρ(2kmax + 2)

(ρ− 1)3
≤ 4kmaxλ

4

gap3/2λ44
≤ ∆,

and hence statisifies the conditions of Proposition 5.2. Moreover,

(20d/(ρ− 1))r+2 exp

{
−λ3(λ− 1)∆

2

}
≤ exp

{
−λ4gap−1/2∆

2
+ (r + 2) log(

20d

λ4gap1/2
)

}
≤ exp{− log(1/δ)} = δ.

Putting things together, we see that for kmax ≥ 1, the following is at least 1− δ:

P

[
∀k ∈ kmax : dλr′(U

>VkVkU) ≤ 2λ8k/r′

λ4√gap

(
kmax

gap
+ log δ−1 + (r + 2) log(20d/λ4gap1/2)

)]
.

By union bounding over all kmax ∈ [d] and some elementary manipulations (noting λ4 ≤ 1),

P

[
∀k ∈ [d] : λr′(U

>VkVkU) ≤ 2 · λ8k/r′

d
√
gap

(
k

gap
+ log δ−1 + 4r log(20d/λ4gap1/2)

)]
≥ 1− δ.

Finally, we simplify by noting that, from Lemma D.1 and D.2, we have k/gap = r′ · k/r′/gap ≤
2r′gap−3/2λk/r

′
, and by assumption that d ≥ gap−1/2, we have 4r log(20d/λ4gap1/2) ≤ 8r log(20d).

Hence,
(

k
gap

+ log δ−1 + 4r log(20d/λ4gap1/2)
)
≤ (8r log(20d)+2r′gap−3/2λk/r

′
+log(eδ−1) ≤ log(eδ−1)(1+

8r log(20d) + 2r′gap−3/2λk/r
′
) ≤ log(eδ−1)(13r log(20d)gap−3/2λk/r

′
).

E.2 Details for Proof of Propostion 5.2

To prove Proposition 5.2, we invoke a covering argument:

Claim E.1. Let N is an ε-net of Sr−1, and let e ∈ Sr−1. Then there exists an e′ ∈ N such that
|dΦ(Vk; Ue)− dΦ(Vk; Ue

′)| ≤ 2dε.

Proof. Since N is a ε -net we may choose an e′ ∈ N satisfies ‖e′ − e‖2 ≤ ε; and hence, the nuclear
norm difference of the outer products satisfy ‖ee> − ee′>‖∗ ≤ ‖e(e− e′)>‖∗ + ‖(e− e′)e′>‖∗ = 2ε.
Thus,

|dΦ(Vk; Ue
′)− dΦ(Vk; Ue

′)| ≤ d|〈U>VkV>k U, ee> − ee′>|
matrix Holder

≤ d‖U>VkV>k U‖op‖ee> − ee
′>‖∗

≤ 2dε‖U>VkV>k U‖op ≤ 2dε,

where the last step uses ‖U>VkV>k U‖op ≤ 1.
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This implies that if N is an ε = ∆(ρ2−ρ)
2d(1+ρ) -net of Sr−1, then for all e ∈ Sr, there is an e′ for which

dΦ(Vk; Ue) + ∆ ≥ ρ2(dΦ(Vk; Ue) + ∆) implies dΦ(Vk; Ue
′) + 2dε+ ∆ ≥ ρ2(dΦ(Vk; Ue

′) + ∆)− 2dρρε

implies dΦ(Vk; Ue
′) + ∆ ≥ ρ2(dΦ(Vk; Ue

′) + ∆)− (ρ+ 1)2dε

implies dΦ(Vk; Ue
′) + ∆ ≥ ρ2(dΦ(Vk; Ue

′) + ∆)− (ρ2 − ρ)∆

implies dΦ(Vk; Ue
′) + ∆ ≥ ρ(dΦ(Vk; Ue

′) + ∆) .

Hence, using the estimate |N | ≤ (10d(1 + ρ)/∆(ρ2 − ρ))r ≤ (20d/(ρ− 1))r for ∆, ρ ≥ 1, we have

P[E(ρ2,∆, kmax)c] ≤ |N | sup
e∈N

P[∃k ∈ [kmax] : dΦ(Vk; Ue) + ∆ ≥ ρ(dΦ(Vk; Ue) + ∆)]

Lemma 5.4
≤ |N | d

2

ρ− 1
exp

{
−λ3(λ− 1)∆

2

}
≤ (20d/(ρ− 1))r+2 exp

{
−λ3(λ− 1)∆

2

}
,

as needed.

E.3 Proof of Lemma 5.4

Fix ρ ≥ λ3cd,r, and set τ0 = 0, and let τi+1 = ρτi + (ρ− 1)∆, so that τi+1 + ∆ ≤ ρ(τi + ∆). Finally,
let M = inf{i : τi ≥ d}, and observe that we can bound M ≤ d

(ρ−1)∆ ≤
d
ρ−1 . Moreover, note that

∆ ≥ ρ(2kmax+2)
(ρ−1)3 and ρ ≥ 1 implies that

∆ ≥ ρ2(2kmax + 2)

(ρ2 − 1)(ρ− 1)2
iff

(ρ− 1)2

ρ2
≥ 2kmax + 2

∆(ρ− 1)2
iff 1−

√
(2kmax + 2)/∆(ρ2 − 1). (5.37)
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P[Φ(Vk; Ue) + ∆ ≥ ρ(Φ(Vk; Ue) + ∆)]

≤
M∑
i=1

P[Φ(Vk; Ue) + ∆ ≥ ρ(τi−1 + ∆) ∩ Φ(Vk; Ue) + ∆ ∈ [τi−1, τi]})]

τi+∆≤ρ(τi−1+∆)

≤
M∑
i=1

P[Φ(Vk; Ue) + ∆ ≥ ρ2(τi + ∆) ∩ Φ(Vk; Ue) + ∆ ∈ [τi−1, τi]})]

≤
M∑
i=1

P[Φ(Vk; Ue) + ∆ ≥ ρ2(τi + ∆) ∩ Φ(Vk; Ue) ≤ τi −∆})]

≤ M max
1≤i≤M

exp

λ− 1

2

λ3(τi −∆)−

(√
ρ2

cd,r
(τi + ∆)−∆)−

√
2k + 2

)2

1 + η




≤ M max
1≤i≤M

exp

{
λ− 1

2

(
λ3(τi −∆)− (

ρ2

cd,r
(τi + ∆)−∆)(1−

√
(2k + 2)/(ρ2(τi + ∆)−∆)

)}
≤ M max

1≤i≤M
exp

{
λ− 1

2

(
λ3(τi −∆)− (

ρ2

cd,r
(τi + ∆)−∆)(1−

√
(2k + 2)/∆(ρ2 − 1)

)}
Equation (5.37)

≤ M max
1≤i≤M

exp

{
λ− 1

2

(
λ3(τi −∆)− ρ

cd,r
(τi + ∆)−∆)

)}
ρ≥λ3cd,r
≤ M max

1≤i≤M
exp

{
λ− 1

2

(
λ3(τi −∆)− λ3((τi + ∆)−∆)

)}
= M exp

{
λ− 1

2

(
(1− 2λ3)∆)

)}
≤M exp

{
(λ− 1)λ3

2

(
(1− 2λ3)∆)

)}
.

Union bounding over kmax ≤ d proves the lemma.

E.4 Proof of Proposition 5.3

Let Pe := I−ee> be the projection onto the orthongal complement of e. It suffices to show that for
a fixed e ∈ Rr, and any fixed U ∈ Stief(d, r), then the conditional probability EU[PkU[{Φ(Vk; Ue) ≤
τk/d} ∩ {Φ(Vk+1; Ue) > τk+1/d}

∣∣{(U − U)Pe = 0}] is also upper bounded by the right hand side
of the display in Propostion 5.3. Observe that on the event {(U−U)Pe = 0}, U(I − ee>) is fixed,
but Ue is distributed uniformly on the of unit vectors orthogonal to the image of U(I − ee>); let’s
denote this set SU,e. Hence, on {(U − U)Pe = 0}, M − λU(I − ee>) has the same distribution

as W + λũ, where u
unif∼ SU,e. Hence, an algorithm which achieves EU[PkU[{Φ(Vk; Ue) ≤ τk/d} ∩

{Φ(Vk+1; Ue) > τk+1/d}
∣∣{(U − U)Pe = 0}] ≥ p implies the existence of an algorithm which

achieves Eu∼SU,e [P
k
u[{Φ(Vk; u) ≤ τk/d} ∩ {Φ(Vk+1; u) > τk+1/d}] ≥ p, so it suffices to bound this

latter probability. By Proposition 4.2 with D being the uniform distribution on SU,e, we have

Eu∼SU,e [P
k
u[{Φ(Vk; u) ≤ τk/d} ∩ {Φ(Vk+1; u) > τk+1/d}] ≤(

Eu∼SU,eE0

[(
dPku
dPk0

)1+η

I({Φ(Vk;u) ≤ τk/d}})

]
· sup
V ∈Stief(d,k+1)

Pu∼SU,e [Φ(V ;u) > τk+1/d]η

) 1
1+η

.

(5.38)
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By Proposition 4.4, the information term Eu∼SU,eE0

[(
dPku
dPk0

)1+η
I({Φ(Vk;u) ≤ τk/d}})

]
is at most

exp(η(1+η)
2 λ2τk. On the other hand, since SU,e is isomorphic to the d − r − 1 sphere, Lemma 4.3

implies

sup
V ∈Stief(d,k+1)

Pu∼SU,e}[u
>V >V u ≥ τk+1/(d− r − 1)] ≤ exp

{
−1

2

(√
τk+1 −

√
2(k + 1)

)2
}
,

where we have had to replace τk+1/d by τk+1/(d− r − 1) = cd,r · τk+1/d to account for the change
in dimension. Putting together these two estimates into Equation (5.38) gives us the first display
in Propostion 5.3.

E.5 Proof of Lemma 5.1

Note that E(λ̃,∆, kmax) can be rexpressed as saying that, for all k ∈ [1, . . . , kmax], one has the

U>VkV>k U + ∆Ir � λ̃(U>Vk−1V>k−1U + ∆Ir) iff

U>Vk−1V>k−1U + ∆Ir + U>v(k)v(k)>U � λ̃(U>Vk−1V>k−1U + ∆Ir) iff

U>v(k)v(k)>U � (λ̃− 1)(U>Vk−1V>k−1U + ∆Ir).

We now invoke a claim from linear algebra:

Claim E.2. Let u ∈ Rr, M � 0, and t > 0. Then uu> � tM iff u>M−1u ≤ t.

Proof. uu> ≺ tM iff M−1/2uu>M−1/2 ≤ tI iff ‖M−1/2uu>M−1/2M‖2 ≤ t. Since ‖M−1/2uu>M−1/2‖2 =
u>M−1u as u is a vector, the claim follows.

Applying the above claim under E(λ̃,∆, kmax) with u = U>v(k), M = U>Vk−1V>k−1U + ∆Ir,

and t = λ̃− 1, we have that

(U>v(k))>(U>Vk−1V>k−1U + ∆Ir)
−1(U>v(k)) ≤ λ̃− 1.

Hence,

det(U>VkV>k U + ∆Ir)

= det(U>Vk−1V>k−1U + ∆Ir + U>v(k)v(k)>U)

= det(U>Vk−1V>k−1U + ∆Ir)

= det(U>Vk−1V>k−1U + ∆Ir) · det(1 + (U>v(k))>(U>Vk−1V>k−1U + ∆Ir)
−1(U>v(k)))

≤ det(U>Vk−1V>k−1U + ∆Ir) · det(1 + (λ̃− 1)) = λ̃ det(U>Vk−1V>k−1U + ∆Ir).

F Information-Theoretic Tools

In this section, we prove Theorem 4.7, a generalization of the data-processing style lower bounds
for statistical estimation (e.g. Fano’s inequality). Our techniques differ from the existing art in
consideing un-normalized, finite measures, rather than normalized probability distributions.

Theorem 4.7 is derived as a special case of Theorem F.3, which extends generalized Data-
Processing style Lower Bound (Theorem 2 in [15]) to the case where the measures of interest are
not necessarily normalized. Along the way, we generalize the notion of f -divergences ( [16] to
the non-normalized setting, and establish that many key properties - notably the Data Processing
inequality - still hold.
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F.1 General Data-Processing Lower Bounds for Unnormalized Measures

In this section, we will prove a more general result, Theorem F.3, from which we will derived
Theorem 4.7 as a consequence. In order to state and prove our more general theorem, and then
specialize to our case of interest, we need to introduce the object of “f-divergences” to measure
the similarity between two measures. f-divergences between probability distributions have a long
history in information theory, coding theory [16, 20, 27], and statistical lower bounds, but we define
them here is a slightly more general fashion so as to be ammenable to describe distances between
non-normalized measures3:

Definition F.1. For a finite, non-negative measure µ and finite positive measure ν over the class
(X ,F), and a convex f : (0,∞)→ R, we define the (generalized) f -divergence between µ and ν as

Df (µ, ν) :=

∫
x∈X :dν(x)>0

f

(
dµ

dν

)
dν + µ ({dν = 0}) · f ′(∞) (6.39)

with the notation f ′(∞) := limt→∞ f(t)/t, and 0 · f ′(∞) = 0.

Here, dν and dµ are understood as Radon-Nikodyn derivates (see, e.g. [25]). Note that the case
whenre µ is absolutely continuous with respect to ν (written µ � ν), we can disregard the term
µ ({dν = 0}) ·f ′(∞). Critically, this generalization of f -divergences preserves the “Data-Processing
Inequality” which holds in the normalized case:

Theorem F.1 (Generalized Data Processing Inequality). Let µ, ν be non-negative measures on a
space (X ,F), and let f : (0,∞) → R be a convex function. Then, given a measure space (Y,FY)
and a measurable map 4 Γ : X → Y,

Df (µ, ν) ≥ Df (µΓ−1, νΓ−1), (6.40)

where µΓ−1 denotes the pull back measure ∀B ∈ FY : (µΓ−1)(B) = µ(Γ−1(B)).

We will be particularly interested in the case where Γ is just the indicator function of an event
Y = {0, 1} is just a binary space, and Γ(x) = I(x ∈ A) is an indicator function. In this case, the
above data processing inequality immediately yields the following corollary:

Corollary F.2 (Binary Data-Processing). Let µ, ν be non-negative measures on a space (X ,F).
Then for all A ∈ F ,

Df (µ, ν) ≥ φf (µ(A), ν(A);µ(X ), ν(X )), (6.41)

where, for a ∈ [0, p], b ∈ [0, q],

φf (a, b; p, q) := bf
(a
b

)
+ (q − b) · f

(
p− a
q − b

)
, (6.42)

ss the f divergence between the meansure measures on {0, 1} which place mass a (resp. b) on 1, and
p− a (resp. q − b) on 0, and b = 0 or b = q is understood by taking the limits b→ 0+ and b→ q−.

We are now in a position to state our main theorem:

3Typically one requires the divergence function f to satisfy f(1) = 0, but we shall not need this normalization
4more generally, a Markov Transition Kernel
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Theorem F.3. Consider the setting of Theorem 4.7, but where f is an arbitrary convex function
on (0,∞), and both ν and {µθ} are an arbitrary value of finite measure satisfying Eθ∼Pµθ(X ) > 0.
Then, either one of the two hold

Vopt < Eθ∼Pµθ(X ) · V0 or Eθ∼PDf (µθ, ν) ≥ φf (Vopt, ν(X ) · V0; (Eθ∼Pµθ(X )), ν(X )). (6.43)

Before proving the above theorem, we can derive Theorem 4.7 as a special case. For ease of
notation, we introduce the shorthand |µ| = µ(X ).

Proof of Theorem 4.7. Since f is convex, Df consitutes a valid f -divergence in the sense of Defi-
nition F.1. In Theorem 4.7, we have that Eθ∼P |µθ| ≤ 1, so that Eθ∼P |µθ| · V0 ≤ V0 ≤ Vopt, so we
have

Eθ∼PDf (µθ, ν) ≥ φf (Vopt, |ν| · V0;Eθ∼Pµθ|, |ν|).

Since µθ � ν, we have

Eθ∼PDf (µθ, ν) = Eθ∼PEνf(
dµθ
dν

).

moreover, recalling that f(x) is nonegative

φf (Vopt, |ν| · V0;Eθ∼Pµθ|, |ν|) = |ν|V0f(
Vopt

|ν|V0
) + (1− |ν|V0) · f(

|Eθ∼Pµθ| − Vopt

|ν|(1− V0

≥ |ν|V0f(
Vopt

|ν|V0
).

If |ν| = 1, then the above is |ν|V0f(
Vopt

|ν|V0
). If, on the other hand, x 7→ xf(1/x) is non-increasing on

(0,∞), so is x 7→ xf(p/x) for any fixed p > 0. Hence, if |ν| ≤ 1, then |ν|V0f(
Vopt

|ν|V0
) ≥ V0f(

Vopt

V0
). In

either case, we conclude that

Eθ∼PEνf(
dµθ
dν

) ≥ V0f(
Vopt

V0
) ,

as needed.

Before proving Theorem F.3, we need one last regularity lemma, proved in Section F.2.1 re-
garding the function φ(a, b; p, q); this mirrors Lemma [] in [15]:

Lemma F.4. For a ∈ [0, p] and b ∈ [0, q], the mapping (a, b) 7→ φ(a, b; p, q) is convex, and thus
continuous on (a, b). Hence, for a fixed b ∈ [0, q], a 7→ φf (a, b; p, q) is minimized when a = (p/q)b,
and is therefore nondecreasing for (q/p)a ≥ b. As a function of b for fixed a ∈ [0, p], b 7→ φf (a, b; p, q)
is minimized when b = a(q/p) and is therefore nonincreasing for (p/q)b ≤ a

We are now in place to prove Theorem F.3:

Proof of Theorem F.3. We follow along the lines of the proofs of Lemma 3 and Theorem 2 [15],
but first we introduce some notation. Further P ⊗ ν denote the product measure between P and ν,
and let P ∗ {µθ} denote the coupled measure with density (P ∗ {µθ)}(θ, x) = dP(θ) · µθ(x). Also,
given a measure η on (Θ,G)× (X ,F), define the event

Aa := {(θ, x) : I(a(x), θ) = 0}. (6.44)
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Defining the total masses p := Eθ∼P |µθ| and q := |ν|,

Eθ∼PDf (µθ, ν) =

∫
f

(
dµθ
dν

)
d(P ⊗ ν)

=

∫
f

(
dP · dµθ
dP · dν

)
d(P ⊗ ν)

= Df (P ∗ {µθ},P ⊗ ν)

(i)

≥ φf ((P ∗ {µθ})(Aa), (P ⊗ ν)(Aa); |P ∗ {µθ}|, |P ⊗ ν|)
(i)
= φf ((P ∗ {µθ})(Aa), (P ⊗ ν)(Aa); p, q) ,

where (i) follows from the Binary Data-Processing Inequality (Corollary F.2), and for (ii) used
definitions p = |P ∗ {µθ}| and q = |P ⊗ ν| = |P||ν| = |ν|. To wrap up, suppose that Vopt > pV0.
We first note that (P ⊗ ν)(Aa) ≤ |(P ⊗ ν)| · V0 = qV0, since x and θ are independent under P ⊗ ν.
Moreover, for any ε > 0, there exists a decision rule a for which

p = |P ∗ {µθ}| ≥ Va(P ∗ {µθ}) > Vopt − ε.

Taking ε small enough Vopt − ε > pV0, we have that

(P ∗ {µθ})(Aa) > Vopt − ε > pV0 =
p

q
(qV0) ≥ p

q
· (P ⊗ ν)(Aa).

By the second part of Lemma F.4, applied first to the ’b’ argument and then to the ‘a’ argument,
we have

φf ((P ∗ {µθ})(Aa); ({P ⊗ ν})(Aa); p, q) ≥ φf ((P ∗ {µθ})(Aa), qV0; p, q)

≥ φf (V opt − ε, qV0; p, q).

Since φf (a, b; p, q) is convex (Lemma F.4), and therefore continuous, in its ‘a’ argument for a ∈ [0, p],
and since V ∗ ≤ p, taking ε→ 0 concludes.

F.2 Proofs of Data Processing Inequalities and Associated Lemmas

In this subsection, we prove the Data-Processing Inequality (Theorem F.1), Binary Data-Processing
Inequality (Corollary F.2), and the regularity lemma regarding φ (Lemma F.4). Before we begin, we
first argue that our generalization of f divergences to satisfies two useful regularity properties which
hold in the normalized case, and two useful properties which relate an un-normalized divergence to
a normalized one:

Lemma F.5. Let µ, ν be two finite positive measures on a space (X ,F), with |µ| = µ(X ) and
|ν| = ν(X ). Then Df (µ, ν) satisfies the following properties:

1. Convexity: Df (µ, ν) is jointly convex in µ and ν over the convex set (µ, ν) : µ� ν

2. Distance-Like: Df (µ, ν) ≥ |ν|f(|µ|/|ν|), which is attained when dµ(x)/dν(x) = |µ|/|ν|

3. Normalization: Define f(x; p, q) = qf(pqx). Then,

Df (µ, ν) = Df(x;|µ|,|ν|)(µ/|µ|, ν/|ν|). (6.45)

4. Linearity Dβf+α(µ, ν) = α|ν|+ βDf (µ, ν)
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This lemma is proved in subsection F.2.2. We can now prove the generalized Data-Processing
inequality (Theorem F.1):

Proof of Theorem F.1. In the case when f is convex and f(1) = 0 and µ, ν are both probability
distributions, Theorem F.1 just re-iterates the classica data-processing inequality (Theorem 3.1 in
Liese [27]). The inequality can be extended to an uncentered, convex f where f(1) is not necessarily
zero, and normalized µ, ν, invoking Part 4 of Lemma F.5:

Df (µ, ν)
Lemma F.5

= Df−f(1)(µ, ν) + f(1)|ν|
≥ Df−f(1)(µΓ−1, νΓ−1) + f(1)|ν| classical data processing

= Df−f(1)(µΓ−1, νΓ−1) + f(1)|νΓ−1| (Γ preserves total mass)

Lemma F.5
= Df (µΓ−1, νΓ−1).

To generalize to arbitrary finite, positive measures, we note that the function f(t; |µ|, |ν|) as defined
in part 3 of Lemma F.5 is convex, and thus

Df (µ, ν)
Lemma F.5

= Df(;|µ|,ν)(µ/|µ|, ν/|ν|)

= Df(;|µ|,ν)(
µ

|µ|
Γ−1,

ν

|ν|
Γ−1) uncentered data processing (above)

Lemma F.5
= Df (µΓ−1, νΓ−1).

F.2.1 Proof of Lemma F.4

The first point follows since, if f is a convex function, the perspective map (a, b) 7→ bf(a/b) is
convex (see [11]). The second point follows from applying the second point of Lemma F.5, and
noting that 1-d convex functions are non-increasing to the left (resp. non-decreasing to the right)
of their minimizers.

F.2.2 Proof of Lemma F.5

The set {(µ, ν) : µ � ν} is convex, since if αν1(A) + (1 − α)ν2(A) = 0, then ν1(A) = ν2(A) = 0,
and thus if µ1 � ν1 nad µ2 � ν2, then αµ1(A) + (1−α)µ2(A) = 0. Moreover, the perspective map
(x, y)→ yf(x/y) is jointly for convex f [11], so that

∫
f(dµ

dν )dν is jointly convex in each argument.
For the second point , we see that that, by Jensen’s inequality:∫

f(
dµ

dν
)dν = |ν|

∫
f(

dµ

dν
)
dν

|ν|
≥ |ν|f(

∫
dµ

dν

dν

|ν|
)

= |ν|f(
1

|ν|

∫
dµ) = |ν|f(

|µ|
|ν|

),

so the result holds as long as f ′(∞) ≥ 0.
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Third, let g(t) = f(t; p, q) = |ν|f(t |µ||ν| ).Then g′(∞) = f ′(∞) · |µ|/|ν| · |ν| = |µ|f ′(∞). Thus,

Df (µ, ν) =

∫
f(

dµ

dν
)dν + µ({dν = 0})f ′(∞)

=

∫
|ν|f(

|µ|
|ν|
· d(µ/|µ|)

d(ν/|ν|)
) · dν/|ν|+ (

µ

|µ|
)({dν = 0}) · |µ|f ′(∞)

=

∫
g(

d(µ/|µ|)
d(ν/|ν|)

)dν/|ν|+ µ

|µ|
({dν = 0})g′(∞)

= Dg(µ/|µ|, ν/|ν|),

as needed. For the fourth point point, note that for any constant α, (f + α)′(∞) = f(∞). Thus,

Df+α(µ, ν) =

∫
{f(

dµ

dν
) + α}dν + µ({dν = 0})(f + α)′(∞)

= α|ν|+
∫
f(

dµ

dν
)dν + µ({dν = 0})(f)′(∞) = α|ν|+Df (µ, ν).

Similarly, since (βf)′(∞) = βf ′(∞), one has

Dβf (µ, ν) =

∫
{βf(

dµ

dν
) + α}dν + µ({dν = 0})(βf)′(∞)

= β

∫
f(

dµ

dν
)dν + βµ({dν = 0})(f)′(∞) = βDf (µ, ν).

Part II

Random Matrix Theory

Before continuing, we introduce some additional notation. Given a map Ψ : Rn1×m1 → Rn2×m2 ,
we let Lip(Ψ) denote its Lipschtitz constant as a map between Euclidean spaces endowed with the
Euclidean (Frobenius) norm. In particular, if Ψ : Rn1×m1 → Rn2×m2 , then ‖Ψ(X) − Ψ(Y )‖F ≤
Lip(Ψ)‖X − Y ‖F. We let i2 = −1, and given a, b ∈ R, we let Re(a + bi) = a, Im(a + bi) = b,
|a + bi| =

√
a2 + b2, and a+ bi = a − bi. We say that X ∼ StdG(d) if the entries {Xij}1≤i,j≤d

are independent, N (0, 1) random variables. Observe that if W ∼ GOE(d) and X ∼ StdG(d),
then W and 1√

2d
(X + X>) have the same distribution. Finally, for a given λ > 0, we will let

M = W + λUU>, where W ∼ GOE(d) and U ∼ O(d, k) are independent.

G Concluding the Proof of Theorem 6.1

G.1 Proof of Theorem 6.1

We begin by establishing the following lemma, proved in Section G.2, to lower bound s(alow) and
upper bound s(aup).

Lemma G.1. Suppose that ε ≤ gap ·min{1/2, 1
λ2−1
}. Then,

s((λ+ λ−1)(1− ε)) ≥ 1

λ

(
1 +

ε

2
√

2gap

)
and s((λ+ λ)−1(1 + ε)) ≤ 1

λ

(
1− ε

4
√
gap

)

)
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In light of the above lemma, we pick

alow = (λ+ 1/λ)(1− ε) and aup = (λ+ 1/λ)(1− ε) , (7.46)

where ε ≤ gap ·min{1/2, 1
λ2−1
}. We then show that for the appropriate choice of d, we can combine

Theorem 6.5 and Proposition 6.4 to show that with high probability

max
a∈{alow,aup}

‖U>(aI −W)−1U− s(a)I‖op <
ε

4λ
√

gap

Since then, for a = alow,

U>(alowI −W)−1U � s(alow)I − ε

4λ
√

gap
I � I and

U>(aupI −W)−1U ≺ s(alow)I +
ε

4λ
√

gap
I � I (7.47)

and similarly for a = aup. Hence, the events Eup(aup) and Elow(alow) will hold. To this end, we

set 1/e ≥ δ ≥ p = e−d
1/3

, so that the event A(z∗) holds with probability at least 1 − p, where
z∗ = 23d−1/3 log2/3(d). Define the un-normalized gap ∆ = (λ+ λ−1 − 2). We shall further assume
that

∆ ≥ 23

κ
d−1/3 log2/3 d (7.48)

In order to apply the machinery of Section 6, we begin with the following lemma, which lower
bounds (alow − z∗):
Claim G.2. Pick ε ≤ gap/2. Then alow − z∗ ≥ (1− 2λε

∆
)(1− κ)(λ+ λ−1)gap ≥ 1

4(λ+ λ−1)gap.

The above claim is proved in the subsection below.We now use the following claim, which
combines Proposition 6.4 and Theorem 6.5 to shows that if ε is chosen as in Claim G.2, then we
can bound ‖U>(aI −W)−1U− s(a)I‖op with high probability:

Claim G.3. Let ε be as in Claim G.2, and define ε0 := 1
d1/2∆

. Then, if there exists constants

K,K ′, C sufficiently large such that the conditions ε20 <
1
K min{1, ∆} and d ≥ K, then with proba-

bility at least 1− 9δ,

max
a∈{alow,aup}

‖U>(aI −W)−1U− s(a)I‖op ≤ C(
√
r + log 1/δ)ε0 ,

Again, the above claim is proved in the subsection below. We now conclude the proof of
Theorem 6.1. Suppose that d satisfies ∆ ≥ 23

κ d
−1/3 log2/3 d.

Given our ε ≤ gap/2, we then see that as long as

ε0 < min

{√
1

K
min{1, ∆}, ε

4λC(
√
r + log δ−1 · √gap

}
,

then on the event of Claim G.3, we see that Equation 7.47 holds. Noting that min{1, ∆} ≤ ∆
λ2+1

=
gap, and that ε/

√
gap . gap, Equation (7.49) is satisfies as long as, for some universal large

constant K ′

1

d1/2∆
= ε0 ≤

1

K ′
ε

(λ+ λ−1)(
√
r + log δ−1 · √gap

iff

λ+ λ−1

d1/2∆
≤ 1

K ′
ε

(
√
r + log δ−1 · √gap

iff

1

d1/2gap
≤ 1

K ′
ε

(
√
r + log δ−1 · √gap

iff d ≥ (K ′)2(r + log(δ−1))/ε2gap
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Finally, Squaring, and combining with the fact that it suffices ∆ ≥ 23
κ d
−1/3 log2/3 d, which holds

as long as

d ≥ C ′′′(κ∆)−3 log2(1/κ∆) ≥ C ′′′(κgap)−3 log2(1/κgap)

for a sufficiently large constant C , we conclude that it suffices

d ≥ C
(

(r + log(1/δ))

gapε2
+ (κgap)−3 log(1/κgap)

)
. (7.49)

For the second point of the theorem - that λr(M)−‖W‖op ≥ 1
4(λ+ λ−1) - we recall that λr(M)−

‖W‖op ≥ (alow − z∗) ≥ (1− 2λε
∆

)(1− κ)∆ ≥ ∆/4, by Claim G.2.

G.1.1 Proof of Supporting Claims

Proof of Claim G.2. Observe that if alow ≥ 2 + 23
κ d
−1/3 log2/3 d, then

alow − z∗

alow − 2
≥ 1/κ− 1

1/κ
= (1− κ)

Moreover, we have

alow − 2

∆
=

(λ+ λ−1)(1− ε)− 2

λ+ λ−1 − 2
= 1− ε(λ+ λ−1)

λ+ λ−1 − 2
= 1− ε/gap

Combining, and using the fact that κ ≤ 1/2 and ε/gap ≤ 1/2, we have

alow − z∗

∆
≥ 1/4 , as needed.

Proof of Claim G.3. Recall the definition ε := (d(a − z∗)2)−1/2 as in Theorem 6.5. Since aup −
z∗ ≥ alow − z∗ ≥ ∆/4, we have that ε ≤ 4ε0, and hence if K is a sufficiently large constant,
ε20 <

1
K min{1, ∆} will imply ε2 < min{ 1

16
√

2
, a−2

32 }.
Moreover, as a ≤ d, we must have that ε ≥ d−3/2. Since p = e−d

1/3
, it holds that as long as d is

a sufficiently large constant, the condition p1/3 < ε/8 of Theorem 6.5. Hence, we see that the events
ES(alow, δ)∩ES(aup, δ) from Theorem 6.5 occurs with probability at least 1−2δ. Moreover, as long

as d is sufficiently large constant that d3 · 8d3/2p
1/6
z∗ = 8d9/2e−d

1/3
< 1, there exists a numerical

constant constant c1 such that, on ES(alow, δ) ∩ ES(aup, δ) ∩ A(z∗),

|SW(a)− s(a)| ≤ (4
√

2 + 2
√

log(2/δ))ε2 + 8d3/2p1/6

≤ (4
√

2 + 2
√

log(2/δ))ε2 + 8d3/2p1/6

≤ c1(log(1/δ))ε2

Next, we apply Proposition 6.4 with δ ≤ e−d1/3
. Since we can choose the constant C large enough

that r ≤ d/10, then if d is sufficiently large so log(1/δ) ≤ d1/3 ≤ d/4 − 2.2r, then we have
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t := 2.2r + log(1/δ2) ≤ d/4, and thus on A(z∗), we have

3δ ≥ P

[∥∥∥U>(aI −W)−1U− SW(a)I
∥∥∥

op
>

8

d(1− 2
√
t/d)

(
t1/2‖(aI −W)−1‖F + t‖(aI −W)−1‖op

)]

≥ P
[∥∥∥U>(aI −W)−1U− SW(a)I

∥∥∥
op
>

16

d

(
(dt)1/2‖(aI −W)−1‖op + t‖(aI −W)−1‖op

)]
≥ P

[∥∥∥UU>(aI −W)−1U− SW(a)I
∥∥∥

op
>

32
√

2.2r + log(δ)

d1/2
‖(aI −W)−1‖op

]

≥ P
[∥∥∥U>(aI −W)−1U− SW(a)I

∥∥∥
op
> ε(c2(

√
r + log(δ))

]
,

for some constant c2. Altogether, we have that there exists a constant c3 > 0 such that, with
probability 1− 8δ − e−d1/3 ≥ 1− 9δ,

‖U>(aI −W)−1U− s(a)I‖op ≤ |SW(a)− s(a)|+
∥∥∥U>(aI −W)−1U− SW(a)I

∥∥∥
op

≤ c1(1 + log(1/δ))ε2 + ε(c2(
√
r log(δ))

≤ c3(
√
r + log(δ))ε

≤ c′3(
√
r log(δ))ε0 .

G.2 Proof of Lemma G.1

For the first point, we begin by establishing the lemma with a modified parameterization; we show
that

s(λ+ λ−1 − (λ− λ−1)ε) ≤ 1

λ
+

ε

2λ
and s(λ+ λ−1 + (λ− λ−1)ε) ≥ 1

λ
− ε

2
√

2λ
(7.50)

for ε ≤ min{1,(λ2−1)/2}
λ2+1

. Hence if we let ε′ = λ−λ−1

λ+λ−1 = λ2−1
λ2+1

ε, then we have we have

s((λ+ λ−1)(1− ε′)) ≥ 1

λ
(1 +

ε′(λ2 + 1)

2(λ2 − 1)
) and s((λ+ λ)−1(1 + ε′)) ≤ 1

λ
(1− ε′(λ2 + 1)

2
√

2(λ2 − 1)
)

provided that ε′ ≤ λ2−1
(λ2+1)(λ+1)2 ·min{1, (λ2 − 1)/2} ≤ λ2−1

(λ2+1)2 ·. Finally, we may simplify

λ2 − 1

(λ2 + 1)(λ+ 1)2
min{1, (λ2 − 1)/2} =

(λ2 − 1)2

(λ2 + 1)(λ+ 1)2
min{1/2, 1

λ2 − 1
} = gap ·min{1/2, 1

λ2 − 1
}

and λ2+1
λ2−1

=
√
λ2+1
λ−1 ·

√
λ2+1
λ+1 = gap−1/2 ·

√
1− 2λ

(λ+1)2 ≥ (gap/2)−1/2.

Now to prove Equation (7.50). For σ ∈ {−1, 1}, let aσ = λ+ 1/λ+ σ(λ− λ−1)ε. We then have
that

(λ+ λ−1 + σ(λ− λ−1)ε)2 − 4 = (λ+ λ−1)2 − 4 + ε2(λ− λ−1) + 2σε(λ+ λ−1)(λ− λ−1))

= (λ− λ−1)2 + ε2(λ− λ−1)2 + 2σε(λ+ λ−1)(λ− λ−1))

= (λ− λ−1)2

(
1 + ε2 + 2σε

λ+ λ−1

λ− λ−1

)
45



Hence,

s(aσ) =
λ+ λ−1 + εσ(λ− λ−1)− (λ− λ−1) + (λ− λ−1)(1−

√
1 + ε2 + 2σελ+λ−1

λ−λ−1 )

2

=
1

λ
+ (λ− λ−1)

σε+ (1−
√

1 + ε2 + 2σελ+λ−1

λ−λ−1 )

2

For σ = −1, we have that, as long as (∗) 2ε(λ+λ−1)(λ−λ−1)−1 ≤ 1 and (∗∗) ε(λ−λ−1)/2 ≤ λ−1

then we can bound lower bound above using concavity of x 7→
√

1− x as

s(a−)
(∗)
≥ 1

λ
+ (λ− λ−1) · −ε+ ε(λ+ λ−1)−1(λ− λ−1)− ε2/2)

2

=
1

λ
+ ε

(λ+ λ−1)− (λ− λ−1)− (λ− λ−1)ε/2

2

=
1

λ
+ ε

2λ−1 − (λ− λ−1)ε/2)

2

(∗∗)
≥ 1

λ
+

ε

2λ

On the other hand, we note that by Taylor’s theorem

√
1 + x ≥ 1 + x · 1

2
√

1 + x
(7.51)

Hence, if we set ε(λ+ λ−1)(λ− λ−1)−1 = t, then we can upper bound

s(a+) =
1

λ
+ (λ− λ−1) ·

ε− (1−
√

1 + 2ε(λ+ λ−1)(λ− λ−1)−1)

2

=
1

λ
+ (λ− λ−1) · ε− (1− ε(λ+ λ−1)(λ− λ−1)−1/

√
1 + 2t

)
2

=
1

λ
− (λ+ λ−1)ε− (λ− λ−1)

√
1 + 2tε

2
√

1 + t

=
1

λ
− ε2λ−1 − (λ− λ−1)(

√
1 + 2t− 1)

2
√

1 + t

≤ 1

λ
− ε2λ−1 − t(λ− λ−1)

2
√

1 + t

Hence if we have t = ε(λ+ λ−1)(λ− λ−1)−1 ≤ 1/2 < 1, and

(λ− λ−1)t = ε(λ+ λ−1) ≤ λ−1 iff ε ≤ 1

λ(λ+ λ−1)
(7.52)

, then the previous display is at most 1
λ −

ε
2
√

2λ
. Collecting the conditions we needed, we required

ε ≤ λ−λ−1

2(λ+λ−1)
= λ2−1

2(λ2+1)
and ε ≤ 1

λ(λ−λ−1)
= 1

λ2+1
.

H Concentration of SW(z)

H.1 Proof of Theorem 6.5

For a given a and z∗, set b = 8p
1/3
z∗ ≥

√
pz∗d(a− z∗)2. First, we claim that the following hold:
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Claim H.1.

max

{
1

d(a− z∗)2
,

1

d2(a− z∗)5

}
≤ 1/16

√
2 and b < (a2 − 4− 32

d(a− z∗)2
)1/2 (8.53)

Proof. By assumption, we have that 32
d(a−z∗)2 ≤ a− 2.

(a2 − 4− 32

d(a− z∗)2
)1/2 = ((a+ 2)(a− 2)− 32

d(a− z∗)2
)1/2 (8.54)

≥ (2(a− 2)− 32

d(a− z∗)2
)1/2 (8.55)

≥ (
32

d(a− z∗)2
)1/2 ≥

√
1

d(a− z∗)2
, (8.56)

the last expression which at least b since b = 8p
1/3
z∗ <

√
1

d(a−z∗)2 by assumption. This verifies

the condition after the “and”. For the first condition, we Theorem 6.5 directly assume that.
1

d(a−z∗)2 < 1/16
√

2,

1

d2(a− z∗)5
≤ 1

(16
√

2)d(a− z∗)2
· (a− z∗)−1 (8.57)

≤ 1

32 · 16
√

2
· a− 2

a− z∗
(8.58)

≤ 30

32 · 16
√

2
< 1/16

√
2 (8.59)

(8.60)

Our goal will be to apply Proposition 6.7. In order to do so, we need to check first that
a2 − 4 > b2 + 4|Re(Err)| and |b| > |Im(Err(z))|. Observe that

max

{
1

d(a− z∗)2
,

1

d2(a− z∗)5

}
≤ 1/16

√
2 , (8.61)

suffices for the first condition of Proposition 6.7, since then

|Im(Err(z))| <
8
√

2b

d
max

{
1

d(a− z∗)2
,

1

d2(a− z∗)5

}
+ 4pz∗/b

2

≤ 8
√

2b

d
max

{
1

d(a− z∗)2
,

1

d2(a− z∗)5

}
+ b/2 ≤ b/2 + b/2 = b

For the second condition, it suffices that

b < (a2 − 4− 32

d(a− z∗)2
)1/2

Since, using the bound pz∗/b
2 ≤ 1

d(a−z∗)2 , we have

|Re(Err(z))|
b2≥(a−z∗)2dpz∗

≤ 4

(
1

d(a− z∗)2
+ pz∗/b

2

)
≤ 8

d(a− z∗)2

implies b2 + 4|Re(Err(z))| < a2 − 4− 32

d(a− z∗)2
+

32

d(a− z∗)2
< a2 − 4
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In summary, Proposition 6.7 will hold for our choise of b long as max{(8pz∗)1/3,
√
pz∗d(a− z∗)2}} <

(a2 − 4 − 32
d(a−z∗)2 )1/2 and max{d(a − z∗)−2, d2(a − z∗)−5} ≤ 1/16

√
2. Under these conditions, we

have ∣∣∣∣∣Re(E[SW (z)])− a−
√
a2 − 4

2

∣∣∣∣∣ (i)

≤
√
|b2 + 4Re(Err(z))|+ |(2ab+ Im(Err(z))|

(ii)

≤
√
|b2 + 4Re(Err(z))|+ |(2a+ 1)b|

(iii)

≤ |b|+ 4
√

2d−1/2 max{1, (a− z∗)−2}+
√

(2a+ 1)b

(vi)

≤ (1 +
√

2a+ 1)b1/2 +
4
√

2

d(a− z∗)2

where (i) is from Proposition 6.7, (ii) is the fact that |Im(Err(z))| ≤ |b|, and (iii) combines
concavity of

√
· with our estimate for Re(Err(z)), and (vi) uses the fact that b < 1. Hence, on

A(z∗), we have ∣∣∣∣∣Re(SW (z))− a−
√
a2 − 4

2

∣∣∣∣∣
triange ineq.
≤ (1 +

√
2a+ 1)b1/2 +

4
√

2

d(a− z∗)2
+ |Re(E[SW (z)])−Re(SW (z))|

Equation 6.19
≤ (1 +

√
2a+ 1)b1/2 +

4
√

2

d(a− z∗)2
+ pz∗/b+

∣∣Re(E[S
W̃

(z)])−Re(S
W̃

(z))|
∣∣

Finally, if we let ES(δ) := {
∣∣Re(E[S

W̃
(z)])−Re(S

W̃
(z))

∣∣ ≤ 2
√

log(2/δ)

d(a−z∗)2 }, then by combining TIS

Inequality in Lemma J.1 with the Lipschitz estimates in Lemma I.2, we have then P[ẼS(δ)] ≥ 1− δ.
Finally, on Ẽ(δ), we have that

∣∣∣Re(SW (z))− a−
√
a2−4
2

∣∣∣ is at most

(1 +
√

2a+ 1)b1/2 +
4
√

2

d(a− z∗)2
+ pz∗/b+

2
√

log(2/δ)

d(a− z∗)2

=
4
√

2 + 2
√

log(2/δ)

d(a− z∗)2
+ (1 +

√
2a+ 1)b1/2 + pz∗/b

Finally, using the estimate |Re(SW (ai+ b))− SW (a)| ≤ b2/(a− z∗)3 from Lemma 6.6, we conclude

that
∣∣∣SW (a)− a−

√
a2−4
2

∣∣∣ is at most

4
√

2 + 2
√

log(2/δ)

d(a− z∗)2
+ (1 +

√
2a+ 1)b1/2 + pz∗/b+ b2/(a− z∗)3

Subtituting in b = 8p
1/3
z∗ , we have that the above is at most

4
√

2 + 2
√

log(2/δ)

d(a− z∗)2
+ 2
√

2(1 +
√

2a+ 1) · p1/6
z∗ + p

2/3
z∗ ·

(
1

8
+ 1/(a− z∗)3

)
Further, substituting in ε = 1/(a − z∗)d1/2, and using that fact that ε ≤ 1/4 by assumption, we
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have that the above is at most

(4
√

2 + 2
√

log(2/δ))ε2 + 2
√

2(1 +
√

2a+ 1) · p1/6
z∗ + p

2/3
z∗ ·

(
1

8
+ d3/2ε3

)
(4
√

2 + 2
√

log(2/δ))ε2 + (4
√

2 + 4a) · p1/6
z∗ +

d3/2

4
p

2/3
z∗

Lastly, we can bound (4
√

2 + 4a) · p1/6
z∗ + d3/2

4 p
2/3
z∗ ≤ 8d3/2p

1/6
z∗ , as needed.

H.2 Proof of Lemma 6.10

Define the random variable Z := (S
W̃

(z)− E[S
W̃

(z)]. Then, we have

|Im(E[Z2])| = |E[Im(Z2)]|
(i)

≤ E[|Im(Z2)|] = 2E[|Re(Z)||Im(Z)|]
(ii)

≤ 2
√
|E[Re(Z)|2]E[|Im(Z)2|]

(iii)

≤ 2

√ √
2

d2(a− z∗)4
· 4

√
2b2

d2(a− z∗)6
=

4
√

2b

d2(a− z∗)5

where (i) is Jensen’s inequality, (ii) is Cauchy Schwartz, and (iii) uses the estimates from Lemma I.2.
Hence, combing with Proposition 6.8, we have

|Im(Err(z))| ≤ |Im(E[Z2])|+ 2

d(a− z∗)2
+ 4pz∗/b

2 ≤ b

d
·

(
4
√

2

d(a− z∗)5
+

2

(a− z∗)2

)
+ 4pz∗/b

2

≤ 8
√

2b

d
·max{(a− z∗)−2, (a− z∗)−5/d}+ 4pz∗/b

2

By the same token, one has

|Re(E[Z2])| ≤ E[|Re(Z2)|] = E[(Im(Z))2] + E[Re(Z)2]

≤
√

2

d2(a− z∗)4
+

4
√

2b2

d2(a− z∗)6

whence, by Lemma 6.8, we can conclude the following as long as b < (a− z∗)/2 and d ≥ (a− z∗)2

that

|Re(Err(z))| ≤
√

2

d2(a− z∗)4
+

4
√

2b2

d2(a− z∗)6
+

1

d(a− z∗)2
+ 4pz∗/b

2

d≥(a−z∗)2

≤
√

2 + 1 + 4
√

2b2 · (a− z∗)−2

d(a− z∗)2
+ 4pz∗/b

2

b<(a−z∗)/2
≤ (

√
2 + 1/

√
2 + 1)(a− z∗)4 + 4pz∗/b

2 ≤ 4

(
1

d(a− z∗)2
+ pz∗/b

2

)
H.3 Proof of Lemma 6.8

Recall the definition Err(z) := E[SW(z)2] + 1
dE[tr(zI −W)2]−E[SW(z)]2 and pz∗ := P[A(z∗)]. We

start off by bounding the term 1
dE[tr(zI −W)2]. We begin be observing that

E[tr((zI −W)2)] =
1

d

d∑
i=1

(
1

z − λi(W̃)

)2

I(W = W̃) +

(
1

z − λi(W)

)2

I(W 6= W̃)
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Observe that since |z − λi(W)| ≥ |b| by assumption, we have

|E[
1

(z − λi(W))
I(W 6= W̃)]| ≤ P[W 6= W̃]/b2 = pz∗/b

2 (8.62)

Furthermore, we have

1

d

d∑
i=1

(
1

z − λi(W̃)

)2

=
1

d

n∑
i=1

1

(a−min{λi(W), z∗}) + bi)2

=
1

d

n∑
i=1

1

(a−min{λi(W), z∗}) + bi)2

We can then upper bound

|Re(
1

d

d∑
i=1

(
1

z − λi(W̃)

)2

)| ≤ |1
d

n∑
i=1

1

(a−min{λi(W), z∗}) + bi)2
|

≤ max
i∈[d]
| 1

|(a−min{λi(W), z∗}) + bi|)2
| ≤ 1

(a− z∗)2

Altogether, we conclude

1

d
|Re(E[tr((zI −W)2)])| ≤ 1

d
(1/(a− z∗)2 + p∗/b2) (8.63)

For the more precise estimate of the impaginary component of E[tr((zI −W)2), we have∣∣∣∣∣∣Im
1

d

d∑
i=1

(
1

z − λi(W̃)

)2
∣∣∣∣∣∣ ≤ max

i∈[d]
|Im

(
1

(a−min{λi(W), z∗}) + bi

)2

|

≤ max
i∈[d]

∣∣∣∣ (a−min{λi(W), z∗})− bi)2

|a−min{λi(W), z∗})2 + bi|4

∣∣∣∣
≤ max

i∈[n]

2|b||a−min{λi(W), z∗})|
|(a− z∗min{λi(W), z∗})|4

≤ 2b/(a− z∗)2

Altogether, we have

1

d
(
∣∣Im(E[tr((zI −W)2)])

∣∣ ≤ 1

d
(2b/(a− z∗)2 + pz∗/b

2) (8.64)

We now argue that E[SW(z)2] − E[SW(z)2] is close to E[S
W̃

(z)2] − E[S
W̃

(z)2]. Repeating the
arguments from above, we have the bounds that

|E[S
W̃

(z)2]− E[SW(z)2]| ≤ 1

b2
P(W̃ 6= W)) and |E[S

W̃
(z)]− E[SW(z)2]| ≤ 1

|b|
pz∗

The later implies that

|E[SW (z)]| ≤ |E[S
W̃

(z)]|+ 1

|b|
P(W̃ 6= W )) ≤ 1

a− z∗
+

1

|b|
pz∗ (8.65)

50



which entails that

E[SW(z)]2 − E[S
W̃

(z)]2 = |E[SW(z)] + E[S
W̃

(z)]||E[SW(z)]− E[S
W̃

(z)]|

≤ 1

(a− z)b
pz∗ + pz∗/b

2

All in all one has, for b < a− z that

|E[S
W̃

(z)2]− E[S
W̃

(z)]2 − (E[SW(z)2]− E[SW(z)]2)| ≤ 1

(a− z)|b|
pz∗ + pz∗/b

2 +
1

|b|
pz∗ ≤

3pz∗

|b|2

Putting together this estimate with the ones for 1
d |Re(E[tr((zI−W)2)])| and 1

d |Im(E[tr((zI−W )2)])|
conclude the proof of the first display. The proof of the second display follows from essentially the
same argument that we used to bound |E[tr((zI −W)2)]− E[tr((zI − W̃)2)]|, namely, that

‖E[SW(z)]− E[S
W̃

(z)]‖ ≤ pz∗‖SW(z)− S
W̃

(z)‖∞ ≤ pz∗/b (8.66)

Since W = W̃ on A(z∗), we conclude that

|SW(z)− E[SW(z)]| (i)
= |S

W̃
(z)− E[SW(z)]|

≤ |S
W̃

(z)− E[S
W̃

(z)]|+ |E[SW(z)]− E[S
W̃

(z)]|
(ii)

≤ |S
W̃

(z)− E[S
W̃

(z)]|+ pz∗

b

H.4 Proof of Lemma 6.9

We can write Ψ as a composition of maps Ψ4 ◦ Ψ3 ◦ Ψ2 ◦ Ψ1, where Ψ1(X) = 1√
2d
X + X>

maps the underlying entries of X to W, Ψ2(W ) := (λ1(W ), . . . , λd(W ), Ψ3 maps (λ1, . . . , λd)
to (min{z∗, λ1}, . . . ,min{z∗, λd}), and Ψ4 maps (λ1, . . . , λd)→ 1

d

∑d
i=1

1
z−λi . Observe then that

Ψ4 ◦Ψ3 ◦Ψ2 ◦Ψ1(X) =
1

d

d∑
i=1

1

z −min{z∗, λi}
= S

W̃
(z)

Recalling here that Lip denotes the Lipschitz constant as a map between vector spaces endowed
with the Euclidean norm, and htat Ψ1,Ψ2,Ψ3 are all maps between real vector spaces, we have
Lip(Re(Ψ)) = Lip(Re(Ψ4◦Ψ3◦Ψ2◦Ψ1)) ≤ Lip(Re(Ψ4))·Lip(Ψ3)·Lip(Ψ2)·Lip(Ψ2), and analogously
for Lip(Im(Ψ)). For Ψ1,

‖Ψ1(X)−Ψ1(X ′)‖2F =
1

2d
‖X +X> −X ′ +X

′>‖2F

≤ 1

2d
(2‖X −X ′‖2F + 2‖X −X ′>‖2F )

=
2‖X −X ′‖2F

d

so Lip(Ψ1)2 ≤ 2/d. By the Hoffman-Weilandt Theorem (Theorem 6.3.5 in Horn and Johnson [21])

‖Ψ2(W )−Ψ2(W ′)‖22 =
d∑
i=1

(λi(W )− λi(W ′))2 ≤
d∑
i=1

(λi(W −W ′))2 = ‖W −W ′‖2F
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so Lip(Ψ2) ≤ 1. Lip(Ψ3) ≤ 1 as well, since

d∑
i=1

(max{z∗, λi(W )} −max{z∗, λi(W ′)})2 ≤
d∑
i=1

(λi(W )− λi(W ′))2

It remains to compute Lip(Re(Ψ4)) and Lip(Im(Ψ4)) on the domain (−∞, z∗]d ⊇ im(Ψ3 ◦Ψ2 ◦Ψ1).
Since Ψ4 is smooth (in fact analytic) on this domain for any z > z∗, it suffices to bound ‖Im(∇Ψ4)‖2
and ‖Re(∇Ψ4)‖2. We compute

∇Ψ4 =
1

d

(
−1

(a− λi + bi)2

)
1≤i≤d

=
1

d

(
−(a− λi − bi)2

|a− λi + bi|4

)
1≤i≤d

=
1

d

(
{−(a− λi)2 + b2}+ {2(a− λi)b}i

|a− λi + bi|4

)
1≤i≤d

Note then λi < z∗,and when a, b : a− z∗ > b, −(a− λi)2 + b2 ≤ |a− λi + bi|2, and thus

‖Re(∇Ψ4)‖22 ≤ 1

d2

n∑
i=1

∣∣∣∣{−(a− λi)2 + b2}
|a− λi + bi|4

∣∣∣∣2

≤ 1

d2

d∑
i=1

1

|a− λi + bi|4
≤ 1

d(a− λi)4

Similarly,

‖Im(∇Ψ4))‖22 ≤
1

d2

n∑
i=1

42b2(a− λi)2

|a− λi + bi|8
≤ b2

d(a− z∗)6

H.5 Proof of Propostion 6.7

From Equation (2.45) in Anderson et al. [5], we have that for any z ∈ C− R that

E[SW(z)] =
1

z

(
1 + E[SW(z)2] +

1

d
E[tr(zI −W)2]

)
(8.67)

Define SW(z) := E[SW(z)], and rearranging Equation 8.68 with the definition of Err(z), we have

SW(z)2 − zSW(z) + 1 + Err(z) = 0

It follows from the quadratic formula that that

SW(z) =
z + σ

√
z2 − 4− 4Err(z)

2
for σ ∈ {−1, 1}

Our first goal is to determine the sign σ. Observe that SW(a + bi) =
∑n

j=1
1

(a+bi)−λj(W) =

1
n

∑n
j=1

a−λj(W)−bi
|a−λi(W)−bi|2 , so that sign (Im(SW(a + bi)) = −sign (b). Thus, sign (Im(SW(a + bi)) =

−sign (b) as well, which means that for z = a+ bi,

−sign (b) = sign (Im(z + σ
√
z2 − 4− 4Err(z))) = sign (b+ σIm(

√
z2 − 4− 4Err(z)))) ,
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which implies that σ = −sign (b)·sign Im(
√
z2 − 4− 4Err(z)))). From the definition of the complex

square root,

sign Im(
√
z2 − 4− 4Err(z))) = sign (Im(z2 − 4− 4Err(z))) = sign (2ab− 4Im(Err(z)))

Hence, for a > 2, then as long as b > |Im(Err(z))|, it holds that the above display has the same
sign as b, whence σ = −sign (b)2 = −1. Hence, we have established that

SW (z) =
z −

√
z2 − 4− 4Err(z)

2
(8.68)

The proposition now follows from the following lemma:

Lemma H.2 (Perturbation Bound for Quadratics).

|Re(
√
z2 − 4− 4Err)−

√
a2 − 4| ≤

√
|b2 + 4Re(Err)|+ |(2ab+ Im(Err)| (8.69)

Proof. Adopting the shorthand u = a2 − b2 − 4− 4Re(Err) and w = (2ab+ Im(Err), then as long
as a2 − 4 > b2 + 4Re(Err), we have

Re(
√
z2 − 4− 4Err) = Re(

√
a2 − b2 − 4 + Re(Err) + i(2ab+ Im(Err)))

= Re(
√
u+ iw) =

1√
2

√√
u2 + w2 + u

Hence, we can bound Re(
√
z2 − 4 +−4Err) ≥ 1√

2

√√
u2 + u =

√
u. Moreover, one has

√
u ≥

√
a2 − 4−

√
|b2 + 4Re(Err)|. On the other hand, Re(

√
z2 − 4 + Err) ≤ 1√

2

√
2u+ w =

√
u+ w/2,

and one can bound
√
u+ w/2 ≤

√
a2 − 4 +

√
|b2 + 4Re(Err)|+ |(2ab+ Im(Err)|. Putting things

together proves equation

H.6 Proof of Lemma 6.6

On A(z∗), one has that |λi(W)− a| ≥ |z∗ − a|. Hence

|Re(SW(z))− SW(a)| =

∣∣∣∣∣1d
d∑
i=1

Re(
1

λi(W)− a− bi
) +

1

λi(W)− a

∣∣∣∣∣
=

∣∣∣∣∣1d
d∑
i=1

Re(
λi(W)− a

(λi(W)− a)2 + b2
) +

1

λi(W)− a

∣∣∣∣∣
=

∣∣∣∣∣1d
d∑
i=1

(λi(W)− a)
1

(λi(W)− a)2 + b2
+

1

(λi(W)− a)2

∣∣∣∣∣
≤ max

i
|(λi(W)− a)| ·

∣∣∣∣ 1

(λi(W)− a)2 + b2
+

1

(λi(W )− a)2

∣∣∣∣
= max

i
|(λi(W)− a)| ·

∣∣∣∣∣∣ b2(
(λi(W)− a)2 + b2

)
· (λi(W)− a)2

∣∣∣∣∣∣
≤ max

i
b2/max

i
(λi(W)− a)3 ≤ b2/(a− z∗)3
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I Proof of Proposition 6.2

Define the matrix Λ(a) := I−λU>(aI−W)−1U. Observe then that the event Eup(aup)∩Elow(alow),
we have that spec(Λ(alow)) ⊂ (−∞, 0) and spec(Λ(aup)) ⊂ (0,∞). Further, since aI −W is
invertible for all a ∈ [alow, aup] under A(z∗), it follows that the functions a 7→ λi(Λ(z)) for i ∈ [k]
are analytic on [alow, aup]. In follows that, under A(z∗) ∩ Eup(aup) ∩ Elow(alow), there exists real
numbers {a(i)}1≤ik ⊂ [alow, aup] such that λi(Λ(a(i))) = 0. We need to now show that, up to a null
event, these a(i) are distinct. Specifically, we claim that the event N defined below measure zero:

N := {∃a ∈ [a1, a2], i < j ∈ [k] : λi(Λ(a)) = λi+1(Λ(a)) = 0} ∩ A(z∗)

To do this, define the map ψ : a 7→ (λ1(Λ(a)), . . . , λk(Λ(a)) ∈ Rk, and define the subspaces
Vi,j := {v ∈ Rk : vi = vj = 0}. By a union bound, it suffices to show that, for all i < j ∈ [k],

P[A(z∗) ∩ {∃a ∈ [a1, a2] : ψ(a) ∈ Vi,j ] = 0

To do so, we establish two regularity properties about ψ(a). First, observe that, with probability
1 under A(z∗), the fact that a 7→ ψ(a) is analytic and [a1, a2] is compact implies there exists some
(random) Lipschitz constant L = L(W,U) such that ψ(a) is L-lipschitz on the interval [a1, a2] (in
fact, one can show that ψ is uniformly Lipschitz, but we shall not need this).

Next, we claim that, for all a, ψ(a) has density which is absolutely continuous with respect to
the Lebesgue measure for all a ∈ [a1, a2]. Indeed, we we that

Lemma I.1. Condition on the event A(z∗). Then for every a > z∗, the random matrix Λ(a) :=
I − λU>(aI −W)−1U has a density with respect to the Lebesgue measure on Sk.

Note then that if Λ(a) ∈ Sk has a density with respect to the Lebesgue measure, then Λ(a)
has a density with respect to the Wigner law on Sk, and thus by a change of variables, spec(Λ(a))
has a density with respect to the law of the eigenvalues of a Wigner matrix on SN . It is well know
that the later have a density with respect to the Lebesgue measure[5], which implies that ψ(a) has
density which is absolutely continuous with respect to the Lebesgue measure, as needed. Hence,
our desired result follows from the following, quite general lemma:

Lemma I.2. Let I be a compact interval, A an event, and let ψ : I → Rk be a real valued random
funtion such that a) for all a ∈ I, ψ(a) has a density with respect to Lebesgue(Rk), and b) with
probability 1 under A, a 7→ ψ(a) is Lipschitz for a ∈ I. Then for any k − 2-dimensional subspace
W, P[A ∩ {∃a ∈ [a1, a2] : ψ(a) ∈ W}] = 0.

I.1 Proof of Lemmas I.1 and I.2

Proof of Lemma I.2. By a change of basis, we may assume thatW = {w ∈ Rk : w1 = w2 = 0}. Let
AC denote the event that supa∈I maxi |ψi(a)| ≤ C and ψi is C-Lipschitz on I. Observe that since I is
compact, and ψ is lipschitz for some constant L with probability 1 on A, then with probability 1 (on
A) there exists a C for whichAC holds. Next, define the event Bε(a) := {|ψ1(a)| < ε}∩{ψ2(a)} < ε}.
Then, {∃a ∈ [a1, a2] : ψ(a) ∈ W =

⋂
ε>0

⋃
a∈I Bε(a). Using the above inclusions together with

continuity from above and below of probability measures,

P[A ∩ {∃a ∈ [a1, a2] : ψ(a) ∈ W}] = lim
C→∞

P[A ∩AC ∩ {∃a ∈ [a1, a2] : ψ(a) ∈ W}]

= lim
C→∞

P[A ∩AC ∩ {∃a ∈ [a1, a2] : ψ(a) ∈ W}]

= lim
C→∞

lim
ε→0

P[A ∩AC ∩
⋃
a∈I
Bε(a)]
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Now, let N (C, ε) be an C/ε-net of I. Then, on A ∩ AC ∩
⋃
a∈I Bε(a), there exists an a′ ∈ N (C, ε)

such that |ψi(a′)| ≤ ε + C|a − a′| ≤ 2ε for i ∈ {1, 2}. Hence A ∩ AC ∩
⋃
a∈I Bε(a) ⊂ A ∩ AC ∩⋃

a∈N (C,ε) B2ε(a), and thus,

P[A ∩AC ∩
⋃
a∈I
Bε(a)] ≤ |N (C, ε)| · sup

a∈I
P[A ∩AC ∩ Bε(a)]

Finally, since ψ(a) is absolutely continuous with respect to the Lebesgue measure, there exists a
constant C ′ such that P[A ∩ AC ∩ B2ε(a)] ≤ C ′vol({w : |w1| ≤ 2ε, |w2| ≤ 2ε,maxj>2 |wj | ≤ C}) =
C ′(2C)k−2(4ε2). Moreover, one as that |N (C, ε)| ≤ 1 + 2Cvol(I)/ε. Hence, |N (C, ε)| · supa∈I P[A∩
AC ∩Bε(a)] ≤ O(1/ε) ·O(ε2) = O(ε). and hence limε→0 P[A∩AC ∩

⋃
a∈I Bε(a)] = 0, as needed.

Proof of Lemma I.1. Under A(z∗), Law(W) has a density with respect to Lebesgue(Sd). This
implies that (zI −W) has a density with respect to Lebesgue(Sd). On A(z∗), zI −W is invertible,
and thus (zI −W )−1 has density with respect to Lebesgue(Sd). Now, observe that if U is a full
rank matrix, then the map X 7→ U>XU is a surjective linear transformation from Sd to Sk. It
therefore follows that λU>(zI − λW)−1λU has a density with respect to Lebesgue(Sk), and hence
Λ(z) also has a density with respect to Lebesgue(Sk).

J Proof of Proposition 6.3

We begin by stating a useful concentration bound for functions of Gaussian random variables:

Lemma J.1 (Tsirelson-Ibgragimov-Sudakov, Theorem 5.5 in [10]). Let f be a L-Lipschitz function
and let X be a standard Gaussian vector. Then,

P[f(X) ≥ E[f(X)] + t] ∨ P[f(X)− E[f(X)] ≤ −t] ≤ e−t2/2L2
.

As a consequence, we can establish the following concentration bound for ‖W‖

Lemma J.2 (Norm Concentration).

P(‖W‖ ≤ E[‖W‖] + 2
√

log(1/δ)/d) ≥ 1− δ

Proof. Recall that W ∼ GOE(d) has the distribution 1√
2d

(X + X>), where X ∼ StdG(d). We now

claim that the composition X 7→W 7→ ‖W‖ is
√

2/d-Lipschitz. Since the pointwise supremum of
L-Lipschitz functions is L-Lipschitz, and since

‖W‖ = sup
v,w

v>
1√
2d

(X + X>)vw ,

it suffices to show that fv,w(X) := v> 1√
2d

(X +X>)w is
√

2/d-Lipschitz. Since fv,w(X) is linear in

X, it suffices to bound the operator norm (from ‖ · ‖F → | · |) of fv,w(·) by
√

2/d. This follows since

|v> 1√
2/d

(X +X>)w| =
√

2/d|v>Xw| ≤
√

2/d · ‖X‖F ‖wv>‖F =
√

2/d‖X‖F .

The bound now follows from putting L =
√

2/d into Lemma J.1.

55



Next, we compute an upper bound of E[‖W‖]. To the best of the author’s knowledge, the only
reasonably sharp, non-asymptotic guarantees on E[‖W‖op] come from []. However, asymptotic
bounds established in

Theorem J.3 (Specializtion of Theorem 1.1 in). Let W be a standard Wigner matrix, σ2 =
maxi

∑
j E[W2

ij ], and σ2
∗ = maxi,j E[W2

ij ]. Then,

E[‖W‖] ≤ inf
ε∈(0,1/2)

(1 + ε){2σ + σ∗
6
√

log d√
log(1 + ε)

}

We optimize the above bund in the following corollary:

Corollary J.4. For all d ≥ 250,

√
dE[‖W‖] ≤ 2

√
d+ 21d1/6 log2/3(d) (10.70)

Proof. Using the estimate log(1 + ε) ≥ ε/2 for ε(0, 1/2), the estimate
√
d+ 1 =

√
d(
√

1 + 1/d) ≤√
d(1 + 1

2
√
d
), and plugging in dσ2 = d+ 1 and dσ2

∗ = 2, one has that

√
dE[‖W‖] ≤ inf

ε∈(0,1/2)
(1 + ε)(2

√
d+ 1 + 12 log dε−1/2}

≤ 2
√
d+

3

2
√
d

+ inf
ε∈(0,1/2)

2ε
√
d+ 18 log dε−1/2

Setting ε = d−1/3 log d2/3, we have that for d ≥ 4

√
dE[‖W‖] ≤ 2

√
d+

3

2
√
d

+ 20d1/6 log2/3 d ≤ 2
√
d+ 21d1/6 log2/3 d (10.71)

Note that ε < 1/2 as long as d
log2 d

≥ 8, which holds as long as d ≥ 250.

Proof of Proposition 6.3. Combining Lemmas J.2 and then Corollary J.4, one has that with prob-
ability at least 1− δ,

‖W‖ ≤ E[‖W‖] +
2 log1/2 δ

d1/2
≤ d−1/2(2

√
d+ 21d1/6 log2/3(d)) +

2 log1/2 δ

d1/2

≤ 2 + 21−1/3 log2/3(d) + 2
√
d log(1/δ)

K Proof of Proposition 6.4

Lemma K.1 (Gaussian Hanson-Wright). Let Z ∼ N (0, Id) be an isotropic Gaussian vector. Then

P
[∣∣∣Z>AZ− tr(A)

∣∣∣ > 2
(
t1/2‖A‖F + t‖A‖2

)]
≤ 2e−t
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Proof. Since Z has a rotation-invariant distribution, we may assume without loss of generality that
A = diag(a) is a diagonal matrix where a ∈ Rd. It then suffices to prove the following inequality,

where Yi
i.i.d∼ N (0, 1):

P[|
n∑
i=1

ai(Y
2
i − 1)| > 2(t1/2‖a‖2 + t‖a‖∞)] ≤ 2e−t

This statement is proved in Lemma 1 in Laurent and Massart ’00 [26] in the case ai ≥ 0. However,
their proof goes through as-is for arbitrary ai, with the modification that a sharper one-sided
concentration bound they derive no longer holds in the more general case.

Corollary K.2 (Corollary on the sphere). Let u ∼ Sd−1. Then

P

[
|u>Au− tr(A)/d| > 4

d(1− 2
√
t/d)

(t1/2‖A‖F + t‖A‖op)

]
≤ 3e−t

Proof. Define the matrix Ã = A− 1
dtr(A)I. Observe then that ‖Ã‖ ≤ ‖A‖2 + ‖1

dtr(A)I‖2 ≤ 2‖A‖2
and that ‖Ã‖F ≤ ‖A‖F + ‖1

dtr(A)I‖F = ‖A‖F + |tr(A)|/
√
d ≤ 2‖A‖F . Moreover, one has that if

U is distributed uniformly on the sphere, and Z = (Z1, . . . , Zd) is a standard normal vector then

u>Au− tr(A)/d = u>Ãu =
Z>ÃZ

‖Z‖22
By Lemma K.1 and our estimates of Ã, we have

P[|Z>ÃZ| > 4(t1/2‖A‖F + t‖A‖op)] ≤ 2e−t

Moreover, using the one-sided analogue of Lemma K.1 with A = Id, one has P[‖Z‖2 ≤ d(1 −
2
√
t/d)] ≤ e−t. Combining both estimates, we have

P[|u>Au− tr(A)/d| > 4

d(1− 2
√
t/d)

(t1/2‖A‖F + t‖A‖op) ≤ 3e−t

Our last step to conclude the proof is the following packing argument: We are now in place to
prove Proposition 6.4:

Proof of Proposition 6.4. For ease of notation, set C(A, d, t) := 4

d(1−2
√
t/d)

(t1/2‖A‖F + t‖A‖op)

to be the error term in Lemma K.2. Observe that if U ∼ Stief(d, r) for any fixed v ∈ Sr−1,
Uv ∼ Sd−1,and hence by Corollary K.2,

P
[
|v>(U>AU− Ir · tr(A)/d)v| > C(A, d, t)

]
≤ 3e−t (11.72)

Now let N is an 1/4-net of Sr−1. By Exercise 4.4.3 in [39], any symmetric matrix B ∈ Rr×r satisfies
the inequality ‖B‖op ≤ 2 supv∈N |v>Bv|. Hence, by Equation (11.72) and a union bound,

P
[∥∥∥U>AU− Ir · tr(A)/d

∥∥∥ > 2C(A, d, t)
]

≤ P
[

sup
v∈N

∣∣∣v> (U>AU− Ir · tr(A)/d
)
v
∣∣∣ > C(A, d, t)

]
≤ 3|N |e−t

A standard covering number bound (e.g. Corollary 4.2.13 in [39]) lets us choose |N | ≤ (1 + 2
1/4)r =

9r ≤ exp(2.2r), which concludes the proof.
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