
Distribution-Free Junta Testing∗

Zhengyang Liu

Shanghai Jiao Tong University

Shanghai, China

lzy5118@sjtu.edu.cn

Xi Chen

Columbia University

New York, USA

xichen@cs.columbia.edu

Rocco A. Servedio

Columbia University

New York, USA

rocco@cs.columbia.edu

Ying Sheng

Columbia University

New York, USA

ys2982@columbia.edu

Jinyu Xie

Columbia University

New York, USA

jinyu@cs.columbia.edu

ABSTRACT
We study the problem of testing whether an unknown n-variable
Boolean function is ak-junta in the distribution-free property testing
model, where the distance between functions is measured with

respect to an arbitrary and unknown probability distribution over

{0, 1}n . Our first main result is that distribution-free k-junta testing
can be performed, with one-sided error, by an adaptive algorithm

that uses Õ (k2)/ϵ queries (independent of n). Complementing this,

our second main result is a lower bound showing that any non-
adaptive distribution-free k-junta testing algorithm must make

Ω(2k/3) queries even to test to accuracy ϵ = 1/3. These bounds

establish that while the optimal query complexity of non-adaptive

k-junta testing is 2Θ(k ) , for adaptive testing it is poly(k ), and thus

show that adaptivity provides an exponential improvement in the

distribution-free query complexity of testing juntas.

CCS CONCEPTS
• Theory of computation → Streaming, sublinear and near
linear time algorithms;
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1 INTRODUCTION
Property testing of Boolean functions was first considered in the

seminal works of Blum, Luby and Rubinfeld [10] and Rubinfeld
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and Sudan [39] and has developed into a robust research area at

the intersection of sub-linear algorithms and complexity theory.

Roughly speaking, a property tester for a class C of functions from

{0, 1}n to {0, 1} is a randomized algorithm that is given some form

of access to the (unknown) input Boolean function f , and must with

high probability distinguish the case that f ∈ C versus the case

that f is ϵ-far from every function д ∈ C. In the usual (uniform-

distribution) property testing scenario, the testing algorithm may

access f by making black-box queries on inputs x ∈ {0, 1}n , and the
distance between two functions f and д is measured with respect to

the uniform distribution on {0, 1}n ; the goal is to develop algorithms

that make as few queries as possible. Many different classes of

Boolean functions have been studied from this perspective, see

[1, 3–5, 8, 8–10, 12–14, 16, 18, 19, 22, 22, 25, 28, 30, 32–36] and other

works referenced in the surveys [27, 37, 38]. Among these, the class

of k-juntas — Boolean functions that depend only on (an unknown

set of) at mostk of theirn input variables — is one of the best-known

and most intensively investigated such classes [6, 7, 11, 21, 24, 40],

with ongoing research on junta testing continuing right up to the

present [17].

The query complexity of junta testing in the uniform distribu-

tion framework is now well understood. Improving on poly(k )/ϵ-
query algorithms given in [24] (which introduced the junta testing

problem), in [6] Blais gave a non-adaptive algorithm that makes

Õ (k3/2)/ϵ queries, and in [7] Blais gave an O (k logk + k/ϵ )-query
adaptive algorithm. On the lower bounds side, Fischer et al. [24]

initially gave an Ω(
√
k ) lower bound for non-adaptively testing

k-juntas, which also implies an Ω(logk ) lower bound for adap-

tive testing. Chockler and Gutfreund improved the adaptive lower

bound to Ω(k ) in [21], and very recently Chen et al. [17] gave an

Ω̃(k3/2)/ϵ non-adaptive lower bound. Thus in both the adaptive

and non-adaptive uniform distribution settings, the query com-

plexity of k-junta testing has now been pinned down to within

logarithmic factors.

Distribution-Free Property Testing. This work studies the junta
testing problem in the distribution-free property testing model that

was first introduced by Goldreich et al in [29]. In this model the

distance between Boolean functions is measured with respect to a

distribution D over {0, 1}n which is arbitrary and unknown to the

testing algorithm. Since the distribution is unknown, in this model

the testing algorithm is allowed (in addition to making black-box

queries) to draw random labeled samples (x , f (x )) where each x is

independently distributed according to D. The query complexity
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of an algorithm in this framework is the worst-case total number

of black-box oracle calls plus random labeled samples that are used,

across all possible distributions. (It follows that distribution-free

testing of a class C requires at least as many queries as testing C

in the standard uniform-distribution model.)

Distribution-free property testing is in the spirit of similar distri-

bution-free models in computational learning theory such as the

celebrated PAC learning model of Valiant [41]. Such models are

attractive because of their minimal assumptions; they are well mo-

tivated both because in many natural settings the uniform distribu-

tion over {0, 1}n may not be the best way to measure distances, and

because they capture the notion of an algorithm dealing with an un-

known and arbitrary environment (modeled here by the unknown

and arbitrary distribution D over {0, 1}n and the unknown and

arbitrary Boolean function f : {0, 1}n → {0, 1}). Researchers have

studied distribution-free testing of a number of Boolean function

classes, including monotone functions, low-degree polynomials,

dictators (1-juntas) and k-juntas [31], disjunctions and conjunctions
(monotone and non-monotone), decision lists, and linear threshold

functions [20, 23, 26]. Since depending on few variables is an ap-

pealingly flexible “real-world” property in comparison with more

highly structured syntactically defined properties, we feel that junta

testing is a particularly natural task to study in the distribution-free

model.

Prior Results on Distribution-Free Junta Testing. Given how

thoroughly junta testing has been studied in the uniform distribu-

tion model, surprisingly little was known in the distribution-free

setting. The adaptive Ω(k ) and non-adaptive Ω̃(k3/2)/ϵ uniform-

distribution lower bounds from [17, 21] mentioned earlier trivially

extend to the distribution-free model, but no other lower bounds on

distribution-free junta testing were known prior to this work. On

the positive side, Halevy and Kushilevitz showed in [31] that any

class C that has (i) a one-sided error uniform-distribution testing

algorithm and (ii) a self-corrector, has a one-sided error distribution-

free testing algorithm. As poly(k )/ϵ-query one-sided junta testers

were given in [24], and k-juntas have O (2k )-query self-correctors

[2], this yields a one-sided non-adaptive distribution-free junta

tester with query complexityO (2k/ϵ ). No other results were known.
Thus, prior to this work there were major gaps in our under-

standing of distribution-freek-junta testing: is the query complexity

of this problem polynomial in k , exponential in k , or somewhere

in between? Does adaptivity confer an exponential advantage, a

sub-exponential advantage, or no advantage at all? Our results,

described below, answer both these questions.

1.1 Our Results
Our main positive result is a poly(k )/ϵ-query one-sided adaptive

algorithm for distribution-free k-junta testing:

Theorem 1.1 (Upper bound). For any parameter ϵ > 0, there is a
one-sided distribution-free adaptive algorithm for ϵ-testing k-juntas
with Õ (k2)/ϵ queries.

Theorem 1.1 shows that k-juntas stand in interesting contrast

with many other well-studied classes of Boolean functions in prop-

erty testing such as conjunctions, decision lists, linear threshold

functions, and monotone functions. For each of these classes of

Boolean functions, distribution-free testing requires dramatically

more queries than uniform-distribution testing: for the first three

classes the separation is poly(1/ϵ ) queries in the uniform setting

[34, 36] versus nΩ(1)
queries in the distribution-free setting [20, 26];

forn-variable monotone functions poly(n) queries suffice in the uni-

form setting [28, 32] whereas [31] shows that 2
Ω(n)

many queries

are required in the distribution-free setting. In contrast, Theorem

1.1 implies that for k-juntas the query complexities of uniform-

distribution and distribution-free testing are polynomially related

(indeed, within at most a quadratic factor).

Complementing the strong upper bound which Theorem 1.1

gives for adaptive testers, our main negative result is an Ω(2k/3)-
query lower bound for non-adaptive testers:

Theorem 1.2 (Lower bound). For k ≤ n/200, any non-adaptive
algorithm that distribution-free ϵ-tests k-juntas over {0, 1}n , for ϵ =
1/3, must have query complexity Ω(2k/3).

Theorems 1.1 and 1.2 together show that adaptivity enables an

exponential improvement in the distribution-free query complexity

of testing juntas. This is in sharp contrast with uniform-distribution

junta testing, where the adaptive and non-adaptive query complex-

ities are polynomially related (with an exponent of only 3/2). To

the best of our knowledge, this is the first example of an exponen-

tial separation between adaptive and nonadaptive distribution-free

testers.

1.2 Ideas and Techniques
The Algorithm. As a first step toward our main Õ (k2)/ϵ-query
algorithm, in Section 3 we present a simple one-sided adaptive al-

gorithm, which we call SimpleDJunta, that distribution-free tests
k-juntas using O ((k/ϵ ) + k logn) queries. SimpleDJunta uses bi-
nary search and is an adaptation to the distribution-free setting of

theO ((k/ϵ ) + k logn)-query uniform-distribution algorithm which

is implicit in [7]. The algorithm maintains a set I of relevant vari-
ables: a string x ∈ {0, 1}n has been found for each i ∈ I such that

f (x ) , f (x (i ) ) (we use x (i ) to denote the string obtained by flipping
the i-th bit of x ), and the algorithm rejects only when |I | becomes

larger than k . In each round, the algorithm samples a string x ← D
and a subset R of I := [n] \ I uniformly at random. A simple lemma,

Lemma 3.2, states that if f is far from every k-junta with respect to

D, then we must have

f (x ) , f (x (R) )

with at least some moderately large probability as long as |I | ≤ k ,

where we use x (R)
to denote the string obtained from x by flipping

every coordinate in R. With (x ,x (R) ) in hand, it is straightforward

to find a new relevant variable using binary search over coordinates

in R (see Figure 1, where we use diff(x ,y) to denote the set of i ∈ [n]
with xi , yi ), with at most logn additional queries.

In order to achieve a query complexity that is independent of

n, one must employ a more efficient approach than binary search

over Ω(n) coordinates (since most likely the set R has size Ω(n) for
the range of k we are interested in). In the uniform-distribution

setting this is accomplished in [7] by first randomly partitioning

the variable space [n] into s = poly(k/ϵ ) disjoint blocks B1, . . . ,Bs
of variables and carrying out binary search over blocks (see Figure
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Procedure BinarySearch( f ,x ,y)
Input: Query access to f : {0, 1}n → {0, 1} and two strings x ,y ∈ {0, 1}n with f (x ) , f (y).

Output: Two strings x ′,y′ ∈ {0, 1}n with f (x ′) , f (y′) and x ′ = y′(i ) for some i ∈ diff(x ,y).

(1) Let B ⊆ [n] be the set such that x = y (B ) .

(2) If |B | = 1, return x and y.

(3) Partition (arbitrarily) B into B1 and B2 of size ⌊|B |/2⌋ and ⌈|B |/2⌉, respectively.

(4) Query f (x (B1 ) ).

(5) If f (x ) , f (x (B1 ) ), return BinarySearch( f ,x ,x (B1 ) ).

(6) Otherwise, return BinarySearch( f ,x (B1 ) ,y).

Figure 1: Description of the standard binary search procedure.

Procedure BlockBinarySearch( f ,x ,y;B1, . . . ,Br )
Input: Query access to f : {0, 1}n → {0, 1}, two strings x ,y ∈ {0, 1}n with f (x ) , f (y), and a sequence

of pairwise disjoint blocks B1, . . . ,Br for some r ≥ 1 with diff(x ,y) ⊆ B1 ∪ · · · ∪ Br .
Output: Two strings x ′,y′ ∈ {0, 1}n with f (x ′) , f (y′) and diff(x ,y) ⊆ Bi for some i ∈ [r ].

(1) If r = 1, return x and y.

(2) Let t = ⌊r/2⌋ and B be the intersection of diff(x ,y) and B1 ∪ · · · ∪ Bt .

(3) Query f (x (B ) ).

(4) If f (x ) , f (x (B ) ), return BlockBinarySearch( f ,x ,x (B ) ;B1, . . . ,Bt ).
(5) Otherwise, return BlockBinarySearch( f ,x (B ) ,y;Bt+1, . . . ,Br ).

Figure 2: Description of the blockwise version of the binary search procedure.

2) rather than over individual coordinates; this reduces the cost

of each binary search to log(k/ϵ ) rather than logn. The algorithm
maintains a set of relevant blocks: two strings x ,y ∈ {0, 1}n have

been found for each such block B which satisfy f (x ) , f (y) and
y = x (S ) with S ⊆ B, and the algorithm rejects when more than

k relevant blocks have been found. In each round the algorithm

samples two strings x ,y uniformly at random conditioned on their

agreeing with each other on the relevant blocks that have already

been found in previous rounds; if f (x ) , f (y), then the binary

search over blocks is performed to find a new relevant block. To

establish the correctness of this approach [7] employs a detailed and

technical analytic argument based on the influence of coordinates

and the Efron-Stein orthogonal decomposition of functions over

product spaces. This machinery is well suited for dealing with

product distributions, and indeed the analysis of [7] goes through

for any product distribution over {0, 1}n (and even for more general

finite domains and ranges). However, it is far from clear how to

extend this machinery to work for the completely unstructured

distributionsD that must be handled in the distribution-free model.

Our main distribution-free junta testing algorithm, which we de-

noteMainDJunta, draws ideas from both SimpleDJunta (mainly

Lemma 3.2) and the uniform distribution tester of [7]. To avoid the

logn cost, the algorithm carries out binary search over blocks rather

than over individual coordinates, and maintains a set of disjoint rel-

evant blocks B1, . . . ,Bℓ , i.e., for each Bj a pair of strings x
j
and y j

have been found such that they agree with each other over Bj and
satisfy f (x j ) , f (y j ). Letw j

be the projection of x j (and y j ) over
Bj and let дj be the Boolean function over {0, 1}Bj obtained from f
by setting variables in Bj tow

j
. For clarity we assume further that

every function дj is very close to a literal (i.e. for some τ ∈ {xi j ,xi j }
we have дj (x ) = τ for all x ∈ {0, 1}Bj for some i j ∈ Bj ) under the
uniform distribution. (To justify this assumption we note that if дj
is far from every literal under the uniform distribution, then it is

easy to split Bj further into two relevant blocks using the uniform

distribution algorithm of [7].) Let I = {i j : j ∈ [ℓ]}. Even though the

algorithm does not know I , there is indeed a way to draw uniformly

random subsets R of I . First we draw a partition of Bj into Pj and
Qj uniformly at random, for each j . Since дj is close to a literal, it is
not difficult to figure out whether Pj or Qj contains the hidden i j ,
say it is Pj for every j. Then the union of all Qj ’s together with a

uniformly random subset of B1 ∪ · · · ∪ Bℓ , denoted by R, turns out
to be a uniformly random subset of I . With R in hand, Lemma 3.2

implies that f (x ) , f (x (R) ) with high probability when x ← D,

and when this happens, one can carry out binary search over blocks

to increase the number of relevant blocks by one. In Section 4.1 we

explain the intuition behind the main algorithm in more detail.

TheLowerBound.Aq-query non-adaptive distribution-free tester
is a randomized algorithmA that works as follows.WhenA is run on

a pair (ϕ,D)1, it is first given the result (y1,ϕ (y1)), . . . , (yq ,ϕ (yq ))
of q queries from the sampling oracle. Based on them, it queries

the black-box oracle q times on strings z1, . . . ,zq . The z j ’s may

depend on the random pairs (yi ,ϕ (yi )) received from the sampling

oracle, but the j-th black-box query string z j may not depend on

the responses ϕ (z1), . . . ,ϕ (z j−1) to any of the j−1 earlier black-box
queries.

1
For clarity, throughout our discussion of lower bounds we write ϕ to indicate a

function which may be either a “yes-function” or a “no-function”, f to denote a

“yes-function” and д to denote a “no-function.”

751



STOC’18, June 25–29, 2018, Los Angeles, CA, USA Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, and Jinyu Xie

…......................	

Figure 3: A schematic depiction of how {0, 1}n is labeled by a
function д from NO. The domain {0, 1}n is partitioned into
2
k sections corresponding to different settings of the vari-
ables in J ; each section is a vertical strip in the figure. Shaded
regions correspond to strings where д evaluates to 1 and
unshaded regions to strings where д evaluates to 0. Each
string in S is a black dot and the value of д on each such
string is chosen uniformly at random. Since in this figure
the truncated circles are disjoint, the tie-breaking rule does
not come into effect, and for each z ∈ S all strings in its sec-
tion within distance atmost 0.4n (the points in the truncated
circle around z) have the same value as z. The value of д on
other points is determined by the background junta h which
assigns a uniform random bit to each section.

As is standard in property testing lower bounds, our argument

employs a distribution YES over yes-instances and a distribution

NO over no-instances. Here YES is a distribution over (function,

distribution) pairs ( f ,D) in which f is guaranteed to be a k-junta;
NO is a distribution over pairs (д,D) such that with probability

1 − o(1), д is 1/3-far from every k-junta with respect to D. To

prove the desired lower bound against non-adaptive distribution-

free testers, it suffices to show that for q = 2
k/3

, any deterministic

non-adaptive algorithm A as described above is roughly equally

likely to accept whether it is run on an input drawn from YES or

from NO.

Our construction of theYES andNO distributions is essentially

as follows. In making a draw either from YES or from NO, first

m = Θ(2k logn) strings are selected uniformly at random from

{0, 1}n to form a set S , and the distribution D in both YES and

NO is set to be the uniform distribution over S . Also in bothYES

andNO, a “background” k-junta h is selected uniformly at random

by first picking a set J of k variables at random and then a random

truth table for h over the variables in J . We view the variables in

J as partitioning {0, 1}n into 2
k
disjoint “sections” depending on

how they are set.

In the case of a draw from YES, the function f that goes with

the above-describedD is simply the background junta f = h. In
the case of a draw from NO, the function д that goes withD is

formed by modifying the background junta h in the following way

(roughly speaking; see Section 5.1 in the full version [15] for precise

details): for each z ∈ S , we toss a fair coin b(z) and set the value

of all the strings in z’s section that lie within Hamming distance

0.4n from z (including z itself) to b(z) (see Figure 3). Note that the
value of д at each string in S is a fair coin toss, which is completely

independent of the background junta h. Using the choice ofm it

can be argued that with high probability д is 1/3-far from every

k-junta with respect toD.

The rough idea of why a pair ( f ,D) ← YES is difficult for

a (q = 2
k/3

)-query non-adaptive algorithm A to distinguish from

a pair (д,D) ← NO is as follows. Intuitively, in order for A to

distinguish the no-case from the yes-case, it must obtain two strings

x1,x2 that belong to the same section but are labeled differently.

Since there are 2
k
sections but q is only 2

k/3
, by the birthday

paradox it is very unlikely that A obtains two such strings among

the q samples y1, . . . ,yq that it is given from the distributionD.

In fact, in both the yes- and no- cases, writing (ϕ,D) to denote the

(function, distribution) pair, the distribution of the q pairs(
y1,ϕ (y1)

)
, . . . ,

(
yq ,ϕ (yq )

)
will be statistically very close to

(x1, b1), . . . , (xq , bq ),

where each pair (x j , bj ) is drawn independently and uniformly

from {0, 1}n × {0, 1}. Intuitively, this translates into the examples

(yi ,ϕ (yi )) from the sampling oracle “having no useful information”

about the set J of variables that the background junta depends on.

What about the q strings z1, . . . ,zq thatA feeds to the black-box

oracle? It is also unlikely that any two elements of y1, . . . ,yq ,z1,
. . . ,zq belong to the same section but are labeled differently. Fix

an i ∈ [q]; we give some intuition here as to why it is very unlikely

that there is any j such that zi lies in the same section asy j but has
f (zi ) , f (y j ) (via a union bound, the same intuition handles all

i ∈ [q]). Intuitively, since the random examples from the sampling

oracle provide no useful information about the set J defining the

background junta, the only thing that A can do in selecting zi is
to choose how far it lies, in terms of Hamming distance, from the

points iny1, . . . ,yq (which, recall, are uniform random). Fix j ∈ [q]:
if zi is within Hamming distance 0.4n from y j , then even if zi lies
in the same section as y j it will be labeled the same way as y j

whether we are in the yes- case or the no- case. On the other hand,

if zi is farther than 0.4n in Hamming distance from y j , then it is

overwhelmingly likely that zi will lie in a different section from y j

(since it is very unlikely that all 0.4n of the flipped coordinates avoid

the k-element set J ). We prove Theorem 1.2 in the full version [15]

via a formal argument that proceeds somewhat differently from but

is informed by the above intuitions.

Organization. In Section 2 we define the distribution-free testing

model and introduce some useful notation. In Section 3 we present

SimpleDJunta and prove Lemma 3.2 in its analysis. In Section 4 we

present our main algorithmMainDJunta and prove Theorem 1.1.

2 PRELIMINARIES
Notation.We use [n] to denote {1, . . . ,n}. We use f andд to denote
Boolean functions, which are maps from {0, 1}n to {0, 1} for some

positive integer n. We use the calligraphic font (e.g., D and NO)
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to denote probability distributions, boldface letters such as x to

denote random variables, and write “x ← D” to indicate that x
is a random variable drawn from a distribution D .We also write

x ← {0, 1}n to denote that x is a string drawn uniformly at random.

Given S ⊆ [n], we write R ← S to indicate that R is a subset of S
drawn uniformly at random, i.e., each index i ∈ S is included in R
independently with probability 1/2.

Given a subset B ⊆ [n], we use B to denote its compliment with

respect to [n], and {0, 1}B to denote the set of all binary strings of

length |B | with coordinates indexed by i ∈ B. Given an x ∈ {0, 1}n

and a B ⊆ [n], we write xB ∈ {0, 1}
B
to denote the projection

of x over coordinates in B and x (B ) ∈ {0, 1}n to denote the string

obtained from x by flipping coordinates in B. Given x ∈ {0, 1}B and

y ∈ {0, 1}B , we write x ◦ y ∈ {0, 1}n to denote their concatenation,

a string that agrees with x over coordinates in B and agrees with

y over B. (As an example of the notation, given x ,y ∈ {0, 1}n and

B ⊆ [n], xB ◦ yB denotes the string that agrees with x over B and

with y over B.) Given x ,y ∈ {0, 1}n , we write d (x ,y) to denote the

Hamming distance between x and y, and diff(x ,y) ⊆ [n] to denote

the set of coordinates i ∈ [n] with xi , yi .
Given f ,д : {0, 1}n → {0, 1} and a distribution D over {0, 1}n ,

we denote the distance between f and д with respect to D by

distD ( f ,д) := Pr

z←D
[f (z) , д(z)].

Given a class C of Boolean functions,

distD ( f ,C) := min

д∈C

(
distD ( f ,д)

)
denotes the distance between f and C with respect to D, where

the minimum is taken over д with the same number of variables as

f . We say f is ϵ-far from C with respect to D if distD ( f ,C) ≥ ϵ .
We will often work with restrictions of Boolean functions. Given

a Boolean function f : {0, 1}n → {0, 1}, S ⊆ [n] and z ∈ {0, 1}B , the
restriction of f over B by z, denoted by f↾z , is the Boolean function

д : {0, 1}B → {0, 1} defined by д(x ) = f (x ◦ z) for all x ∈ {0, 1}B .

Distribution-Free PropertyTesting.Nowwe define distribution-

free property testing:

Definition 2.1. We say an algorithm A has oracle access to a
pair ( f ,D), where f : {0, 1}n → {0, 1} is an unknown Boolean
function and D is an unknown probability distribution over {0, 1}n ,
if it can (1) access f via a black-box oracle that returns f (x ) when
a string x ∈ {0, 1}n is queried, and (2) access D via a sampling
oracle that, upon each request, returns a pair (x , f (x )) where x ← D
independently.

Let C be a class of Boolean functions. A distribution-free testing

algorithm A for C is a randomized algorithm that, given as input a
distance parameter ϵ > 0 and oracle access to a pair ( f ,D), accepts
with probability at least 2/3 if f ∈ C and rejects with probability
at least 2/3 if f is ϵ-far from C with respect to D. We say A is one-
sided if it always accepts when f ∈ C. The query complexity of a
distribution-free testing algorithm is the number of queries made on
f plus the number of samples drawn from D.

We often use the term “block” to refer to a nonempty subset of

[n], which should be interpreted as a nonempty subset of the n
variables of a Boolean function f : {0, 1}n → {0, 1}. The following

definition of distinguishing pairs and relevant blocks will be heavily

used in our algorithms.

Definition 2.2 (Distinguishing pairs and relevant blocks).

Given two strings x ,y ∈ {0, 1}n and a block B ⊆ [n], we say that
(x ,y) is a distinguishing pair for B if xB = yB and f (x ) , f (y). We
say B is a relevant block of f if such a distinguishing pair exists for
B (or equivalently, the influence of B in f is positive).

When {i} is a relevant block we simply say that the i-th variable is
relevant to f .

As will become clear later, all our algorithms reject a Boolean

function f only when they have found k + 1 pairwise disjoint

blocks B1, . . . ,Bk+1 and a distinguishing pair for each Bi . When

this occurs, it means that B1, . . . ,Bk+1 are pairwise disjoint relevant
blocks of f , which implies that f cannot be a k-junta. As a result,
our algorithms are one-sided. To prove their correctness, it suffices

to show that they reject with probability at least 2/3 when f is ϵ-far
from k-juntas with respect to D.

For the standard property testing model under the uniform dis-

tribution, Blais [7] obtained a nearly optimal algorithm:

Theorem 2.3 ([7]). There exists a one-sided, O ((k/ϵ ) + k logk )-
query algorithm UniformJunta( f ,k, ϵ ) that rejects f with proba-
bility at least 2/3 when it is ϵ-far from k-juntas under the uniform
distribution. Moreover, it rejects only when it has found k + 1 pairwise
disjoint blocks and a distinguishing pair of f for each of them.

Binary Search. The standard binary search procedure (see Figure

1) takes as input two strings x ,y ∈ {0, 1}n with f (x ) , f (y), makes

O (logn) queries on f , and returns a pair of strings x ′,y′ ∈ {0, 1}n

with f (x ′) , f (y′) and x ′ = y′(i ) for some i ∈ diff(x ,y), i.e., a
distinguishing pair for the i-th variable for some i ∈ diff(x ,y).

However, we cannot afford to use the standard binary search pro-

cedure directly in our main algorithm due to its query complexity

of O (logn); recall our goal is to have the query complexity depend

on k only. Instead we will employ a blockwise version of the binary

search procedure, as described in Figure 2. It takes as input two

strings x ,y ∈ {0, 1}n with f (x ) , f (y) as well as a sequence of pair-
wise disjoint blocks B1, . . . ,Br such that diff(x ,y) ⊆ B1 ∪ · · · ∪ Br
(i.e., (x ,y) is a distinguishing pair for B1 ∪ · · · ∪Br ), makesO (log r )
queries on f , and returns two strings x ′,y′ ∈ {0, 1}n satisfying

f (x ′) , f (y′) and diff(x ′,y′) ⊆ Bi for some i ∈ [r ] (i.e., (x ′,y′) is
a distinguishing pair for one of the blocks Bi in the input).

3 WARMUP: A TESTERWITHO ((k/ϵ ) + k logn)
QUERIES

As a warmup, we first present a simple, one-sided distribution-free

algorithm for testing k-juntas (SimpleDJunta, where the capital
letter D is a shorthand for distribution-free). It uses O ((k/ϵ ) +
k logn) queries, where n as usual denotes the number of variables

of the function being tested. The idea behind SimpleDJunta and

its analysis (Lemma 3.2) will be useful in the next section where we

present our main algorithm to remove the dependency on n.
The algorithm SimpleDJunta maintains a set I ⊂ [n] which

is such that a distinguishing pair has been found for each i ∈ I
(i.e., I is a set of relevant variables of f discovered so far). The

algorithm sets I = ∅ at the beginning and rejects only when |I |
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Algorithm SimpleDJunta( f ,D,k, ϵ )
Input: Oracle access to a Boolean function f : {0, 1}n → {0, 1} and a probability distribution

D over {0, 1}n , a positive integer k , and a distance parameter ϵ > 0.

Output: Either “accept” or “reject.”

(1) Set I = ∅.

(2) Repeat 8(k + 1)/ϵ times:

(3) Sample x ← D and a subset R of I uniformly at random. Set y = x (R)
.

(4) If f (x ) , f (y), then run the standard binary search on x ,y to find a distinguishing

(5) pair for a new relevant variable i ∈ R ⊆ I . Set I = I ∪ {i}.

(6) If |I | > k , then halt and output “reject.”

(7) Halt and output “accept.”

Figure 4: Description of the distribution-free testing algorithm SimpleDJunta for k-juntas.

reaches k + 1, which implies immediately that the algorithm is one-

sided. SimpleDJunta proceeds round by round. In each round it

draws a pair of random stringsx andy withx I = yI . If f (x ) , f (y),
the standard binary search procedure is used on x and y to find a

distinguishing pair for a new variable i ∈ I , which is then added to

I . The detailed description of the algorithm is given in Figure 4.

The following theorem establishes correctness of the algorithm.

Theorem 3.1. (i) SimpleDJuntamakesO ((k/ϵ )+k logn) queries
and always accepts when f is a k-junta. (ii) It rejects with probability
at least 2/3 if f is ϵ-far from k-juntas with respect to D.

Proof. For part (i) of the theorem, note that the algorithm only

runs binary search (and spendsO (logn) queries) when f (x ) , f (y)
and this happens at most k + 1 times (even though the algorithm

has O (k/ϵ ) rounds). The rest of part (i) is immediate from the de-

scription of the algorithm.

For part (ii), it suffices to show that when |I | ≤ k at the beginning

of a round, a new relevant variable is discovered in this round with

at least a modestly large probability. For this purpose we use the

following simple but crucial lemma and note the fact that x and y
on line 3 can be equivalently drawn by first sampling x ← D and

w← {0, 1}n and then setting y = x I ◦wI (the way we draw x and

y in Figure 4 via R← I makes it easier to connect with the main

algorithm in the next section).

Lemma 3.2. If f is ϵ-far from k-juntas with respect to D, then for
any I ⊂ [n] of size at most k , we have

Pr

x←D,w←{0,1}n

[
f (x ) , f (x I ◦wI )

]
≥ ϵ/2. (1)

Before proving Lemma 3.2, we use it to finish the proof of part

(ii). Assuming Lemma 3.2 and that f is ϵ-far from k-juntas with
respect to D, for each round in which |I | ≤ k the algorithm finds a

new relevant variable with probability at least ϵ/2. By a coupling ar-
gument, the probability that the algorithm rejects f (i.e., |I | reaches
k + 1 during the 8(k + 1)/ϵ rounds) is at least the probability that

8(k+1)/ϵ∑
i=1

Zi ≥ k + 1,

where Zi ’s are i.i.d. {0, 1}-variables that are 1 with probability ϵ/2.
It follows from the Chernoff bound that the latter probability is at

least 2/3. This finishes the proof of the theorem. □

Proof of Lemma 3.2. Let I be a subset of [n] of size at most k .
To prove (1) for I , we use I to define the following Boolean function

h : {0, 1}n → {0, 1} over n variables: for each x ∈ {0, 1}n we set

h(x ) := argmax

b ∈{0,1}

{
Pr

w←{0,1}n

[
f (xI ◦wI ) = b

]}
,

where we break ties arbitrarily. Then for any x ∈ {0, 1}n , we have

Pr

w←{0,1}n

[
f (xI ◦wI ) = h(x )

]
≥ 1/2. (2)

Furthermore, we have

Pr

x←D,w←{0,1}n

[
f (x ) , f (x I ◦wI )

]

=
∑

z∈{0,1}n
Pr

x←D

[
x = z

]
· Pr

w←{0,1}n

[
f (z) , f (zI ◦wI )

]

≥
∑

z∈{0,1}n
Pr

x←D

[
x = z

]
·

(
(1/2) · 1

[
f (z) , h(z)

])
= (1/2) · Pr

x←D

[
f (x ) , h(x )

]
≥ ϵ/2,

where the first inequality follows from (2) and the second inequality

follows from the assumption that f is ϵ-far from every k-junta with
respect toD and the fact thath is a k-junta (since it only depends on
variables in I and |I | ≤ k). This finishes the proof of the lemma. □

4 PROOF OF THEOREM 1.1: A TESTERWITH
Õ (k2)/ϵ QUERIES

In this section, we present our main Õ (k2)/ϵ-query algorithm for

the distribution-free testing of k-juntas. We start with some intu-

ition behind the algorithm.

4.1 Intuition
Recall that the factor of logn in the query complexity of SimpleD-
Junta from the previous section is due to the use of the standard

binary search procedure. To avoid it, one could choose to terminate

each call to binary search early but this ends up giving us relevant
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blocks of variables instead of relevant variables. To highlight the

challenge, imagine that the algorithm has found so far ℓ ≤ k many

pairwise disjoint relevant blocks Bj , j ∈ [ℓ], i.e., it has found a

distinguishing pair for each block Bj . By definition, each Bj must

contain at least one relevant variable i j ∈ Bj . However, we do not

know exactly which variable in Bj is i j , and thus it is not clear how
to draw a set R from I uniformly at random, where I = {i j : j ∈ [ℓ]},
as on line 3 of SimpleDJunta, in order to apply Lemma 3.2 to dis-

cover a new relevant block. It seems that we are facing a dilemma

when trying to improve SimpleDJunta to remove the logn factor:

unless we pin down a set of relevant variables, it is not clear how

to draw a random set from their complement, but pinning down a

relevant variable using the standard binary search would already

cost logn queries.

To explain the main idea behind our Õ (k2)/ϵ-query algorithm,

let’s assume again that ℓ ≤ k many disjoint relevant blocks Bj
have been found so far, with a distinguishing pair (x [j],y[j]) for
each Bj (satisfying that diff(x [j],y[j]) ⊆ Bj and f (x [j]) , f (y[j])
by definition). Let

w[j] =
(
x [j]

)
Bj
=

(
y[j]

)
Bj
∈ {0, 1}Bj .

Next let us assume further that the function дj := f↾w [j] , for each

j ∈ [ℓ], is a literal, i.e. either дj (z) = zi j for all z ∈ {0, 1}
Bj

or

дj (z) = zi j for all z ∈ {0, 1}
Bj
, for some variable i j ∈ Bj , but the

variable i j is of course unknown to the algorithm. (While this may

seems very implausible, we make this assumption for now and

explain below why it is not too far from real situations.)

To make progress, we draw a random two-way partition of each

Bj into Pj and Qj , i.e., each i ∈ Bj is added to either Pj or Qj with

probability 1/2 (so they are disjoint and Bj = Pj ∪ Qj ). We make

three simple but crucial observations to increase the number of

disjoint relevant blocks by one.

(1) Since дj is assumed to be a literal on the i j -th variable (and

by the definition of дj we have query access to дj ), it is easy
to tell whether i j ∈ Pj or i j ∈ Qj , by picking an arbitrary

string x ∈ {0, 1}Bj and then comparing дj (x ) with дj (x
(Pj ) ).

Below we assume that the algorithm correctly determines

whether i j is in Pj or Qj for all j ∈ [ℓ]. We let Sj denote the
element of {Pj ,Qj } that contains i j and let Tj denote the
other one. We also assume below that the algorithm has

obtained a distinguishing pair of дj for each block Sj .

(2) Next we draw a subset T of B1 ∪ · · · ∪ Bℓ uniformly at

random. Crucially, the way that Pj and Qj were drawn, and

the above assumption that Sj contains i j , implies that

R := T ∪ T1 ∪ · · · ∪ Tℓ is indeed a subset of I drawn
uniformly at random (recall that I = {i j : j ∈ [ℓ]}) since
other than those in I , each variable is included in R
independently with probability 1/2. If we draw a random

string x ← D, then Lemma 3.2 implies that f (x ) , f (y),

where y = x (R)
, with probability at least ϵ/2.

(3) Finally, assuming that f (x ) , f (y) (with diff(x ,y) = R),
running the blockwise binary search on x ,y and blocks

T,T1, . . . ,Tℓ will lead to a distinguishing pair for one of

these blocks and will only require O (log ℓ) ≤ O (logk )
queries. If it is a distinguishing pair for T, then we can add

T to the list of relevant blocks B1, . . . ,Bℓ and they remain

pairwise disjoint. If it is Tj for some j ∈ [ℓ], then we can

replace Bj in the list by Sj and Tj , for each of which we

have found a distinguishing pair (recall that a

distinguishing pair has already been found for each Sj in
the first step). In either case we have that the number of

pairwise disjoint relevant blocks grows by one.

Coming back to the assumption we made earlier, although дj is
very unlikely to be a literal, it must fall into one of the following

three cases: (1) close to a literal; (2) close to a (all-0 or all-1) constant

function; or (3) far from 1-juntas. Here in all cases “close” and “far”

means with respect to the uniform distribution over {0, 1}Bj . As we

discuss in more detail in the rest of the section, with some more

careful probability analysis the above arguments generalize to the

case in which every дj is only close to (rather than exactly) a literal.

On the other hand, if one of the blocks Bj is in case (2) or (3), then

(using the fact that we have a distinguishing pair for Bj ) it is easy
to split Bj into two blocks and find a distinguishing pair for each

of them. (For example, for case (3) this can be done by running

Blais’s uniform distribution junta testing algorithm.) As a result, we

can make progress by increasing the number of pairwise disjoint

relevant blocks by one. Our algorithm basically keep repeating

these steps until the number of such blocks reaches k + 1.

4.2 Description of the Main Algorithm and the
Proof of Correctness

Our main algorithm MainDJunta( f ,D,k, ϵ ) is described in Fig-

ure 5. It maintains two collections of blocks V = {B1, . . . ,Bv } (V
for “verified”) andU = {C1, . . . ,Cu } (U for “unverified”) for some

nonnegative integers v and u. They are set to be ∅ at initialization

and always satisfy:

(A). B1, . . . ,Bv ,C1, . . . ,Cu ⊆ [n] are pairwise disjoint
(nonempty) blocks of variables; and

(B). A distinguishing pair has been found for each of these

blocks. For notational convenience we use (x [j],y[j]) to
denote the distinguishing pair for each Bj and (x [C],y[C])
to denote the distinguishing pair for each block C ∈ U . We

also use the notation

w[j]
:=

(
x [j]

)
Bj
=

(
y[j]

)
Bj
∈ {0, 1}Bj and

w[C]
:=

(
x [C]

)
C
=

(
y[C]

)
C
∈ {0, 1}C ,

and we let дj := f↾w [j] and дC := f↾w [C] , functions over

{0, 1}Bj and {0, 1}C , respectively.

The algorithm rejects only when the total number of blocks v + u
≥ k + 1 so it is one-sided.

Throughout the algorithm and its analysis, we set a key parame-

ter γ := 1/(8k ). Blocks inV are intended to be those that have been

“verified” to satisfy the condition that дj is γ -close to a literal (for

some unknown variable i j ∈ Bj ) under the uniform distribution,

while blocks inU have not been verified yet so they may or may not

satisfy the condition. More formally, at any point in the execution

of the algorithm we say that the algorithm is in good condition if its
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Algorithm MainDJunta( f ,D,k, ϵ ) with the same input / output as SimpleDJunta in Figure 4.

(1) Initialization: Set V = U = ∅, r1 = 64k/ϵ and r2 = 3(k + 1).

(2) While r1 > 0 and r2 > 0 do (letting V = {B1, . . . ,Bv } andU = {C1, . . . ,Cu })

(3) If u = 0, then

(4) Set r1 to be r1 − 1.

(5) For j = 1 to v do ((x [j],y[j]): distinguishing pair for Bj ,w
[j] = (x [j])Bj

and дj = f↾w [j] )

(6) Draw a random partition Pj ,Qj of Bj and runWhereIsTheLiteral(дj , Pj ,Qj ).

(7) If it returns a distinguishing pair of дj for Pj , set Sj = Pj and Tj = Qj ;

(8) Else if it returns a distinguishing pair of дj for Qj , set Sj = Qj and Tj = Pj ;
(9) Else (it returns “fail”), skip this round and go back to line 2.

(10) Draw x ← D and a subset T of B1 ∪ · · · ∪ Bv uniformly at random.

(11) If f (x ) , f (y), where y = x (R)
with R = T ∪ T1 ∪ · · · ∪ Tv , then

(12) Run the blockwise binary search on x and y with blocks T,T1, . . . ,Tv .
(13) If a distinguishing pair of f for T is found, add T toU .

(14) Else (a distinguishing pair of f for Tj∗ , for some j∗ ∈ [v], is found)

(15) Concatenatew[j∗]
to the distinguishing pair of дj∗ for Sj∗ found on line 7-8.

(16) This gives us a distinguishing pair of f for Sj∗ .
(17) Remove Bj∗ from V and add both Sj∗ and Tj∗ toU .

(18) Else (i.e., u > 0)

(19) Set r2 to be r2 − 1.

(20) Pick a C ∈ U arbitrarily; let (x ,y) be its distinguishing pair,w = xC and д = f↾w .

(21) If Literal(д) returns “true,” remove C fromU and add it to V .

(22) Else (it returns disjoint subsets C ′,C∗ of C and each a distinguishing pair of дC )

(23) Concatenatew to obtain a distinguishing pair of f for each of C ′ and C∗

(24) Remove C fromU and add both C ′ and C∗ toU .

(25) If |V | + |U | ≥ k + 1, then halt and output “reject.”

(26) Halt and output “accept.”

Figure 5: Description of the distribution-free testing algorithm MainDJunta for k-juntas.

current collections V and U satisfy conditions (A), (B) and (C): Ev-
ery дj , j ∈ [v], is γ -close to a literal under the uniform distribution

over {0, 1}Bj .

The algorithmMainDJunta( f ,k, ϵ ) starts with V = U = ∅ and
proceeds round by round. For each round, we consider two different

types that the round may have: type 1 is that u = 0, and type 2

is that u > 0. In a type-1 round (with u = 0) we follow the idea

sketched in Section 4.1 to increase the total number of disjoint

relevant blocks by one. We prove the following lemma for this case

in Section 4.3.

Lemma 4.1. Assume that MainDJunta is in good condition at the
beginning of a round, with u = 0 and v ≤ k . Then it must remain in
good condition at the end of this round. Moreover, letting V ′ andU ′

be the two collections of blocks at the end of this round, we have either
|V ′ | = v and |U ′ | = 1, or |V ′ | = v − 1 and |U ′ | = 2 with probability
at least ϵ/4.

In a type-2 round (with u ≥ 1), we pick an arbitrary block C
fromU and check whether дC is close to a literal under the uniform

distribution. The following lemma, which we prove in Section 4.4,

shows that with high probability, either C is moved to collection

V and the algorithm remains in good condition, or the algorithm

finds two disjoint subsets of C and a distinguishing pair for each

of them so that V stays the same but |U | goes up by one (we add

these two blocks toU since they have not yet been verified).

Lemma 4.2. Assume that MainDJunta is in good condition at the
beginning of a round, withu > 0 andv+u ≤ k . Then with probability
at least 1 − 1/(64k ), one of the following two events occurs at the end
of this round (lettingV ′ andU ′ be the two collections of blocks at the
end of this round):

(1) The algorithm remains in good condition with |V ′ | = |V | + 1
and |U ′ | = |U | − 1; or

(2) The algorithm remains in good condition with V ′ = V and
|U ′ | = |U | + 1.

Assuming Lemma 4.1 and Lemma 4.2, we are ready to prove the

correctness ofMainDJunta.

Theorem 4.3. (i)MainDJuntamakes Õ (k2)/ϵ many queries and
always accepts f when it is a k-junta. (ii) It rejects with probability
at least 2/3 when f is ϵ-far from every k-junta with respect to D.
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Proof of Theorem 4.3 Assuming Lemma 4.1 and Lemma 4.2.

MainDJunta is one-sided since it rejects f only when it has found

k + 1 pairwise disjoint relevant blocks of f . Its query complexity is

(# type-1 rounds) · (# queries per type-1 round)

+ (# type-2 rounds) · (# queries per type-2 round)

= O (k/ϵ ) · (O (k ) +O (logk )) +O (k ) ·O (logk ) ·O (k )

= O (k2/ϵ ) +O (k2 logk ) = O (k2 logk )/ϵ .

In the rest of the proof we show that it rejects f with probability at

least 2/3 when f is ϵ-far from every k-junta with respect to D.

For this purpose we introduce a simple potential function

F (V ,U ) := 3|V | + 2|U |

to measure the progress: Each round of the algorithm is either of

type-1 (when |U | = 0) or of type-2 (when |U | > 0). By Lemma 4.1,

if the algorithm is in good condition at the beginning of a type-1

round, then the algorithm ends the round in good condition and the

potential function F goes up by at least one with probability at least

ϵ/4 (in which case we say that the algorithm succeeds in this type-1

round). By Lemma 4.2, if the algorithm is in good condition at the

beginning of a type-2 round, then the algorithm ends the round in

good condition and F goes up by at least one with probability at

least 1 − 1/(32k ) (in which case we say it succeeds in this type-2

round).

Note that F is 0 at the beginning (V = U = ∅) and that we

must have |U | + |V | ≥ k + 1 (and thus, the algorithm rejects) when

the potential function F reaches 3(k + 1) or above. As a result, a
necessary condition for the algorithm to accept is that one of the

following two events occurs:

E1: At least one of the (no more than 3(k + 1) many) type-2

rounds fails.

E2: E1 does not occur (so every round ends in good

condition, and the reason that the algorithm accepts cannot

be that it uses up all the 3(k + 1) many type-2 rounds), and

the algorithm uses up all the 64k/ϵ many type-1 rounds but

at most 3k + 2 of them succeed.

By a union bound the probability of E1 is at most

3(k + 1) · 1/(64k ) ≤ 6k · 1/(64k ) < 1/8.

As the algorithm ends every round in good condition, it follows

from Lemma 4.1 and a coupling argument that the probability of

E2 is at most the probability that

64k/ϵ∑
i=1

Z i ≤ 3k + 2,

where Z i ’s are i.i.d. {0, 1}-valued random variables that take 1 with

probability ϵ/4. It follows from the Chernoff bound the probability

is at most (using 3k + 2 ≤ 5k)

exp

(
−

(
11

16

)
2

·
16k

2

)
= exp

(
−
121k

32

)
< exp(−3) < 1/8.

Finally it follows from a union bound that the algorithm rejects

with probability at least 3/4. □

4.3 Proof of Lemma 4.1
We start with a lemma for the subroutine WhereIsTheLiteral in
MainDJunta, which is described in Figure 6.

Lemma 4.4. Assume that a Boolean function д : {0, 1}B → {0, 1}

is γ -close (with respect to the uniform distribution) to a literal xi or xi
for some i ∈ B. If i ∈ P , thenWhereIsTheLiteral(д, P ,Q ) returns a
distinguishing pair of д for P with probability at least 1− 4γ ; If i ∈ Q ,
then it returns a distinguishing pair of д for Q with probability at
least 1 − 4γ .

Proof. Let K be the set of strings x ∈ {0, 1}B such that д(x )
disagrees with the literal to which it is γ -close (so |K | ≤ γ · 2 |B |).
We work on the case when i ∈ Q ; the case when i ∈ P is similar.

By the description of WhereIsTheLiteral, it returns a distin-
guishing pair for Q if

д(w ◦ z) = д(w ◦ z (P ) ) and д(w′ ◦ z′) , д(w′ ◦ z′(Q ) ).

Note that this holds if all four strings fall outside of K and thus,

the probability that it does not hold is at most the probability that

at least one of these four strings falls inside K . The latter by a

union bound is at most 4γ since each of these four strings is drawn

uniformly at random from {0, 1}B by itself. This finishes the proof

of the lemma. □

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. First, it is easy to verify that if the algo-

rithm starts a round in good condition, then it ends it in good

condition. This is because whenever a block is added to U , it is

disjoint from other blocks and we have found a distinguishing pair

for it.

Next it follows directly from Lemma 4.4 and a union bound that,

for any sequence of partitions Pj and Q j of Bj picked on line 6, the

probability that the for-loop correctly sets Sj to be the one that

contains the special variable i j for all j ∈ [v] is at least (recalling
that γ = 1/(8k ))

1 − 4γ · v ≥ 1 − 4γ · k = 1/2.

Nowwe can view the process equivalently as follows. First we draw

x ← D, T← B1 ∪ · · · ∪ Bv , and random partitions Pj ,Qj of each

Bj . If we let T∗j be the set in Pj ,Qj that does not contain the special

variable, then we have that

R∗ = T ∪ T∗
1
∪ · · · ∪ T∗v

is a set drawn uniformly at random from I , where I = {i j : j ∈ [v]}
consists of the special variables. Therefore, it follows from Lemma

3.2 that f (x ) , f (x (R∗ ) ) with probability at least ϵ/2. Since with
probability at least 1/2, the set R on line 11 agrees with R∗, we
have that the algorithm reaches line 12 with f (x ) , f (y) with
probability at least ϵ/4. Given this, the lemma is immediate by

inspection of lines 12-17 of the algorithm. □

4.4 Proof of Lemma 4.2
First it follows from the description of the subroutine Literal(д)
that it either returns “true” or a pair of nonempty disjoint subsets

C ′,C∗ of C and a distinguishing pair of д for each of them (see

Theorem 2.3). Next, let C ∈ V be the block picked in line 20. If д
is γ -close to a literal, then it is easy to verify that one of the two
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Subroutine WhereIsTheLiteral(д, P ,Q )
Input: Oracle access to a Boolean function д over {0, 1}B with P ,Q being a partition of B.
Output: Either a distinguishing pair for P , a distinguishing pair for Q , or “fail.”

(1) Draw w← {0, 1}Q and z ← {0, 1}P independently and uniformly at random.

(2) If д(w ◦ z) , д(w ◦ z (P ) ), return (w ◦ z,w ◦ z (P ) ) as a distinguishing pair for P .

(3) Draw w′ ← {0, 1}P and z′ ← {0, 1}Q independently and uniformly at random.

(4) If д(w′ ◦ z′) , д(w′ ◦ z′(Q ) ), return (w′ ◦ z′,w′ ◦ z′(Q ) ) as a distinguishing pair for Q .

(5) Return “fail.”

Figure 6: Description of the subroutine WhereIsTheLiteral.

Subroutine Literal(д)
Input: Oracle access to a Boolean function д over {0, 1}C where C has a distinguishing pair.

Output: “True” or disjoint nonempty subsets C ′,C∗ of C and a distinguishing pair for each.

(1) Repeat logk + 6 times:

(2) If UniformJunta(д, 1,γ ) rejects, then
(3) Return the two disjoint blocks it has found and a distinguishing pair for each.

(4) Let (x ,y) be the distinguishing pair for C .

(5) Repeat logk + 3 times:

(6) Draw a random partition C′,C∗ of C and query д(x (C
′) ),д(x (C

∗ ) ),д(y (C
′) ),д(y (C

∗ ) ).

(7) If д(x (C
′) ) = д(x (C

∗ ) ) , д(x ), then

(8) Return C′,C∗ and (x ,x (C
′) ) and (x ,x (C

∗ ) ) as their distinguishing pairs.

(9) If д(y (C
′) ) = д(y (C

∗ ) ) , д(y), then

(10) Return C′,C∗ and (y,y (C
′) ) and (y,y (C

∗ ) ) as their distinguishing pairs.

(11) Return “true.”

Figure 7: Description of the subroutine Literal.

events described in Lemma 4.2 must hold (using the property of

Literal(д) above). So we focus on the other two cases in the rest of

the proof: д is γ -far from 1-juntas or д is γ -close to a (all-1 or all-0)

constant function. In both cases we show below that the second

event happens with high probability.

When д is γ -far from 1-juntas under the uniform distribution,

we have that one of the logk + 6 calls toUniformJunta in Literal
rejects with probability at least

1 − (1/3)logk+6 > 1 − 1/(64k ).

The second event in Lemma 4.2 occurs when this happens.

When д is γ -close to a constant function (say the all-1 function),

we have that either string x or y in the distinguishing pair for C
disagrees with the function (say д(x ) = 0, since д(x ) , д(y)). Let K
be the set of strings in {0, 1}C that disagree with the all-1 function.

Then line 7 of Literal(д) does not hold only when one of x (C
′)
or

x (C
∗ )
lies inK . As both strings are distributed uniformly over {0, 1}C

by themselves, this happens with probability at most 2γ by a union

bound. Thus, the probability that line 7 holds at least once is at least

1 − (2γ )logk+3 = 1 − (1/(4k ))logk+3

> 1 − (1/4)logk+3 = 1 − 1/(64k2).

Therefore the second event in Lemma 4.2 occurs with probability

at least 1 − 1/(64k2).
This finishes the proof of Lemma 4.2.
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